On Double Integrals Involving Generalized H–Function of Two Variables

Page 1

IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 13, Issue I Ver. V (Jan. - Feb. 2017), PP 45-47 www.iosrjournals.org

On Double Integrals Involving Generalized H–Function of Two Variables Mehphooj Beg1 & Dr. S. S. Shrivastava2 1

VITS, Satna (M. P.) Institute for Excellence in Higher Education Bhopal (M. P.)

2

Abstract: The aim of this paper is to derive a double integrals involving generalized H–function of two variables.

I. Introduction The generalized H–function of two variables is given by Shrivastava, H. S. P. [4] and defined as follows: (a j ,Îą j ;A j )1,p 1 : c j ,Îł j : e j ,E j m ,n ;m ,n ;m ,n 3 x 1,p 1,p 3 [y |(b ,β ;B ) : d ,δ 2 : f ,F ] 1,q j j j j j 1,q j j 1,q 1

2 3 Hp 11,q 11;p 2 ,q2 2 ;p 3 ,q 3

2

=

−1 4Ď€ 2 L 1 L 2

3

Ď•1 Ξ, Ρ θ2 (Ξ)θ3 (Ρ)x Ξ y Ρ dΞdΡ

(1)

where n1 m1 j=1 Γ(1−a j +Îą j Ξ+A j Ρ) j=1 Γ(b j −β j Ξ−B j Ρ) p1 q1 Γ(a j âˆ’Îą j Ξ−A j Ρ) j=1 Γ(1−b j +β j Ξ+B j Ρ) j=n 1 +1

ď€

Ď•1 Ξ, Ρ =

ď€

θ2 Ξ =

m2 n2 j=1 Γ(d j −δ j Ξ) j=1 Γ(1−c j +Îł j Ξ) q2 p2 Γ(1−d j +δ j Ξ) j=n Γ(c j âˆ’Îł j Ξ) j=m 2 +1 2 +1

ď€

θ2 Ξ =

m3 n3 j=1 Γ(f j −F j Ρ) j=1 Γ(1−e j +E j Ρ) q3 p3 Γ(1−f j +F j Ρ) j=n Γ(e j −E j Ρ) j=m 3 +1 3 +1

,ď€

ď€ ď€

x and y are not equal to zero, and an empty product is interpreted as unity p i, qi, ni and mj are non negative integers such that pi ≼ ni ≼ 0, qi ≼ 0, qj ≼ mj ≼ 0, (i = 1, 2, 3; j = 2, 3). Also, all the A’s, ι’s, B’s, β’s, γ’s, ď ¤â€™s, E’s, and F’s are assumed to the positive quantities for standardization purpose. The contour L1 is in the ď ¸-plane and runs from – i∞ to + i∞, with loops, if necessary, to ensure that the poles of ď ‡(dj - ď ¤jď ¸) (j = 1, ..., m2) lie to the right, and the poles of ď ‡(1 – cj + Îłjď ¸) (j = 1, ..., n2), ď ‡(1 – aj + Îąjď ¸+ Ajď ¨) (j = 1, ..., n1) to the left of the contour. The contour L2 is in the ď ¨-plane and runs from – i∞ to + i∞, with loops, if necessary, to ensure that the poles of ď ‡(fj – Fjď ¨) (j = 1, ..., m3) lie to the right, and the poles of ď ‡(1 – ej + Ejď ¨) (j = 1, ..., n3), ď ‡(1 – aj + Îąjď ¸ + Ajď ¨) (j = 1, ..., n1) to the left of the contour. The generalized H-function of two variables given by (1) is convergent if đ?‘ˆ= −

�1 � =1 ��

đ?‘?1 đ?‘— =đ?‘› 1 +1 đ?›źđ?‘—

�=

đ?‘›1 đ?‘— =1 đ??´đ?‘—

+ − +

�1 � =1 ��

+

đ?‘ž1 đ?‘— =đ?‘š 1 +1 đ?›˝đ?‘— đ?‘š1 đ?‘— =1 đ??ľđ?‘—

+

�2 � =1 ��

−

�2 � =1 ��

đ?‘?2 đ?‘— =đ?‘› 2 +1 đ?›žđ?‘—

đ?‘›3 đ?‘— =1 đ??¸đ?‘—

−

+

+

−

�2 � =� 2 +1 �� ;

(2)

đ?‘š3 đ?‘— =1 đ??šđ?‘—

đ?‘?1 đ?‘— =đ?‘› 1 +1 đ??´đ?‘—

−

đ?‘ž1 đ?‘— =đ?‘š 1 +1 đ??ľđ?‘—

−

đ?‘?3 đ?‘— =đ?‘› 3 +1 đ??¸đ?‘—

−

đ?‘ž3 đ?‘— =đ?‘š 3 +1 đ??šđ?‘— ,

(3) where | arg x | < ½ Uď °, | arg y | < ½ Vď °ď€Žď€ ď€ ď€ ď€ ď€ ď€ DOI: 10.9790/5728-1301054547

www.iosrjournals.org

45 | Page


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.