International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 5(May 2013), PP.08-15 www.irjes.com
On A Class Of đ?’‘ −Valent Functions Involving Generalized Hypergeometric Function Chena Ram And Saroj Solanki Department of Mathematics and Statistics, Jai Narain Vyas University Jodhpur, (Rajasthan), India.
Abstract: Invoking the Hadamard product (or convolution), a class of p-valent functions has been introduced. The coefficient bounds, extreme points, radii of close-to-convex, starlikeness and convexity are obtained for the same class of functions. Distortion theorem and fractional differ-integral operators are also obtained. Key words: đ?‘?-valent function; Analytic function; Hadamard product; Generalized hyper-geometric functions; Linear operator; Starlike function; Convex function; Fractional differential and integral operator.
I. Introduction Let đ??´(đ?‘›, đ?‘?) denote the class of functions đ?‘“(đ?‘§) of the form ∞
đ?‘“ đ?‘§ = đ?‘§đ?‘? +
đ?‘Žđ?‘› +đ?‘? đ?‘§ đ?‘›+đ?‘? , đ?‘?, đ?‘› ∈ N = 1,2, ‌ ‌ ,
(1.1)
đ?‘› =1
which are analytic and đ?&#x2018;? â&#x2C6;&#x2019;valent in the unit disk đ?&#x2022;&#x152; = { đ?&#x2018;§ â&#x2C6;ś đ?&#x2018;§ < 1}. A function đ?&#x2018;&#x201C;(đ?&#x2018;§) â&#x2C6;&#x2C6; đ??´ (đ?&#x2018;&#x203A;, đ?&#x2018;?) is said to be đ?&#x2018;? â&#x2C6;&#x2019;valent starlike of order đ?&#x203A;ż (0 â&#x2030;¤ đ?&#x203A;ż < đ?&#x2018;?) if and only if Re
đ?&#x2018;§đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§)
> đ?&#x203A;ż , đ?&#x2018;§ â&#x2C6;&#x2C6; đ?&#x2022;&#x152;; 0 â&#x2030;¤ đ?&#x203A;ż < đ?&#x2018;? .
đ?&#x2018;&#x201C;(đ?&#x2018;§ )
(1.2)
We denote by đ?&#x2018;&#x2020;đ?&#x2018;&#x203A; đ?&#x2018;?, đ?&#x203A;ż the subclass of đ??´(đ?&#x2018;&#x203A;, đ?&#x2018;?) consisting of functions which are đ?&#x2018;? â&#x2C6;&#x2019;valent starlike of order đ?&#x203A;ż. Also a function đ?&#x2018;&#x201C; đ?&#x2018;§ â&#x2C6;&#x2C6; đ??´(đ?&#x2018;&#x203A;, đ?&#x2018;?) is said to be in the class đ??žđ?&#x2018;&#x203A; đ?&#x2018;?, đ?&#x203A;ż if and only if Re 1 +
đ?&#x2018;§đ?&#x2018;&#x201C; â&#x20AC;˛â&#x20AC;˛ (đ?&#x2018;§) đ?&#x2018;&#x201C; â&#x20AC;˛(đ?&#x2018;§ )
> đ?&#x203A;ż , (đ?&#x2018;§ â&#x2C6;&#x2C6; đ?&#x2022;&#x152;; 0 â&#x2030;¤ đ?&#x203A;ż < đ?&#x2018;?).
(1.3)
A function đ?&#x2018;&#x201C; đ?&#x2018;§ â&#x2C6;&#x2C6; đ??žđ?&#x2018;&#x203A; đ?&#x2018;?, đ?&#x203A;ż is called đ?&#x2018;? -valent convex function of order đ?&#x203A;ż (0â&#x2030;¤ đ?&#x203A;ż < đ?&#x2018;?), if đ?&#x2018;&#x201C; đ?&#x2018;§ â&#x2C6;&#x2C6; đ??žđ?&#x2018;&#x203A; đ?&#x2018;?, đ?&#x203A;ż ď&#x192;ł đ?&#x2018;§đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§) â&#x2C6;&#x2C6; đ?&#x2018;&#x2020;đ?&#x2018;&#x203A; đ?&#x2018;?, đ?&#x203A;ż , â&#x2C6;&#x20AC; đ?&#x2018;&#x203A; â&#x2C6;&#x2C6; đ?&#x2018; . For a function đ?&#x2018;&#x201C;(đ?&#x2018;§) is given by (1.1) and đ?&#x2018;&#x201D;(đ?&#x2018;§) â&#x2C6;&#x2C6; đ??´ đ?&#x2018;&#x203A;, đ?&#x2018;? is given by
(1.4)
â&#x2C6;&#x17E;
đ?&#x2018;?
đ?&#x2018;?đ?&#x2018;&#x203A;+đ?&#x2018;? đ?&#x2018;§ đ?&#x2018;&#x203A;+đ?&#x2018;? ,
đ?&#x2018;&#x201D; đ?&#x2018;§ =đ?&#x2018;§ +
đ?&#x2018;? ,đ?&#x2018;&#x203A; â&#x2C6;&#x2C6; N ,
(1.5)
đ?&#x2018;&#x203A; =1
we define the Hadamard product of đ?&#x2018;&#x201C; đ?&#x2018;§ and đ?&#x2018;&#x201D; đ?&#x2018;§ as â&#x2C6;&#x17E;
đ?&#x2018;?
đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; +đ?&#x2018;? đ?&#x2018;?đ?&#x2018;&#x203A;+đ?&#x2018;? đ?&#x2018;§ đ?&#x2018;&#x203A;+đ?&#x2018;? ,
đ?&#x2018;&#x201C;â&#x2C6;&#x2014;đ?&#x2018;&#x201D; đ?&#x2018;§ = đ?&#x2018;§ +
đ?&#x2018;§ â&#x2C6;&#x2C6; đ?&#x2022;&#x152;.
(1.6)
đ?&#x2018;&#x203A;=1
Let the subclass A đ?&#x2018;&#x203A;, đ?&#x2018;? is denoted by đ?&#x153;&#x2018; consisting of functions of the form â&#x2C6;&#x17E;
đ?&#x2018;?
đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; +đ?&#x2018;? đ?&#x2018;§ đ?&#x2018;&#x203A; +đ?&#x2018;? ,
đ?&#x2018;&#x201C; đ?&#x2018;§ =đ?&#x2018;§ â&#x2C6;&#x2019;
đ?&#x2018;? , đ?&#x2018;&#x203A; â&#x2C6;&#x2C6; N; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; â&#x2030;Ľ 0 .
(1.7)
đ?&#x2018;&#x203A;=1
Invoking the Hadamard product, a linear operator đ??żđ?&#x2018;&#x2DC;đ?&#x2018;? đ?&#x2018;&#x17D;, đ?&#x2018;?, đ?&#x2018;? đ?&#x2018;&#x201C;(đ?&#x2018;§) is defined as đ??żđ?&#x2018;&#x2DC;đ?&#x2018;? đ?&#x2018;&#x17D;, đ?&#x2018;?, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§ = (đ?&#x2018;§ đ?&#x2018;? 2đ?&#x2018;&#x2026;1 đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;?; đ?&#x2018;&#x2DC;; đ?&#x2018;§ ) â&#x2C6;&#x2014; đ?&#x2018;&#x201C; đ?&#x2018;§ â&#x2C6;&#x17E; Î&#x201C; đ?&#x2018;? (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; Î&#x201C; đ?&#x2018;? + đ?&#x2018;&#x2DC;đ?&#x2018;&#x203A; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;+đ?&#x2018;? đ?&#x2018;§ đ?&#x2018;&#x203A;+đ?&#x2018;? đ?&#x2018;? =đ?&#x2018;§ â&#x2C6;&#x2019; Î&#x201C;đ?&#x2018;? Î&#x201C; đ?&#x2018;? + đ?&#x2018;&#x2DC;đ?&#x2018;&#x203A; đ?&#x2018;&#x203A; ! â&#x2C6;&#x17E; đ?&#x2018;?
đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;+đ?&#x2018;? đ??ľ đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; +đ?&#x2018;? ,
=đ?&#x2018;§ â&#x2C6;&#x2019;
(1.8)
đ?&#x2018;&#x203A;=1
(1.9)
đ?&#x2018;&#x203A; =1
where 2đ?&#x2018;&#x2026;1 đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;?; đ?&#x2018;§ is generalized hypergeomertric function defined by Virchenko, Kalla and Al-Zamel [6] as, â&#x2C6;&#x17E; Î&#x201C;đ?&#x2018;? (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; Î&#x201C; đ?&#x2018;? + đ?&#x2018;&#x2DC;đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; , đ?&#x2018;&#x2DC; â&#x2C6;&#x2C6; đ?&#x2018;&#x2026;, đ?&#x2018;&#x2DC; > 0, đ?&#x2018;§ < 1, (1.10) 2 đ?&#x2018;&#x2026;1 đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;?; đ?&#x2018;&#x2DC;; đ?&#x2018;§ = Î&#x201C;đ?&#x2018;? Î&#x201C; đ?&#x2018;? + đ?&#x2018;&#x2DC;đ?&#x2018;&#x203A; đ?&#x2018;&#x203A; ! đ?&#x2018;&#x203A;=0
where (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; is the pochhammer symbol defined as
www.irjes.com
8 | Page
On A Class Of đ?&#x2018;? â&#x2C6;&#x2019;Valent Functions Involving Generalized Hypergeometric Function (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; = and đ??ľ đ?&#x2018;&#x203A; =
Î&#x201C; đ?&#x2018;&#x17D;+đ?&#x2018;&#x203A; Î&#x201C; đ?&#x2018;&#x17D;
=
1, đ?&#x2018;&#x17D; đ?&#x2018;&#x17D; + 1 â&#x20AC;Śâ&#x20AC;Ś đ?&#x2018;&#x17D; + đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1 ;
Î&#x201C; đ?&#x2018;? (đ?&#x2018;&#x17D;) đ?&#x2018;&#x203A; Î&#x201C; đ?&#x2018;?+đ?&#x2018;&#x2DC;đ?&#x2018;&#x203A; Î&#x201C; đ?&#x2018;? Î&#x201C; đ?&#x2018;?+đ?&#x2018;&#x2DC;đ?&#x2018;&#x203A;
đ?&#x2018;&#x203A; !
đ?&#x2018;&#x203A;=0 đ?&#x2018;&#x203A;â&#x2C6;&#x2C6;đ?&#x2018;
.
(1.11) đ??żđ?&#x2018;&#x2DC;đ?&#x2018;?
If we set đ?&#x2018;&#x2DC; = 1 in (1.8), then the linear operator đ?&#x2018;&#x17D;, đ?&#x2018;?, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§ reduces to the linear operator đ??żđ?&#x2018;? đ?&#x2018;&#x17D;, đ?&#x2018;?, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§ defined (cf. [5]) as â&#x2C6;&#x17E; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;+đ?&#x2018;? đ?&#x2018;§ đ?&#x2018;&#x203A;+đ?&#x2018;? đ?&#x2018;? đ??żđ?&#x2018;? đ?&#x2018;&#x17D;, đ?&#x2018;?, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§ = đ?&#x2018;§ â&#x2C6;&#x2019; = đ?&#x2018;§ đ?&#x2018;? 2đ??š1 đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;?; đ?&#x2018;§ â&#x2C6;&#x2014; đ?&#x2018;&#x201C; đ?&#x2018;§ . (1.12) (đ?&#x2018;?)đ?&#x2018;&#x203A; đ?&#x2018;&#x203A; ! đ?&#x2018;&#x203A; =1
In particular, if we set đ?&#x2018;? = 1, then linear operator đ??żđ?&#x2018;? đ?&#x2018;&#x17D;, đ?&#x2018;?, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§ reduces to Carlson-Shaffer operator đ??ż đ?&#x2018;&#x17D;, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§ defined as â&#x2C6;&#x17E; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;+đ?&#x2018;? đ?&#x2018;§ đ?&#x2018;&#x203A; +đ?&#x2018;? đ??żđ?&#x2018;? đ?&#x2018;&#x17D;, 1, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§ = đ??żđ?&#x2018;? đ?&#x2018;&#x17D;, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§ = đ?&#x2018;§ đ?&#x2018;? â&#x2C6;&#x2019; (đ?&#x2018;?)đ?&#x2018;&#x203A; đ?&#x2018;&#x203A;=1
= đ?&#x2018;§ đ?&#x2018;? đ?&#x153;&#x2122; đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;§ â&#x2C6;&#x2014; đ?&#x2018;&#x201C; đ?&#x2018;§ , where đ?&#x153;&#x2122; đ?&#x2018;&#x17D;; đ?&#x2018;?; đ?&#x2018;§ is incomplete beta function defined as
(1.13)
ď&#x201A;Ľ
đ?&#x153;&#x2122; đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;§ =2đ??š 1 đ?&#x2018;&#x17D;, 1; đ?&#x2018;?; đ?&#x2018;§ =
ď&#x192;Ľ n ď&#x20AC;˝0
(đ?&#x2018;&#x17D;) đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A;
.
(đ?&#x2018;?)đ?&#x2018;&#x203A;
For detail, one can see [1, 4]. A function đ?&#x2018;&#x201C; đ?&#x2018;§ â&#x2C6;&#x2C6; đ?&#x153;&#x2018;, for đ?&#x203A;ź â&#x2030;Ľ 0 and 0 â&#x2030;¤ đ?&#x203A;˝ < đ?&#x2018;? is said to be in the class đ??´đ?&#x2018;&#x2DC;đ?&#x2018;? (đ?&#x203A;ź, đ?&#x203A;˝) if it satisfies the following relation Re
â&#x20AC;˛
đ?&#x2018;§ đ??żđ?&#x2018;&#x2DC;đ?&#x2018;? đ?&#x2018;&#x17D;,đ?&#x2018;?,đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§
> đ?&#x203A;ź
đ??żđ?&#x2018;&#x2DC;đ?&#x2018;? đ?&#x2018;&#x17D;,đ?&#x2018;?,đ?&#x2018;? đ?&#x2018;&#x201C;(đ?&#x2018;§)
â&#x20AC;˛
đ?&#x2018;§ đ??żđ?&#x2018;&#x2DC;đ?&#x2018;? đ?&#x2018;&#x17D;,đ?&#x2018;?,đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§
â&#x2C6;&#x2019; đ?&#x2018;? +đ?&#x203A;˝.
đ??żđ?&#x2018;&#x2DC;đ?&#x2018;? đ?&#x2018;&#x17D;,đ?&#x2018;?,đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§
(1.14)
For detail, one can see [7].
Coefficient Bounds for Function đ?&#x2019;&#x2021;(đ?&#x2019;&#x203A;) in đ?&#x2018;¨đ?&#x2019;&#x152;đ?&#x2019;&#x2018; (đ?&#x153;ś, đ?&#x153;ˇ)
II.
Theorem 2.1. Let the function đ?&#x2018;&#x201C;(đ?&#x2018;§) defined by (1.7) be in the class đ??´đ?&#x2018;&#x2DC;đ?&#x2018;? (đ?&#x203A;ź, đ?&#x203A;˝) if and only if â&#x2C6;&#x17E;
đ?&#x2018;&#x203A; 1+đ?&#x203A;ź + đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; +đ?&#x2018;? đ??ľ đ?&#x2018;&#x203A; < 1, đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝
đ?&#x2018;&#x203A; =1
(2.1)
where 0 â&#x2030;¤ đ?&#x203A;˝ < đ?&#x2018;? , đ?&#x203A;ź â&#x2030;Ľ 0 and đ??ľ đ?&#x2018;&#x203A; is defined by (1.11). Proof. Let đ?&#x2018;&#x201C; â&#x2C6;&#x2C6; đ??´đ?&#x2018;&#x2DC;đ?&#x2018;? (đ?&#x203A;ź, đ?&#x203A;˝). By using Re đ?&#x2018;¤ > đ?&#x203A;ź đ?&#x2018;¤ â&#x2C6;&#x2019; đ?&#x2018;? + đ?&#x203A;˝, if and only if, Re đ?&#x2018;¤ 1 + đ?&#x203A;ź đ?&#x2018;&#x2019; đ?&#x2018;&#x2013;đ?&#x203A;ž â&#x2C6;&#x2019; đ?&#x2018;?đ?&#x203A;ź đ?&#x2018;&#x2019; đ?&#x2018;&#x2013;đ?&#x203A;ž for real đ?&#x203A;ž and letting đ?&#x2018;¤=
đ?&#x2018;§ đ??żđ?&#x2018;&#x2DC;đ?&#x2018;? đ?&#x2018;&#x17D;,đ?&#x2018;? ,đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§ đ??żđ?&#x2018;&#x2DC;đ?&#x2018;? đ?&#x2018;&#x17D;,đ?&#x2018;? ,đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§
> đ?&#x203A;˝
â&#x20AC;˛
,
(1.14) reduces to Re
đ?&#x2018;§ đ??żđ?&#x2018;&#x2DC;đ?&#x2018;? đ?&#x2018;&#x17D;, đ?&#x2018;?, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§
â&#x20AC;˛
(1 + đ?&#x203A;ź đ?&#x2018;&#x2019; đ?&#x2018;&#x2013;đ?&#x203A;ž ) â&#x2C6;&#x2019; pÎąđ?&#x2018;&#x2019; đ?&#x2018;&#x2013;đ?&#x203A;ž
đ??żđ?&#x2018;&#x2DC;đ?&#x2018;? đ?&#x2018;&#x17D;, đ?&#x2018;?, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§
> đ?&#x203A;˝,
or, equivalently, ď&#x201A;Ľ
đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ â&#x2C6;&#x2019;
Re
ď&#x192;Ľ
ď&#x201A;Ľ
đ??ľ đ?&#x2018;&#x203A; đ?&#x2018;&#x203A;+đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ đ?&#x2018;&#x17D; đ?&#x2018;&#x203A; +đ?&#x2018;?
n ď&#x20AC;˝1
đ?&#x2018;§ đ?&#x2018;&#x203A; â&#x2C6;&#x2019;đ?&#x203A;źđ?&#x2018;&#x2019; đ?&#x2018;&#x2013;đ?&#x203A;ž
ď&#x192;Ľ
đ?&#x2018;&#x203A; đ??ľ đ?&#x2018;&#x203A; đ?&#x2018;&#x17D; đ?&#x2018;&#x203A; +đ?&#x2018;? đ?&#x2018;§ đ?&#x2018;&#x203A;
n ď&#x20AC;˝1
ď&#x201A;Ľ
1â&#x2C6;&#x2019;
ď&#x192;Ľ
> 0.
(2.2)
đ??ľ đ?&#x2018;&#x203A; đ?&#x2018;&#x17D; đ?&#x2018;&#x203A; +đ?&#x2018;? đ?&#x2018;§ đ?&#x2018;&#x203A;
n ď&#x20AC;˝1
The inequality (2.2) must hold for all đ?&#x2018;§ in đ?&#x2022;&#x152;. By letting đ?&#x2018;§ â&#x2020;&#x2019; 1â&#x2C6;&#x2019; , we have
www.irjes.com
9 | Page
On A Class Of 𝑝 −Valent Functions Involving Generalized Hypergeometric Function
𝑝−𝛽 −
𝑛+𝑝−𝛽 𝑎 𝑛 +𝑝 −𝛼𝑒 𝑖𝛾
𝐵 𝑛
n 1
Re
𝑛 𝐵 𝑛 𝑎 𝑛 +𝑝
n 1
> 0,
1−
𝐵 𝑛 𝑎 𝑛 +𝑝
n 1
by means of mean value theorem, we get ∞
∞
𝑝−𝛽 −
𝑎𝑛 +𝑝 𝐵 𝑛
𝑛+𝑝−𝛽 −𝛼
𝑛=1
Therefore,
𝑛 𝑎𝑛 +𝑝 𝐵 𝑛
≥ 0.
𝑛=1
∞
𝑛 1+𝛼 + 𝑝−𝛽
𝑎𝑛+𝑝 𝐵 𝑛 ≤
𝑝−𝛽 .
(2.3)
𝑛 =1
Conversely, we assume that (2.1) hold. We are to show that (1.14) is satisfied and so 𝑓 ∈ 𝐴𝑘𝑝 (𝛼, 𝛽). By using Re 𝑤 > 𝛼 if and only if 𝑤 − 𝑝 + 𝛼 < 𝑤+ 𝑝−𝛼 that ′
𝑧 𝐿𝑘𝑝 𝑎, 𝑏, 𝑐 𝑓 𝑧
− 𝑝+𝛼
𝐿𝑘𝑝 𝑎, 𝑏, 𝑐 𝑓 𝑧
<
′
𝑧 𝐿𝑘𝑝 𝑎, 𝑏, 𝑐 𝑓 𝑧
− 𝑝 +𝛽
𝐿𝑘𝑝 𝑎, 𝑏, 𝑐 𝑓 𝑧 ’
𝑧 𝐿𝑘𝑝 𝑎, 𝑏, 𝑐 𝑓 𝑧
, it is sufficient to show
+
𝐿𝑘𝑝 𝑎, 𝑏, 𝑐 𝑓 𝑧
𝑝− 𝛼
𝑧 𝐿𝑘𝑝 𝑎, 𝑏, 𝑐 𝑓 𝑧
’
−𝑝 −𝛽
𝐿𝑘𝑝 𝑎, 𝑏, 𝑐 𝑓 𝑧
.
Let 𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
𝑒 𝑖∅ =
𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
then, ′
𝑧 𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
E=
+
𝐿𝑘𝑝 𝑎,𝑏 ,𝑐 𝑓 𝑧 ′
𝑧 𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
+ 𝑝−𝛽
𝑧 𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
𝑝 − 𝛼
−𝑝 −𝛽
𝐿𝑘𝑝 𝑎,𝑏 ,𝑐 𝑓 𝑧
𝐿𝑘𝑝 𝑎,𝑏 ,𝑐 𝑓 𝑧 −𝛼𝑒 𝑖∅ 𝑧 𝐿𝑘𝑝 𝑎 ,𝑏,𝑐 𝑓 𝑧
=
′
′
− 𝑝( 𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧 )
𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
𝑧𝑝
2𝑝−𝛽 −
2𝑝 −𝛽 +𝑛 (1−𝛼) 𝐵(𝑛 ) 𝑎 𝑛 +𝑝 𝑧 𝑛
n 1
>
.
𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
(2.4)
and F =
′
𝑧 𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
−
𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
𝑧 𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
′
𝑝+𝛼
𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
− 𝑝+𝛽
=
𝑧 𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
′
𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
− 𝛼𝑒 𝑖∅ 𝑧 𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
−𝑝 +𝛽 ′
− 𝑝 𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
𝑧𝑝
𝛽+
[𝑛 (1+𝛼)−𝛽 ] 𝑎 𝑛 +𝑝 𝐵(𝑛 ) 𝑧 𝑛
n 1
>
(2.5)
𝐿𝑘𝑝 𝑎,𝑏,𝑐 𝑓 𝑧
if (2.1) holds, then it is easy to show that E – F > 0. So the proof is completed.
III. Theorem 3.1. Let 𝑓1 𝑧 = 𝑧
Extreme Points for the class 𝑨𝒌𝒑 (𝜶, 𝜷)
𝑝
(3.1)
www.irjes.com
10 | Page
On A Class Of 𝑝 −Valent Functions Involving Generalized Hypergeometric Function 𝑝−𝛽 𝑧 𝑛 +𝑝 , 𝑛 1 + 𝛼 + 𝑝 − 𝛽 𝐵(𝑛) where 𝑛 ∈ 𝑁, then 𝑓(𝑧) ∈ 𝐴𝑘𝑝 (𝛼, 𝛽), if and only if, 𝑓(𝑧) can be expressed as and 𝑓𝑛 𝑧 = 𝑧 𝑝 −
(3.2)
∞
𝑓(𝑧) =
𝜆𝑛 𝑓𝑛 𝑧 ,
(3.3)
𝑛 =1
where
∞
𝜆1 +
𝜆𝑛 = 1 ,
𝜆1 ≥ 0; 𝜆𝑛 ≥ 0; 𝑛 ∈ 𝑁
(3.4)
𝑛 =1
and 𝐵 𝑛 is defined by (1.11). Proof. Invoking (3.1), (3.2) and (3.3), we get ∞
𝑝
𝜆𝑛 𝑧 𝑝 −
𝑓 𝑧 = 𝜆1 𝑧 + 𝑛 =1
∞
𝑓 𝑧 = 𝑧𝑝 −
𝑝−𝛽 𝑧 𝑛 +𝑝 𝑛 1 + 𝛼 + 𝑝 − 𝛽 𝐵(𝑛)
𝑡𝑛+𝑝 𝑧 𝑛 +𝑝 ,
(3.5)
𝑛 =1
where 𝑝−𝛽 𝜆 𝑛 1+𝛼 + 𝑝−𝛽 𝐵(𝑛 ) 𝑛
𝑡𝑛+𝑝 =
By using (3.4), we get ∞ 𝑛 1 + 𝛼 + 𝑝 − 𝛽 𝐵(𝑛) 𝑡𝑛+𝑝 = 1 − 𝜆1 < 1, 𝑝−𝛽
(3.6)
𝑛 =1 ∈ 𝐴𝑘𝑝 (𝛼, 𝛽).
hence 𝑓 Conversely, if 𝑓 ∈ 𝐴𝑘𝑝 𝛼, 𝛽 , then by using theorem 2.1, we get 𝑝−𝛽 𝑎𝑛+𝑝 ≤ , 𝑛 ∈ 𝑁 , 𝑛 1 + 𝛼 + 𝑝 − 𝛽 𝐵(𝑛) then
(3.7)
𝑛 1 + 𝛼 + 𝑝 − 𝛽 𝐵(𝑛) 𝜆𝑛 𝑎𝑛+𝑝 < 1, 𝑛 ∈ 𝑁 𝑝−𝛽
(3.8)
∞
and 𝜆1 = 1 −
𝜆𝑛 . 𝑛 =1
i.e.
∞
𝑓 𝑧 = 𝑧𝑝 − ∞
= 𝑧𝑝 − 𝑛 =1
𝑎𝑛 +𝑝 𝑧 𝑛+𝑝 𝑛=1
𝑝−𝛽 𝑧 𝑛 +𝑝 𝑛 1+𝛼 + 𝑝−𝛽 𝐵 𝑛
Using (3.2) and (3.4), we get ∞
𝑝
𝑓(𝑧) = 𝑧 − 𝑛 =1
𝑓 𝑧 =𝑧
𝑝
𝑧 𝑝 − 𝑓𝑛 𝑧
𝜆𝑛 ∞
∞
1−
𝜆𝑛 + 𝑛=1
𝜆𝑛 𝑓𝑛 𝑧 . 𝑛 =1
Theorem is completely proved.
IV.
Distortion Bounds 𝐟𝐨𝐫 𝐭𝐡𝐞 𝑳𝒌𝒑 𝒂, 𝒃, 𝒄 𝒇 𝒛
Theorem 4.1. Let the function 𝑓 𝑧 defined by (1.7) be in the class 𝐴𝑘𝑝 (𝛼, 𝛽). Then 𝑧𝑝 − 𝑧
𝑝−𝛽
1+𝑝
Proof. Let 𝑓
∞
1+𝛼 + 𝑝−𝛽 ∈ 𝐴𝑘𝑝 (𝛼, 𝛽).
≤
≤
𝑧
𝑝
+ 𝑧
1+𝑝
𝑝−𝛽 1+𝛼 + 𝑝−𝛽
(4.1)
Then by using theorem 2.1, we have
𝑎𝑛+𝑝 𝐵 𝑛 ≤ 𝑛 =1
𝐿𝑘𝑝 𝑎, 𝑏, 𝑐 𝑓 𝑧
𝑝−𝛽 , (𝑛 ≥ 1) 1+𝛼 + 𝑝−𝛽
www.irjes.com
(4.2)
11 | Page
On A Class Of đ?&#x2018;? â&#x2C6;&#x2019;Valent Functions Involving Generalized Hypergeometric Function now by using (1.9), we get đ??żđ?&#x2018;&#x2DC;đ?&#x2018;?
â&#x2C6;&#x17E;
đ?&#x2018;&#x17D;, đ?&#x2018;?, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§
đ?&#x2018;§
đ?&#x2018;?
đ?&#x2018;?
+
â&#x2030;¤ â&#x2030;¤
đ?&#x2018;§
+
đ?&#x2018;&#x203A;=1 đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝
đ?&#x2018;§
1+đ?&#x203A;ź + đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝
and
đ?&#x2018;&#x203A;+đ?&#x2018;?
đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; +đ?&#x2018;? đ??ľ đ?&#x2018;&#x203A; đ?&#x2018;§ 1+đ?&#x2018;?
â&#x2C6;&#x17E;
đ??żđ?&#x2018;&#x2DC;đ?&#x2018;?
đ?&#x2018;&#x17D;, đ?&#x2018;?, đ?&#x2018;? đ?&#x2018;&#x201C; đ?&#x2018;§
â&#x2030;Ľ đ?&#x2018;§
đ?&#x2018;?
â&#x2C6;&#x2019;
đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;+đ?&#x2018;? đ??ľ đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; =1
â&#x2030;Ľ
đ?&#x2018;§
đ?&#x2018;?
â&#x2C6;&#x2019;
đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝
1+đ?&#x203A;ź + đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝
đ?&#x2018;§
đ?&#x2018;&#x203A; +đ?&#x2018;?
1+đ?&#x2018;?
.
Theorem is completely proved.
V. Radius of close â&#x20AC;&#x201C;to- convexity, starlikeness and convexity Theorem 5.1. Let the function đ?&#x2018;&#x201C; đ?&#x2018;§ defined by (1.7) be in the class đ??´đ?&#x2018;&#x2DC;đ?&#x2018;? (đ?&#x203A;ź, đ?&#x203A;˝). Then đ?&#x2018;&#x201C; đ?&#x2018;§ is đ?&#x2018;? â&#x2C6;&#x2019; valently close to convex of order đ?&#x203A;ż(0 â&#x2030;¤ đ?&#x203A;ż < đ?&#x2018;?) in đ?&#x2018;§ < đ?&#x2018;&#x;1 đ?&#x203A;ź, đ?&#x203A;˝ , where 1
(đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;ż ) đ?&#x2018;&#x203A; 1+đ?&#x203A;ź + đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ đ??ľ(đ?&#x2018;&#x203A;)
đ?&#x2018;&#x;1 đ?&#x203A;ź, đ?&#x203A;˝ = inf
đ?&#x2018;&#x203A;
đ?&#x2018;&#x203A; +đ?&#x2018;? (đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ )
đ?&#x2018;&#x203A;
,đ?&#x2018;&#x203A; â&#x2030;Ľ 1
(5.1)
and đ??ľ(đ?&#x2018;&#x203A;) is defined by (1.11). Proof. It is sufficient to prove that đ?&#x2018;&#x201C; â&#x20AC;˛(đ?&#x2018;§) đ?&#x2018;§ đ?&#x2018;? â&#x2C6;&#x2019;1
â&#x2C6;&#x2019; đ?&#x2018;? â&#x2030;¤ đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x203A;ż , for đ?&#x2018;§ < đ?&#x2018;&#x;1 đ?&#x203A;ź, đ?&#x203A;˝ ,
we have đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§) â&#x2C6;&#x2019;đ?&#x2018;? â&#x2030;¤ đ?&#x2018;§ đ?&#x2018;?â&#x2C6;&#x2019;1
â&#x2C6;&#x17E;
(đ?&#x2018;&#x203A; + đ?&#x2018;?) đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;+đ?&#x2018;? đ?&#x2018;§ đ?&#x2018;&#x203A; . đ?&#x2018;&#x203A; =1
đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§) Thus đ?&#x2018;?â&#x2C6;&#x2019;1 â&#x2C6;&#x2019; đ?&#x2018;? â&#x2030;¤ đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x203A;ż if đ?&#x2018;§ â&#x2C6;&#x17E; đ?&#x2018;&#x203A; + đ?&#x2018;? đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; +đ?&#x2018;? đ?&#x2018;§ (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x203A;ż)
đ?&#x2018;&#x203A;
â&#x2030;¤ 1,
đ?&#x2018;&#x203A; =1
but by theorem 2.1, above inequality hold true if đ?&#x2018;&#x203A;+đ?&#x2018;? đ?&#x2018;&#x203A; 1+đ?&#x203A;ź + đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ đ??ľ đ?&#x2018;&#x203A; đ?&#x2018;§đ?&#x2018;&#x203A; â&#x2030;¤ , (đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;ż ) (đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝) đ?&#x2018;§ â&#x2030;¤
(đ?&#x2018;?â&#x2C6;&#x2019; đ?&#x203A;ż ) đ?&#x2018;&#x203A; 1+đ?&#x203A;ź + đ?&#x2018;? â&#x2C6;&#x2019;đ?&#x203A;˝ đ??ľ đ?&#x2018;&#x203A;
1
đ?&#x2018;&#x203A;
đ?&#x2018;&#x203A;+đ?&#x2018;? (đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ )
,đ?&#x2018;&#x203A; â&#x2030;Ľ 1
or đ?&#x2018;&#x;1 đ?&#x203A;ź, đ?&#x203A;˝ = inf
1
(đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;ż ) đ?&#x2018;&#x203A; 1+đ?&#x203A;ź + đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ đ??ľ(đ?&#x2018;&#x203A; ) đ?&#x2018;&#x203A;+đ?&#x2018;? (đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ )
đ?&#x2018;&#x203A;
đ?&#x2018;&#x203A;
, đ?&#x2018;&#x203A; â&#x2030;Ľ 1.
The Theorem is completely proved. Theorem 5.2. Let the function đ?&#x2018;&#x201C; đ?&#x2018;§ defined by (1.7) be in the class đ??´đ?&#x2018;&#x2DC;đ?&#x2018;? (đ?&#x203A;ź, đ?&#x203A;˝). Then đ?&#x2018;&#x201C; đ?&#x2018;§ is đ?&#x2018;? â&#x2C6;&#x2019; valently starlike of order đ?&#x203A;ż(0 â&#x2030;¤ đ?&#x203A;ż < đ?&#x2018;?) in đ?&#x2018;§ < đ?&#x2018;&#x;2 đ?&#x203A;ź, đ?&#x203A;˝ , where đ?&#x2018;&#x;2 đ?&#x203A;ź, đ?&#x203A;˝ = inf
1
(đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;ż) đ?&#x2018;&#x203A; 1+đ?&#x203A;ź + đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ đ??ľ(đ?&#x2018;&#x203A;) đ?&#x2018;&#x203A;+đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;ż (đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ )
đ?&#x2018;&#x203A;
đ?&#x2018;&#x203A;
,đ?&#x2018;&#x203A; â&#x2030;Ľ 1
(5.2)
and đ??ľ(đ?&#x2018;&#x203A;) is defined by (1.11). Proof. It is sufficient to prove that đ?&#x2018;§đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§) đ?&#x2018;&#x201C;(đ?&#x2018;§ )
â&#x2C6;&#x2019; đ?&#x2018;? â&#x2030;¤ đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x203A;ż , (0 â&#x2030;¤ đ?&#x203A;ż < đ?&#x2018;?)
we have ď&#x201A;Ľ
â&#x20AC;˛
đ?&#x2018;§đ?&#x2018;&#x201C; (đ?&#x2018;§) â&#x2C6;&#x2019;đ?&#x2018;? â&#x2030;¤ đ?&#x2018;&#x201C;(đ?&#x2018;§)
ď&#x192;Ľ n ď&#x20AC;˝1
đ?&#x2018;&#x203A; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; +đ?&#x2018;? đ?&#x2018;§
.
ď&#x201A;Ľ
1â&#x2C6;&#x2019;
ď&#x192;Ľ n ď&#x20AC;˝1
Thus
đ?&#x2018;&#x203A;
đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;+đ?&#x2018;? đ?&#x2018;§
đ?&#x2018;&#x203A;
đ?&#x2018;§đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§) â&#x2C6;&#x2019; đ?&#x2018;? â&#x2030;¤ đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x203A;ż if đ?&#x2018;&#x201C;(đ?&#x2018;§)
www.irjes.com
12 | Page
On A Class Of đ?&#x2018;? â&#x2C6;&#x2019;Valent Functions Involving Generalized Hypergeometric Function â&#x2C6;&#x17E;
đ?&#x2018;&#x203A; + đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x203A;ż đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;+đ?&#x2018;? đ?&#x2018;§ (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x203A;ż)
đ?&#x2018;&#x203A; =1
đ?&#x2018;&#x203A;
â&#x2030;¤ 1,
but by theorem 2.1, above inequality hold true if (đ?&#x2018;?â&#x2C6;&#x2019; đ?&#x203A;ż ) đ?&#x2018;&#x203A; 1+đ?&#x203A;ź + đ?&#x2018;? â&#x2C6;&#x2019;đ?&#x203A;˝ đ??ľ đ?&#x2018;&#x203A;
đ?&#x2018;§ â&#x2030;¤
1
đ?&#x2018;&#x203A;
đ?&#x2018;&#x203A;+đ?&#x2018;?â&#x2C6;&#x2019; đ?&#x203A;ż (đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ )
,đ?&#x2018;&#x203A; â&#x2030;Ľ 1
or 1
(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x203A;ż) đ?&#x2018;&#x203A; 1 + đ?&#x203A;ź + đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x203A;˝ đ??ľ(đ?&#x2018;&#x203A;) đ?&#x2018;&#x203A; đ?&#x2018;&#x;2 đ?&#x203A;ź, đ?&#x203A;˝ = inf , đ?&#x2018;&#x203A; â&#x2030;Ľ 1. đ?&#x2018;&#x203A; đ?&#x2018;&#x203A; + đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x203A;ż (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x203A;˝) The Theorem is completely proved. Corollary 1. Let the function đ?&#x2018;&#x201C; đ?&#x2018;§ defined by (1.7) be in the class đ??´đ?&#x2018;&#x2DC;đ?&#x2018;? (đ?&#x203A;ź, đ?&#x203A;˝). Then đ?&#x2018;&#x201C; đ?&#x2018;§ is đ?&#x2018;? â&#x2C6;&#x2019; valently convex of order đ?&#x203A;ż(0 â&#x2030;¤ đ?&#x203A;ż < đ?&#x2018;?) in đ?&#x2018;§ < đ?&#x2018;&#x;3 đ?&#x203A;ź, đ?&#x203A;˝ , where đ?&#x2018;&#x;3 đ?&#x203A;ź, đ?&#x203A;˝ = inf
đ?&#x2018;? (đ?&#x2018;?â&#x2C6;&#x2019; đ?&#x203A;ż ) đ?&#x2018;&#x203A; 1+đ?&#x203A;ź + đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ đ??ľ(đ?&#x2018;&#x203A; )
1
đ?&#x2018;&#x203A;
đ?&#x2018;&#x203A; +đ?&#x2018;? đ?&#x2018;&#x203A; +đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;ż (đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ )
đ?&#x2018;&#x203A;
,đ?&#x2018;&#x203A; â&#x2030;Ľ 1
(5.3)
and đ??ľ(đ?&#x2018;&#x203A;) is defined by (1.11).
VI.
Fractional integral operator
The following definition given by Srivastava and Owa [2] are required to prove the results in this section: Definition 1. The fractional derivative of order đ?&#x203A;ź for a function đ?&#x2018;&#x201C; đ?&#x2018;§ is defined by 1 đ?&#x2018;&#x2018; đ?&#x2018;§ đ?&#x2018;&#x201C;(đ?&#x2018;Ą) đ??ˇđ?&#x2018;§đ?&#x203A;ź đ?&#x2018;&#x201C; đ?&#x2018;§ = Î&#x201C;(1â&#x2C6;&#x2019;Îą) đ?&#x2018;&#x2018;đ?&#x2018;§ 0 đ?&#x2018;§â&#x2C6;&#x2019;đ?&#x2018;Ą đ?&#x203A;ź đ?&#x2018;&#x2018;đ?&#x2018;Ą ; 0â&#x2030;¤ đ?&#x203A;ź < 1, (6.1) where the function đ?&#x2018;&#x201C; đ?&#x2018;§ is analytic in simply-connected region of the đ?&#x2018;§ -plane containing the origin and multiplicity of đ?&#x2018;§ â&#x2C6;&#x2019; đ?&#x2018;Ą â&#x2C6;&#x2019;đ?&#x203A;ź is removed by requiring log(đ?&#x2018;§ â&#x2C6;&#x2019; đ?&#x2018;Ą) to be real when (đ?&#x2018;§ â&#x2C6;&#x2019; đ?&#x2018;Ą) > 0. Definition 2. The fractional integral of order đ?&#x203A;ź is defined , for a analytic function đ?&#x2018;&#x201C; đ?&#x2018;§ by đ?&#x2018;§ 1 đ?&#x2018;&#x201C;(đ?&#x2018;Ą) đ??ˇđ?&#x2018;§â&#x2C6;&#x2019;đ?&#x203A;ź đ?&#x2018;&#x201C; đ?&#x2018;§ = Î&#x201C;(Îą) 0 đ?&#x2018;§ â&#x2C6;&#x2019;đ?&#x2018;Ą 1â&#x2C6;&#x2019;đ?&#x203A;ź đ?&#x2018;&#x2018;đ?&#x2018;Ą ; đ?&#x203A;ź > 0 , (6.2) where the analytic function đ?&#x2018;&#x201C; đ?&#x2018;§ is in a simply-connected region of the đ?&#x2018;§ -plane containing the origin and multiplicity of đ?&#x2018;§ â&#x2C6;&#x2019; đ?&#x2018;Ą đ?&#x203A;źâ&#x2C6;&#x2019;1 is removed by requiring log(đ?&#x2018;§ â&#x2C6;&#x2019; đ?&#x2018;Ą) to be real when (đ?&#x2018;§ â&#x2C6;&#x2019; đ?&#x2018;Ą) >0. Definition 3. By the hypothesis of definition 1, the fractional derivative of function đ?&#x2018;&#x201C; đ?&#x2018;§ for order đ?&#x2018;&#x2DC; + đ?&#x203A;ź is defined by đ?&#x2018;&#x2018;đ?&#x2018;&#x2DC;
đ??ˇđ?&#x2018;§đ?&#x2018;&#x2DC; +đ?&#x203A;ź đ?&#x2018;&#x201C; đ?&#x2018;§ = đ?&#x2018;&#x2018;đ?&#x2018;§ đ?&#x2018;&#x2DC; đ??ˇđ?&#x2018;§đ?&#x203A;ź đ?&#x2018;&#x201C; đ?&#x2018;§ , (0 â&#x2030;¤ đ?&#x203A;ź < 1; đ?&#x2018;&#x2DC; â&#x2C6;&#x2C6; đ?&#x2018; 0 ). (6.3) We also need the following definition of fractional integral operator given by Srivastava, Saigo and Owa [3] defined as đ?&#x203A;ź,đ?&#x153;&#x201A;,đ?&#x203A;ż Definition 4. The fractional operator đ??ź0,đ?&#x2018;§ for real numbers > 0 , đ?&#x153;&#x201A; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x203A;ż is defined by đ?&#x203A;ź ,đ?&#x153;&#x201A;,đ?&#x203A;ż
đ??ź0,đ?&#x2018;§
đ?&#x2018;&#x201C; đ?&#x2018;§ =
đ?&#x2018;§ â&#x2C6;&#x2019;đ?&#x203A;ź â&#x2C6;&#x2019;đ?&#x153;&#x201A;
đ?&#x2018;§ 0
Î&#x201C;(Îą)
đ?&#x2018;Ą
đ?&#x2018;§ â&#x2C6;&#x2019; đ?&#x2018;Ą 2đ??š1 đ?&#x203A;ź + đ?&#x153;&#x201A;, â&#x2C6;&#x2019;đ?&#x203A;ż; đ?&#x203A;ź ; 1 â&#x2C6;&#x2019; đ?&#x2018;§ đ?&#x2018;&#x201C; đ?&#x2018;Ą đ?&#x2018;&#x2018;đ?&#x2018;Ą,
(6.4)
where the function đ?&#x2018;&#x201C; đ?&#x2018;§ is analytic in simply-connected region of the đ?&#x2018;§ -plane containing the origin with order đ?&#x2018;&#x201C; đ?&#x2018;§ = O đ?&#x2018;§ đ?&#x153;&#x20AC; , đ?&#x2018;§ â&#x2020;&#x2019; 0 and đ?&#x153;&#x20AC; > max 0, đ?&#x153;&#x201A; â&#x2C6;&#x2019; đ?&#x203A;ż â&#x2C6;&#x2019; 1, â&#x2C6;&#x17E; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; đ??š đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;?; đ?&#x2018;§ = , 2 1 (đ?&#x2018;?)đ?&#x2018;&#x203A; đ?&#x2018;&#x203A;! đ?&#x2018;&#x203A;=0
where (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; is the Pochhammer symbol and multiplicity of đ?&#x2018;§ â&#x2C6;&#x2019; đ?&#x2018;Ą real when (đ?&#x2018;§ â&#x2C6;&#x2019; đ?&#x2018;Ą) > 0. Lemma 1. If đ?&#x203A;ź > 0 and đ?&#x2018;&#x203A; > đ?&#x153;&#x201A; â&#x2C6;&#x2019; đ?&#x203A;ż â&#x2C6;&#x2019; 1, then Î&#x201C; đ?&#x2018;&#x203A; +1 Î&#x201C; đ?&#x2018;&#x203A; â&#x2C6;&#x2019;đ?&#x153;&#x201A;+đ?&#x203A;ż+1 đ?&#x203A;ź ,đ?&#x153;&#x201A;,đ?&#x203A;ż đ??ź0,đ?&#x2018;§ đ?&#x2018;§ đ?&#x2018;&#x203A; = đ?&#x2018;§ đ?&#x2018;&#x203A;â&#x2C6;&#x2019;đ?&#x153;&#x201A; . Î&#x201C; đ?&#x2018;&#x203A; â&#x2C6;&#x2019;đ?&#x153;&#x201A;+1
đ?&#x2018;§
đ??´đ?&#x2018;&#x2DC;đ?&#x2018;? (đ?&#x203A;ź, đ?&#x203A;˝)
(6.5)
for đ?&#x203A;ź > 0, đ?&#x153;&#x201A; < 2, then
â&#x2030;Ľ Î&#x201C; đ?&#x2018;?+1 Î&#x201C; đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A; +đ?&#x203A;ż+1 Î&#x201C; đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A;+1
and đ?&#x203A;ź ,đ?&#x153;&#x201A; ,đ?&#x203A;ż đ??ź0,đ?&#x2018;§ đ?&#x2018;&#x201C; đ?&#x2018;§
is removed by requiring log(đ?&#x2018;§ â&#x2C6;&#x2019; đ?&#x2018;Ą) to be
Î&#x201C; đ?&#x2018;&#x203A;+đ?&#x203A;ź +đ?&#x203A;ż+1
Theorem 6.1. Let đ?&#x2018;&#x201C; đ?&#x2018;§ defined by (1.7) be in the class đ?&#x203A;ź,đ?&#x153;&#x201A; ,đ?&#x203A;ż đ??ź0,đ?&#x2018;§ đ?&#x2018;&#x201C;
đ?&#x203A;źâ&#x2C6;&#x2019;1
Î&#x201C; đ?&#x2018;?+đ?&#x203A;ź+đ?&#x203A;ż +1
đ?&#x2018;§
đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A;
1â&#x2C6;&#x2019;
đ?&#x2018;?+1
Î&#x201C; đ?&#x2018;?+đ?&#x2018;&#x2DC;
đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x203A;˝ đ?&#x2018;?+1â&#x2C6;&#x2019;đ?&#x153;&#x201A; +đ?&#x203A;ż
đ?&#x2018;?+1â&#x2C6;&#x2019;đ?&#x153;&#x201A; đ?&#x2018;?+1+đ?&#x203A;ź+đ?&#x203A;ż
Î&#x201C; đ?&#x2018;?
đ?&#x2018;? +1+đ?&#x203A;ź â&#x2C6;&#x2019;đ?&#x203A;˝ đ?&#x2018;&#x17D; Î&#x201C; đ?&#x2018;? +đ?&#x2018;&#x2DC; Î&#x201C; c
đ?&#x2018;§
(6.6)
â&#x2030;¤
Î&#x201C; đ?&#x2018;?+1 Î&#x201C; đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A; +đ?&#x203A;ż+1
Î&#x201C; đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A;+1
Î&#x201C; đ?&#x2018;?+đ?&#x203A;ź +đ?&#x203A;ż +1
đ?&#x2018;§
đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A;
1+
đ?&#x2018;?+1
đ?&#x2018;? â&#x2C6;&#x2019;đ?&#x203A;˝ đ?&#x2018;?+1â&#x2C6;&#x2019;đ?&#x153;&#x201A; +đ?&#x203A;ż
đ?&#x2018;?+1â&#x2C6;&#x2019;đ?&#x153;&#x201A; đ?&#x2018;?+1+đ?&#x203A;ź +đ?&#x203A;ż
Î&#x201C; đ?&#x2018;?+đ?&#x2018;&#x2DC;
Î&#x201C; đ?&#x2018;?
đ?&#x2018;?+1+đ?&#x203A;źâ&#x2C6;&#x2019;đ?&#x203A;˝ đ?&#x2018;&#x17D;Î&#x201C; đ?&#x2018;?+đ?&#x2018;&#x2DC; Î&#x201C; c
đ?&#x2018;§ .
(6.7)
Proof. By using lemma 1, we get ď&#x201A;Ľ
đ?&#x203A;ź ,đ?&#x153;&#x201A;,đ?&#x203A;ż đ??ź0,đ?&#x2018;§ đ?&#x2018;&#x201C;
Î&#x201C; đ?&#x2018;?+1 Î&#x201C; đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A; +đ?&#x203A;ż +1
đ?&#x2018;§ = Î&#x201C; đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A;+1
Î&#x201C; đ?&#x2018;?+đ?&#x203A;ź+đ?&#x203A;ż +1
đ?&#x2018;§ đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A; â&#x2C6;&#x2019;
ď&#x192;Ľ n ď&#x20AC;˝1
Î&#x201C; đ?&#x2018;&#x203A; +đ?&#x2018;?+1 Î&#x201C; đ?&#x2018;&#x203A;+đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A;+đ?&#x203A;ż +1 Î&#x201C; đ?&#x2018;&#x203A;+đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A; +1
www.irjes.com
Î&#x201C; đ?&#x2018;&#x203A; +đ?&#x2018;?+đ?&#x203A;ź+đ?&#x203A;ż +1
đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; +đ?&#x2018;? đ?&#x2018;§ đ?&#x2018;&#x203A; +đ?&#x2018;?â&#x2C6;&#x2019;đ?&#x153;&#x201A; 6.8
13 | Page
On A Class Of 𝑝 −Valent Functions Involving Generalized Hypergeometric Function Γ 𝑝 − 𝜂 + 1 Γ 𝑝 + 𝛼 + 𝛿 + 1 𝜂 𝛼,𝜂 ,𝛿 𝑧 𝐼0,𝑧 𝑓 𝑧 Γ 𝑝+1 Γ 𝑝−𝜂+𝛿+1 ∞ Γ 𝑛+𝑝+1 Γ 𝑛+𝑝−𝜂+𝛿+1 Γ 𝑝−𝜂+1 Γ 𝑝+𝛼+𝛿+1 = 𝑧𝑝 − 𝑎𝑛 +𝑝 𝑧 𝑛+𝑝 , Γ 𝑛+𝑝−𝜂+1 Γ 𝑛+𝑝+𝛼+𝛿+1 Γ 𝑝+1 Γ 𝑝−𝜂+𝛿 +1 𝑛=1
let Γ 𝑝 − 𝜂 + 1 Γ 𝑝 + 𝛼 + 𝛿 + 1 𝜂 𝛼,𝜂,𝛿 𝐻(𝑧) = 𝑧 𝐼0,𝑧 𝑓 𝑧 = 𝑧 𝑝 − Γ 𝑝+1 Γ 𝑝−𝜂+𝛿 +1
∞
𝑛 𝑎𝑛+𝑝 𝑧 𝑛+𝑝 ,
(6.9)
𝑛 =1
where 𝑛 =
Γ 𝑛+𝑝+1 Γ 𝑛+𝑝−𝜂+𝛿+1 Γ 𝑝−𝜂+1 Γ 𝑝+𝛼+𝛿+1 Γ 𝑛+𝑝−𝜂+1 Γ 𝑛+𝑝+𝛼+𝛿+1 Γ 𝑝+1 Γ 𝑝−𝜂+𝛿+1 𝑝+1 𝑛 𝑝+1−𝜂+𝛿 𝑛 = , 𝑛 ≥1 , 𝑝+1−𝜂 𝑛 𝑝+1+𝛼+𝛿 𝑛
we can see that h(𝑛) is decreasing for 𝑛 ≥ 1, thus we get 𝑝+1 1 𝑝+1−𝜂 +𝛿 1 𝑝+1 0 < (𝑛) ≤ 1 = = 𝑝+1−𝜂 1 𝑝+1+𝛼+𝛿 1
(𝑝 +1−𝜂 +𝛿 )
6.10
(6.11)
𝑝+1−𝜂 (𝑝+1+𝛼 +𝛿)
now, by using equation (2.1) and (6.11 ) in (6.9), then we get ∞
𝐻(𝑧) ≥ 𝑧
𝑝
− (1) 𝑧
1+𝑝
𝑎𝑛 +𝑝 , 𝑛 ≥ 1 𝑛=1
𝐻 𝑧
≥ 𝑧
𝑝
𝑝+1 𝑝−𝛽 𝑝+1−𝜂+𝛿 Γ 𝑐+𝑘 Γ 𝑏 𝑧 , 𝑝+1−𝜂 𝑝+1+𝛼+𝛿 𝑝+1+𝛼−𝛽 𝑎Γ 𝑏+𝑘 Γ c
1−
and
∞
𝐻(𝑧) ≤ 𝑧
𝑝
+ 1 𝑧
1+𝑝
𝑎𝑛+𝑝 , 𝑛 ≥ 1, 𝑛=1
𝐻 𝑧
≤ 𝑧
𝑝
1+
𝑝+1 𝑝−𝛽 𝑝+1−𝜂+𝛿 Γ 𝑐+𝑘 Γ 𝑏 𝑧 , 𝑝+1−𝜂 𝑝+1+𝛼 +𝛿 𝑝 +1+𝛼−𝛽 𝑎Γ 𝑏 +𝑘 Γ c
therefore, Γ 𝑝+1 Γ 𝑝−𝜂+𝛿+1 𝑧 𝑝−𝜂 1 Γ 𝑝−𝜂+1 Γ 𝑝+𝛼+𝛿 +1 𝑝+1 𝑝−𝛽 𝑝+1−𝜂+𝛿 Γ 𝑐+𝑘 Γ 𝑏 − 𝑧 𝑝+1−𝜂 𝑝+1+𝛼+𝛿 𝑝+1+𝛼−𝛽 𝑎Γ 𝑏+𝑘 Γ c 𝛼 ,𝜂,𝛿
≤ 𝐼0,𝑧 𝑓 𝑧
≤
Γ 𝑝+1 Γ 𝑝−𝜂+𝛿 +1 Γ 𝑝−𝜂 +1
Γ 𝑝+𝛼+𝛿+1
𝑧
𝑝−𝜂
1+
𝑝+1
𝑝−𝛽 𝑝+1−𝜂 +𝛿
𝑝+1−𝜂 𝑝+1+𝛼+𝛿
𝑝+1+𝛼−𝛽
Γ 𝑐+𝑘
Γ 𝑏
𝑎Γ 𝑏+𝑘 Γ c
Theorem is completely proved. Corollary 2. If 𝜂 = −𝛼 = −𝜆 in theorem 6.1 and let the function 𝑓(𝑧) defined by (1.7) be in the class 𝐴𝑘𝑝 (𝛼, 𝛽). Then we have Γ 𝑝+1 𝑝+1 𝑝−𝛽 Γ 𝑐+𝑘 Γ 𝑏 𝐷𝑧−𝜆 𝑓 𝑧 ≥ 𝑧 𝑝+𝜆 1 − 𝑧 Γ 𝑝+𝜆+1 𝑝+1+𝜆 𝑝+1+𝜆 −𝛽 𝑎Γ 𝑏 +𝑘 Γ c and
𝑧
.
(6.12)
Γ 𝑝+1 𝑝+1 𝑝−𝛽 Γ 𝑐+𝑘 Γ 𝑏 𝑧 𝑝+𝜆 1 + 𝑧 . (6.13) Γ 𝑝+𝜆+1 𝑝 + 1 + 𝜆 𝑝 + 1 + 𝜆 − 𝛽 𝑎Γ 𝑏 + 𝑘 Γ c Corollary 3. If 𝜂 = −𝛼 = 𝜆 in theorem 6.1 and let the function 𝑓(𝑧) defined by (1.7) be in the class 𝐴𝑘𝑝 (𝛼, 𝛽). Then we have Γ 𝑝+1 𝑝+1 𝑝−𝛽 Γ 𝑐+𝑘 Γ 𝑏 𝐷𝑧𝜆 𝑓 𝑧 ≥ 𝑧 𝑝−𝜆 1 − 𝑧 (6.14) Γ 𝑝−𝜆+1 𝑝+1−𝜆 𝑝+1−𝜆−𝛽 𝑎 Γ 𝑏+𝑘 Γ c and Γ 𝑝+1 𝑝+1 𝑝−𝛽 Γ 𝑐+𝑘 Γ 𝑏 𝐷𝑧𝜆 𝑓 𝑧 ≤ 𝑧 𝑝−𝜆 1 + 𝑧 . (6.15) Γ 𝑝−𝜆+1 𝑝 +1−𝜆 𝑝+1−𝜆−𝛽 𝑎Γ 𝑏 +𝑘 Γ c 𝐷𝑧−𝜆 𝑓 𝑧
≤
www.irjes.com
14 | Page
On A Class Of đ?&#x2018;? â&#x2C6;&#x2019;Valent Functions Involving Generalized Hypergeometric Function References [1] [2] [3] [4] [5] [6] [7]
B. C. Carlson and S. B. Shaffer (2002): Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15, 737745. H.M. Srivastava and S. Owa (1984): An application of the fractional derivative, Math. Japonica, 29, 383-389. H.M. Srivastava, M. Saigo and S.Owa (1988): A class of distortion theorem of fractional calculus, J. Math. Anal. Appl., 131, 412-420. J.L. Liu and H.M. Srivastava (2001): A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259, 566-581. J.L. Liu and H.M. Srivastava (2004): Classes of meromorphically multivalent functions associated with generalized hypergeometric functions, Maths. Comput. Modelling, 39, 21-34. N. Virchenko, S.L. Kalla and A. Al-Zamel (2001): Some results on generalized hypergeometric function, Integral Transforms and Special Functions, 12 (1), 89-100. S.P. Goyal and R. Goyal (2005): On a class of multivalent functions defined by generalized Ruscheweyh derivatives involving a general fractional derivative operators, J. Indian Acad. Math., 27(2), 439-456.
www.irjes.com
15 | Page