International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 7 (July 2013), PP. 32-37 www.irjes.com
Observations On Icosagonal Pyramidal Number 1
M.A.Gopalan, 2Manju Somanath, 3K.Geetha,
1
Department of Mathematics, Shrimati Indira Gandhi college, Tirchirapalli- 620 002. 2 Department of Mathematics, National College, Trichirapalli-620 001. 3 Department of Mathematics, Cauvery College for Women, Trichirapalli-620 018.
ABSTRACT:- We obtain different relations among Icosagonal Pyramidal number and other two, three and four dimensional figurate numbers. Keyword:- Polygonal number, Pyramidal number, Centered polygonal number, Centered pyramidal number, Special number MSC classification code: 11D99
I.
INTRODUCTION
Fascinated by beautiful and intriguing number patterns, famous mathematicians, share their insights and discoveries with each other and with readers. Throughout history, number and numbers [2,3,7-15] have had a tremendous influence on our culture and on our language. Polygonal numbers can be illustrated by polygonal designs on a plane. The polygonal number series can be summed to form “solid” three dimensional figurate numbers called Pyramidal numbers [1,4,5 and 6] that can be illustrated by pyramids. In this communication we 3 2 20 6n n 5n deal with Icosagonal Pyramidal numbers given by pn and various interesting relations
2
among these numbers are exhibited by means of theorems involving the relations. Notation pnm = Pyramidal number of rank n with sides m
tm , n = Polygonal number of rank n with sides m
jaln = Jacobsthal Lucas number ctm , n = Centered Polygonal number of rank n with sides m
cpnm = Centered Pyramidal number of rank n with sides m g n = Gnomonic number of rank n with sides m pn = Pronic number carln = Carol number mern = Mersenne number, where n is prime culn = Cullen number Than = Thabit ibn kurrah number II. 1) Proof
pn20
INTERESTING RELATIONS
3 pn6 pn5 2t3,n
2 pn20 4n3 3n2 n 2 n3 n2 4 n2 n
6 pn20 2 pn5 4t3, n pn20 3 pn6 pn5 2t3,n www.irjes.com
32 | Page
Observations on Icosagonal Pyramidal Number
pn20 n cpn5 pn5
2) Proof
2 pn20 5n3 3n n3 n2 2n 2cpn5 2 pn5 2n
pn20 n cpn5 pn5 pn201 pn201 2 gn 1
3) Proof
pn201 6n3 19n2 15n 2 pn201 6n3 19n2 7n 5 2 pn201 2 pn201 8n 2 pn201 pn201 2 2n 1 1
pn201 pn201 2 gn 1 4)
The following triples are in arithmetic progression 8 14 20 i) pn , pn , pn
Proof
pn20
ii)
pn4, p12n , pn20
pn8
6n3 n 2 5n 2n3 n 2 n 2 2 4 n3 2 n 2 6 n 2 2
2 p14 n
Proof
2n3 3n 2 n 6n3 n 2 5n pn4 pn20 6 2 3 2 10n 3n 14n 2 6
iii)
p12n , p16n , pn20
2 p12 n
Proof 3 2 3 2 20 10n 3n 7 n 6n n 5n p12 p n n 6 2 14n3 3n 2 11n 2 6
2 p16 n www.irjes.com
33 | Page
Observations on Icosagonal Pyramidal Number
pn20 5 pn5 t3,n 0
5) Proof
4 2 pn5 5 2t3, n
2 pn20 2 pn5 4 n3 n2 5 n2 n
N 20 p 4 2 n 5 6 pN t3, N n n 1
6) Proof
N 20 p 2 n 6n 2 n 5 n n 1
6 n2 n 5 N 20 p 4 2 n 5 6 pN t3, N n n 1
2 p 20n 2n 1 Tha2n 1 2n mern
7)
2
Proof
2 p20n 6 23n 22n 5 2n
2 2 p 20n 2 2 3 22 n 1 2 n 1 2 n
2
2 Tha2n 1 mern
2 p 20n 2n 1 Tha2n 1 2n mern
8) i)
12
2 The following equation represents Nasty number 6 pn20 cp15 n 2 pn n
Proof
pn20
6 n 3 n 2 5n 2
5n3 3n n3 n 2 n 2 2
6 cp15 n 2 pn 6 pn20 cp15 n 2 pn n
n2 n 2
n2 2
Multiply by 12, then the equation represents Nasty number 2 pn20 n5 ii)
n
Proof
www.irjes.com
34 | Page
Observations on Icosagonal Pyramidal Number
2 pn20 6n3 n2 5n 2 pn20 n 5 6n 2 n pn20 n sn 2 g n 4 n
9) Proof
pn20 6n 2 n 5 n
6n2 6n 1 2 2n 1 n 4 pn20 n sn 2 g n 4 n 10)
2 pn20 9n 2 nct12, n t7, n
Proof
6 n 2 6 n 1 5n 6 pn20 n 2 2 5n 2 3n 9n nct12, n 2 2 9n nct12, n t7, n 2
2 pn20 9n 2 nct12, n t7, n 11)
2 pn20 2 4 p11 n t66, n 42 mod107
Proof
2 pn20 2 6n3 37n2 69n 42
2 3n3 n2 2n 35n2 34n 107n 42 4 p11 n t66, n 107n 42 2 pn20 2 4 p11 n t66, n 42 mod107 12)
pn203 pn203 2t56, n 29 gn 176
Proof
2 pn203 6n3 55n2 163n 156
2 pn203 6n3 53n2 151n 138
2 pn203 pn203 2 54n2 6n 147
pn203 pn203 54n2 52n 29 2n 1 176 pn203 pn203 2t56,n 29 gn 176 www.irjes.com
35 | Page
Observations on Icosagonal Pyramidal Number N
13)
2 pn20 t3, N 6t3, N 5 sqN n 1
Proof
N
2 pn20 6 n3 n2 5 n n 1
6t3, N sq N 5t3, N N
2 pn20 t3, N 6t3, N 5 sqN n 1
14)
18 9 4 pn20 7n 6cpn8 cp12 n cpn 2cpn 4t3, n
Proof
15)
2 pn20 6cpn8 cp12 n 2t3, n 4n
(1)
9 2 pn20 cp18 n 2cpn 2t3, n 3n
(2)
Add equation (1) and (2), we get 18 9 4 pn20 7n 6cpn8 cp12 n cpn 2cpn 4t3, n 2 p 20n 2 jal 2n 2 Tha2n car ln mern 8 n
2
Proof
2 p 20n 2
2 n
2 p 20n 2 16)
2 n
4 22n 1 3 22n 1 22n 2n 1 1 2n 1 8
6 2 2 n 2n 5
jal2n 2 Tha2n car ln mern 8
pn20 p14 n n is a cubic integer
Proof
pn20 p14 n
6n3 n 2 5n 4n3 n 2 3n 2 2
n3 n 3 pn20 p14 n n n 17)
24 PENn pn20 66 pn6 7n pn is biquadratic integer
Proof
24 PENn pn20 n4 66n3 n2 6n
n4 66n3 (n2 n) 7n
24 PENn pn20 66 pn6 7n pn n4
www.irjes.com
36 | Page
Observations on Icosagonal Pyramidal Number REFERENCES [1]. [2]. [3]. [4]. [5]. [6]. [7]. [8]. [9]. [10]. [11]. [12]. [13]. [14]. [15].
Beiler A. H., Ch.18 in Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, New York, Dover, (1996), 184-199. Bert Miller, Nasty Numbers, The Mathematics Teachers, 73(9), (1980), 649. Bhatia B.L., and Mohanty Supriya, (1985) Nasty Numbers and their characterization, Mathematical Education, I (1), 34-37. Bhanu Murthy T.S., (1990)Ancient Indian Mathematics, New Age International Publishers Limited, New Delhi. Conway J.H., and Guy R.K., (1996) The Book of Numbers, New York Springer – Verlag, 44-48. Dickson L.E., (1952), History of the Numbers, Chelsea Publishing Company, New York. Gopalan M.A., and Devibala S., (2007), “On Lanekal Number”, Antarctica J. Math, 4(1), 35-39. Gopalan M.A., Manju Somanath, and Vanitha N., (2007), “A Remarkable Lanekel Sequence”, Proc. Nat. Acad. Sci. India 77(A), II,139-142. Gopalan M.A., Manju Somanath, and Vanitha N., (2007),“On R2 Numbers”, Acta Ciencia Indica, XXXIIIM(2), 617-619. Gopalan M.A., and Gnanam A., (2008), “Star Numbers”, Math. Sci. Res.J., 12(12), 303-308. Gopalan M.A., and Gnanam A.,(2009),“Magna Numbers”, Indian Journal of Mathematical Sciences, 5(1), 33-34. Gopalan M.A., and Gnanam A., (2008) “A Notable Integer Sequence”, Math. Sci.Res. J., 1(1) 7-15. Horadam A.F., (1996), Jacobsthal Representation Numbers, Fib. Quart., 34, 40-54. Meyyappan M., (1996), Ramanujan Numbers, S.Chand and Company Ltd., First Edition. Shailesh Shirali, (1997), Primer on Number Sequences, Mathematics Student, 45(2), 63-73.
www.irjes.com
37 | Page