International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 7(july2013), PP.0-0 www.irjes.com
Pythagorean Triangle with Area/Perimater as a Special Polygonal Number M.A.Gopalan1, V.Geetha2 1
(Department of Mathematics, Shrimathi Indira Gandhi College, Trichirappalli.620 002) 2 (Department of Mathematics, Cauvery College For Women, Trichirappalli.620 018)
ABSTRACT:- Patterns of Pythagorean triangles in each of which the ratio Area/Perimeter is represented by some polygonal number. A few interesting relations among the sides are also given.
KEYWORDS:- Pythagorean triangles, Polygonal number MSC 2000 Mathematics Subject Classification:11D09 ,11D99
1. NOTATIONS Special Numbers Regular Polygonal number
Notations tm,n
Gnomonic number
Definitions
Gn
Carol number
carln
Star number Pronic
Sn Pn
I.
22n 2n1 1
INTRODUCTION:
The method of obtaining non-zero integers x, y and z under certain conditions satisfying the relation
x 2 y 2 z 2 has been a matter of interest to various Mathematicians [1,2,3].In[4-15] special Pythagorean problems are studied. In this communication, we present yet another interesting Pythagorean problem. That is, we search for patterns of Pythagorean triangles where, in each of which the ratio Area/Perimeter is represented by a special polygonal numbers namely, Icosihexagonal, Icosiheptagonal , Icosioctagonal, Icosinonagonal, and Triacontagonal number by the symbols, X,E,Q,N and T respectively. Also, a few relations among the sides are presented.
II.METHOD OF ANALYSIS The most cited solution of the Pythagorean equation
x2 y 2 z 2
(1)
is represented by
x 2rs, y r 2 s 2 , z r 2 s 2 (r s 0)
(2)
Case 1: Under our assumption
a = t 26,X p leads to the equation
s(r s) 2 X (12 X 11)
This equation is equivalent to the following two systems I and II
rs
12 X 11 2X
s 2X 12 X 11
www.irjes.com
1 | Page
Pythagorean Triangle With… In what follows , we obtain the values of the generators r, s and hence the corresponding sides of the Pythagorean triangle Pattern 1: On evaluation the values of the generators satisfying system I are
r 14 X 11, s 2 X
Employing (2), the sides of the Pythagorean triangle are,
x 56 X 2 44 X , y 192 X 2 308 X 121, z 200 X 2 308 X 121 Examples:
X
x
y
z
a
p
1 2 3 4 5 6
12 136 372 720 1180 1752
5 273 925 1961 3381 5185
13 305 997 2089 3581 5473
30 18564 172050 705960 1994790 4542060
30 714 2294 4770 81420 12410
Relations:
1.7 x 24 y 25z 121 0 2.( y z 7 x 242)2 11858( z y ) 3.3x y z can be represented by 44 times Decgonal number of rank X 4.8( y z) 3(mod 28) 5.6( z 2 x 2 ) is a nasty number.
Pattern 2: On evaluation the values of the generators satisfying system II are
r 14 X 11, s 12 X 11
Employing (2) the corresponding Pythagorean triangle is
x 336 X 2 576 X 242, y 52 X 2 44 X , z 340 X 2 572 X 242 Examples:
X
x
y
z
a
p
1 2 3 4 5 6
6 442 1550 3330 5782 8906
8 120 336 656 1080 1608
10 458 1586 3394 5882 9050
24 26520 260400 1092240 3122280 7160424
24 1020 3472 7380 12744 19564
Relations:
1.84 x 132 y 85z 242 0 2.( x 13 y z 484) 2 81796( z x) 3. y 12t18, X 4t3, X 1 4.13x y 13z 0(mod 44) 5.3( z x) is a nasty number.
Case 2: Under our assumption
a = t 27 ,E p leads to the equation
s(r s) E (25E 23) www.irjes.com
2 | Page
Pythagorean Triangle With… This equation is equivalent to the following two systems I and II
rs
s
25E 23 E
E 25E 23
As in the previous case, we obtain the values of the generators r, s and hence the corresponding sides of the Pythagorean triangle Pattern 3: On evaluation the values of the generators satisfying system I are
r 26E 23, s E
Employing (2) the corresponding Pythagorean triangle is
x 52 E 2 46 E , y 675E 2 1196 E 529, z 677 E 2 1196 E 529 Examples:
X
x
y
z
a
p
1 2 3 4 5 6
6 116 330 648 1070 1596
8 837 3016 6545 11424 17653
10 845 3034 6577 11474 17725
24 48546 497640 2120580 6111840 14087094
24 1798 6380 13770 23968 36974
Relations:
1.52 x 675 y 677 z 1058 0 2.( y 26 x z 1058)2 559682( z y ) 3.x y z 4t56, E 4t3, E 1 (mod 6) 4.39 x 182 y 182 z 1196 t10, E
5.x 3 y 3 z 92t3, E 1
6.6( z 2 x 2 ) is a nasty number. Pattern 4: On evaluation the values of the generators satisfying system II are
r 26E 23, s 25E 23
Employing (2) the corresponding Pythagorean triangle is
x 1300 E 2 2346 E 1058, y 51E 2 46 E , z 1301E 2 2346E 1058 Examples:
E
x
y
z
a
p
1 2 3 4 5 6
12 1566 5720 12474 21828 33782
5 112 321 632 1045 1560
13 1570 5729 12490 21853 31818
30 87696 918060 3941784 11405130 26349960
30 3248 11770 25596 44726 69160
Relations:
1.1300 x 51y 1301z 1058 0
2.( x 51y z 2116) 2 5503716( z x) 3.x 102 y z 2 E 2 (mod 23) 4. y 46 PE1 0(mod 5) www.irjes.com
3 | Page
Pythagorean Triangle With…
5.x 216 S E 2( E 1)(mod 22 ) Case 3: Under our assumption
a = t 28,Q p leads to the equation
s(r s) 2Q(13Q 12)
This equation is equivalent to the following two systems I and II
rs
s
13Q 12 2Q
2Q 13Q 12
As in the previous case, we obtain the values of the generators r, s and hence the corresponding sides of the Pythagorean triangle Pattern 5: On evaluation the values of the generators satisfying system I are
r 15Q 12, s 2Q
Employing (2) the corresponding Pythagorean triangle is
x 60Q 2 48Q, y 221Q 2 360Q 144, z 229Q 2 360Q 144 Examples:
Q
x
y
z
a
p
1 2 3 4 5 6
12 144 396 768 1260 1872
5 308 1053 2240 3869 5940
13 340 1125 2368 4069 6228
30 22176 208494 860160 2437470 5559840
30 762 2574 5376 9198 14040
Relations:
1.60 x 221y 229 z 1152 0 2.(6( z y ) 45 x 1728) 2 583200( z y ) 3.2 x 3 y 3 z 192t3,Q 1 4.15z 15 y 2 x 0(modQ) 5.50 y 48 z t52,Q 0(mod 96)
6.2 x 96t3,Q 1 is a nasty number. Pattern 6: On evaluation the values of the generators satisfying system II are
r 15Q 12, s 13Q 12
Employing (2) the corresponding Pythagorean triangle is
x 390Q 2 672Q 288, y 56Q 2 48Q, z 394Q 2 672Q 288 Examples:
Q
x
y
z
a
p
1 2 3 4
6 504 1782 3840
8 128 360 704
10 520 1818 3904
24 32256 320760 1351680
24 1152 3960 8448
www.irjes.com
4 | Page
Pythagorean Triangle With… 5 6
6678 10296
1160 1728
6778 10440
3873240 8895744
14616 22464
Relations:
1.390 x 56 y 394 z 1152 0
2.( x 14 y z 576) 2 112896( z x) 3.14 x y 14 z 0(mod 48)
4.z 2 x2 64Q2t16,Q 5.y can be represented by 8 times hexadecagonal number of rank Q Case 4: Under our assumption
a = t 29,N p leads to the equation
s(r s) N (27 N 25)
This equation is equivalent to the following two systems I and II
rs
s
27 N 25 N
N 27 N 25
As in the previous case, we obtain the values of the generators r, s and hence the corresponding sides of the Pythagorean triangle Pattern 7: On evaluation the values of the generators satisfying system I are
r 28 N 25, s N
Employing (2) the corresponding Pythagorean triangle is
x 56 N 2 50 N , y 783N 2 1400 N 625, z 785 N 2 1400 N 625 Examples:
N
x
y
z
a
p
1 2 3 4 5 6
6 124 354 696 1150 1716
8 957 3472 7553 13200 20413
10 965 3490 7585 13250 20485
24 59334 61454 2628444 7590000 17514354
24 2046 7316 15834 27600 42614
Relations:
1.56 x 783 y 785z 1250 0 2.( y 28 x z 1250)2 980000( z y ) 3.x 28 y 28z 0(mod 50) 4.6 x 7 y 7 z 100t16, N
5.785 y 783z 1375GN 125 0 6.x(2n ) 25 25carln (mod 31) Pattern 8: On evaluation the values of the generators satisfying system II are
r 28N 25, s 27 N 25
www.irjes.com
5 | Page
Pythagorean Triangle With… Employing (2) the corresponding Pythagorean triangle is
x 1512 N 2 2750 N 1250, y 55 N 2 50 N , z 1513N 2 2750 1250 Examples:
N
x
y
z
a
p
1 2 3 4 5 6
12 1798 6608 14442 25300 39182
5 120 345 680 1125 1680
13 1802 6617 14458 25325 39218
30 107880 1139882 4910280 142324250 32912880
30 3720 13570 29580 51750 80080
Relations:
1.1512 x 55 y 1513z 1250 0
2.( x 110 y z 2500)2 7562500( z x ) 3.55x y 55z 0(mod 5) 4.z 1250 135t24, N t58, N (mod1373) 5.y can be represented by 5 times Icositetragonal number of rank N . Case 5: Under our assumption
a = t30,T p leads to the equation
s(r s) 2T (14T 13)
This equation is equivalent to the following two systems I and II
rs
s
14T 13 2T
2T
14T 13
As in the previous case, we obtain the values of the generators r, s and hence the corresponding sides of the Pythagorean triangle Pattern 9: On evaluation the values of the generators satisfying system I are
r 16T 13, s 2T
Employing (2) the corresponding Pythagorean triangle is
x 56T 2 52T , y 192T 2 364T 169, z 200T 2 364T 169 Examples:
T
x
y
z
a
p
1 2 3 4 5 6
12 152 420 816 1340 1992
5 345 1189 2537 4389 6745
13 377 1261 2665 4589 7033
30 26220 249690 1035096 2940630 6718020
30 874 2870 6018 10318 15770
Relations:
1.14 x 48 y 50 z 338 0 2.( y 7 x z 338)2 16562( z y ) 3.7 x 3 y 3 z 52t18,T www.irjes.com
6 | Page
Pythagorean Triangle With…
4.2 x y z 208t3,T 1
5.x 32 y 31z 0(mod13) Pattern10: On evaluation the values of the generators satisfying system II are
r 16T 13, s 14T 13
Employing (2) the corresponding Pythagorean triangle is
x 448T 2 780T 338, y 60T 2 52T , z 452T 2 780T 338 Examples:
T
x
y
z
a
p
1 2 3 4 5 6
6 570 2030 4386 7638 11786
8 136 384 752 1240 1848
10 586 2066 4450 7738 11930
24 38760 389760 1649136 4735560 10890264
24 1292 4480 9588 16616 25564
Relations:
1.112 x 15 y 113z 338 0 2.4 y 5 x 5 z 52t22,T
3.( x 15 y z 780) 2 151200( z x) 4.226 x 15 y 225z 338 0 5.6( z 2 x 2 ) is a nasty number. CONCLUSION To conclude one may search for other patterns of Pythagorean triangles under consideration.
REFERENCES [1]. [2]. [3]. [4].
[9]
L.E. Dickson , History of the theory of Numbers, Chelsea Publishing Company, Newyork, Vol II,1952. Mordell L.J., Diophantine Equations Academic Press, Newyork, 1969. Carmichael, R.D., The Theory of Numbers and Diophantine analysis, Dover Publishings, Newyork, 1915. M.A.Gopalan and G.Janaki, Pythagorean Triangle with Nasty number as a leg, Journal of Applied Mathematical Analysis and Applications, Vol 4., No.1-2,Jan-Dec.,2008, 13-17. M.A.Gopalan and S.Devibala,On a Pythagorean Problem, Acta Ciencia Indica, VolXXXII M, No.4,2006, 1451-1452. M.A.Gopalan and S.Leelavathi, Pythagorean Triangle with 2 Area/Perimeter as a cubic iteger, Bulletin of Pure and Applied Sciences, Vol.26E,No.@,2007,197-200. M.A.Gopalan and G.Janaki, Pythagorean triangle with Perimeter as Pentagonal number, Antartica J Math, 5(2)2008,15-18. M.A.Gopalan and S.Vidhyalakshmi and N.Vanitha, Pythagorean equation and polygonal numbers, Impact J Sci Tech Vol2(3).2008,135-138. .M.A.Gopalan and S.Devibala, Pyhtagorean Triangle with Triangular Number as aleg. Impact J Sci Tech Vol2(4).2008,195-199.
[10].
M.A.Gopalan and Sriram , Pyhtagorean triangle with
[5]. [6]. [7]. [8].
[11]. [12]. [13] [14]. [15].
Area Perimeter
as a Difference of two squares, Impact J Sci Tech
Vol2(4).2008,159-167. M.A.Gopalan and G.Janaki, Pythagorean Triangle and Nasty number, Impact J Sci Tech Vol2(1).2008,37-42. M.A.Gopalan and G.Janaki, Pythagorean Triangle with Area/Perimeter as a special polygonal number,Bulletin of Pure and Applied Science, Vol.27E, No.2,2008,393-402. .M.A.Gopalan and A.Gnanam, A Special Pythagorean Problem, Acta Ciencia Indica Vol.XXXIII M, No.4, 2007,1435 Mita Darbari, Special Pythagorean Triangles with Perimeter as a sum of two squares and a cube, International Journal of Mathematical Sciences and Applications, Vol 1,No.3,September 2011,1225-1228. Mita Darbari, Special Pythagorean Triangles with Perimeter as a sum of two squares and a quartic International Journal of Mathematical Archive, Vol 2,No.7,July 2011,1094-1098.
www.irjes.com
7 | Page