Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
DESIGN OF DISTRIBUTION NETWORK OF WATER SUPPLY FOR KUDWA AND KATANGI-KALA VILLAGES Isha Khedikar
M.Tech. student, IV sem. Environmental Engg. G.H.Raisoni College of Engg. Nagpur India. E mail:- nick_murekar@yahoo.co.in
G. H. Raisoni College of Engg. Nagpur India E mail:- i_khedikar@gmail.com
ES
ABSTRACT
Assistant Prof. Civil Engg.
T
Niklesh R. Murekar
In present study Kudwa and Katangi-kala village’s Water Distribution Network (WDN) was designed which were located at district Gondia, State Maharashtra, India. For the design of Kudwa and Katangi-kala water distribution network study of present population, forecast population for the three decade, daily water demand, flow and also survey of both the villages were done with the help of DGPS (Digital Global Positioning System). From the survey a road
A
map was created and also elevations, length of both the villages were calculated. The flow was calculated to the help of elevation and length. The node no. and pipe no. was denoted on the road map of both the villages. Water Distribution Network of both the villages was designed with the help of branch and loop software and compared with manually result. It was found that software
IJ
result were more accurate , save time and manpower than manual result. Key words: Branch and Loop software, Water Distribution Network, DGPS. ------------------------------------------------------------------------------------------------------------------------------------------
1.0 INTRODUCTION 1.1
History
of
Water
Distribution
Network
aqueducts, which conveyed water long distances by mean of gravity through a collection of open and closed conduits. The first aqueduct was built in 312 B.C., and
The most extensive water distribution
several more were added over the centuries.
systems in ancient times were the roman
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 10
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
The Roman also Introduced lead pressure
residual pressure head at demand nodes and
pipe. While complex water distribution
the pressure heads at supply nodes must be
systems were not common in the middle
of sufficient magnitude to satisfy these
ages, systems of channels were constructed
requirements. The difference between the
to move water from the well source in and
total heads (measured with reference to a
out of castles. “leats� in England are still
common horizontal datum) at a supply node
existing today.
and a demand node is equal to the algebraic
Water distribution network consist of a planar system of pipes or links (through
in the network.
There are two type of Water Distribution Network. 1.
Branch Network
ES
which the water flow), connected together at
sum of the head losses taken along any path
T
1.2 Water Distribution Netwok
nodes which may be at different elevation.
In general, the complex will also include
pumps, reservoirs and valves. A node usually has one of the two main functions; it
either receives a supply for the system or it delivers the demand required by consumers.
A
As a special case, it may satisfy neither of these requirements but merely serve as a junction between two or more pipes. The
IJ
pressure head at a supply node is established by the presence of a pump or a reservoir. Resistances to flow (friction losses) which are the function of length, diameter, flow rate, and pipe material and roughness occur in the links as the fluid water around the network from supply nodes to demand nodes. The effect of minor losses may be including as equivalent pipe lengths. It is usual to specify a minimum acceptable
ISSN: 2230-7818
2.
Loop Network
In Loop software, Loop simulates the hydraulic characteristics of a pressurized, looped (close circuit) water distribution network. The network is characterized by pipes and nodes (points of inputs /demand or pipe junction). Data required are the description of the elements of the network such as pipe length, diameter, friction coefficient, nodal demand and ground elevation, and data describing the geometry of the network. The program outputs include flows and velocities in the link and pressures at the nodes. It does not accommodate inline booster pumps and pressure reducing valves. Loop 4.0 handles up to 1000 pipes and can simulate up to 10 nodes with known
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 11
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
hydraulic
grade
lines
(e.g.
storage
each link, total network costs and hydraulic information.
reservoirs).
1.1 Necessity of project and condition In Branch software, Branch is used to
leading to the planning of the project
design pressurized, branched (tree-type,
These villages are 30 to 35 km from Gondia
non-looped) water distribution networks by
city, Maharashtra, India. All the newly
choosing from among a set of candidate
established
diameters for each pipeline so that the total
within the vicinity of these villages. The
cost of the network is minimized subject to
development is very fast and hence a new
meeting certain design constraints. Both
water supply scheme is urgently needed.
construction costs and the design constraints
Hence Water Supply Scheme for Kudwa and
can be expressed as linear, mathematical
Katangi-kala villages with WTP as source is
institutions
are
ES
T
educational
statements. The network is characterized by
proposed along with water supply rate of 70
links (individual pipes) connected by nodes,
lpcd at consumer end for Kudwa and
which are points of flow input, outflow or
Katangi-kala villages.
pipe junctions. Version 3.0 of the software
2.0 EXISTING WORK INFORMATION
formulates the linear programming model
OF KUDWA AND KATANGI-KALA
for the least cost design, solves the model
Kudwa and Katangi-kala village are in
and
as
Gondia District. Gondia town is a H.Q. of
corresponding hydraulic information. Data
Gondia District, it is situated on Mumbai
required include description of network
Howarah Broad gauge Railway Line it is
the
design
as
well
IJ
outputs
A
can handle up to 125 pipes. BRANCH
elements such as pipe lengths, friction
about 68 Km from Bhandara and 150 Km
coefficients, nodal demands and ground
from Nagpur. The population of Kudwa and
elevations, data describing the geometry of
Katangi-kala villages is 9436 and 6161.
the network, the candidate diameters and their unit costs, and system constraints
2.1 Present Water Supply Scheme and
(minimum
pressures,
Condition:
maximum
gradients).
minimum
and include
At present Kudwa and Katangi-kala villages
optimal lengths and diameters of pipes in
are getting water supply through individual
Outputs
water
ISSN: 2230-7818
supply
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
schemes.The
individual
Page 12
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
2.1.4 Raw Water Pumping Machinery
wells in village Kudwa & Katangi-kala. The
240 BHP VT pumps 3 sets are proposed
schemes were designed for the ultimate
having discharging capacity 735000 Lph
stage for year 2004 with 40 Lpcd as rate of
against 121 Mtr head for each pump. 2 sets
water supply. These schemes are outlived
will run at a time and one will be standby
their designed life of 15 years.
(i.e.50% standby). Hours of pumping are 22
2.1.1 Head Works
Hrs in ultimate stage .Existing pumps are
Intake well:-2.5 m diameter Intake well is
proposed to be replaced in the same capacity
constructed by sinking method in the bed of
and the discharge thereof as the existing
Wainganga River.
Raw Water R/Main is considered to be used
T
sources of the existing schemes are Bore
simultaneously.
ES
2.1.2 Connecting Main 27" (700 mm DIA) C.I. Connecting main of
2.1.5 Existing Raw Water Rising Main
37 m long connected with intake well to
450 mm Diameter, DI K9 Length 16250 m.
twin jack well on left bank of river Wainganga.
2.1.6 Water Treatment Plant A conventional water treatment plant of capacity 2.5 Mld is designed for immediate
Twin jack wells of 7.30 m diameter each in
stage.
A
2.1.3 Jack Well and Pump House
circular are constructed on left bank of River Wainganga. The depth of well is 18.50 m
2.1.7 Water Sump & Pump House
below
in
Water sump size 12 m x 12 x 5.755 m pump
B.B.Masonary and R.C.C. Ring beam at
house size 12.00 x 6.00 x height 6.45 m over
regular interval.The pump house of 18.25 m
the half portion of sump.
x 7.90 m size is built up over the twin jack
2.1.8 Water Pumping Machinery
well having the R.C.C. floor and 3 Sets of
3 Sets of V.T. pumps 90 BHP each having
pumping machinery have been installed in
discharging capacity 832840 Lit/hr against
it.
total head of 40 m,
and
constructed
IJ
G.L.
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 13
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
2.1.9 Water Rising Main It is proposed to existing water rising main, along with the water pumping machinery for
3.0 MATERIALS AND METHODE
existing two no’s ESRs and also it is
3.1 Data collect:-For design a water
proposed to fill up the MBR to be
distribution network of Kudwa and Katangi-
constructed near WTP for ESRs by a rising main of 450 mm dia DI K-9 pipe 100 m in length.
kala villages, the following data were obtained from MJP (Maharashtra Jeevan
2.1.10 Master Balancing Reservoir It is proposed to construct RCC MBR near staging height 25m to supply water by gravity to proposed ESR of Kudwa and Katangi-kala.
1] Collect the population of last 6 decades of Kudwa and Katangi-kala villages.. 2] Collect the existing work data of head work, WTP, MBR and raw water pipeline.
ES
WTP having capacity of 740000 liters
T
Pradhikaran).
3] Road map of Kudwa and Katangi-kala villages. 4] Data of previous existing water pipeline.
2.1.11 Elevated Service Reservoirs
5] Existing location of ESR.
1) 1,00,000 Lit cap.12.0 m staging height at
6] Capacity of existing ESR.
A
ESR, at village Kudwa
2) 1,00,000 Lit cap.12.0 m staging height
IJ
ESR, at Katangi-kala.
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 14
ES
T
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
IJ
A
Fig 3 - Katangi-kala Village Map with Node No., Pipe No., Length and Elevation
Fig 4 - Kudwa Village Map with Node No., Pipe No., Length and Elevation
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 15
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
At Consumer
2012
2027
2042
1.19
1.71
2.45
1.39
2.0
2.87
End At Head Work
3.2.3 Water Gravity Main It is proposed to carry water from MBR to
T
Two nos ESR by gravity main network stated as below
Pipe Type
Pipe Length
Fig 3 – DGPS (Digital Global Positioning
250 mm
DI K-7
50 m
System)
200 mm
DI K-7
3950 m
150 mm
DI K-7
70 m
ES
Diameter
3.2 PROPOSED WORK INFORMATION OF KUDWA AND KATANGI-KALA WATER DISTRIBUTION
A
3.2.1 Population of Villages
On the basis of population of last 6 decades
3.2.4 Elevated Service Reservoir The proposed ESRs location and capacity
the calculated forecast population of 2012,
are as under;
2027, and 2042 of KUDWA village was
Location
10533,
of ESR
and
22181
IJ
15261
and
4070 m
Total
the
KATANGI-KALA village was 6459, 9142
Katangi -
and 12863.
kala Kudwa
Capacity
Unit Lt. Staging Height
3.34
Lakhs
15 m
5.75
Lakhs .
15 m
3.2.2 Daily Water Demand
The rate of water supply was 70 lpcd. The
3.2.5 Distribution System
daily requirement of water in MLD
The proposed was of CI pipe class. Design the distribution network in Branch and Loop software and also a manually. For manual
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 16
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
calculation Hazen William’s formula was used. Pipes distribution system is given as under;
Hazen Williams Head Loss formula HEAD LOSS hf =
Name
300 250 200 150 100 mm Total
Where,
of
mm mm mm mm
hf = Head loss in m
Length
Village -kala
L = Length of Pipe in m 8585
C = Friction Coefficient
Kudwa 170 88 264 1803 10420 12745 170 238 7732373 17776 21330
IJ
A
Length
D = Diameter of Pipe in m
ES
Total
Q = Flow in m3/s
T
Katangi 0 150 509 570 7356
Fig 4 - KEY PLAN OF KUDWA & KATANGI-KALA
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 17
ES
T
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
Fig 5 - FLOW DIAGRAM OF KUDWA & KATANGI-KALA
Branch and Loop software and manually is
A node number and pipe number marking of
same of both the villages is represented in
Kudwa
and
A
4.0 RESULT AND DISCUSSION
Katangi
kala
villages
is
represented in Fig 1 and Fig 2. The survey instrument
DGPS
(Digital
Global
IJ
Positioning System) is represented in Fig 3.The presented results are based on the Branch and Loop software and manually. It is also based on forecast population of 2012, 2027 and 2042. The comparison of result of Branch and Loop and manually is same. The result of water gravity main of Branch and Loop software and manually is same
table no. 4.3, 4.4, 4.5 and 4.6). The cost of gravity main is 11205. The cost of Kudwa and Katangi kala village distribution cost is 58318 and 30553. This cost is given by the software. Branch and Loop software saves the time and manpower and also more beneficial and calculate the least cost of water distribution network. The Branch and Loop software calculation are more accurate than manual calculation.
represented in table no. 4.1 and 4.2). The result of water distribution network of
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 18
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
Table 4.1 Result Comparison of Water Gravity Main by Software and Manual Pipe Detail From Node 1 2 3 2 5
To Node 2 3 4 5 6
Peak Flow 34.716 21.967 21.967 12.749 12.749
Dia (mm) 250 200 200 200 150
Hazen’s HL (m) HL/1000 Length(m) const (m) 140 0.10 2.00 50 140 1.24 2.48 500 140 0.12 2.40 50 140 3.07 0.90 3400 140 0.26 3.71 70
ES
T
Pipe No. 1 2 3 4 5
Table 4.2 Manual Result of Water Gravity Main Pipe Detail
1 2 3 2 5
2 3 4 5 6
315.00 315.12 312.60 332.63 311.00
315.12 0.000 0 312.60 0.000 0 332.63 19.970 21.967 311.00 0.000 0 331.1 11.590 12.749
IJ
1 2 3 4 5
GL Start End
A
Pipe Node No. Start End
ISSN: 2230-7818
Initial Flow lps
Cummula Cummula Peak -tive Peak -tive Peak Flow Flow Flow Length Lps lps m3/s m 34.716 21.967 21.967 12.749 12.749
0.0347 0.0220 0.0220 0.0127 0.0127
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
50 500 50 3400 70
Dia M
Head Loss M
0.250 0.200 0.200 0.200 0.150
0.10 1.22 0.12 3.03 0.25
Page 19
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
Result Comparison of Water Distribution of Katangi-kala village by Software and Manual Table 4.3 Software result
Table 4.4 Manual result
Pipe From To Flow Dia No. Node Node (lps) (mm) 1 1 2 37.170 230
HL Length (m) (m) 0.16 50
Pipe From To Dia No. Node Node (mm) 1 1 2 230
HL (m) 0.16
2
3
4.363
96
0.35
80
2
2
3
96
0.35
3
3
4
3.031
96
0.11
50
4
4
5
0.219
96
0.00
50
5 6
3 4
6 7
0.982 0.438
96 96
0.03 0.01
114 100
3 4 5 6
3 4 3 4
4 5 6 7
96 96 96 96
0.11 0.00 0.03 0.01
7 8
4 8
8 9
2.155 1.147
96 96
0.27 0.03
230 90
7
4
8
96
0.27
8
8
9
96
0.03
9
9
10
0.132
96
0.00
30
9
9
10
96
0.00
10
2
11
32.588
230
0.26
10
10
2
11
230
0.26
11
11
12
22.462
182
0.14
34
11
11
12
182
0.14
12
12
13
21.942
182
0.17
44
12
12
13
182
0.17
13 14
13 14
14 15
21.254 19.597
182 182
0.18 0.31
50 100
13
13
14
182
0.18
14
14
15
182
0.31
15 16
15 17
16 87
21.025 0.192
182 96
0.08 0.00
22 44
15
15
16
182
0.08
17
11
17
9.687
182
0.04
44
16
17
87
96
0.00
18 19
17 18
18 19
5.748 3.099
134 96
0.05 0.03
38 14
17
11
17
182
0.04
18
17
18
134
0.05
20
19
88
3.073
96
0.07
30
19
18
19
96
0.03
21 22
88 6
20 19
0.210 0.034
96 96
0.00 0.00
48 102
20
19
88
96
0.07
21
88
20
96
0.00
23
17
21
3.555
96
0.10
34
22
6
19
96
0.00
24
18
22
2.481
96
0.05
34
23
17
21
96
0.10
25
88
23
2.731
96
0.04
24
24 25
18 88
22 23
96 96
0.05 0.04
26 27
12 21
21 22
0.371 0.665
96 96
0.00 0.01
44 38
28
23
24
0.201
96
0.00
46
29 30
21 22
25 26
2.919 2.831
96 96
0.09 0.09
44 44
26 27 28 29
12 21 23 21
21 22 24 25
96 96 96 96
0.00 0.01 0.00 0.09
30
22
26
96
0.09
31
23
27
2.425
96
0.07
46
31
23
27
96
0.07
ES
A
IJ ISSN: 2230-7818
T
2
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 20
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 182 96 182 134 134 96 96 96 96 96 96 96 96 96 134 96 96 96 96 96 96 96 96 96 96 96 96
ISSN: 2230-7818
0.08 0.00 0.07 0.20 0.05 0.03 0.07 0.02 0.00 0.13 0.07 0.05 0.13 0.02 0.00 0.00 0.37 0.12 0.09 0.12 0.64 0.12 1.26 0.10 0.45 0.42 0.42 0.04 0.00 0.07 0.00 0.00 0.62 0.69 0.69 0.00 0.31 0.24 0.05 0.02 0.01 0.07 0.00 0.00 0.00
44 38 46 42 88 58 36 30 30 100 130 130 100 100 50 50 184 280 25 280 190 30 340 20 90 94 140 30 36 142 50 30 162 146 150 100 100 92 60 80 108 28 78 60 58
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
25 25 26 27 14 29 29 30 31 28 30 31 33 34 35 35 9 16 16 38 38 40 41 42 43 44 45 46 47 48 49 41 40 52 52 53 53 42 55 56 56 55 58 59 61
13 26 27 29 28 28 30 31 32 33 34 35 15 33 34 36 16 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 53 54 66 55 56 61 57 58 59 60 59
96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 182 96 182 134 134 96 96 96 96 96 96 96 96 96 134 96 96 96 96 96 96 96 96 96 96 96 96
T
2.652 0.075 2.546 4.566 1.437 1.469 2.914 1.401 0.132 2.267 1.354 1.137 2.304 0.913 0.348 0.219 2.873 1.227 21.768 1.227 20.430 9.860 9.596 4.798 4.711 4.441 3.565 2.237 0.376 1.366 0.219 0.132 9.736 4.547 4.477 0.174 3.646 3.307 1.687 0.949 0.474 3.162 0.350 0.264 0.511
ES
13 26 27 29 28 28 30 31 32 33 34 35 15 33 34 36 16 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 53 54 66 55 56 61 57 58 59 60 59
A
25 25 26 27 14 29 29 30 31 28 30 31 33 34 35 35 9 16 16 38 38 40 41 42 43 44 45 46 47 48 49 41 40 52 52 53 53 42 55 56 56 55 58 59 61
IJ
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
0.08 0.00 0.07 0.20 0.05 0.03 0.07 0.02 0.00 0.13 0.06 0.05 0.11 0.02 0.00 0.00 0.37 0.12 0.09 0.12 0.64 0.12 1.26 0.10 0.45 0.42 0.42 0.04 0.00 0.07 0.00 0.00 0.62 0.69 0.69 0.00 0.31 0.24 0.04 0.02 0.01 0.07 0.00 0.00 0.00
Page 21
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
ISSN: 2230-7818
0.00 0.08 0.23 0.04 0.00 0.04 0.18 0.25 0.08 0.00 0.11 0.33 0.00 0.01 0.01 0.00 0.01 0.01 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.01 0.64 0.00 0.00 0.00 0.19 0.01
20 64 60 60 30 100 50 140 84 40 210 100 50 106 80 70 80 110 60 42 44 52 50 50 50 50 32 58 26 210 116 50 70 89 9
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
61 63 54 63 64 64 66 58 44 68 68 67 70 45 46 73 75 75 47 77 78 79 77 78 79 84 73 85 85 70 49 49 89 13 89
62 55 63 64 65 66 67 44 68 69 70 70 71 72 73 74 73 76 77 78 79 80 81 82 83 48 84 84 75 85 80 86 90 89 9
96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
T
0.087 2.226 4.083 1.593 0.132 1.197 3.967 2.689 1.952 0.174 1.409 3.748 0.219 0.465 0.712 0.306 0.739 0.483 1.730 1.247 0.845 0.434 0.219 0.219 0.219 1.369 0.443 1.322 1.336 3.578 0.304 0.219 0.306 2.953 2.473
ES
62 55 63 64 65 66 67 44 68 69 70 70 71 72 73 74 73 76 77 78 79 80 81 82 83 48 84 84 75 85 80 86 90 89 9
A
61 63 54 63 64 64 66 58 44 68 68 67 70 45 46 73 75 75 47 77 78 79 77 78 79 84 73 85 85 70 49 49 89 13 89
IJ
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
0.00 0.08 0.23 0.04 0.00 0.04 0.18 0.25 0.08 0.00 0.11 0.33 0.00 0.01 0.01 o.00 0.01 0.01 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.01 0.63 0.00 0.00 0.00 0.19 0.01
Page 22
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
Result Comparison of Water Distribution of Kudwa village by Software and Manual Table 4.5 Software result
IJ ISSN: 2230-7818
Pipe No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
From To Dia Node Node (mm) 1 2 300 2 3 96 3 4 96 3 5 96 2 6 300 6 7 230 7 8 182 8 9 182 9 10 182 10 11 182 11 12 134 12 13 134 13 14 96 14 15 96 15 16 96 16 17 96 17 18 96 9 19 134 19 20 134 20 21 134 19 22 96 20 23 96 10 24 96 24 25 96 25 26 96 19 24 96 25 20 96 11 27 96 27 28 96 29 28 96 29 30 96 30 31 96 21 29 134 30 32 96 31 33 96 12 34 96 34 35 96 35 36 96
T
HL Length (m) (m) 0.05 20 0.71 410 0.00 20 0.01 100 0.33 150 0.22 88 0.51 110 0.11 28 0.07 36 0.08 50 0.09 22 0.08 36 0.18 48 0.14 46 0.06 30 0.15 90 0.08 100 0.07 40 0.04 30 0.06 40 0.00 40 0.00 40 0.01 40 0.02 30 0.00 30 0.01 40 0.01 40 0.13 40 0.04 30 0.01 30 0.06 40 0.02 30 0.14 100 0.00 50 0.00 60 0.06 40 0.04 15 0.00 15
ES
Flow Dia (lps) (mm) 63.426 300 2.640 96 0.099 96 0.498 96 60.687 300 31.820 230 24.325 182 21.875 182 15.142 182 13.947 182 9.912 134 7.357 134 4.056 96 3.552 96 2.785 96 2.635 96 1.783 96 6.592 134 5.390 134 5.966 134 0.198 96 0.198 96 1.015 96 1.421 96 0.150 96 0.806 96 1.121 96 3.786 96 2.173 96 0.802 96 2.467 96 1.405 96 5.768 134 0.249 96 0.300 96 2.445 96 3.401 96 0.574 96
A
Pipe From To No. Node Node 1 1 2 2 2 3 3 3 4 4 3 5 5 2 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 17 18 18 9 19 19 19 20 20 20 21 21 19 22 22 20 23 23 10 24 24 24 25 25 25 26 26 19 24 27 25 20 28 11 27 29 27 28 30 29 28 31 29 30 32 30 31 33 21 29 34 30 32 35 31 33 36 12 34 37 34 35 38 35 36
Table 4.6 Manual result
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
HL (m) 0.05 0.71 0.00 0.01 0.33 0.22 0.51 0.11 0.07 0.08 0.09 0.08 0.18 0.14 0.06 0.15 0.08 0.07 0.04 0.06 0.00 0.00 0.01 0.02 0.00 0.01 0.01 0.13 0.04 0.01 0.06 0.02 0.14 0.00 0.00 0.06 0.04 0.00
Page 23
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
ISSN: 2230-7818
0.00 0.04 0.02 0.06 0.03 0.00 0.01 0.00 0.07 0.00 0.09 0.11 0.09 0.07 0.00 0.01 0.09 0.03 0.03 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.01 0.01 0.01 0.01 0.00 0.09 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.06
30 40 30 30 30 30 30 30 40 30 36 86 40 40 40 30 44 42 42 42 42 32 15 25 25 10 25 12 40 46 46 46 42 42 42 42 36 36 28 28 28 12 40 50 44
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
36 37 38 28 29 30 31 34 35 37 38 39 13 42 43 45 42 43 44 45 14 46 47 49 50 50 51 52 53 46 48 49 51 52 53 61 55 56 57 58 58 59 61 61 60
37 38 39 38 37 38 39 40 42 41 45 52 42 43 44 44 46 61 49 50 46 47 48 48 49 51 52 53 54 55 56 57 58 59 60 54 15 55 56 57 59 60 60 62 63
96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
T
0.499 1.900 1.601 2.825 1.851 0.615 0.955 0.150 2.752 0.150 3.241 2.256 3.121 2.573 0.608 1.232 2.901 1.767 1.492 1.828 0.264 0.780 0.621 0.554 0.365 1.130 0.199 0.997 0.069 1.955 1.100 0.971 0.880 0.907 0.868 0.339 3.245 1.518 0.826 0.224 0.308 0.867 0.969 0.249 2.235
ES
37 38 39 38 37 38 39 40 42 41 45 52 42 43 44 44 46 61 49 50 46 47 48 48 49 51 52 53 54 55 56 57 58 59 60 54 15 55 56 57 59 60 60 62 63
A
36 37 38 28 29 30 31 34 35 37 38 39 13 42 43 45 42 43 44 45 14 46 47 49 50 50 51 52 53 46 48 49 51 52 53 61 55 56 57 58 58 59 61 61 60
IJ
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
0.00 0.04 0.02 0.06 0.03 0.00 0.01 0.00 0.07 0.00 0.09 0.11 0.09 0.07 0.00 0.01 0.09 0.03 0.03 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.01 0.01 0.01 0.01 0.00 0.09 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.06
Page 24
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 134 96 96 96 96 96 134 96 134 96 96
ISSN: 2230-7818
0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.15 0.21 0.41 0.00 0.02 0.02 0.00 0.02 0.05 0.00 0.00 0.00 0.07 1.43 0.17 0.29 0.40 0.06 0.00 0.00 0.00 0.43 0.44 0.00 0.51 0.42 0.10
20 26 22 30 26 44 40 52 20 52 26 50 150 40 60 60 53 70 165 26 128 26 36 34 127 24 114 50 176 434 186 110 190 30 30 40 50 410 150 48 226 202 60
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
63 68 63 64 65 64 66 68 65 70 69 71 18 73 73 17 75 15 76 77 77 77 80 80 82 83 85 86 86 89 8 90 7 90 91 92 92 91 6 95 95 96 97
68 70 64 65 66 66 67 69 69 71 71 72 73 74 76 75 76 75 77 79 78 80 81 82 83 84 83 85 87 86 89 89 90 91 92 93 94 140 95 117 96 97 98
96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 134 96 96 96 96 96 134 96 134 96 96
T
1.008 0.475 1.008 0.487 0.119 0.409 0.198 0.435 0.219 0.346 0.293 0.249 1.285 0.198 0.340 0.402 3.457 3.604 3.233 0.129 0.639 1.643 0.180 1.334 1.163 0.120 0.160 0.409 1.179 3.751 1.901 3.326 7.048 2.774 0.597 0.198 0.249 2.027 8.485 0.374 7.363 2.907 2.583
ES
68 70 64 65 66 66 67 69 69 71 71 72 73 74 76 75 76 75 77 79 78 80 81 82 83 84 83 85 87 86 89 89 90 91 92 93 94 140 95 117 96 97 98
A
63 68 63 64 65 64 66 68 65 70 69 71 18 73 73 17 75 15 76 77 77 77 80 80 82 83 85 86 86 89 8 90 7 90 91 92 92 91 6 95 95 96 97
IJ
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.15 0.21 0.41 0.00 0.02 0.02 0.00 0.02 0.05 0.00 0.00 0.00 0.07 1.43 0.17 0.29 0.40 0.06 0.00 0.00 0.00 0.43 0.44 0.00 0.51 0.41 0.10
Page 25
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 182 134 96 134 96 134 96 96 134 96 134 96 134 96 134 96 96 134 96 134 96
ISSN: 2230-7818
0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.40 0.03 0.09 0.00 0.51 0.00 0.08 0.30 0.00 0.05 0.00 0.13 0.07 0.25 0.16 0.06 0.17 0.02 0.01 0.54 0.00 0.09 0.00 0.14 0.00 0.07 0.03 0.27 0.20 0.02 0.20 0.01
36 38 38 26 60 60 60 60 40 40 96 152 60 232 10 222 50 100 226 50 208 50 40 16 126 72 42 62 26 106 185 40 42 30 66 30 40 10 120 60 44 84 40
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
98 99 100 101 98 99 100 101 98 99 109 96 109 110 112 112 113 113 133 134 134 143 6 115 116 116 117 120 118 118 121 122 122 124 124 126 126 128 128 115 136 136 121
99 100 101 102 105 106 107 108 103 104 97 109 110 111 110 113 114 133 134 135 143 145 115 116 117 120 118 121 121 119 122 123 124 125 126 127 128 112 129 136 120 137 137
96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 182 134 96 134 96 134 96 96 134 96 134 96 134 96 134 96 96 134 96 134 96
T
1.785 1.107 0.618 0.129 0.300 0.300 0.300 0.300 0.198 0.198 0.648 3.329 1.408 1.158 0.050 3.082 0.249 1.726 2.287 0.249 0.910 0.249 19.64 10.25 2.862 7.309 2.369 8.119 1.631 0.528 8.446 0.198 7.327 0.150 6.967 0.150 6.487 3.231 3.058 9.186 1.389 7.497 0.666
ES
99 100 101 102 105 106 107 108 103 104 97 109 110 111 110 113 114 133 134 135 143 145 115 116 117 120 118 121 121 119 122 123 124 125 126 127 128 112 129 136 120 137 137
A
98 99 100 101 98 99 100 101 98 99 109 96 109 110 112 112 113 113 133 134 134 143 6 115 116 116 117 120 118 118 121 122 122 124 124 126 126 128 128 115 136 136 121
IJ
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.40 0.03 0.09 0.00 0.51 0.00 0.08 0.30 0.00 0.05 0.00 0.13 0.07 0.25 0.16 0.06 0.17 0.02 0.01 0.54 0.00 0.09 0.00 0.14 0.00 0.07 0.03 0.27 0.20 0.02 0.20 0.01
Page 26
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
138 139 140 141 129 130 131 132 133 142 142 143 144 34 88
7.742 0.339 6.995 6.079 2.578 3.812 0.348 3.104 1.398 1.577 3.102 1.946 0.249 1.415 0.300
134 96 134 134 96 96 96 96 96 96 96 96 96 96 96
REFERENCE 1)
0.20 0.00 0.37 0.13 0.41 0.24 0.00 0.06 0.04 0.12 0.84 0.26 0.00 0.01 0.00
82 68 180 80 246 72 70 26 68 188 360 265 50 22 60
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
4)
(2007)
“A
for water
Memetic
5)
IJ
Walski, Thomas M., (1990) “Water Chelsea,
Mi:
Lewis
Publishers.
Dr. P.R. Bhave and S.D. Shangarpwar from IWWA march 2001 “computer
3)
0.20 0.00 0.37 0.13 0.40 0.24 0.00 0.06 0.04 0.12 0.83 0.26 0.00 0.01 0.00
Nemanja Trifunovic (2002) “Water
Sizing”,
network design”. 2)
134 96 134 134 96 96 96 96 96 96 96 96 96 96 96
Distribution Systems: Simulation and
distribution
A
algorithms
138 139 140 141 129 130 131 132 133 142 142 143 144 34 88
Distribution”.
R. Banos, C. Gil, J. I. Agulleiro, and J. Reca
137 138 138 140 141 129 130 130 132 132 141 142 143 27 87
T
137 138 138 140 141 129 130 130 132 132 141 142 143 27 87
ES
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
6)
Walski, Thomas M., (march 2006) “A
aided analysis and design of water
History
distribution network”
Journal AWWA, Vol 98, No.3, pp-
Optimization
of
Looped
Water
Water
Distribution”,
110-111.
BRIAN YOUNG J. Austral. Math. Soc.Ser. B41 (2000), “Analysis and
of
7)
Lindell E. Ormsbee,
(2006) “A
History
Distribution
of
Water
Distribution Networks” (Received 12
Network Analysis: The Computer
March 1997; revised 23 February
Age”, Journal of Water Distribution
1998) pp-508-511.
Analysis Symposium, pp-1-2.
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 27
Niklesh R. Murekar* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 7, Issue No. 2, 178 - 196
Shamir U.(1968) “Water Distribution
Design”. Water Resource Research,
Systems Analysis”, Journal of the
pp- 643-644.
Hydraulic Division Proceeding of the ASCE, HY.1, 1968: pp.219-222. 9)
(1994) “Opatimal Design of Water Network”
15)
Water
Distribution Network” @2004 World Organization.
Water:Managing
Systems.
S.
Ranji
Distribution
Networks”.
Published
P.R.Bhave and R.Gupta “Analysis of Water Distribution Network”
Safe Piped
Microbial
Piped
16)
ES
(2004) “Design and Operation of
in
and
and management, Vol.133, pp 580.
Chambers K, Creasey J and Forbes L.
Quality
Kumar
Journal of water resources planning
pp- 2637-2638
Health
Sujay V.
Ranjithan (2007),“Optimal Design of
Water
Resources Research, Vol. 30, No.9,
10)
Clifford Will “Project A Global Positioning System”
Eiger G, Shamir U, Ben-Tal A. Distribution
14)
T
8)
Water
Distribution by
IWA
11)
A
Publishing. London. UK. Pp- 39-45.
Bhave P.R and Shangarpwar S.D. (2001) “Computer Aided Analysis and Design of Water Distribution
IJ
Network” IWWA.
12)
Lansey K. and L. Mays. (1989) “Optimization
Model
for
Water
Distribution System Design” journal Hydraul Div. Am. Soc. Civ. Engg., pp- 1403-1407.
13)
Morgan D. and I. Goulter, (1985) “Optimal Urban Water Distribution
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 28