Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
Energy-Efficient Domino VLSI Circuits and their Performance with PVT Variations in DSM Technology Salendra.Govindarajulu1, Dr.T.Jayachandra Prasad2, Chimakurthy.Sreelakshmi3, C.H.Balaji4,
Associate Professor, ECE, RGMCET, Nandyal, JNTU, A.P.State, India, Email: rajulusg06@yahoo.co.in 2 Principal, RGMCET, Nandyal, JNTU, A.P.State, India, Email: jp.talari@gmail.com 3 PG Student, ECE, RGMCET, Nandyal, JNTU, A.P.State, India, Email: sreelakshmi0718@gmail.com 4 UG Student, KLU, Vijayawada. II. DUAL-RAIL DOMINO FOOTLESS CIRCUIT WITH SELF- TIMED PRECHARGE SCHEME (DRDFSTP): Conventional domino circuits: In this section, several conventional domino circuits with their own clocking schemes are briefly reviewed. A. Dynamic DCVSL Footed Circuit (DDCVSLF): Fig.1 shows AND/NAND dynamic DCVSL Footed circuit. One of the disadvantages of this kind of domino circuit is that the existence foot transistor slows the gates somewhat, as it presents an extra series resistance. Moreover, simultaneous precharge may cause an unacceptable IR-drop noise.
ES
Abstract— Compared to static CMOS logic, dynamic logic offers good performance. Wide fan-in dynamic logic such as domino is often used in performance critical paths, to achieve high speeds where static CMOS fails to meet performance objectives. However, domino gates typically consume higher dynamic switching and leakage power and display weaker noise immunity as compared to static CMOS gates. Keeping in view of the above stated problems in previous existing designs, novel energyefficient domino circuit techniques are proposed. The proposed circuit techniques reduced the dynamic switching power consumption; short-circuit current overhead, idle mode leakage power consumption and enhanced evaluation speed and noise immunity in domino logic circuits. Also regarding performance, these techniques minimize the power-delay product (PDP) as compared to the standard full-swing circuits in deep sub micron CMOS technology. Also the effect of the Process, Voltage and Temperature (PVT) variations on the performance of the CMOS Domino circuits with various techniques are analyzed.
T
1
Key words: Dynamic, Domino, Noise Margin, Deep submicron technology (DSM), High speed, Power consumption, Power delay product (PDP), PVT variations, Reduced dynamic swing.
IJ A
I. INTRODUCTION
Dynamic domino logic circuits are widely used in modern digital VLSI circuits. These dynamic circuits are often favoured in high performance designs because of the speed advantage offered over static CMOS logic circuits. The main drawbacks of dynamic logic are a lack of design automation, a decreased tolerance to noise and increased power dissipation. However, domino gates typically consume higher dynamic switching and leakage power and display weaker noise immunity as compared to static CMOS logic circuits. In this paper novel energy-efficient domino circuit techniques are proposed. This paper is organized as follows. In section II, Dual-rail domino circuit with self-timed precharge scheme is proposed. The Reduced dynamic swing domino logic is presented in section III. Section IV describes performance evaluation results of energy-efficient dynamic node low voltage swing with dual supply, dual grounds and dual-Vt domino logic. Section V describes the effect of PVT variations on domino logic presented in section II, III, IV. Then conclusions are presented in section VI.
ISSN: 2230-7818
Fig.1. Dynamic DCVSL AND/NAND Footed gate B. Dynamic DCVSL Footless Circuit (DDCVSLFL): Fig.2 shows AND/NAND dynamic DCVSL Footless circuit. Two benefits come from the usage of footless domino gates: improved pull-down speed and reduced precharge signal load. Main disadvantage is simultaneous precharge will cause short-circuit current.
Fig. 2. Dynamic DCVSL AND/NAND Footless gate
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 319
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
Fig.3 illustrates the delayed-reset domino AND/NAND circuit [3]. However, the use of delay elements, together with the need of both footed and footless cell libraries tends to increase design complexity.
Fig:3. The delayed-reset domino AND/NAND circuit D.
Dual-Rail Data-Driven Dynamic Logic (D4L):
Fig:5. Dual-rail footless domino AND/NAND gate with selftimed precharge scheme. Simulation results:
In this work, we have implemented a Dynamic DCVSL circuit, Dual-Rail Data-Driven Dynamic Logic and a proposed circuit Dual-Rail Domino Footless Circuit with Self-Timed Precharge Scheme. The results of simulation are shown in the below TABLES1-3.
ES
D4L circuit uses input signals instead of precharge signal for correct precharge and evaluation sequencing [5]. Correspondingly, clock-buffering and clock-distribution problems can be eliminated. Furthermore, the foot transistor can be eliminated without causing a short-circuit problem. A D4L two-input AND/NAND gate is shown in Fig.4.
self-timed precharge scheme. The self-timed precharge control logic consists of static CMOS inverter whose source of NMOS transistors are tied to input signals, which generate subprecharge signals (PC1-PC4) from precharge signal P in cases of the corresponding input signals are zero. The PMOS precharge tree above the pull down network (PDN) is used for precharging the corresponding gate.
T
C. Delayed-Reset Domino Circuit (DRDC):
IJ A
Table1. AND/NAND GATE
Fig.4. Dual-Rail Data-Driven Dynamic AND/NAND Logic ( D4L) Dual-Rail Domino Footless Circuit with Self- Timed Precharge Scheme (DRDFSTP): The presence of the foot transistor in the conventional dynamic DCVSL circuit shows the gate somewhat, as it presents an extra series resistance. To safely remove the transistor, two constraints must be met: (1) gate changes to evaluation phase before valid input come; (2) gate changes to precharge phase only after inputs change to zero. We propose a footless duail-rail domino circuit with self-timed precharge scheme to realize a high performance footless domino circuit while meeting the constraints mentioned above. It is expected that the peak of precharge current could be reduced due to the self-timed precharge scheme. Fig. 9 shows the AND/NAND gate of the proposed footless dual-rail domino circuit with
ISSN: 2230-7818
Technique
Power (Âľw)
PDP (10-15 ws) 0.6688 3.8
Area (Âľ.sqm)
7.6 152
Critical Delay (ns) 0.088 0.025
DDCVSLF DDCVSLF L DRDC
205
0.137
28.085
252.9
D4L
72.555
0.111
8.053606
93.3
DRDFSTP
7.676
0.042
0.322392
177.6
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 320
69.62 65.41
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
B. Reduced–Swing Domino with Single supply (RSSLS):
Table2. OR/NOR GATE
Power (µw)
PDP (10-15 ws) 0.65946 13.05
Area (µ.sqm)
7.58 145
Critical Delay (ns) 0.087 0.090
DDCVSLF DDCVSLF L DRDC
220
0.403
88.66
290
D4L
10.163
0.112
1.138256
78.48
DRDFSTP
7.583
0.042
0.318486
130.18
74.82 66.59
Table3. XOR/XNOR GATE
Power (µw) 11.7 99.023
Critical Delay (ns) 0.032 0.032
PDP (10-15 ws) 0.3744 3.1687
DDCVSLF DDCVSLF L DRDC
Area (µ.sqm)
231
0.091
21.021
D4L
16.802
0.029
0.487258
100.5
DRDFSTP
11.642
0.04
0.46568
200.13
99.2 92.17
Fig.7.Reduced – Swing Domino with Single supply C. Reduced Swing Mirror Domino (RSMRD): This is one of the alternative approaches for having reduced swing, which is shown in fig.8. This is an arrangement in which the precharge and footer transistors are exchanged with an NMOS and PMOS transistor respectively.
ES
Technique
The RSDLS circuit shown above is simplified by replacing the extra supply voltages with transistors providing the desired threshold voltage drops. The configuration is shown in fig.7.
T
Technique
391.9
III. REDUCED DYNAMIC SWING DOMINO (RDSDOMINO):
IJ A
A. Reduced–Swing Domino with Dual supply (RSDLS):
The first circuit configuration proposed to reduce the dynamic node voltage swing is obtained by simply altering the appropriate supply voltages of the standard domino gates as shown in fig.6.
Fig.8.Reduced Swing with Mirror Domino
This arrangement dictates that the precharge and evaluate cycles be reversed with regard to clock. That is, clock begins high corresponding to precharge and clock goes low corresponding to the evaluate cycle. Given this arrangement, the voltage swing of the internal dynamic node is limited by the transistor thresholds. The supply voltage and the input/output signals all remain unmodified. Simulation results: The benchmark circuits using the stated four techniques are implemented. The figures of merits used to compare these techniques are power consumption, propagation delay and power delay product (PDP). The benchmark circuits implemented are OR2 gate, AND2 gate, XOR2 gate, 16-bit Full adder, 16-bit Comparator , D-flip flop and 4-bit LFSR (Linear Feedback Shift Register).
Fig.6. Reduced–Swing Domino with Dual Supply
This circuit is here after referred to as a reduced–swing (RSDLS) domino gate with dull supply.
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 321
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
65nm 65nm 65nm
0.007 17.094 0.0322
0.032 0.023 0.016
Power Delay Product (*10-15 Watt-Sec) 0.0000224 0.393162 0.0005152
65nm
0.433
0.054
0.023382
Techniques
RSDLS RSSLS RSMRD StdDomino
Power(µ Watts)
Delay(ns)
Table5. Optimum values of different techniques of 2-input AND Gate
65nm 65nm 65nm
Delay (ns) 0.026 0.017 0.044
65nm
0.506
0.102
0.051612
Table6. Optimum values of different techniques of 2-input XOR Gate
Delay(ns)
RSDLS
65nm
22.881
0.046
1.052526
RSSLS
65nm
23.002
0.067
1.541134
RSMRD StdDomino
65nm
1.592
0.067
0.106664
65nm
1.711
0.102
0.174522
IJ A
TECHNIQUES
Power (µ Watts)
Power Delay Product (*10-15 Watt-Sec)
Table7. Optimum values of different techniques of 16-bit adder
Techniques
Power (µ Watts)
Delay(ns)
Power Delay Product (*10-15 Watt-Sec)
RSDLS
65nm
0.15
0.025
0.00375
RSSLS
65nm
0.649
0.073
0.009735
RSMRD StdDomino
65nm
1.909
1.682
0.03818
65nm
0.586
24.825
0.015236
ISSN: 2230-7818
Power Power Techniques
Delay
Product
(m
Delay
(*10 -12 Watt-
Watts)
(ns)
Sec)
RSDLS
65nm
1.053
0.069
0.072657
RSSLS
65nm
1.07
0.058
0.06206
RSMRD
65nm
6.901
0.041
0.282941
65nm
0.833
0.033
0.027489
STDDOMINO
Table9. Optimum values of different techniques for D-Flip flop
Techniques
ES
Techniques RSDLS RSSLS RSMRD StdDomino
Power(µ watts) 21.635 32.102 0.355
Power Delay Product (*10-15 WattSec) 0.56251 0.545734 0.01562
Table8. Optimum values of different techniques for 16-bit comparator
T
Table4. Optimum values of different techniques of 2-input OR Gate
Power (m Watts)
Delay(ns)
Power Delay Product (*10-12 Watt-Sec)
RSDLS
65nm
0.01925
0.118
0.0022715
RSSLS
65nm
0.115
0.083
0.009545
RSMRD STDDOMINO
65nm
0.118
0.075
0.00885
65nm
0.05964
0.270
0.0161028
Table10. Optimum values of different techniques for 4-bit LFSR
Techniques
Power (m Watts)
Delay (ns)
RSDLS
65nm
0.0244
0.780
RSSLS
65nm
0.683
0.275
RSMRD STDDOMINO
65nm
0.293
0.299
65nm
1.455
2.156
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Power Delay Product (*10-12WattSec) 0.01 9032 0.18 7825 0.08 7607 3.13 698
Page 322
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
IV. DYNAMIC NODE LOW VOLTAGE SWING DOMINO LOGIC CIRCUITS WITH DUAL POWERS, GROUNDS AND DUAL VT:
The single Vt domino logic circuit with dual power supply, dual ground is shown in Fig.11.
T
This section discusses several dual threshold voltage domino circuit design techniques to reduce the power dissipation of domino logic while simultaneously improving noise immunity. The benefits are achieved by limiting the voltage swing of the internal dynamic node in a typical domino gate. This dynamic storage node is the node connected to the input of the output inverter of a domino gate as shown in fig.9.
B.Single Vt domino logic circuit with dual power supply, dual ground: (DUAL SUPPLY)
Fig.11. The dynamic node low voltage swing domino circuit technique with dual power supplies and ground voltages VDDL<VDD , VgndH>Vgnd
ES
C. Dual Vt Domino Logic circuit With Dual power supply,Dual Ground(N1 High Threshold): (DUAL N1)
Fig.9. Dynamic node low voltage swing domino logic circuit The above circuit is used to reduce the voltage swing at the dynamic node of a domino gate. A complete analysis of the effects of the reduced swing at the dynamic node on both noise tolerance and propagation delay is presented with respect to specific circuit configurations below. A. Single Vt domino logic circuit with keeper: (NORMAL)
The dual Vt domino logic circuit with dual power supply, dual ground (N1 high threshold) is shown in Fig.12. The NMOS transistor in the output inverter has high Vt. Short circuit current is therefore reduced only in the evaluation phase if the inputs are high. Hence evaluation speed of the circuit is higher as compared to N1, P1 high threshold technique.
IJ A
The single Vt domino logic circuit with keeper is shown in Fig.10. Keeper circuit is used to maintain the voltage level at dynamic node which also increases the noise immunity. The voltage at the dynamic node should be VDD but gets diminished due to several reasons, by using the keeper in the above circuit with P2, N2 transistors pair forming inverter turns ON Pk transistor which pulls dynamic node to VDD.
Fig.12. The dynamic node low voltage swing domino circuit technique with dual power supplies and ground voltages VDDL<VDD , VgndH>Vgnd and with N1 high threshold D. Dual Vt domino logic circuit with dual power supply, dual ground (N2 ground):
Fig.10. Domino logic circuit with keeper.
ISSN: 2230-7818
The dual Vt domino logic circuit with dual power supply, dual ground (N1 high threshold) is shown in Fig.13. N2 FET
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 323
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
Fig.13. The dynamic node low voltage swing domino circuit technique with dual power supplies and ground voltages VDDL<VDD , VgndH>Vgnd and with N2 Ground
Fig.15. dynamic node low voltage swing domino circuit technique with dual power supplies and ground voltages VDDL<VDD , VgndH>Vgnd and with N1, P2, Pk high thresholds G. Dual Vt domino logic circuit with dual power supply, dual ground (P11,PK,P1 high threshold): The dual Vt domino logic circuit with dual power supply, dual ground (P11, PK, P1 High threshold) is shown in fig.16. P11, Pk, P2 FETs threshold voltages are increased, these modifications are made to the basic circuit in order to analyze the variations in the parameters like power, delay, area, power delay product (PDP) and to find the efficient technique.
ES
E. Dual Vt domino logic circuit with dual power supply, dual ground (N1, P1 high threshold): (DUAL N1,P1)
modifications are made to the basic circuit in order to analyze the variations in the parameters like power, delay, area, power delay product (PDP) and to find the efficient technique.
T
is grounded; these modifications are made to the basic circuit in order to analyze the variations in the parameters like power, delay, area, power delay product (PDP) and to find the efficient technique.
IJ A
The dual Vt domino logic circuit with dual power supply, dual ground (N1, P1 High Threshold) is shown in Fig.14. The short circuit current produced by the output inverter is suppressed during both the precharge and evaluation phases of operation, since the NMOS and PMOS transistors in the output inverter have high Vt. However, evaluation speed is also degraded due to the weaker pull-up strength of high Vt PMOS transistor.
Fig.14. The dynamic node low voltage swing domino circuit technique with dual power supplies and ground voltages VDDL<VDD , VgndH>Vgnd and with N1, P1 high thresholds F. Dual Vt domino logic circuit with dual power supply, dual ground (Pk, P2, N1 high threshold):
The dual Vt domino logic circuit with dual power supply,
dual ground (Pk, P2, N1 high threshold) is shown in Fig15. P2, N1 FETs threshold voltages are increased, these
ISSN: 2230-7818
Fig.16. dynamic node low voltage swing domino circuit technique with dual power supplies and ground voltages VDDL<VDD , VgndH>Vgnd and with Pk, P1, P11 High thresholds Simulation results: In this work, the benchmark circuits using the stated seven techniques are implemented. The benchmark circuits implemented are OR2, AND2, XOR2, 16-bit Full Adder, 16bit Comparator, D-Latch, 4-bit LFSR. Here the results are given for 16-bit Full Adder, 16-bit Comparator, D-Latch, 4-bit LFSR.
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 324
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
Table11. Optimum values of different techniques for 16-bit adder PDP(10-12 w-s)
S.N o
TECHNIQU ES
POWER(m w)
DELAY( ns)
1
11.062
127.081
10.958
99.218
1405.7589 6 1087.2308 44
3
NORMAL N2 GROUND DUAL POWER SUPPLY
11.402
100.63
4
PK ,P11, P1
12.088
5
PK ,P2, N1
20.15
6
DUAL P1, N1
21.88
100.633
7
DUAL N1
10.245
90.907
S.NO
DELAY( ns)
12826.9
1
NORMAL
4.587
6.797
31.1778 39
2255.05
1147.3832 6
13782
2
2.976
8.245
24.5371 2
2493.05
61.160
739.30208
12159.48
2.882
7.434
21.4247 88
2472.36
42.118
848.6777
15409.67
12809.5
TECHNIQU
POWER(m
DELAY(
O
ES
w)
ns)
1
NORMAL
10.475
104.86
2
GROUND
8.204
156.921
3
DUAL POWER SUPPLY
7.795
4
PK ,P11, P1
8.457
N2
10371
PDP(10-12
Area(mic
w-s)
ro
sq.meter)
1098.4085
18914 19316
209.5
1633.0525 1271.1885
18329.6
150.312
8
18369.4
IJ A
84
1265.0123
DUAL P1,
6
N1
2
20240.6
105.00109
10.432
119.209
31
18453
1279.5316
7
DUAL N1
8.56
ISSN: 2230-7818
149.478
4
PK ,P11, P1
3.08
5.436
16.7428 8
2468.4
5
PK ,P2, N1
2.929
5.452
15.9689 08
2482.7
6
DUAL P1, N1
2.889
5.409
15.6266 01
2463.3
5.404
16.0390 72
2483.34
15269
1287.3798
148.72
3
N2 GROUND DUAL POWER SUPPLY
T
2210.8500 4 931.34221 5
S.N
8.506
Area(mic ro sq.meter)
POWER(m w)
comparator
PK ,P2, N1
PDP(1012 w-s)
TECHNIQU ES
Table12. Optimum values of different techniques for 16-bit
5
LFSR
Area(mic ro sq.meter)
ES
2
Table13. Optimum values of different techniques for 4-bit
8
18840
7
DUAL N1
2.968
Table 14. Optimum values of different techniques for D-Latch S.N O
TECHNIQU ES
POWER(m w)
DELAY(n s)
1
NORMAL
0.158
0.572
N2
2
GROUND
PDP(10 -12 w-s) 0.09037 6
Area(mic ro sq.meter) 215.56
0.07530
0.163
0.467
6
254.92
0.1177
261.41
DUAL
POWER 3
SUPPLY
0.22
0.535
4
PK ,P11, P1
0.169
0.385
5
PK ,P2, N1
0.169
0.383
0.06506 5
258.69
0.06472 DUAL P1,
7
262.885
0.06219
6
N1
0.169
0.368
7
DUAL N1
0.169
0.358
2
256.11
0.06050
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
2
Page 325
262.59
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
V. PROCESS, VOLTAGE AND TEMPERATURE VARIATIONS (PVT) ON THE PERFORMANCE OF DOMINO LOGIC: The effect of PVT variations on the domino logic circuit techniques which are explained in sections II, III, IV are
(Oxide layer thickness) and UO (carrier mobility). The
-
The PVT variances
on the domino logic in sections II, III, IV are given in below Tables15-23.
studied and analyzed in this section. The process variations considered are VTHO (Threshold voltage at zero bias), TOXE PVT Variations for section II:
AND/NAND
VTHO= 0.3 TOXE= 0.7 UO=0.0 30
POWER DISSIPATIO N (µW) ION (ma)
7.520
0.120
OR/NOR
IOFF (na)
Dynamic DCVSL Footless
POWER DISSIPATIO N (µW) ION (ma) IOFF (na)
Delay Reset Domino Circuit
POWER DISSIPATIO N (µW) ION (ma)
ISSN: 2230-7818
XOR/XNOR
VTHO= 0.35 TOXE= 1.1 UO=0.0 55
VTHO= 0.4 TOXE= 1.6 U0=0.08
VTHO= 0.3 TOXE= 0.7 UO=0.0 30
VTHO= 0.35 TOXE= 1.1 UO=0.0 55
VTHO= 0.4 TOXE= 1.6 U0=0.08
VTHO= 0.3 TOXE= 0.7 UO=0.0 30
VTHO= 0.35 TOXE= 1.1 UO=0.0 55
VTHO= 0.4 TOXE= 1.6 U0=0.08
7.6
7.623
7.565
7.58
7.45
11.330
11.7
11.23
0.250
0.358
0.120
0.250
0.358
0.120
0.250
0.358
IJ A
Dynamic DCVSL Footed
T
Table15.PROCESS VARIATIONS (V AND T CONSTANT)
ES
BENCHMARK CIRCUITS
2
0
0
2
0
0
2
0
0
100
152
153
102
145
161
98.427
99.023
99.400
0.120
0.250
0.358
0.120
0.250
0.358
0.120
0.250
0.358
2
0
0
2
0
0
2
0
0
201.872
205
204.347
94.254
220
221.392
230.013
231
231.925
0.051
0.107
0.153
0.051
0.107
0.105
0.051
0.107
0.105
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 326
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
POWER DISSIPATIO N (µW) ION (ma) IOFF (na)
Foot Less Duail-Rail Domino Circuit with Self Timed Precharge Scheme Logic
POWER DISSIPATIO N (µW) ION (ma) IOFF (na)
BENCHMARK CIRCUITS
0
0
1
0
0
1
0
0
48.316
72.555
85.268
8.846
10.163
10.475
13.914
16.802
13.85
0.120
0.250
0.358
0.120
0.250
0.358
0.12
0.250
0.358
2
0
0
2
0
0
2
0
0
7.446
7.676
7.765
7.400
7.583
7.773
11.61
11.642
10.007
0.120
0.205
0.358
0.120
0.205
0.358
0.120
0.250
0.247
2
0
0
2
AND/NAND
IOFF(na)
Dynami c DCVS L Footles s
POWER DISSIPATION(µ W) ION(ma) IOFF(na)
Delay Reset Domin o
POWER DISSIPATION(µ W)
ISSN: 2230-7818
0
2
VDD=0. 8
OR/NOR
VDD=1
IJ A POWER DISSIPATION(µ W) ION(ma)
0
Table16.VOLTAGE VARIATIONS (P AND T CONSTANT)
VDD=0.7
Dynami c DCVS L Footed
T
Duail-Rail Data Driven Dynamic Logic
1
ES
IOFF (na)
0
0
XOR/XNOR
VDD=0. 7
VDD=0. 8
VDD=1
VDD=0. 7
VDD=0. 8
VDD=1
7.152
7.153
7.6
7.141
7.524
7.58
9.345
11.809
11.7
0.131
0.171
0.250
0.131
0.171
0.250
0.131
0.171
0.250
0
0
0
0
0
0
0
0
0
100.714
101.621
152
102.185
145.317
145
98.264
99.821
99.023
0.131
0.171
0.250
0.131
0.171
0.250
0.131
0.171
0.250
0
0
0
0
0
0
0
0
0
67.053
102
205
94.217
94.712
220
220.013
230.983
231
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 327
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
DuailRail Data Driven Dynami c Logic
ION(ma)
0.131
0.171
0.107
0.131
0.171
0.107
0.131
0.171
0.107
IOFF(na)
0
0
0
0
0
0
0
0
0
54.187
72.868
72.555
9.127
9.217
10.163
14.717
16.504
16.802
0.131
0.171
0.250
0.131
0.171
0.250
0.131
0.171
0.250
0
0
0
0
0
0
0
0
0
7.885
7.278
7.676
7.317
7.155
7.583
11.521
11.504
11.642
0.131
0.171
0.250
0.131
0.171
0.250
0.131
0.171
0.250
0
0
0
0
0
0
0
0
0
POWER DISSIPATION(µ W) ION(ma) IOFF(na) POWER DISSIPATION(µ W) ION(ma) IOFF(na)
T
Foot Less DuailRail Domin o Circuit with Self Timed Prechar ge Scheme Logic
BENCHMARK CIRCUITS
ES
Circuit
Table17.TEMPERATURE VARATIONS (P AND V CONSTANT) AND/NAND
27
127
IJ A
-73
OR/NOR
Dynamic DCVSL Footed
POWER DISSIPATION(µ W) ION(ma) IOFF(na)
Dynamic DCVSL Footless
Delay Reset Domino Circuit
XOR/XNOR
-73
27
127
-73
27
127
7.503
7.6
7.768
7.425
7.58
8.025
11.369
11.7
11.691
0.445
0.250
0.163
0.445
0.250
0.163
0.445
0.250
0.163
0
0
27
0
0
27
0
0
27
POWER DISSIPATION(µ W) ION(ma)
246
152
108
247
145
112
169
99.023
77.078
0.445
0.250
0.163
0.445
0.250
0.163
0.445
0.250
0.163
IOFF(na)
0
0
27
0
0
27
0
0
27
208.507
205
217.451
162
220
72.266
116
231
248.93 7
0.190
0.107
0.069
0.190
0.107
0.069
0.107
0.107
0.069
POWER DISSIPATION(µ W) ION(ma)
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 328
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
IOFF(na) Duail-Rail Data Driven Dynamic Logic
POWER DISSIPATION(µ W) ION(ma)
0
0
11
0
0
11
0
0
11
94.835
72.555
59.951
4.072
10.163
11.788
5.767
16.802
22.507
0.445
0.250
0.163
0.445
0.250
0.163
0.445
0.250
0.163
0
0
27
0
0
27
0
0
27
7.555
7.676
8.355
7.408
7.583
8.358
9.024
11.642
13.708
0.445
0.250
0.163
0.445
0.250
0.163
0.445
0.250
0.163
0
0
27
0
0
27
0
0
27
IOFF(na) POWER DISSIPATION(µ W) ION(ma) IOFF(na)
T
Foot Less Duail-Rail Domino Circuit with Self Timed Precharge Scheme Logic
PVT Variations for section III:
AND2
OR2
VTHO =0.4 TOXE= 1.6 U0=0.8
VTHO =0.3 TOXE= 0.7 UO=0. 030
XOR2
VTHO =0.4 TOXE= 1.6 U0=0.8
IJ A
VTHO =0.3 TOXE =0.7 UO=0. 030
ES
Table18.PROCESS VARIATIONS (V AND T CONSTANT)
BENCHMARKCIRCUI TS
STD DOMINO
POWER DISSIPAT ION(µW) ION(ma) IOFF(na)
RSSLS
POWER DISSIPAT ION(µW) ION(ma) IOFF(na)
RSDLS
POWER DISSIPAT ION(µW) ION(ma)
ISSN: 2230-7818
D-LATCH
4-BITLFSR
VTHO=0. 3 TOXE=0.7 UO=0.030
VTHO=0. 4 TOXE=1. 6 U0=0.8
VTHO= 0.3 TOXE=0 .7 UO=0.0 30
VTHO =0.4 TOXE =1.6 U0=0.8
VTHO= 0.3 TOXE= 0.7 UO=0.0 30
VTHO= 0.4 TOXE= 1.6 U0=0.8
6.238
18.390
15.099
0.846
11.264
31.786
31.281
89.351
157
451
0.120
0.358
0.051
0.153
0.120
0.358
0.051
0.183
0.051
0.153
2
0
1
0
2
0
1
0
1
0
11.958
17.044
11.325
15.834
15.910
22.471
54.203
76.475
264
389
0.051
0.139
0.120
0.358
0.51
0.153
0.051
0.139
0.051
0.153
1
0
2
0
1
0
0
0
1
0
7.90
3.604
0.004
0.004
29.521
4.719
37.451
34.612
778
393
0.449
0.438
0.304
0.280
2.794
0.438
7.012
0.449
2.794
7.012
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 329
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
POWER DISSIPAT ION(µW) ION(ma) IOFF(na)
BENCHMARKCIRCUITS
STD DOMINO
POWER DISSIPATION( µW) ION(ma) IOFF(na)
RSSLS
POWER DISSIPATION( µW) ION(ma)
2
0
37
1
9
6
37
9
8.109
13.437
0.234
0.227
7.254
12.033
30.259
49.151
284
0.591
0.120
0.358
0.120
0.358
0.12
0.358
0.120
0.358
0.120
0.358
2
0
2
0
2
0
2
0
2
0
Table19.VOLTAGE VARIATIONS (P AND T CONSTANT): AND2
OR2
RSDLS
RSMRD
POWER DISSIPATION( µW) ION(ma) IOFF(na)
POWER DISSIPATION( µW) ION(ma) IOFF(na)
ISSN: 2230-7818
XOR2
D-LATCH
4-BITLFSR
VDD=0. 7
VDD=0. 8
VDD=0 .7
VDD=0. 8
VDD=0. 7
VDD=0. 8
VDD=0. 7
VDD=0. 8
VDD=0. 7
VDD=0. 8
11.878
12.263
0.558
26.48
15.438
18.255
38.655
47.105
361
348
0.250
0.250
0.250
0.107
0.250
0.250
0.107
0.107
0.107
0.107
0
0
0
0
0
0
0
0
0
0
2.598
6.081
6.824
11.221
0.7
6.97
8.108
26.114
41.306
125
0.107
0.107
0.107
0.107
0.958
0.107
0.107
0.107
1.337
0.107
0
0
0
0
0
0
0
0
0
0
1.464
2.431
0.003
0.003
1.167
4.329
5.743
14.256
54.152
156
1.337
1.337
0.446
0.446
1.337
1.337
1.337
1.337
1.337
1.337
0
0
0
0
0
0
0
0
0
0
0.171
0.375
0.152
0.176
0.737
0.889
0.942
2.410
2,737
0.120
0.120
0.594
0.594
0.594
0.594
2
2
0
0
0
0
IJ A
IOFF(na)
1
T
RSMRD
6
ES
IOFF(na)
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
0.788
Page 330
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
POWER DISSIPATION (µW) ION(µA) IOFF(nA)
RSSLS
POWER DISSIPATION(µW) ION (µA) IOFF(nA)
RSDLS
POWER DISSIPATION (µW) ION (µA)
OR2
RSMRD
POWER DISSIPATION (µW) ION (µA) IOFF(nA)
ISSN: 2230-7818
XOR2
D-LATCH
4-BITLFSR
127
-73
127
-73
127
-73
127
-73
127
-73
8.550
54.746
20.057
138
16.108
92.667
365
112
184 2
564
0.163
1.193
0.069
0.530
27
0
11
0
10.166
17.435
9.406
18.880
0.069
1.193
0.655
0.190
0.65 5
0.190
11
0
0
0
0
0
18.206
6.690
58.01 8
17.873
299
114
0.266
0.586
0.266
0.586
0.266
0.586
0.266
0.586
0.586
3762
0
3762
0
3762
0
3762
0
0
14.136
0.128
0.004
0.004
30.618
0.714
16.39 7
1.782
24.4 20
267
0.234
0.320
0.169
0.184
0.234
0.320
1.470
1.193
1.19 3
1.474
196
0
54
0
186
0
0
0
0
0
IJ A
IOFF
AND2
T
STD DOMINO
Table20.TEMPERATURE VARATIONS (P AND V CONSTANT)
ES
BENCHMARKCIRCUITS
9.715
12.585
0.302
0.233
7.392
13.922
28.35 2
63.166
270
504
0.266
0.586
0.266
0.586
0.266
0.586
0.266
0.586
0.586
3762
0
3762
0
3762
0
3762
0
0.26 6 376 2
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 331
0
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
PVT Variations for section III: Table21.PROCESS VARIATIONS (V AND T CONSTANT):
BENCHMARKCIRCUIT S
VTHO=0.3 TOXE=0.7 UO=0.030
VTHO=0. 4 TOXE=1.6 U0=0.8
VTHO= 0.3 TOXE=0 .7 UO=0.03 0
VTHO =0.4 TOXE =1.6 U0=0.8
VTHO= 0.3 TOXE=0 .7 UO=0.03 0
VTHO= 0.4 TOXE=1 .6 U0=0.8
0.397
0.369
7.270
1.134
11.292
33.026
126
322
464
1260
0.120
0.358
0.120
0.358
0.120
2
0
2
0
2
0.207
0.155
0.120
0.358
2
0
25.752
26.708
ION(ma)
0.030
0.099
IOFF(na)
0
POWER DISSIPAT ION(µW) ION(ma)
POWER DISSIPAT ION(µW) ION(ma)
POWER DISSIPAT ION(µW)
POWER DISSIPAT ION(µW) ION(ma)
POWER DISSIPAT ION(µW) ION(ma) IOFF(na)
DN1PKP2
POWER DISSIPAT
ISSN: 2230-7818
T
VTHO =0.4 TOXE= 1.6 U0=0.8
IOFF(na)
DN1P1HV T
4-BITLFSR
VTHO =0.3 TOXE= 0.7 UO=0.0 30
0.358
0.051
0.153
0.051
0.153
0
1
0
1
0
41.559
1.167
13.181
38.672
107
303
513
1412
0.120
0.358
0.120
0.358
0.051
0.153
0.051
0.153
2
0
2
0
1
0
1
0
40.951
1.182
16.784
43.690
107
303
513
1412
0.120
0.358
0.120
0.358
0.051
0.153
0.051
0.153
0
2
0
2
0
1
0
1
0
0.030
0.030
41.359
15.148
16.762
46.690
108
303
485
1350
0.120
0.358
0.120
0.358
0.120
0.358
0.051
0.153
0.051
0.153
2
0
2
0
2
0
1
0
1
0
23.576
26.875
40.977
1.350
16.823
43.733
107
303
513
1412
0.030
0.099
0.120
0.358
0.120
0.358
0.051
0.153
0.051
0.153
0
0
2
0
2
0
1
0
1
0
0.042
0.04
0.105
0.104
1.121
2.31
108
303
513
1412
IJ A DN2GD
D-LATCH
VTHO =0.4 TOXE= 1.6 U0=0.8
IOFF(na) DN1HVT
XOR2
VTHO =0.3 TOXE= 0.7 UO=0.0 30
IOFF(na) DDSDG
OR2
ES
DSTDK
AND2
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 332
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331 ION(µW) 0.099
0.120
0.358
0.120
0.358
0.051
0.153
0.051
0.153
IOFF(na)
0
0
2
0
2
0
1
0
1
0
0.038
0.036
0.16
1.167
0.188
1.039
107
303
513
1412
0.120
0.358
0.120
0.358
0.120
0.358
0.051
0.153
0.051
0.153
2
0
2
0
2
0
1
0
1
0
POWER DISSIPAT ION(µW) ION(ma) IOFF(na)
BENCHMARKCIRCUITS
DSTDK
POWER DISSIPATION(µ W) ION(ma) IOFF(na)
Table 22.VOLTAGE VARIATIONS (P AND T CONSTANT): AND2
OR2
POWER DISSIPATION(µ W) ION(ma) IOFF(na)
DN1HVT
POWER DISSIPATION(µ W) ION(ma) IOFF(na)
DN2GD
POWER DISSIPATION(µ W) ION(ma)
ISSN: 2230-7818
XOR2
VDD=0. 7
VDD=0. 8
VDD= 0.7
VDD=0. 8
0.321
0.160
0.590
1.221
0.267
0.250
0.267
0.250
1
0
1
0.148
0.167
0.267
VDD=0. 7
D-LATCH
4-BITLFSR
VDD=0. 8
VDD=0. 7
VDD=0. 8
VDD=0. 7
VDD=0. 8
17.155
123
159
444
545
0.107
0.107
0.107
0.107
0.107
0.107
0
0
0
0
0
0
0
0.665
1.637
3.790
1.882
176
191
728
829
0.250
0.267
0.250
0.250
0.250
0.107
0.107
0.107
0.107
1
0
1
0
0
0
0
0
0
0
20.942
11.441
0.837
4.661
22.251
176
191
728
829
0.177
0.065
0.267
0.250
0.250
0.250
0.107
0.107
0.107
0.107
0
0
1
0
0
0
0
0
0
0
0.033
46.685
0.898
8.877
16.823
22.963
176
191
730
830
0.267
0.0250
0.267
0.250
0.250
0.250
0.107
0.107
0.107
0.107
IJ A
DDSDG
T
0.03
ES
DP11PKP 1
ION(ma)
0.676
4.032
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 333
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
POWER DISSIPATION(µ W) ION(ma)
0
1
0
0
0
0
0
0
0
21.271
0.006
0.735
0.943
4.799
22.282
176
191
728
829
0.177
0.065
0.267
0.250
0.250
0.107
0.107
0.107
0.107
0
0
1
0
0
0
0
0
0
0
0.048
0.039
0.105
0.091
1.263
1.474
176
191
728
829
0.177
0.065
0.267
0.250
0.250
0.250
0.107
0.107
0.107
0.107
0
0
1
0
0
0
0
0
0
0
IOFF(na) DN1PKP2
POWER DISSIPATION(µ W) ION(ma) IOFF(na)
DP11PK P1
POWER DISSIPATION(µ W) ION(ma)
IOFF(na)
BENCHMARKCIRCUITS
0.044
0.128
0.137
82.172
0.803
0.924
176
191
728
829
0.267
0.250
0.267
0.250
0.250
0.250
0.107
0.107
0.107
0.107
0
0
0
1
0
1
AND2
POWER DISSIPATION(µW) ION (µA) IOFF(nA)
DN1HVT
POWER DISSIPATION (µW) ION (µA)
ISSN: 2230-7818
0
0
OR2
0
XOR2
D-LATCH
4-BITLFSR
-73
127
-73
127
-73
127
-73
127
-73
0.538
0.392
7.027
25.626
16.495
38.504
273
673
658
1515
0.266
0.445
0.266
0.445
0.266
0.190
0.266
0.586
1.82 0
1.996
0
0
3762
0
3762
0
3762
0
0
0
0.619
0.149
9.725
16.85
21.230
54.302
160
364
758
1677
0.266
0.445
0.266
0.445
0.266
0.190
0.266
0.586
1.82 0
1.996
0
0
3762
0
3762
0
3762
0
0
0
33.272
0.05
7.742
15.907
22.845
54.347
160
364
758
1677
0.098
0.133
0.266
0.445
0.266
0.190
0.266
0.586
1.82 0
1.996
IJ A POWER DISSIPATION (µW) ION(µA) IOFF(nA)
DDSDG
0
Table23.TEMPERATURE VARATIONS (P AND V CONSTANT)
127
DSTDK
0.250
T
DN1P1H VT
1
ES
IOFF(na)
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 334
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
DN1P1HV T
POWER DISSIPATION (µW) ION (µA) IOFF(nA) POWER DISSIPATION (µW) ION (µA) IOFF(nA)
DN1PKP2
POWER DISSIPATION(µW) ION(µA) IOFF(nA)
DPKP11P 1
POWER DISSIPATION(µW)
0
3762
0
3762
0
3762
0
0
0
0.030
10.236
68.123
0.137
25.864
23.145
160
364
730
1685
0.266
0.445
0.266
0.445
0.266
0.190
0.266
0.586
1.996
3762
0
3762
0
3762
0
3762
0
1.82 0 0
33.269
76.778
7.850
16.035
22.878
54.378
160
364
758
1677
0.098
0.133
0.266
0.445
0.266
0.190
0.266
0.586
1.82 0
1.996
1
0
3762
0
3762
0
3762
0
0
0
0.049
0.058
0.111
0.04
16.02
1.876
160
364
756
1677
0.098
0.133
0.266
0.445
0.266
0.190
0.266
0.586
1.82 0
1.996
1
0
3762
0
3762
0
3762
0
0
0
0.045
ION(µA)
0.266
IOFF(nA)
3762
0.157
0.171
0.445
0.266
0.445
0
3762
0
V. CONCLUSIONS
IJ A
This work consists of four different parts. In section II, the circuits Dynamic DCVSL footed circuit, Dynamic DCVSL footless circuit; Dual-Rail Data-Driven Dynamic Logic and Dual-rail Footless domino gate with self-timed precharge scheme are successfully implemented using CMOS domino logic. The proposed circuits have offered an improved performance in power dissipation, speed and noise tolerance when compared with standard domino circuit. In section III, an attempt has been made to simulate the benchmark circuits AND2, OR2, XOR2, 16-bit full adder, 16bit comparator, D-flip-flop, 4-bit LFSR by the three reduced swing domino logic circuits. The proposed circuits have offered an improved performance in power dissipation, speed and noise tolerance when compared with standard domino circuit. As it is observed from the results, of all the three reduced swing circuits, reduced swing domino with dual supply has low power dissipation, PDP and more tolerance to noise. In section IV, the circuit techniques employing dual thresholds, dual voltages, and dual grounds are presented for simultaneously reducing power dissipation and delay in
ISSN: 2230-7818
0.164
T
DN2GD
1
1.124
0
1.174
160
364
75 8
167 9
0.266
0.190
0.26 6
0.586
1. 82 0
1.99 6
3762
0
3762
0
0
0
ES
IOFF
domino circuits and also to increase the noise immunity. The benchmark circuits AND2, OR2, XOR2, 16-bit full adder, 16bit comparator, D-flip-flop, 4-bit LFSR are simulated with the proposed different energy efficient domino logic circuit techniques in 65nm technology. From the results, it is observed that the proposed logic technique which is dual threshold, dual ground and dual supply voltage with N2 high threshold shows good performance when compared to single threshold (vt) domino logic techniques. Hence, it is concluded that the proposed designs will provide a platform for designing high performance and low power digital circuits and high noise immune digital circuits such as, processors and multipliers. In section V, an attempt has been made to study the effect of the PVT variations on the domino circuits with different techniques given in sections II, III, IV. As it is observed from the results, when process variations decrease power dissipation increases, and vice versa. When temperature variations increase, power dissipation increases and vice versa. When voltage variations decrease power dissipation decreases.
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 335
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
[1] [2] [3] [4]
[5]
[6]
L. G. Heller, W. R. Griffin, J. W. Davis, and N. G. Thoma, “Cascode voltage switch logic: A differential CMOS logic family,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 16-17, 1984. P. Ng, P. T. Balsara, and D. Steiss, “Performance of CMOS Differential Circuits,” IEEE J. of Solid-State Circuits, vol. 31, no. 6, pp. 841-846, June 1996. P. Hofstee, et al., “A 1 GHz Single-Issue 64b PowerPC Processor,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 9293, 2000. J. Wang, S. Shieh, C. Yeh, and Y. Yeh, “Pseudo-Footless CMOS Domino Logic Circuits for High-Performance VLSI Designs,” in Proc. Int. Symp. on Circuits and Systems, vol. 2, pp. 401-404, 2004. R. Rafati, A. Z. Charaki, G. R. Chaji, S. M. Fakhraie, and K. C. Smith, “Comparison of a 17b Multiplier in Dual-Rail Domino and 3 4 in Dual-Rail D L (D L) Logic Styles,” in Proc. Int. Symp. on Circuits and Systems, vol. 3, pp. 257-260, 2002. S. Mutoh et al., “1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS,” IEEE J. Solid-State Circuits, vol.30, pp. 847–854, Aug. 1995.
AUTHORS BIODATA:
ES
[7] V. Kursun and E. G. Friedman, “Domino logic with dynamic body biasedkeeper,” in Proc. Eur. Solid-State Circuits Conf., Sept. 2002, pp.675–678. [8] “Variable threshold voltage keeper for contention reduction in dynamic circuits,” in Proc. IEEE Int. ASIC/SOC Conf., Sept. 2002, pp.314–318. [9] S. Borkar, .Low Power Design Challenges for the Decade,. Proceedings of the IEEE/ACM Design Automation Conference, pp. 293-296, June 2001. [10] P. Srivastava, A. Pua, and L. Welch, .Issues in the Design of
IJ A
1 Salendra.Govindarajulu:- He is working as an Associate Professor in the Dept. of Electronics & Communication Engg. at RGMCET, Nandyal, Andhra Pradesh, India. He presented more than 25 International/National Technical Papers. He is a Life Member of ISTE, New Delhi. He is a member of IAENG. His interest includes Low Power VLSI CMOS design.
ISSN: 2230-7818
Domino Logic Circuits, Proceedings of the IEEE Great Lakes Symposium on VLSI, pp. 108-112, February 1998. [11] G. Balamurugan and N. R. Shanbhag, .Energy-efficient Dynamic Circuit Design in the Presence of Crosstalk Noise,. Proceedings of the IEEE International Symposium on Low Power Electronics and Design, pp. 24-29, August 1999. [12]. S.Govindarajulu, Dr.T.Jayachandra Prasad “Design of High Performance Dynamic CMOS Circuits in Deep submicron Technology” International Journal of Engineering Science and Technology, Vol.2 (7), 2010, pp.2903-2917, ISSN:0975-5462 [13]. S.Govindarajulu, Dr.T.Jayachandra Prasad et.al. “Low Power, Reduced Dynamic Voltage Swing Domino Logic Circuits” Indian Journal of Computer Science and Engineering, 2010 pp.74-81, ISSN:0976-5166. [14]. S.Govindarajulu, Dr.T.Jayachandra Prasad “Energy efficient Reduced Swing Domino Logic Circuits in 65 nm Technology” International Journal of Engineering Science and Technology, Vol.2 (6), 2010, pp.2248-2257, ISSN:0975-5462. [15]. S.Govindarajulu, Dr.T.Jayachandra Prasad et.al. “Design of High Performance Arithmetic and Logic Circuits in DSM Technology”International Journal of Engineering and Technology, Vol.2 (4), 2010, pp.285-291, ISSN:0975-4024. [16]. S.Govindarajulu, Dr.T.Jayachandra Prasad et.al. “High Performance VLSI Design Using Body Biasing in Domino Logic Circuits” International Journal of Computer Science and Engineering, Vol.2, No.5, 2010 pp.1741-1745, ISSN:09753397. [17]. S.Govindarajulu, Dr.T.Jayachandra Prasad et.al. “Design of Low Power, High Speed, Dual Threshold Voltage CMOS Domino Logic Circuits with PVT Variations” International Journal of Electronic and Engineering Research, Vol.2, No.5, 2010 pp.619- 629, ISSN:0975-6450.
T
REFERENCES
2 Dr.T.Jayachandra Prasad:- He is working as a Principal and Professor in the Dept. of Electronics & Communication Engg. at RGMCET, Nandyal Andhra Pradesh, India. He presented more than 50 International/National Technical Papers. He is Life Member in IE (I), CALCUTTA, Life Member in ISTE, NEW DELHI, Life Member in NAFEN, NEW DELHI, and IEEE Member. His interest includes Digital Signal Processing.
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 336
IJ A
ES
T
Salendra.Govindarajulu et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES Vol No. 5, Issue No. 2, 319 - 331
ISSN: 2230-7818
@ 2011 http://www.ijaest.iserp.org. All rights Reserved.
Page 337