Term 3 Week 3

Page 1

1.

7.1 × 38

2.

0.48 × 2.7

3.

20 × 5.2

4.

0.51 × 43

5.

1.0 × 69

6.

4.6 × 82

7.

2.5 × 34

8.

64 × 66

9.

0.94 × 5.0

10.

0.012 × 5.7

11.

62 × 80

12.

2.0 × 39

13.

0.13 × 26

14.

0.51 × 85

15.

39 × 33

16.

4.4 × 2.6

17.

0.014 × 46

18.

0.018 × 41

19.

0.089 × 16

20.

2.4 × 5.3

21.

0.38 × 1.8

22.

54 × 88

23.

3.0 × 89

24.

73 × 42

25.

0.20 × 7.3

26.

8.1 × 3.5

27.

0.33 × 6.0

28.

0.052 × 9.7

29.

0.45 × 5.4

30.

0.055 × 30

31.

0.068 × 8.8

32.

11 × 2.3

33.

9.2 × 84

34.

0.057 × 23

35.

6.2 × 39

-1-


1.

7.1 × 38 269.8

2.

0.48 × 2.7 1.296

3.

20 × 5.2 104.0

4.

0.51 × 43 21.93

5.

1.0 × 69 69.0

6.

4.6 × 82 377.2

7.

2.5 × 34 85.0

8.

64 × 66 4,224

9.

0.94 × 5.0 4.700

10.

0.012 × 5.7 0.0684

11.

62 × 80 4,960

12.

2.0 × 39 78.0

13.

0.13 × 26 3.38

14.

0.51 × 85 43.35

15.

39 × 33 1,287

16.

4.4 × 2.6 11.44

17.

0.014 × 46 0.644

18.

0.018 × 41 0.738

19.

0.089 × 16 1.424

20.

2.4 × 5.3 12.72

21.

0.38 × 1.8 0.684

22.

54 × 88 4,752

23.

3.0 × 89 267.0

24.

73 × 42 3,066

25.

0.20 × 7.3 1.460

26.

8.1 × 3.5 28.35

27.

0.33 × 6.0 1.980

28.

0.052 × 9.7 0.5044

29.

0.45 × 5.4 2.430

30.

0.055 × 30 1.650

31.

0.068 × 8.8 0.5984

32.

11 × 2.3 25.3

33.

9.2 × 84 772.8

34.

0.057 × 23 1.311

35.

6.2 × 39 241.8

-1-


A.

1.

3.9 × 8.3

2.

47 × 17

3.

99 × 45

4.

0.80 × 2.2

5.

2.1 × 64

6.

41 × 61

7.

0.52 × 7.4

8.

0.64 × 8.6

9.

0.13 × 88

10.

8.3 × 9.3

11.

2.1 × 2.0

12.

5.3 × 82

13.

70 × 6.0

14.

9.3 × 2.0

15.

92 × 4.3

16.

0.081 × 84

17.

16 × 29

18.

2.2 × 9.3

19.

0.057 × 74

20.

2.3 × 44

21.

0.69 × 2.6

22.

0.071 × 70

23.

1.1 × 67

24.

5.0 × 70

25.

0.70 × 58

26.

8.1 × 7.2

27.

0.80 × 31

28.

5.1 × 77

29.

7.5 × 98

30.

44 × 95

31.

4.4 × 57

32.

34 × 33

33.

1.7 × 3.1

34.

0.022 × 8.0

35.

0.037 × 6.5

-1-


A.

1.

3.9 × 8.3 32.37

2.

47 × 17 799

3.

99 × 45 4,455

4.

0.80 × 2.2 1.760

5.

2.1 × 64 134.4

6.

41 × 61 2,501

7.

0.52 × 7.4 3.848

8.

0.64 × 8.6 5.504

9.

0.13 × 88 11.44

10.

8.3 × 9.3 77.19

11.

2.1 × 2.0 4.20

12.

5.3 × 82 434.6

13.

70 × 6.0 420.0

14.

9.3 × 2.0 18.60

15.

92 × 4.3 395.6

16.

0.081 × 84 6.804

17.

16 × 29 464

18.

2.2 × 9.3 20.46

19.

0.057 × 74 4.218

20.

2.3 × 44 101.2

21.

0.69 × 2.6 1.794

22.

0.071 × 70 4.970

23.

1.1 × 67 73.7

24.

5.0 × 70 350.0

25.

0.70 × 58 40.60

26.

8.1 × 7.2 58.32

27.

0.80 × 31 24.80

28.

5.1 × 77 392.7

29.

7.5 × 98 735.0

30.

44 × 95 4,180

31.

4.4 × 57 250.8

32.

34 × 33 1,122

33.

1.7 × 3.1 5.27

34.

0.022 × 8.0 0.1760

35.

0.037 × 6.5 0.2405

-1-


1.

2.7 × 98

2.

76 × 37

3.

4.6 × 2.5

4.

67 × 8.8

5.

7.5 × 3.6

6.

9.3 × 6.7

7.

0.99 × 2.0

8.

0.13 × 63

9.

0.043 × 72

10.

4.6 × 6.2

11.

9.0 × 98

12.

3.4 × 9.0

13.

0.30 × 70

14.

65 × 9.7

15.

0.67 × 11

16.

9.3 × 64

17.

0.039 × 68

18.

0.19 × 6.5

19.

9.3 × 2.4

20.

3.0 × 43

21.

5.6 × 1.0

22.

0.81 × 7.6

23.

19 × 5.1

24.

76 × 73

25.

0.91 × 4.4

26.

83 × 45

27.

5.5 × 4.9

28.

89 × 17

29.

74 × 8.1

30.

2.2 × 40

31.

8.6 × 99

32.

5.9 × 1.9

33.

0.38 × 85

34.

7.6 × 8.4

35.

2.5 × 6.2

-1-


1.

2.7 × 98 264.6

2.

76 × 37 2,812

3.

4.6 × 2.5 11.50

4.

67 × 8.8 589.6

5.

7.5 × 3.6 27.00

6.

9.3 × 6.7 62.31

7.

0.99 × 2.0 1.980

8.

0.13 × 63 8.19

9.

0.043 × 72 3.096

10.

4.6 × 6.2 28.52

11.

9.0 × 98 882.0

12.

3.4 × 9.0 30.60

13.

0.30 × 70 21.00

14.

65 × 9.7 630.5

15.

0.67 × 11 7.37

16.

9.3 × 64 595.2

17.

0.039 × 68 2.652

18.

0.19 × 6.5 1.235

19.

9.3 × 2.4 22.32

20.

3.0 × 43 129.0

21.

5.6 × 1.0 5.60

22.

0.81 × 7.6 6.156

23.

19 × 5.1 96.9

24.

76 × 73 5,548

25.

0.91 × 4.4 4.004

26.

83 × 45 3,735

27.

5.5 × 4.9 26.95

28.

89 × 17 1,513

29.

74 × 8.1 599.4

30.

2.2 × 40 88.0

31.

8.6 × 99 851.4

32.

5.9 × 1.9 11.21

33.

0.38 × 85 32.30

34.

7.6 × 8.4 63.84

35.

2.5 × 6.2 15.50

-1-


1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

-1-


26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

-2-


1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

-1-


21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

-2-


Fara{EeEograsyis

ffixffW

I used two pairs oJ

K

paratleL boards.

A parallelogram is a quadrilateral that has

concepts opposite sides parallel.

;--r--;-] !\i\ i

i

...",

I | "'

i"---"'i ,,,

a triangle?

ffi ffi

i; SQUare?

{: rhombus?

#

kite?

Wf icf, of the shapes above have opposite sides paraliel?

whi.f' of the shapes

are parallelograms?

Are opposite sides of a parallelogram equal? Check by measurement.

ffi

wt''icf' of the shapes below are parallelograms?

M

5G53"2a Manipulates, classifies and draws two-dimensionai shapes rnrl rlacrriha< <iria rnn rnnla nranar+in.

* rectangle?

I


Lesson 45

223

L E S S O N

45

Classifying Quadrilaterals

NEW CONCEPT Recall from Lesson 32 that a quadrilateral is a polygon with four sides. Although all quadrilaterals have four sides, quadrilaterals have many different shapes. Here is an assortment of quadrilaterals:

We can classify (sort) quadrilaterals into different types, such as squares, rectangles, parallelograms, and trapezoids. In this lesson we will learn ways to sort quadrilaterals, and we will practice drawing named quadrilaterals. One way quadrilaterals are sorted is by parallel sides. Recall that parallel segments run in the same direction and remain the same distance apart. Here we show three pairs of parallel segments:


224

Saxon Math 6/5

If we put the left-hand pair of segments with the center pair, we get this quadrilateral:

If we put the right-hand pair with the center pair, we get this quadrilateral:

Both of these quadrilaterals have two pairs of parallel sides. Below we show some more quadrilaterals with two pairs of parallel sides. Use a finger or the eraser of your pencil to trace the pairs of parallel sides on each quadrilateral. Notice that the two segments that form a parallel pair are the same length. These quadrilaterals are called parallelograms.

Parallelograms

Parallelograms are quadrilaterals with two pairs of parallel sides and are one classification of quadrilaterals. Quadrilaterals

Parallelograms

Trapezoids

Trapeziums

Trapezoids are another type of quadrilateral. Trapezoids have only one pair of parallel sides (the other pair of sides are not parallel). Here are some examples of trapezoids. First trace the parallel sides, and then trace the sides that are not parallel. Notice that the parallel segments in each figure are not the same length.

Trapezoids


Lesson 45

225

Some quadrilaterals have no parallel sides. In the United States we call these shapes trapeziums.

Trapeziums

Example 1 Draw an example of a parallelogram, a trapezoid, and a trapezium. Solution To draw a parallelogram, we may begin by drawing two parallel segments of the same length.

Then we draw two more segments between the endpoints. We check these two segments to be sure they are parallel.

Parallelogram

This parallelogram happens to look like a rectangle. As we will see in a moment, rectangles are a special type of parallelogram. To draw a trapezoid, we may begin by drawing two parallel segments of different lengths.

Then we draw two more segments between the endpoints.

Trapezoid

To draw a trapezium, we may begin by drawing two segments that are not parallel and do not intersect.


226

Saxon Math 6/5

Then we draw two segments between the endpoints. We check that these two segments are not parallel.

Trapezium

There are different categories of parallelograms, trapezoids, and trapeziums. In this lesson we will look at three types of parallelograms. They are rectangles, rhombuses, and squares. Classifications of Quadrilaterals Quadrilaterals

Parallelograms

Rectangles

Trapezoids

Trapeziums

Rhombuses

Squares

A parallelogram with four congruent angles is a rectangle. Each angle of a rectangle is a right angle.

Rectangles

A parallelogram with four congruent sides (four sides of equal length) is a rhombus. Some people refer to a rhombus as a “diamond.� A rhombus is an equilateral quadrilateral (just like a triangle with all sides of equal length is an equilateral triangle).

Rhombuses


Lesson 45

227

Notice that a square is both a rectangle and a rhombus. A square has four right angles and four congruent sides. Example 2 A square is not which of the following? A. parallelogram

B. rhombus

C. rectangle

D. trapezoid

Solution A square is a quadrilateral with parallel sides of equal length that intersect at right angles. So a square is a parallelogram, a rhombus, and a rectangle. A square is not a D. trapezoid.

LESSON PRACTICE Practice set The words parallelogram, trapezoid, trapezium, rectangle, rhombus, and square were used in this lesson to describe quadrilaterals. Use every word that applies to describe each quadrilateral below. a. b. c.

d.

e.

f.

g. Describe the difference between a parallelogram and a trapezoid. h. Draw a rhombus that does not have right angles.

MIXED PRACTICE Problem set

1. Draw a rectangle with all sides the same length. (45)

For problems 2–4, write an equation and find the answer. 2. Julie paid $10 and got back $2.47. How much money did (16) she spend? 3. Each of the fifty states has two U.S. senators. Altogether, how many U.S. senators are there?

(21)

4. The Phantom of the Opera was a hit. The theater was filled all 4 nights. If 2500 attended in all, then how many attended each night?

(21)

















Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.