Flight tests of a one-man helicopter

Page 1

N A S A TECHNICAL NOTE

d z

+ 4

w

4

z

FLIGHT TESTS OF A ONE-MAN HELICOPTER A N D A COMPARISON OF ITS HANDLING QUALITIES WITH THOSE OF LARGER VTOL AIRCRAFT

by Terrell W. Feistel and Fred J. Drinkwater III Ames Research Center Moffett Field, Cali$

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, D. C.

OCTOBER 1965


TECH LIBRARY KAFB, NM

FLIGHT TESTS O F A ONE-MAN HELICOPTER AND A COMPARISON O F ITS HANDLING QUALITIES WITH THOSE O F LARGER VTOL AIRCRAFT

By Terrell W. Feistel and Fred J. Drinkwater I11 Ames Research Center Moffett Field, Calif.

NATIONAL AERONAUT ICs AND SPACE ADMlN ISTRAT ION For sale

by the Clearinghouse for Federal Scientific and Technical Information Price $1.00 Springfield, Virginia 22151

-


FLIGHT TESTS OF A ONE-i"

HELICOPTER AND A COMPARISON

OF I T S HANDLING QUALITIES WITH THOSE O F LARGER VTOL AIRCRAFT

By T e r r e l l W. F e i s t e l and Fred J. Drinkwater I11 Ames Research Center

SUMMARY A l i m i t e d f l i g h t t e s t program has been accomplished w i t h a one-man H i l l e r YROE-1 "Rotorcycle" ( g r o s s wt 2 500 l b ) t o h e l p determine c r i t e r i a f o r t h e handling q u a l i t i e s i n hover of WOL a i r c r a f t as a f f e c t e d by g r o s s weight.

The g e n e r a l l y h i g h o r d e r s of l o n g i t u d i n a l and l a t e r a l c o n t r o l power and damping i n h e r e n t w e r e found t o b e s a t i s f a c t o r y . The h i g h d i r e c t i o n a l c o n t r o l s e n s i t i v i t y , combined w i t h h i g h yaw response i n one d i r e c t i o n , w a s considered p o t e n t i a l l y dangerous. The l a t e r a l c o n t r o l power f o r t h i s c r a f t i s approximately t h e same as t h a t found necessary f o r s a t i s f a c t o r y c o n t r o l w i t h similar damping i n t e s t s of two o t h e r VTOL a i r c r a f t w i t h s u b s t a n t i a l l y g r e a t e r g r o s s weight. INTRODUCTION

The NASA has, i n r e c e n t y e a r s , been studying handling q u a l i t i e s c r i t e r i a f o r V/STOL a i r c r a f t ( r e f . 1). A major q u e s t i o n i s , how do s a t i s f a c t o r y and u n s a t i s f a c t o r y l i m i t s f o r hovering c o n t r o l power and damping v a r y w i t h s i z e and g r o s s weight? One form of s c a l i n g c r i t e r i a i s p r e s e n t e d i n r e f e r e n c e 2. Only l i m i t e d f l i g h t v e r i f i c a t i o n of t h e s e c r i t e r i a i s a v a i l a b l e , c h i e f l y w i t h v e h i c l e s i n t h e 3000-4000 pound g r o s s weight category (see, e.g., r e f . 3 ) . The H i l l e r YROE-1 Rotorcycle, w i t h a g r o s s weight of approximately 500 pounds, i s a t t h e bottom end of t h e weight spectrum f o r manned a i r c r a f t and a n o r d e r of magnitude away f r o m t h e X-14A (used i n r e f . 3 ) . It w a s s e l e c t e d f o r i n v e s t i g a t i n g c o n t r o l power requirements a t low g r o s s weights i n hope t h a t , t h e r e b y , some l i g h t would be shed on t h e i n f l u e n c e of s i z e and weight. DESCRIPTION OF TEST A R T I C U The H i l l e r YROE-1 Rotorcycle ( f i g . 1) w a s o r i g i n a l l y designed f o r t h e Armed S e r v i c e s as a simple, c o l l a p s i b l e , one-man h e l i c o p t e r f o r o b s e r v a t i o n and l i a i s o n purposes. F i g u r e 2'shows a three-view s k e t c h of t h e v e h i c l e . A s flown, i t s g r o s s weight w a s 515 pounds. The power p l a n t i s a 4 - c y l i n d e r , 2 - c y c l e , Nelson engine of 43 hp. The c r a f t i s d e s c r i b e d i n d e t a i l i n references 4 and 5 and r e s u l t s of p r e v i o u s Navy f l i g h t t e s t s are g i v e n i n r e f e r ences 6 and 7. -

'Figure

I

.___-

-

-

_ -

F

2 was s u p p l i e d by t h e H i l l e r A i r c r a f t COT.,

~~

Inc.


1l11l1l1lI1l111111lI I I1 I I

For the NASA f l i g h t t e s t s a small i n s t r u m e n t a t i o n package w a s hung i n a box underneath t h e p i l o t as shown i n f i g u r e 1. The package contained a h i g h frequency t r a n s m i t t e r t h a t t e l e m e t e r e d information on three channels, and a s i n g l e - a x i s rate-measuring gyro which could b e o r i e n t e d along any one of the t h r e e axes. A p o t e n t i o m e t e r w a s a l s o included f o r measuring t h e p o s i t i o n of t h e c o n t r o l b e i n g considered and a b u t t o n on t h e c o n t r o l s t i c k allowed t h e p i l o t t o s i g n a l the start of a maneuver. METHOD OF DATA mDUCTION The maneuver f o r o b t a i n i n g t h e c o n t r o l power-damping d a t a c o n s i s t e d of a c o n t r o l reversal i n p u t t o t h e c o n t r o l a f f e c t i n g t h e axis b e i n g considered ending i n a f i x e d c o n t r o l d e f l e c t i o n h e l d f o r 1 - 2 seconds. Thus, t h e f i r s t d e r i v a t i v e of t h e r e s u l t a n t angular v e l o c i t y abaut t h e given axis, as t h i s v e l o c i t y p a s s e s through zero a f t e r t h e reversal, r e p r e s e n t s the a n g u l a r a c c e l e r a t i o n corresponding t o t h e c o n t r o l d e f l e c t i o n . The m a x i m e x c u r s i o n of t h e a n g u l a r v e l o c i t y ( w i t h t h e c o n t r o l s t i l l h e l d f i x e d ) , when compared t o t h e p r e v i o u s l y determined angular a c c e l e r a t i o n , i n d i c a t e s t h e approximate v e l o c i t y damping, 1/~, about t h e axis. See r e f e r e n c e 8 f o r an a n a l y s i s of t h i s method. The angular a c c e l e r a t i o n corresponding t o t o t a l c o n t r o l d e f l e c t i o n w a s d e t e r mined b y p l o t t i n g a c c e l e r a t i o n s measured a g a i n s t p e r c e n t d e f l e c t i o n and f a i r i n g a s t r a i g h t l i n e through a l l t h e p o i n t s (assuming a l i n e a r v a r i a t i o n of i n i t i a l a n g u l a r a c c e l e r a t i o n w i t h c o n t r o l d e f l e c t i o n ) . The p i l o t r a t i n g s were based on t a s k s d e s c r i b e d i n t h e P i l o t Comments s e c t i o n . RESULTS AND DISCUSSION Since t o t a l c o n t r o l power r e q u i r e d f o r a given t a s k i n c l u d e s t h a t f o r c o r r e c t i n g d i s t u r b i n g i n p u t s , it w i l l depend on t h e t y p e of VTOL a i r c r a f t because of i n h e r e n t d i f f e r e n c e s i n g u s t s e n s i t i v i t y , e t c . I n s p i t e of t h i s it i s of i n t e r e s t t o examine c o n t r o l power requirements f o r a wide range of VTOL a i r c r a f t t o observe any g r o s s t r e n d of t h e e f f e c t of s i z e . Table I i s a summary of t h e p e r t i n e n t parameters determined. It shows m a x i m u m c o n t r o l power ( i n terms of i n i t i a l a n g u l a r a c c e l e r a t i o n ) , a n g u l a r r a t e damping ( i n terms of t h e r e c i p r o c a l of the t i m e c o n s t a n t , l / - i - ) , c o n t r o l s e n s i t i v i t y ( i n terms of i n i t i a l a c c e l e r a t i o n p e r i n c h of c o n t r o l d e f l e c t i o n ) , and t h e p i l o t r a t i n g f o r the visual hovering t a s k ( f o r b o t h maximum c o n t r o l power and s e n s i t i v i t y , where a v a i l a b l e ) on t h e Cooper S c a l e ( t a b l e I1 and r e f . 9 ) f o r each of t h e three axes (two p i l o t r a t i n g s are shown; p i l o t A b e i n g t h e p r o j e c t p i l o t and p i l o t B a v i s i t i n g NASA p i l o t who made only one f l i g h t ) . For the d i r e c t i o n a l c a s e values are shown f o r r i g h t yaw only. A l s o shown are t h e implied v a l u e s of t h e c o n t r o l power, damping, and s e n s i t i v i t y c a l l e d o u t i n t h e proposed V/STOL s p e c i f i c a t i o n s ( r e f . 2 ) . These have been converted from t h e response v a l u e s l i s t e d by assuming a " s t e p " i n p u t t o t h e c o n t r o l . For comparison similar d a t a are shown, i n p a r a l l e l grouping, f o r t h e minimal s a t i s f a c t o r y (P.R. = 3.5) r a t i n g i n t h e v a r i a b l e s t a b i l i t y X-14A (used i n r e f . 3 ) . A l s o shown i n t h e "damping" column are t h e nominal moments of i n e r t i a of t h e two c r a f t i n s l u g - f t 2 .


Lateral Characteristic s Figure 3 shows a p l o t of t h e i n i t i a l a c c e l e r a t i o n i n roll f o r f u l l cont r o l d e f l e c t i o n ( i . e . , c o n t r o l power) and f o r one inch of c o n t r o l t r a v e l ( i . e . , s e n s i t i v i t y ) versus g r o s s weight f o r f o u r v e h i c l e s : t h e YROE-1 h e l i c o p t e r ( W = 515 l b ) , t h e X-14A d e f l e c t e d j e t VTOL ( W = 3880 l b , r e f . 3 ) , t h e Hawker P-1127 d e f l e c t e d j e t VTOL ( W = 12,500 l b ) , and t h e XC-142A t i l t - w i n g VTOL t r a n s p o r t ( W = 37,500 l b , r e f . 10). Data f o r t h e l a t t e r two were supplied by t h e manufacturer. P i l o t r a t i n g s f o r t h e v i s u a l hovering t a s k , where a v a i l a b l e , a r e shown i n p a r e n t h e s e s next t o t h e d a t a p o i n t s ; f o r t h e YROE-1, t h e r a t i n g s of t h e p r o j e c t p i l o t only a r e shown. The l a c k of v a r i a t i o n with g r o s s weight of c o n t r o l power r e q u i r e d t o o b t a i n a s a t i s f a c t o r y (P.R. = 3-1/2) r a t i n g f o r t h i s important "X" a x i s i s of i n t e r e s t . For t h e YROE-1, t h e p i l o t r a t i n g of u n s a t i s f a c t o r y f o r s e n s i t i v i t y i n roll (and a l s o i n p i t c h ) w a s given because Pilot of t o o l i t t l e s e n s i t i v i t y ( t o o much s t i c k t r a v e l , +7 i n . i n roll). r a t i n g s f o r s e n s i t i v i t y i n t h e P-1127 and f o r t h e XC-142A a r e not a v a i l a b l e . Reference 11 w a s used t o d e r i v e a p i l o t r a t i n g f o r t h e s e n s i t i v i t y of t h e X-14A i n roll; t h e s e n s i t i v i t y shown corresponds t o t h e 3-1/2 boundary f o r c o n t r o l power. Figure 4 i s another p l o t showing handling q u a l i t i e s information i n roll, w i t h some of t h e same d a t a . The " s a t i s f a c t o r y " (P.R. = 3 - l / 2 ) and "acceptable" (P.R. = 6-1/2)boundaries f o r l a t e r a l c h a r a c t e r i s t i c s axe shown as determined with t h e v a r i a b l e s t a b i l i t y X-14A ( r e f . 3 ) . The boundaries are p l o t t e d w i t h t o t a l c o n t r o l power as t h e a b s c i s s a and r a t e damping ( t h e r e c i p r o c a l of t h e t i m e c o n s t a n t ) as t h e o r d i n a t e . Superimposed i s a p o i n t showing t h e charact e r i s t i c s of t h e YROE-1 as determined by t h e s u b j e c t t e s t s ; it i s seen t o poss e s s , w i t h a p i l o t r a t i n g of 3, approximately t h e same c o n t r o l power and damping i n roll as w a s r e q u i r e d by t h e X-14A f o r a s a t i s f a c t o r y p i l o t r a t i n g . The values shown f o r t h e P-1127 correspond t o t h e c o n f i g u r a t i o n flown by a NASA p i l o t when t h e r a t i n g of 3 - l / 2 w a s assigned. The v a l u e s f o r t h e X C - 1 4 u l are f o r t h e unaugmented c o n f i g u r a t i o n and a r e e s t i m a t e s only.

Longitudinal C h a r a c t e r i s t i c s Figures 5 and 6 show t h e handling q u a l i t i e s i n p i t c h . It can be seen of 2-3) p o s s e s s e s much higher values of c o n t r o l power and damping about t h e Y a x i s t h a n were necessary f o r s a t i s f a c t o r y This combination (P.R. = 3-l/2) c h a r a c t e r i s t i c s i n t h e X-14A or t h e P-1127. of c o n t r o l power and damping w a s t o o high t o be evaluated i n t h e X-14A, b u t it i s s i g n i f i c a n t t h a t t h e p i l o t r a t i n g i n d i c a t e s l i t t l e improvement over t h e r a t i n g s obtained a t t h e lower l e v e l s of c o n t r o l power and damping along t h e 3.5 boundary of r e f e r e n c e 3. A s i n t h e l a t e r a l case, t h e l o n g i t u d i n a l c o n t r o l s e n s i t i v i t y w a s r a t e d a t 5 because of t h e l a r g e (+_8i n . ) s t i c k t r a v e l . The v a l u e s shown f o r t h e XC-142A a r e e s t i m a t e s f o r t h e unaugmented c o n f i g u r a t i o n . t h a t t h e YROE-1 ( w i t h a P.R.

Directional Characteristics Because of t h e unusual circumstances involved, no comparison p l o t s a r e shown f o r t h e d i r e c t i o n a l c h a r a c t e r i s t i c s . Too much c o n t r o l power

3


I 1l1l1l11l1l1l11l11111 I I I I l l l

_.

I

.

. ..

(approximately 6 r a d i a n s / s e c 2 i n hover near sea l e v e l ) i s a v a i l a b l e t o t h e r i g h t ( a i d i n g r o t o r t o r q u e ) along w i t h a n extremely h i g h s e n s i t i v i t y (approximately 3 radians/sec2/in. corresponding t o 2 i n . p e d a l t r a v e l ) , which were given p i l o t r a t i n g s of 6 and 7, r e s p e c t i v e l y . The p i l o t must be h i g h l y compet e n t t o f l y t h e v e h i c l e s u c c e s s f u l l y because of t h i s high s e n s i t i v i t y and c o n t r o l power i n yaw. I n t h e opposite d i r e c t i o n ( t o t h e l e f t , countering r o t o r t o r q u e ) no a c c u r a t e measurements could be t a k e n s i n c e c o n t r o l power i s marginal and v a r i e s considerably with f l i g h t c o n d i t i o n as a r e s u l t of t h e varying power i n p u t t o t h e r o t o r accompanied by t h e varying t a i l r o t o r thrust r e q u i r e d and a v a i l a b l e ( i n r e f . 8, f i g . 2, it i s shown t h a t , f o r d e n s i t y a l t i t u d e s i n excess of approximately 3000 f t , i n s u f f i c i e n t d i r e c t i o n a l c o n t r o l e x i s t s t o counteract r o t o r torque).

PILOT COMMENTS

The p i l o t r a t i n g s of c o n t r o l power, s e n s i t i v i t y , and damping provided i n t h i s r e p o r t a r e based on t h e v e h i c l e c h a r a c t e r i s t i c s when hovering and maneuvering a t l o w speeds i n a r e l a t i v e l y confined a r e a . Lateral-control power i s not t h e same f o r l e f t and r i g h t i n p u t s , and r o l l - p i t c h c r o s s coupling e x i s t s f o r abrupt c o n t r o l displacements. P i t c h and r o l l c y c l i c c o n t r o l displacements a r e excessive and t h e low c o n t r o l s e n s i t i v i t y c o n t r i b u t e s t o a f e e l i n g of s l u g g i s h p i t c h and roll response, It a l s o f e e l s as though t h e r e i s a delay i n t h e c o n t r o l response from t h e time a s t e p i n p u t i s a p p l i e d t o t h e time t h e response i s f e l t . F u l l l a t e r a l c o n t r o l w a s o f t e n used i n roll r e v e r s a l maneuvers about t h e hover condition; however, p r e c i s i o n hovering over a spot w a s accomplished wit'n very s m a l l l a t e r a l control inputs.

Longitudinal c o n t r o l power w a s never l i m i t i n g i n any maneuver. F u l l c o n t r o l w a s used for t h e most abrupt quick s t o p s , b u t , as w a s noted f o r t h e l a t e r a l c o n t r o l , t h e r e w a s a l a g i n t h e response of t h e h e l i c o p t e r t o abrupt c o n t r o l i n p u t s . These e f f e c t s , which a r e s i m i l a r t o those of t h e l a r g e r H i l l e r 12E, a r e r e p o r t e d l y due t o t h e c h a r a c t e r i s t i c s of t h e servo-paddler o t o r c y c l i c - c o n t r o l system. The p i t c h c y c l i c - c o n t r o l displacement i s uncomf o r t a b l y l a r g e , p a r t i c u l a r l y f o r an overhead c y c l i c s t i c k . There w a s n o o b j e c t i o n a b l e f r i c t i o n i n t h e c y c l i c c o n t r o l and t h e f o r c e s were very d e s i r a b l e . Adequate c o n t r o l c e n t e r i n g was a v a i l a b l e , and t h e r o t o r feedback through t h e c y c l i c s t i c k w a s only n o t i c e d when abrupt c o n t r o l i n p u t s were used. P i t c h and roll damping appeared h i g h and considerable s t a b i l i t y i n t e r m s of a roll o r p i t c h r e s t o r i n g moment as a f u n c t i o n of forward or sideward speed was present.

Yaw c o n t r o l power during hovering w a s high t o t h e r i g h t b u t j u s t adequate t o t h e l e f t a t normal rpm. It w a s easy t o l o s e a l l d i r e c t i o n a l c o n t r o l power t o t h e l e f t i f t h e r o t o r rpm w a s allowed t o decay t o t h e lower r o t o r speed normal o p e r a t i n g l i m i t . Yaw c o n t r o l w a s t o o s e n s i t i v e i n normal hover and w a s considered t o be dangerous for g e n e r a l use because of t h e rocker-plate t y p e

4


of rudder p e d a l s and t h e very high p e d a l s e n s i t i v i t y , Yaw r a t e damping appeared t o be high enough and usable yaw r a t e s were not l i m i t e d by t h e rate damping or c o n t r o l power a t h i g h r o t o r rpm.

I n g e n e r a l , t h e r e w a s a tendency t o operate t h i s s m a l l h e l i c o p t e r i n a much t i g h t e r p a t t e r n t h a n even t h e UH-12E ( t h r e e p l a c e , 2800 l b g r o s s w t ) h e l i c o p t e r . T r a n s i t i o n s t o and from a hover were easily done a t high rates and t h e s m a l l s i z e of t h e h e l i c o p t e r minimized t h e judgment needed t o keep a s a f e d i s t a n c e from o b s t a c l e s . Operating and observing t h i s small h e l i c o p t e r f l y i n confined areas i n d i c a t e s t h a t it w a s being flown d i f f e r e n t l y t h a n a h e l i c o p t e r of even 2 8 0 0 - p o ~ dg r o s s weight. Turns and t r a n s i t i o n s t o and from hover were done much quicker t h a n i s normally done w i t h t h e l a r g e r h e l i c o p t e r s . The c y c l i c - c o n t r o l power and rate damping d i d not l i m i t t h e maneuverability of t h e YROE-1 i n and about t h e v i s u a l hover condition. The high yaw c o n t r o l sens i t i v i t y r e q u i r e d more t h a n normal p i l o t a t t e n t i o n and c o n s i d e r a b l e familiari z a t i o n time. CONCLUDING REMEiRKs

The m o s t s i g n i f i c a n t d a t a obtained i s t h a t r e p r e s e n t i n g t h e l a t e r a l c h a r a c t e r i s t i c s . This i n d i c a t e s t h a t approximately t h e same l a t e r a l c o n t r o l power i s r e q u i r e d f o r t h i s v e h i c l e as f o r t h o s e of much h i g h e r g r o s s weights t o achieve a s a t i s f a c t o r y p i l o t r a t i n g . The i n d i c a t i o n would seem t o be t h a t minimum c o n t r o l power requirements should be based p r i m a r i l y on t h e t a s k t o be performed r a t h e r t h a n on t h e g r o s s weight o r s i z e , as such. The d a t a obtained about t h e o t h e r two axes i s l e s s conclusive. Appare n t l y , t h e high c o n t r o l power a v a i l a b l e l o n g i t u d i n a l l y i s i n e f f e c t i v e because of t h e l a r g e s t i c k movements necessary w i t h consequent low s e n s i t i v i t y . D i r e c t i o n a l l y , t h e low c o n t r o l power i n t h e d i r e c t i o n opposing r o t o r torque and high c o n t r o l power i n t h e opposite d i r e c t i o n , combined w i t h extremely high c o n t r o l s e n s i t i v i t y , a r e e s s e n t i a l l y p e c u l i a r t o t h i s v e h i c l e and make t h e r e s u l t s i n a p p l i c a b l e i n any g e n e r a l sense.

It i s t o be noted t h a t undue emphasis should not be p l a c e d on making comparisons of t o t a l c o n t r o l power requirements between d i s s i m i l a r t y p e s of VTOL v e h i c l e s ( i . e . , h e l i c o p t e r , d e f l e c t e d j e t , tilt wing, e t c . ) , because of i n h e r e n t d i f f e r e n c e s i n s e l f - d i s t u r b i n g c h a r a c t e r i s t i c s , ground e f f e c t s , g u s t s e n s i t i v i t y , t r i m requirements, e t c . The comparisons made here a r e p r e s e n t e d p r i m a r i l y t o provide a convenient c a t a l o g i n g of a v a i l a b l e d a t a on VTOL airc r a f t covering a wide range of g r o s s weights and t o p o i n t out t h a t no g r o s s t r e n d of varying c o n t r o l power requirements with i n c r e a s i n g weight i s obvious. Ames Research Center National Aeronautics and Space Administration Moffett F i e l d , C a l i f . , March 16, 1965

5


REFERENCES

1. Anderson, S e t h B.: V/STOL A i r c r a f t .

An Examination of Handling Q u a l i t i e s C r i t e r i a f o r NASA TN D-331, 1960.

2.

Anon. : Recommendations f o r V/STOL Handling Qualities. o c t . 1962.

3.

R o l l s , Stewart L.; and Drinkwater, Fred J., 111: A F l i g h t Determination of t h e A t t i t u d e Control Power and Damping Requirements f o r a Visual Hovering Task i n t h e Variable S t a b i l i t y and Control X-14A Research Vehicle. NASA TN D-1328, 1962.

4.

Anon.: D e t a i l S p e c i f i c a t i o n s f o r Model YROE-1 Rotorcycle. NAVORD Rep. SD-5l.B (Aer-AC-0411, June 23, 1959, r e v . Oct. 1960, H i l l e r A i r c r a f t Cory.).

5.

H a l l , F. : C h a r a c t e r i s t i c s and Performance Report. H i l l e r A i r c r a f t Corp., May 4, 1960.

6.

Anon.: A i r c r a f t and Engine Performance and S t a b i l i t y and Control T r i a l s of t h e Model YROE-1 Rotorcycle. Rep. 1, P r o j e c t TED PTR F&-42102.2, FT 23-390, Naval A i r Test Center, Patuxent River, Md. , Oct. 13, 1960.

AGARD Rep. 408,

Eng. Rep. 60-46,

C. B.; and Segner, D. R . : Contractor's Struct u r a l and Aerodynamic Demonstration of Model YROE-1 Rotorcycle. Rep. 1, F i n a l Report, P r o j e c t TED PTR AC-42102.1, FT 36-556, Naval A i r T e s t Center, Patuxent River, Md., Dee. 28, 1959.

7 . Taylor, F. W.; Hamilton,

8.

Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; and Drinkwater, Fred J., 111: A P i l o t Opinion Study of L a t e r a l Control Requirements f o r Fighter-Type A i r c r a f t , Appen. A. NASA MEMO 1-29-59A, 1959.

9.

Cooper, George E . : Engr. Rev., v o l .

Understanding and I n t e r p r e t i n g P i l o t Opinion.

16, no. 3, March 1957, pp. 47-51, 56.

10. S h i e l d s , M. E. : Estimated F l y i n g Q u a l i t i e s XC-142A V/STOL A s s a u l t Transport. LTV Rep. 2-53310/4R939, LTV Vought Aeronautics Div., May 22, 1964. 11. R o l l s , Stewart L.; Drinkwater, Fred J., 111; and I n n i s , Robert C . : E f f e c t s of L a t e r a l Control C h a r a c t e r i s t i c s on Hovering a J e t L i f t VTOL A i r c r a f t . NASA TN D-2701, 1965.

6

Aero.


TAB= I.- SUMMARY OF THE PERTINENT PARAIVlETERS DETERMINED Pilot ratings

I

Control power, -radians/sec2

A/C

Mode

Damping, -1/T = l / s e c

I

Flight AGARD test value ' ( r e f . 2)

1.7

1

i

Sensitivity, -radians/secZ/in.

-L

^_^^

I '

Flight value

value

3.9

0.24

2.0 YROE-1 Longitudinal/ (-Pitch) '

2.4

,

1.3

3

B

A

B

5

4 '

, 4

Directional

.6

i2-1/2

5

( - I z~ 80)

I

.11

I

-25

X-14A (minimal s a t i s f a c t o r y)

E ( t o o low]

(3-1/2)

t o r que 1

'

--

X- 1 4 A I

I

A

i

.25

I

( -Yaw)

'

spec. ( r e f . 2)

'e (-In'? 1170)

I

I

I

I

1

satisfactory)

l

'ens'tivity

power

YROE- 1 T

, Control

high)

-5

.7

1.0

2.4

("Izz 3 2920)

.17

.23

(3-1/2)

(n.a.>


TABU 11.- PIL9T OPINION RATING SCHEDULE

~~~

rating

rating

I

2

Unsatisfactory

operat i o n

3

l

No operation

?ailwe

1

4

1

I

I I

I.

7

1Unsatisfactory

'

8 9

of a s t a b i l i t y augmenter

Description E x c e l l e n t , i n c l u d e s optimum Good, p l e a s a n t t o f l y S a t i s f a c t o r y , b u t w i t h some m i l d l y unpleasant c h a r a c t e r i s t i c s Acceptable, b u t w i t h unpleasant characteristics Unacceptable f o r normal o p e r a t i o n Acceptable f o r emergency c o n d i t i o n only* Unacceptable even f o r emergency condition* Unacceptable - dangerous Unacceptable- unc o n t r o l l a bl e

Primary mission a cc omp 1ished

Can b e landed

Yes Yes

Yes Yes

Yes

I

Yes

Doubtful

Yes Yes

Doubtful

Yes

Yes


Figure 1.- YROE-1 Rotorcycle in hovering flight. \D

A-31028


Figure 2.- Three-view drawing of test vehicle.


@ Full deflection (- Total control power)

I

i

I I

I

One inch ( w Control sensitivity)

i-

I

I

I

i ti i IROE-I

1 ~ x - 1 4 ~

I

P.R.- 4

RR .N 5

(Too low)

Io2

2

4

6

8 IO3

2

4

6

8 lo4

2

Gross weight, W, Ib

Figure 3

P P

.- Lateral control characteristics ( -

visual hovering task).

4

6

8 1


-4

-3

-2

-I

0

I

0

I

Lateral

Figure

12

2 control

3 power,

4

6,

radians/sec

2

4.- Lateral handling characteristics.

5


3

I I I

E One inch

(u

0 a, UJ

> C

E

(-Control

sensitivity)

2

4

I

0

0

0 Full deflection (- Total control power)

2

L

.

:8 C

.-0

. I -

Ea, FYROE-I'

I

5

Z3 P.R.-

(Too low) I

IO2

4

2

6

1

1

8

1

1

IO3

2

4

6

8 IO'

Gross weight, W , Ib Figure

5.-

Longitudinal c o n t r o l c h a r a c t e r i s t i c s ( - v i s u a l hovering t a s k ) .

6

8 1


- 2.4

I fROE-I

I I (P.R.m 2 - 3 ) -

- 2.0

- 1.6

- 1.2

I

m P-1127 ( P . R . - 3 2 ) U7

-

(Est. d a m p i n g ) I

- X-14A I

(Ref. 3 ) I

Unaug.

@ XC-142A (Est.)

-

0

.4 Longitudinal

(P.R.I..

4)

I.2

.8 control

..

power,

8,

-

2.o

I .6 radians/sec

2

Figure 6.- Longitudinal handling characteristics.

14

NASA-Langley, 1965

A-857


“The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human RnowIedge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof .” -NATIONAL AERONAUTICS A N D SPACE

ACT OF

1958

NASA SCIENTIFIC A N D TECHNICAL PUBLICATIONS TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge. TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge. TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English. TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles. SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results .of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability o f these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington,

D.C. PO546


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.