Informal Derivation of the Schrödinger Equation

Page 1

SCHRÖDINGER EQUATION DERIVATION

Key to symbols Unit

A c e E f ℎ ℏ

i k m KE p t v V 𝑥 ψ

λ π ω ∂

m/s J Hz J/Hz J/Hz/rad rad/m kg J kg m/s s m/s J m m rad/s

1 𝐾𝐸 = 𝑚𝑣 2 2

𝐾𝐸 =

Meaning Wave amplitude Wave velocity = λf = ω/k Euler’s number = 2.718281828 Total energy Wave frequency Planck constant Reduced Planck constant = ℎ/2π Imaginary number = ξ−1 Wave number = 2π/λ Mass Kinetic energy Momentum Time Velocity Potential energy Position Wave function ≡ ψ (𝑥, 𝑡) Wavelength Pi = 3.141592654 Angular frequency = 2πf Partial derivative

𝑝2 2𝑚

𝑝 = 𝑚𝑣

Maxwell-de Broglie Plane wave

Ψ = 𝐴𝑒 𝑖(𝑘𝑥−𝜔𝑡)

∂Ψ = −𝑖𝜔Ψ ∂𝑡

∂2 Ψ = −𝑘 2 Ψ ∂𝑥 2

𝑘2 = −

𝜔=𝑖

1 ∂Ψ Ψ ∂𝑡

ℏ2 𝑘 2 𝐾𝐸 = 2𝑚

𝐸 ℏ𝜔 𝑝= = = ℏ𝑘 𝑐 𝑐

1 ∂2 Ψ Ψ ∂𝑥 2

𝐸 = ℎ𝑓 = ℏ𝜔

ℏ𝜔 =

ℏ2 𝑘 2 +𝑉 2𝑚

Planck-Einstein

ℏ𝜔 =

𝑖ℏ

ℏ2 1 ∂2 Ψ ቆ− ቇ+𝑉 2𝑚 Ψ ∂𝑥 2

1 ∂Ψ ℏ2 1 ∂2 Ψ =− +𝑉 Ψ ∂𝑡 2𝑚 Ψ ∂𝑥 2

𝒊ℏ

𝛛𝚿 ℏ𝟐 𝛛𝟐 𝚿 =− + 𝑽𝚿 𝛛𝒕 𝟐𝒎 𝛛𝒙𝟐 1-D time-dependent Schrödinger equation

𝐸 = 𝐾𝐸 + 𝑉


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.