a CHAIR for the PARKER BROTHERS BRYCE CLAYTON & JACK LIPSON 2013
INDEX
02
INDEX
PART I : INTRODUCTION i MANIFESTO 04-05 ii THE PARKER BROTHERS 06-07 iii A PUZZLE 08-09
PART II : THE CHAIR iv INSTRUCTION MANUAL 12-15 v PUZZLE PIECES 16-43 vi PROCESS : CONSTRUCTION 44-51 vii A PUZZLE, A CHAIR, A GAME 52-57
PART III : ANALYSIS vii ANALYSIS I : WEIGHT & REACTIONS 60-75 ix ANALYSIS II : OVERTURNING 76-81 x ANALYSIS III : FRAME, STABILITY & RACKING 82-95 xi ANALYSIS IV : BEAMS & COLUMNS 96-107 xii ANALYSIS V : JOINTS 108-113
APPENDIX A : PRECEDENTS APPENDIX B : MATERIAL & COST
03
PART I
04
PART I
PART I : INTRODUCTION The design of the Parkers Brother chair, consists of six interlocking rectangular based components - unique yet similar puzzle pieces. As a chair for one, the pieces must be joined together following a precise order and method. However, once disassembled, the components may be reconfigured in countless ways to form accomodation for any activity, be it for the individual or a group. In the ‘Game’ configuration, the modular components can be stacked to form two seats and a table; a configuration allowing the Parker Brothers to take part in their favourite pastime. Restacked, the components become the ‘Shelf ’, a stand alone fixture to house the games as they await their next opportunity to be played. ~ “There shouldn’t be hidden morals buried within our games. A game should emphasize the time spent with friends: no lessons, just the enjoyment of playing.”
05
THE PARKER BROTHERS
[edward & charles parker]
06
THE PARKER BROTHERS
THE PARKER BROTHERS True pioneers in the board game industry, the Parker Brothers could be found in every American household throughout the turn of the century. Their groundbreaking games, including Clue, Sorry!, and most notably Monopoly, shaped the landscape of early 20th century pop-culture, while embracing Parker’s philosophy, which deviated from the common themes of board game design; that board games should be purely for enjoyment. Over 100 years later, the legacies of George, Charles and Edward Parker remain and their games continue to bring joy to millions.
07
A PUZZLE
[puzzle]
8
A PUZZLE
[p1]
[p2]
[p3]
[p4]
[p5]
[p6]
9
PART II
[p1]
[p2]
[p3]
[p4]
[p5]
[p6]
10
PART II
PART II : THE CHAIR INSTRUCTION MANUAL 12-15 PUZZLE PIECES 16-43 PROCESS : CONSTRUCTION 44-51 A PUZZLE, A CHAIR, A GAME 52-57
11
INSTRUCTIONS
step 2: [p3] & [p4] in vertical position
step 1: [p3] in vertical position
12
INSTRUCTIONS
step 3: slide [p2] in horizontal position
step 4: slide [p5] in horizontal position
13
INSTRUCTIONS
step 5: slide [p6] in horizontal position
step 6: slide [p1] in horizontal position
14
INSTRUCTIONS
step 7: enjoy!
15
COMBINED
16
COMBINED
679.60
609.60
679.60
304.80
17
COMBINED
18
COMBINED
19
PIECE I
20
PIECE I
304.80
615.60
679.60
240.80
21
PIECE I
22
PIECE I
23
PIECE I
24
PIECE I
25
PIECE II
26
PIECE II
615.60
679.60
304.80
27
PIECE II
28
PIECE II
29
PIECE II
30
PIECE II
31
PIECE III & IV
32
PIECE III & IV
615.60
679.60
304.80
33
PIECE III & IV
34
PIECE III & IV
35
PIECE III & IV
36
PIECE III & IV
37
PIECE V & VI
38
187.40
304.80
615.60
679.60
155.40
PIECE V & VI
304.80
39
PIECE V & VI
40
PIECE V & VI
41
PIECE V & VI
42
PIECE V & VI
43
PROCESS
44
PROCESS
PROCESS : CONSTRUCTION
45
PROCESS
[white ash]
[planing]
46
PROCESS
[gluing 6” ash boards]
[12” ash board]
47
PROCESS
[jig: finger joints]
test: finger joints]
48
PROCESS
top [cutting finger joints] bottom [spread ash pieces]
49
PROCESS
left [glue finger joints] top [filing, filing and more filing] bottom [it fits!]
50
PROCESS
top [clamping legs] bottom [sanding] right [finishing - walnut]
51
A PUZZLE, A CHAIR, A GAME
52
A PUZZLE, A CHAIR, A GAME
53
A PUZZLE, A CHAIR, A GAME
54
A PUZZLE, A CHAIR, A GAME
55
A PUZZLE, A CHAIR, A GAME
56
A PUZZLE, A CHAIR, A GAME
57
PART III
58
PART III
PART III : ANALYSIS ANALYSIS I : WEIGHT & REACTIONS 60-75 ANALYSIS II : OVERTURNING 76-81 ANALYSIS III : FRAME, STABILITY & RACKING 82-95 ANALYSIS IV : BEAMS & COLUMNS 96-107 ANALYSIS V : JOINTS 108-113
59
ANALYSIS I : WEIGHT & REACTIONS
60
ANALYSIS I : WEIGHT & REACTIONS
ANALYSIS I: WEIGHTS & REACTIONS [P3] and [P4] were identified as the most critical chair components in terms of likelihood of failure due to the distance of potential cantilever in a stool position and how all loads will be transferred through the finger joints without any load sharing. [P1] is also examined due to it being the only walnut component of the chair, as opposed to white ash. Analysis 1 will examine the self-weight and ground reactions of the assembled chair, and the aforementioned components in different loading conditions.
61
ANALYSIS I : WEIGHT & REACTIONS
Piece 1 Length (mm) Width (mm) Height (mm) Thickness (mm) Volume (m3)
679.60 304.80 304.80 32.00 0.06
Piece 2 Length (mm) Width (mm) Height (mm) Thickness (mm) Volume (m3)
679.60 304.80 304.80 32.00 0.06
Piece 3/4 Length (mm) Width (mm) Height (mm) Thickness (mm) Volume (m3)
679.60 304.80 304.80 32.00 0.06
Piece 5/6 Length (mm) Width (mm) Height (mm) Thickness (mm) Volume (m3)
679.60 304.80 304.80 32.00 0.06
Void Length Width Height Volume
615.60 304.80 240.80 0.05
Void Length Width Height Volume
615.60 304.80 240.80 0.05
Void Length Width Height Volume
609.60 304.80 272.80 0.05
Void1 Length Width Height Volume
609.60 304.80 272.80 0.05
(mm) (mm) (mm) (m3)
Net Volume
0.02
Black Walnut Density (kg/m3) Mass (kg)
Net Volume
52.96
0.02
White Ash Density (kg/m3)
550.00
9.87
Net Mass (kg) =
(mm) (mm) (mm) (m3)
Mass (kg) or
600.00
10.77
(mm) (mm) (mm) (m3)
Net Volume White Ash Density (kg/m3) Mass (kg)
0.01
600.00
7.17
(mm) (mm) (mm) (m3)
Net Volume White Ash Density (kg/m3) Mass (kg)
0.01
600.00
8.99
116.51 lbs
Board Feet of Black Walnut +10% Waste Price per Board Foot Cost + 13% HST
= = = =
12.50 13.75 $10.95 $170.14
Board Feet of White Ash +10% Waste Price per Board Foot Cost + 13% HST
= = = =
72.73 80.00 $4.12 $372.16
Miscellaneous =
$6.78
Total Cost =
$549.08
RCH 365 | ANALYSIS 1
W
SUMMARY 62
ANALYSIS I : WEIGHT & REACTIONS
X bi
Piece
(mm)
hi
(mm)
1 Solid Void
304.80 304.80
679.60 615.60
2 Solid Void
304.80 304.80
679.60 615.60
3 Solid Void
304.80 304.80
304.80 272.80
4 Solid Void
304.80 304.80
304.80 272.80
5 Solid Void Void
679.60 609.60 304.8
304.80 272.80 152.4
6 Solid Void Void
679.60 609.60 304.8
304.80 272.80 152.4
di
(mm)
Vi
2 (mm )
xi
304.80 63136906 240.80 45182479.1 17954426.9 304.80 63136906 240.80 45182479.1 17954426.9 679.60 63136906 609.60 50687898.6 12449007.4 679.60 63136906 609.60 50687898.6 12449007.4 304.80 63136906 304.80 50687898.6 152.40 7079211.65 5369795.71 304.80 63136906 304.80 50687898.6 152.4 7079211.65 5369795.71 71546459.9
Vixi
(mm)
0 0 0 0 152.4 136.4 -152.4 -136.4 0 0 0 0 0 0
3 (mm )
0 0 0 0 0 0 9622064472 6913829372 2708235100 -9.622E+09 -6.914E+09 -2.708E+09 0 0 0 0 0 0 0 0 0
X =
ڴVixi
=
0 mm
Vi
ARCH 365 | ANALYSIS 1
CENTROID CALCULATIONS 1 of
CENTROID CALCULATION: X 63
ANALYSIS I : WEIGHT & REACTIONS
Y bi
Piece
(mm)
hi
(mm)
1 Solid Void
304.80 304.80
304.80 615.60
2 Solid Void
304.80 304.80
679.60 615.60
3 Solid Void
304.80 304.80
304.80 272.80
4 Solid Void
304.80 304.80
304.80 272.80
5 Solid Void Void Void Void
679.60 609.60 609.60 304.80 304.80
304.80 152.40 88.40 32.00 32.00
6 Solid Void Void Void Void
679.60 609.60 609.60 304.80 304.80
304.80 152.40 88.40 32.00 32.00
Y =
ڴViyi
di
(mm)
Vi
2 (mm )
679.60 63136906 240.80 45182479.1 17954426.9 304.80 63136906 152.40 28595555.7 34541350.3 679.60 63136906 609.60 50687898.6 12449007.4 679.60 63136906 609.60 50687898.6 12449007.4 304.80 63136906 304.80 28316846.6 304.80 16425257.5 152.40 1486448.64 152.40 1486448.64 15421904.6 304.80 63136906 304.80 28316846.6 304.80 16425257.5 152.40 1486448.64 152.40 1486448.64 15421904.6 108237601
=
yi
Viyi
(mm)
0 0 0 0 0 0 0 0 152.4 120.4 228.6 168.4 288.8 -152.4 -120.4 -228.6 -168.4 -288.8
3 (mm )
0 0 0 0 0 0 0 0 0 0 0 0 9.622E+09 3.409E+09 3.755E+09 250317951 429286367 1.778E+09 -9.62E+09 -3.41E+09 -3.75E+09 -2.5E+08 -4.29E+08 -1.78E+09 0
0 mm
Vi
ARCH 365 | ANALYSIS 1
CENTROID CALCULATIONS 3 of
CENTROID CALCULATION: Y 64
ANALYSIS I : WEIGHT & REACTIONS X =
ڴVixi
=
0 mm
Vi
ARCH 365 | ANALYSIS 1
CENTROID CALCULATIONS 1 of
Z bi
Piece
(mm)
hi
(mm)
1 Solid Void
304.80 304.80
679.60 615.60
2 Solid Void Void
304.80 304.80 304.80
679.60 615.60 615.60
3 Solid Void
304.80 304.80
304.80 272.80
4 Solid Void
304.80 304.80
304.80 272.80
5 Solid Void Void
679.60 609.60 304.80
304.80 304.80 152.40
6 Solid Void Void
679.60 609.60 304.80
304.80 304.80 152.40
Z =
ڴVizi Vi
di
(mm)
Vi
2 (mm )
304.80 63136906 240.80 45182479.1 17954426.9 304.80 63136906 152.40 28595555.7 88.40 16586923.4 17954426.9 679.60 63136906 609.60 50687898.6 12449007.4 679.60 63136906 609.60 50687898.6 12449007.4 304.80 63136906 240.80 44742104.1 64.00 2972897.28 15421904.6 304.80 63136906 240.80 44742104.1 64.00 2972897.28 15421904.6 91650677.8
=
287.862 mm
=
288 mm
ARCH 365 | ANALYSIS 1
zi
(mm)
Vizi
3 (mm )
489.2 3.0887E+10 489.2 2.2103E+10 8783305630 152.4 9622064472 260.6 7452001819 184.4 3058628673 -888566020 339.8 2.1454E+10 339.8 1.7224E+10 4230172701 339.8 2.1454E+10 339.8 1.7224E+10 4230172701 339.8 2.1454E+10 339.8 1.5203E+10 416 1236725268 5013828424 339.8 2.1454E+10 339.8 1.5203E+10 416 1236725268 5013828424 2.6383E+10
CENTROID CALCULATIONS 2 of
CENTROID CALCULATION: Z 65
Total Cost =
$549.08
ANALYSIS I : WEIGHT & REACTIONS
CH 365 | ANALYSIS 1
WEIGHT CALCULA
W W a= 304.8mm
b= 304.8mm
a R1 + R3
R2 + R4
b
R1/R2
R3/R4
l= 609.6mm
l= 304.8mm
R1 + R3 = (b/L)xW = 259.762N
BY SYMMETRY R1 = R3 = (R1+R3)/2 = 129.881N
R2 + R4 = (a/L)xW = 259.762N
R2 = R4 = (R2+R4)/2 = 129.881N
W = 519.523N FRONT
RIGHT
*NOTE CHAIR IS NOT USED IN TORAGE POSITION
RCH 365 | ANALYSIS 1
REAC
REACTION CALCULATION: COMBINED CONFIGURATION 66
ANALYSIS I : WEIGHT & REACTIONS
xi
)
42 36
(mm)
Aixi
L L/3 b a P
3 (mm )
152.4 31568453 136.4 22906426.8
= = = = =
304.8 101.6 68.5 33.1 35.2
wCL =
6Pa
mm mm mm mm N
R = bW L b = RL W
=
220.934 mm
=
75.1037 N/m =
0.08 kN/m
=
348.878 N/m =
0.35 kN/m
= 339.8mm
l2
93 mm
w2 = 6Pa + 12Pb l2
= 339.8mm H=
304.8mm
WC = 70.34 N H= 304.8mm
a + R4
b
= 339.8mm
a
b
R2 + R4
R1 + R3
R1/R2
R3/R4
R1/R2
R3/R4
H= 304.8mm
l= 679.60mm
l= 304.8mm
R1 = (a/L)*W l= 679.60mm
R1 + R3 = (L/2)xWc = 35.17N R2 + R4 = (L/2)xWc R1 + R3
35.17N
= = R2 L = L/3 = R3 P = = R4w = =
l= 304.8mm
1
b
17.585N 17.585N 17.585N 17.585N
(a/L)*Wc = 17.6N RIGHT 304.8 mm (a/L)*W = 17.585N = 17.6N 101.6 mm c (b/L)*W = 17.585N = 17.6N 35.2 N c (b/L)*W = N/m 17.585N = 17.6N 2P = 230.767 = w c
l= 679.60mm
= = = =
2
L
+ R3 = (L/2)xWc = 35.17N L = ARCH 365 | ANALYSIS 1 + R4 = (L/2)xWc = 35.17N
w1 =
R1 R2 R3 R4
304.8 mm 101.6 mm 35.2 N
L/3 = P =
FRONT
a
R1/R2 R1
FRONT
= 35.17N
SIS 1
= 35.17N
R2 + R4
= c R2 = (a/L)*Wc = R3 = (b/L)*Wc = R4 = (b/L)*Wc = R3/R4 17.585N =
L = 2P= L/3 P =
304.8 mm = mm230.767 101.6 35.2 N
L
w1 =
2P
=
= = = =
(a/L)*Wc (a/L)*Wc (b/L)*Wc (b/L)*Wc
N/m = w2
= = = =
17.585N = 17.6N RIGHT 17.585N = 17.6N 17.585N = 17.6N 17.585N = 17.6N
17.6N 17.6N 17.6N 17.6N
R3 R4
231 N/m
R3 R4
231 N/m
R2
WORST CASE SCENARIO SELF WEI R3 R4
231 N/m
RIGHT
R R1
230.767 N/m = w2
R2
L
231 N/m
WORST CASE SCENARIO SELF
WORST CASE SCENARIO SELF WEIGHT 1 of 3
SELF WEIGHT: [P3] HORIZONTAL 67
L L/3 b a P
= = = = =
304.8 101.6 4.5 97.1 535.2
wCL =
6Pa
mm mm mm mm N
R = bW L b = RL W
ANALYSIS I : WEIGHT & REACTIONS =
156.904 mm
=
3356.14 N/m =
3.36 kN/m
=
3667.27 N/m =
3.67 kN/m
l2 w2 = 6Pa + 12Pb l2
5 kN/m
5 kN/m
5 kN/m
5 kN/m
5 kN/m
WC = 70.34 N WC = 70.34 N 1000 N WP = W = 1000 N P
H= 304.8mm
= 215.9mm
= 215.9mm
a R1 + R3 5 kN/m
R2 + R4
a R3/R4
R1/R2
R1/R2
b
R1/R2
BY SYMMETRY l= 679.60mm R1 = R3 = (R1+R3)/2 = 250N R2 = R4 = (R2+R4)/2 = 250N
l= 304.8mm = 500N
FRONT R1 R2 R3 R4
= = = =
R2 + R4 250N+17.6N 250N+17.6N 250N+17.6N 250N+17.6N
R1 + R3 = (L/2)xWc = = = = =
L = (L/2)xWcL/3 == R1/R2 P =
267.6N R2 + R4 = 267.6N 267.6N FRONT 267.6N BY
500NARCH
365 | ANALYSIS 1 R1 = 250N+17.6N l= 304.8mm
500N
= R2 = 250N+17.6N = R3 = 250N+17.6N = R4 = 250N+17.6N =
+ R3 = (L/2)xWc = 500N
+ R4 = (L/2)xWc
267.6N 267.6N 267.6N 267.6N
304.8 mm 101.6 mm 535.2 L = N
267.6N 267.6N 267.6N 267.6N
w1 =
2P L
L/3 = P = w1 =
=
l= 679.60mm 304.8 mm 500N101.6 mm 535.2 N
R3/R4
535.2 N
BY SYMMETRY w1 = 2P RIGHT = 250N R1 = R3 = (R1+R3)/2 L R2 = R4 = (R2+R4)/2 = 250N
R4
304.8 mm 101.6 mm 535.2 N
=
RIGHT
R3 WORST CASE SCENARIO PERSON CENTER
3511.61 N/m = R3
25 kPa 3.51 kN/m 3.51 kN/m
WORST CASE
25 kPa 3.51 kN/m
R1
3511.61 N/m = 3511.61 N/m =
3.51 kN/m 3.51 kN/m
L
R2
CENTER LOAD_PERSON: [P3] HORIZONTAL 68
R2
3.51
3.51 kN/m
CASE PERSON SCENARIO WORSTWORST CASE SCENARIO CENTEREDPERSON 2 of 3
1
25 kPa
3.51 kN/m
R2
R4 =
R4
R3
R1 = R3 = (R1+R3)/2 = 250N R2 = R4 = (R2+R4)/2 = 250N
1
RIGHT
2P
RIGHT BY SYMMETRY
b
P =
= 500N
L = L/3 = P =
a 500N
w = 2P = 3511.61 N/m = 3.51 kN/m SYMMETRY L R1 = R3 = (R1+R3)/2 = 250N L = 304.8 mm l= 679.60mm L/3 = 101.6 mm R2 = R4 = (R2+R4)/2 = 250N
ARCH 365 | ANALYSIS 1
FRONT
R3/R4
= 215.9mm
R1 + R3 = (L/2)xWc = 500N
1 + R3
R3/
l= 679.60mm H= 304.8mm
l= 304.8mm
R2 + R4 = (L/2)xWc
b
5 kN/m
a
R4
b
R2 + R4
R1 + R3
= 215.9mm
H= 304.8mm
CENTERED 2 ARCH 36
ANALYSIS I : WEIGHT & REACTIONS
5 kN/m
5 kN/m
5 kN/m = 70.34 N WCD= 100mm WP = 1000 N
5 kN/m
D= 100mm
5 kN/m
5 kN/m
WC = 70.34 N WP = 1000 N
D= 100mm
D= 100mm
D= 100mm
5 kN/m
D= 100mm
R2 + R4
R1 + R3
R2 + R4
R1 + R3
R1 + R3
R3 + R3 + R4
l= 304.8mm l= 304.8mm
R2 + R4 4.8mm
R1 + R3
R3 + R4
b
b R1 +
R1 + R2
R1 + R2
l= 679.60mm
l= 679.60mm
b
b
a
l= 679.60mm
R1 = [(Width-D)/L]*W = 573.15N = 573N R3 = [D/L]*W = 98.77N = 99N
R2 + R4 = 328.08N 328.08N
= 573N+17.6N = 590.8N = 280N+17.6N = 297.4N = 99N+17.6N = 116.4N R1 = 573N+17.6N L = mm = R590.8N = bW = 48N+17.6N =304.8 65.9N L/3 = 101.6 mm L
L L/3 b 3b P
= = = = =
w1-2 =
R2 = 280N+17.6N b = 50.1 mm = b297.4N = RL = 254.672 mm W = 116.4N = 65.9N 9403.81 N/m = 9.40 kN/m
304.8 101.6 50.1 150.4 707.1 2P b
mm mm mm mm NL =
L/3 b L3b = L/3 = P b = 3b = wP1-2 =
= 590.8N 3b = 150.4 mm 99N+17.6N P = 707.1 ARCHR3 365= | ANALYSIS 1N = 297.4N = 116.4N R4 = 48N+17.6N w = 2P b = 65.9N
R2 = [(Width-D)/L]*Wp = 279.81N = 280N R3 = 48N R4 = [D/L]*Wp = 48.28N R = bW L b = RL W
97.7 mm 293.0 mm 363.2 2P N
=
2P
304.8 101.6 50.1 150.4 707.1 2P
mm mm mm mm N
b
L L/3 b 3b P
254.672 mm
mm R = bW mm L mm9.40 kN/mb = RL R = bW mm W L N b = RL W
=
=
304.8 101.6 97.7 293.0 R4 363.2
mm mm mm mm N
w3-4 = 254.672 mm2P b
97.671 mm
9403.81 N/m =
2479.42 N/m =
= = = = =
9.40 kN/m
R = bW L b = RL W
L L/3 2479.42 N/m b 3b P
25 kP
= 97.671 mm 2.48kN/m
= = == = =
304.8 mm 25 kPa 101.6 mm 2.48 97.7 kN/m mm 293.0 mm 363.2 N
R = bW L b = RL W
=
97.671 mm
R2
R1 WORSTw3-4CASE SCENARIO PERSON FROM CORN = 2P 2479.42 N/m = 100mm 2.48 kN/m b
2.48 kN/m
R2
9.40kN/m
b
R4
WORST CASE SCENARIO PE
ARCH 365 | ANALYSIS 1 = = = = =
=
304.8 = 101.6 = =9403.81 N/m50.1 304.8150.4 mm = 101.6 mm = 707.1
w3-4 =
1-2
w1-2 =
H= 304.8mm
R1 + R2 R1 = [(Width-D)/L]*W = 573.15N = 573N = 573.15N = 573N p R1 = [(Width-D)/L]*W p R3 = [D/L]*Wp = 98.77N = 99N R3 = [D/L]*Wp = 98.77N = 99N l= 679.60mm R2 + R4 = 328.08N R2 = [(Width-D)/L]*Wp = 279.81N = 280N R2 =p =[(Width-D)/L]*W = 279.81N = 280N R4 = [D/L]*W 48.28N = 48N p R1 = [(Width-D)/L]*Wp = 573.15N = 573N R4 =p [D/L]*Wp = 48.28N = 48N R3 = [D/L]*Wp = 98.77N = 99N p R3 2.48kN/m R2 = [(Width-D)/L]*Wp = 279.81N = 280N R4 R4 = [D/L]*Wp = 48.28N = 48N
671.92N
L L/3 b 3b P
R4
R1 + R3 R1 =+671.92N R3 = 671.92N R2 + R4 = 328.08N
R1 + R3 = 671.92N
IS 1
a
a
R3 + R4
l= 304.8mm
R1 R2 R3 R4
a
D= 100mm
H= 304.8mm
D= 100mm
5 kN/m
WORST CASE SCENARIO PERSON 100mm FROM CORNER 3 of 3 R = bW L b = RL W
=
L L/3 b 3b P
254.672 mm
9403.81 N/m =
= = = = =
w3-4 =
9.40 kN/m
b
304.8 101.6 97.7 293.0 363.2 2P
mm mm mm mm N
R = bW L b = RL W
=
2479.42 N/m =
97.671 mm
2.48 kN/m
b
WORST CASE SCENARIO PERS CORNER LOAD_PERSON: [P3] HORIZONTAL 69
H ANALYSIS I : WEIGHT & REACTIONS
REACTIONS
WC = 70.34 N
= 220.93mm H= 679.6mm
a
b
R2 + R4
R1 + R3
220.93mm l== 304.8mm
R1/R2
a b H= 679.6mm
R1 + R3 = (L/2)xWc = 35.17N R2 + R4 = (L/2)xWc
R2 + R4
R1 + R3
R1 + R3 = (L/2)xWc = 35.17N
FRONT
bi
R2
Solid Void
(mm)
Ai
(mm)
hi (mm) Ai (mm ) 304.8 xi (mm) Aixi 679.6 (mm ) Solid 304.8 679.6 207142 152.4 31568453 Void 272.8 615.6 + R4 272.8 615.6 167936 136.4 22906426.8 2
(mm)
3
2 (mm )
xi
(mm)
207142 167936
3 i i (mm )
L L/3 b a P
= = = = =
136.4 22906426.8 R1/R2 wCL =
304.8 101.6 68.5 33.1 35.2
6Pa l
X =
.8mm
ڴAixi Ai
=
220.93 mm
ڴAixi
X =
=
220.93 mm
xWc
T
L/3 b a P
304.8 101.6 68.5 33.1 35.2
= = = =
wCL =
mm mm mm mm N
6Pa l
L L/3 b a P
2 = = = = =
304.8 101.6 68.5 33.1 35.2
l2
6Pa
=
=
220.934 mm
R3/R4
75.1037 N/m =
wCL =
0.08 kN/m
=
348.878 N/m =
0.35 kN/m
75.1037 N/m =
mm mm mm mm N
=
R = bW L b = RL W
= = = =
9.677N 9.677N 25.49N 25.49N
348.878 N/m = 75.1037 N/m =
0.08 kN/m
=
348.878 N/m =
0.35 kN/m
mm mm mm mm N
=
= = = =
=
0.35
kN/m
R3
220.934 m
R2
75.1037 N/m 0.08 =
0.08 k
=
348.878 N/m =
0.35 k
9.7N 9.7N 25.5N 25.5N
R3 R1
0.35
0.35 kN/m
R = bW L b = RL R4 W
l2
0.08 kN/m
220.934 mm
=
6Pa
w2 = 6Pa + 12Pb
R4 =
304.8 101.6 68.5 33.1 35.2
9.7N 9.7N 25.5N 25.5N
RIGHTWORST CASE SCENARIO SELF WEIGHT 1
l2
= (a/L)*Wc = (a/L)*Wc R3 = (b/L)*Wc R4 =mm(b/L)*Wc 220.934
= = = = =
= = = =
l2
kN/m
l2 w2 = 6Pa + 12Pb
=
RIGHT
=
w2 = 6Pa + 12Pb wCL =
R = bW L b = RL W
R = bW L b = RL W
l= 304.8mm
R1 ARCH 365 | ANALYSIS 1R2
= 35.17N L =
mm mm mm mm N
L L/3 b a P
2
w2 = 6Pa + 12Pb
A ARCH 365 | ANALYSISi 1
)xWc = 35.17N
R3/R4
R1 = (a/L)*W = 9.677N R2 =FRONT (a/L)*Wc = 9.677N = RIGHT 25.49N R3a = (b/L)*W b c A x R4 = (b/L)*Wc = 25.49N 152.4 31568453
17N hi
R1/R2
R1 = (a/L)*Wc = 9.677N = 9.7N R2 = (a/L)*Wc = 9.677N = 9.7N c = 25.49N = 25.5N R3 = (b/L)*W c R4 = (b/L)*Wc = 25.49N = 25.5N
= 35.17N
R2 + R4 = (L/2)xWc
bi
l== 35.17N 304.8mm l= 304.8mm
l= 304.8mm
7N
R3/R4
R2 0.08
WORST CASE SCENA
l2
WORST CASE SCENARIO SELF WEIGHT 1 of 3 SELF-WEIGHT: [P3] VERTICAL 70
H= ANALYSIS I : WEIGHT & REACTIONS
5 kN/m
5 kN/m
WC = 70.34 N WP = 1000 N 5 kN/m
5 kN/m
WC = 70.34 N WP = 1000 N
= 220.9
= 220.93mm
/m
5 kN/m
H= 679.6mm
a
b
= 220.93mm
R1/R2 R1 + R3
R1 + R3
R2 + R4
R2 + R4
l= 304.8mm
R1/R2
0N
= = = = =
wCL =
304.8 101.6 4.5 97.1 535.2
6Pa
mm mm mm mm N
R = bW L b = RL W
w2 = 6Pa + 12Pb
3356.14 N/m =
=
3667.27 N/m =
2)xWc =
)xWc
T
= 500N wCL =
L L/3 b 3.36 kN/m a P 3.67 kN/m
= = = = =
wCL =
304.8 101.6 4.5 97.1 535.2
6Pa
=
=
w2 = 6Pa + 12Pb l
304.8 101.6 4.5 97.1 535.2
3356.14 N/m =
=
6Pa l
mm mm mm mm N
3.67
=
kN/m
156.904 mm
25 kPa
3356.14 N/m =
RIGHT
R = bW L b = RL W
= 156.904 3667.27 N/m = mm
3.67 kN/m
WORST CASE SCENARIO PERSON CENTERED 2 3.67 kN/m
RIGHT =
3667.27 N/m =
WORST CASE
R3 R4
R1
3.67 kN/m
=
3356.14 N/m =
3.36 kN/m
=
3667.27 N/m =
3.67 kN/m
R2 3.36
WORST CASE SCENARIO P
l2
CENTER LOAD_PERSON: [P3] VERTICAL
R2 3.36
3.36 kN/m
3.36 kN/m
2
w2 = 6Pa + 12Pb
=
R = bW L b = RL W
BY SYMMETRY 156.904 mm R1 = R3 = (R1+R3)/2 = 250N R2 = R4 = (R2+R4)/2 = 250N
l2 L = L/3 = b = a = 2 P =
mm mm mm mm N
l2
l2
6Pa
wCL =
156.904 mm
l= 304.8mm l2
=
R3
w2 = 6Pa + 12Pb
304.8 mm R = bW | ANALYSIS 1L 101.6 mm 4.5 mm b = RL 97.1 mm W 535.2 N
365
=
=
ARCH 365 | ANALYSIS 1 L = ARCH L/3 = b = 500N a = P =
25 kPa
R4
l2
R3 = 250N+25.5N = 275.5N R4 = 250N+25.5N = 275.5N
.8mm
R3/R
R2 = R4 = (R2+R4)/2 BY SYMMETRY RIGHT FRONT R1 = R3 = (R1+R3)/2 = 250N RIGHT R4 = (R2+R4)/2 = 250N R1/R2 R2 = R3/R4
= 500N
L L/3 b a P
R2 = 250N+9.7N = 259.7N R1 = 250N+9.7N = 259.7N + R4 R3 R2 = 250N+25.5N = 275.5N R2 = 250N+9.7N = 259.7N R4 = 250N+25.5N = 275.5N
R1/R2
BY SYMMETRY BY SYMMETRY R1 = R3 = (R1+R3)/2 = 250N R1 = R3 = (R1+R3)/2 = R2 = R4 = (R2+R4)/2 = 250N
R2 + R4 = (L/2)xWc = 500N a b
FRONT
b
l= 304.8mm
l= 304.8mm
R1 + R3 = (L/2)xWc = 500N
NR1 = 250N+9.7N = 259.7N
R3/R4
l= 304.8mm
l= 304.8mm
R1 + R3 = (L/2)xWc = 500N R2 + R4 = (L/2)xWc
H=
a
R3/R4 679.6mm a b
WORST CASE SCENARIO PERSON CENTERED 2 of 3
71
A
ANALYSIS I : WEIGHT & REACTIONS
5 kN/m
5 kN/m
WC = 70.34 N WP = 1000 N
5 kN/m
WC = 70.34 N WP = 1000 N
5 kN/m
D= 100mm
D=
D= 100mm
D= 100mm H= 679.6mm
5 kN/m
a
5 kN/m
b
.34 N 00 N
R2 + R4
a
a
b
R1/R2
D= 100mm
R1 R2 ++ R3 R4
R1 + R3
.8mm
l= 304.8mm
D= 100mm R1/R2
R2 + R4
b
R3/R4
R1/R2
R3/R4
R3/R
l= 304.8mm l= 304.8mm
25 kPa
H= 679.6mm l= 304.8mm
l= 304.8mm
R1 = [(Width-D)/L]*Wp = 451.47N = 451N
R1 + R3 R2 + R4 = 328.08N
328.08N R1 = 451N+9.7N
= 671.92N
L L/3 b a P
= = = = =
wCL =
T
304.8 101.6 46.4 55.2 707.1 6Pa
mm mm mm mm N
R = bW L b = RL W
=
=
2521.45 N/m =
w2 = 6Pa + 12Pb
=
6757.88 N/m =
l2
wCL =
55.2 + R4 = mm328.08N
=
L L/3 b a P
198.785 mm
l2
R = bW L b = RL W
=
193.092 mm
bW L= 1428.92 N/m = 1.43 kN/m RL = 198.785 mm W = 3338.18 N/m =
3.34 kN/m
=
2521.45 N/m =
2.52 kN/m
L L/3 b a P
R3/R4
= = = = =
wCL =
304.8 101.6 40.7 60.9 363.3
6Pa
mm mm mm mm N
R = bW L b = RL W
=
193.092 mm
= 1428.92 N/m =
=
= = = = =
304.8 101.6 46.4 55.2 707.1
mm mm mm mm N
6757.88 N/m =
wCL =
6Pa
=
R = bW L b = RL W
6.76 kN/m =
198.785 mm
2521.45 N/m =
2.52 kN/m
l2 w2 = 6Pa + 12Pb
L L/3 b a P
= = = = =
wCL =
=
2
2
40.7 mm
b = RL
=
RIGHT = 1428.92 N/m =
6Pa
304.8 101.6 2 40.7 60.9 363.3
w
6Pa
mm mm mm mm N
R = bW L b = RL W
= 6Pa + 12Pb l2
=
= 3338.18 N/m =
193.092 mm
WORST CASE SCENARIO
193.092 mm
1.43 kN/m
=
6757.88 N/m =
6.76 kN/m
w2 = 6Pa + 12Pb
= 1428.92 N/m =
1.43 kN/m
= 3338.18 N/m =
3.34 kN/m
l2
3.34 kN/m
R3 3.34
R4 6.76 kN/m
l2
l2
1.43 kN/m
kPa WORST CASE SCENARIO PERSON25100mm FROM CORNER 3 w = 6Pa + 12Pb = 3338.18 N/m = 6757.88 N/m = 6.76 kN/m 3.34 kN/m l= 304.8mm l l2
l2 L L/3 b a P
2.52
RIGHT =
= 60.9 mm W = 220.45N = 220N R2 = [(Width-D)/L]*W p = N = 107.64N = 108N R4363.3 = [D/L]*W p
wCL =
2.52 kN/m
mm mm mm mm N
R1 = [(Width-D)/L]*W = 451.47N = 451N = 304.8 mm R = bW p = 220.45N = 220N R3101.6 = [D/L]*W = mm p L
l2 w2 = 6Pa + 12Pb
R1/R2
l2
W
2521.45 N/m =
304.8 101.6 40.7 60.9 363.3
l2
6Pa
w2 = 6Pa + 12Pb
707.1 N
6PaFRONT=
R3 R2 = [(Width-D)/L]*Wp R4=RIGHT 220.4 3.34 6.76 a R4 b = [D/L]*W = 107.64N = R2 p kN/m
l2
R = bW
=R1 + R3 46.4=mm671.92N b = RL
= = = = =
304.8 mm R = 101.6 wCL =mm 6Pa 46.4 mm l2 b = 55.2 mm w2 =N 6Pa + 12Pb 707.1
wCL =
ARCH 365 101.6 | ANALYSIS 1 L/3 = mm L
N = 461N N = 230N 5N = 246N 5N = 133N
LYSIS 1
304.8 mm
L L/3 b a P
L = 2.52 L/3 kN/m = b = a = 6.76 kN/m P =
l2
p
R4 = [D/L]*Wp = 107.64N
RIGHT
198.785 mm
= 108N+25.5N = 133N ARCH 365 |R4 ANALYSIS 1 l= 304.8mm
b a =R2 P =
p
p
FRONT
= 461N R2 = 220N+9.7N = 230N R3 = 220N+25.5N = 246N R1 = 451N+9.7N = 461N R4 = 108N+25.5N = 133N R2 = 220N+9.7N = 230N R2 + R1 =+ 220N+25.5N R3 R3 = R4 246N
L =
p
R2 + R4 = 328.08N
FRONT
p
p
R1 + R3 = 671.92N
671.92N
R1 = [(Width-D)/L]*W = 451 = 220N = [D/L]*W = 220.45N R1 = R3[(Width-D)/L]*W = 451.4 R3 = [D/L]*W = 220.45N p = 220.45N = = 220N R2 =R3 [(Width-D)/L]*W 220.45N = = [D/L]*W p 108N = R4 = [D/L]*W = 107.64N R2 = [(Width-D)/L]*W = 220
R2 2.52
R1 1.43
WORST CASE SCENARIO PER
WORST CASE SCENARIO PERSON 100mm FROM CORNER 3 of 3
CORNER LOAD_PERSON: [P3] VERTICAL 72
L/3 = P =
101.6 mm 35.2 N
w1 =
2P
230.767 N/m = w2
=
ANALYSIS I : WEIGHT & REACTIONS
L
= 152.8mm
H= 679.6mm
WC = 96.85 N
H= 679.6mm
= 152.8mm
R2 + R4
R1 + R3
l= a 304.8mmb R2 + R4
R1 + R3
R4
FRONT
bi (mm)
hi (mm)
Solid Void
304.8 304.8
X =
!Aixi Ai
+ R3
Ai (mm2)
679.6 609.6
b
xi (mm)
Aixi (mm3)
h
i (mm)152.4 31568452.99 i (mm) 207142 185806 152.4 28316846.59
SolidR2 + R4 304.8 = 152.40 mm Void 304.8
Ai (mm2)
679.6 609.6
xi (mm)
207142 185806
i
!Ai1 xi ARCH 365X|= ANALYSIS Ai
152.4 28316846.59 w1 = 2P
=
152.40 mm
R3 = (L/2)xWc = 48.42N = 48.42N
L = ARCH L/3 = FRONT P =
3 i (mm )
L
l= 304.8mm
4 = (L/2)xWc
R1 = (a/L)*Wc = 24.21N 24.21N c 24.21N c 24.21N c
R2 = (a/L)*W = l= 304.8mm R3 = (b/L)*W = FRONT R4 = (b/L)*W = RIGHT R1 = (a/L)*Wc = 24.21N R2 = a(a/L)*W = 24.21N b c L = 304.8 mm R3 101.6 = (b/L)*W = 24.21N c mm A xL/3 = P = R4 = 48.4 (b/L)*W N = 24.21N 152.4 31568452.99 c R1/R2 R3/R4
= 48.42N
48.42N
99 59
H= 679.6mm R1 + R3 = (L/2)xWcR1/R2 = 48.42N R3/R4
R1 + R3 = (L/2)xWc = 48.42N
8.42N
365
b
=l=48.42N R2 + R4 = (L/2)xWc R3/R4 R1/R2 304.8mm
l= 304.8mm
R2 + R4 = (L/2)xWc
a
304.8 mm | ANALYSIS 101.6 mm 48.4 N
1
R1 R2 R3 R4
= = = =
=
317.747 N/m = w2
RIGHT l= 304.8mm = = = =
(a/L)*Wc (a/L)*Wc (b/L)*Wc (b/L)*Wc
R3 R4
L = L/3 = P =
304.8 mm 101.6 R2 mm 318 48.4 N
318 N/m
WORST CASE SCENARIO SELF WEIGHT 1
w1 =
24.21N 24.21N 24.21N 24.21N
2P
318 N/m
RIGHT
mm =304.8 317.747 N/m = w2
2P
L = L/3 = L P= w1 =
R2
R4 318 N/m
101.6 mm 48.4 N
2P
=
=
L R4
R3
w1 =
N
R2
R1 318 N/m
WORST CASE SCENARIO SELF WEI
317.747 N/m = w2
L
WORST CASE SCENARIO SELF WEIGHT 1 of 3 SELF WEIGHT: [P1] VERTICAL 73
ANALYSIS I L = L/3 = P =
WC = 96.85 N W = 1000 N
304.8 mm 101.6 mm 535.2 N
w1 =
2P
5 kN/m
=
5 kN/mL
5 kN/m
3511.61 N/m =
3.51 kN/m
= 152.8mm
5 kN/m
WC = 96.85 N W = 1000 N
H= 679.6 = 152.8mm H= 679.6mm
5 kN/m
5 kN/m
6.85 N 00 N a
a R2 + R4
R1 + R3
l= 304.8mm
R2 + R4
25 kPa
R1/R2
R3/R4
R3/R4
l= 304.8mm
2
l= R1 =304.8mm R3 = (R1+R3)/2
R1 + R3 = (L/2)xWc = 500N R2 + R4 = (L/2)xWc
= 250N SYMMETRY R2 = R4 = (R2+R4)/2 =BY 250N
= 500N
R1 + R3 = (L/2)xWc = 500N
FRONT R2 + R4 = (L/2)xWc = = = = c
)xW = 500N
xW
w1 =
2P L
= 500N
= = = =
274.21N 274.21N 274.21N 274.21N
ALYSIS 1
2P L
=
L = L/3 = P = w1 =
R1 = R3 = (R1+R3)/2 = 2 R2 = R4 = (R2+R4)/2 =R3 2
BY SYMMETRY L = 304.8 mm = R1 3598.59 N/m = 3.60 (R1+R3)/2 kN/m = = 250N L/3 = = R3 101.6 mm R1/R2 R3/R4 P = 548.4 N 25 kPa R2 = R4 = (R2+R4)/2 = 250N b
R4 3.60 kN/m
RIGHT R2
3.60 k
WORST CASE SCENARIO PERSON CENTERED 2
2Pl= 304.8mm = 3598.59 N/m = L
3.60 kN/m
RIGHT
WORST CASE S
R4 3.60 kN/m
BY SYMMETRY R1 = R3 = (R1+R3)/2 = 250N R2 = R4 = (R2+R4)/2 = 250N
L/3 101.6 mm R1 + =R3 = (L/2)xW = 500N c = = (L/2)xW 548.4 N = 500N R2 P+ R4 c FRONT
RIGHT
a
w1 =
ARCHL 365 = | ANALYSIS 304.8 1mm
w1 =
= 500N
L = 304.8 mm L/3 = 101.6 mm PFRONT = 548.4 N
250N+24.21N = 274.21N 250N+24.21N = 274.21N 250N+24.21N = 274.21N 250N+24.21N = 274.21N = 274.21N R1 = 250N+24.21N R2 =+ 274.21N R4 R3 R2 R1 = +250N+24.21N ARCH | ANALYSIS 1 c 365 R3 = 250N+24.21N = 274.21N l= 304.8mm = 274.21N R4 = 250N+24.21N
.21N .21N .21N .21N
b
BY SYMMETRY
8mm
R1 R2 R3 R4
a
l= 304.8mm H= 679.6mm
R1/R2
l= 304.8mm
b
= 152.8mm R3/R4
R1/R2
R2 + R4
R1 + R3
b
3598.59 304.8 mm N/m = 101.6 mm 548.4 N
2P
=
3.60 kN/m
RIGHT
R3 R4 3.60 kN/m R2
3598.59 N/m =
3.60 kN/m
L
R1 3.60 kN/m
WORST CASE SCENARIO PERSON WORST CASE SCENARIO PERSON CENTERED 2 of 3
CENTER LOAD_PERSON: [P1] VERTICAL 74
5 kN/m
5 kN/m
ANALYSIS I
L L/3 b 3b P
= = = = =
w1-2 =
304.8 101.6 50.1 150.4 707.1
mm mm mm mm N
2P
R = bW L b = RL W
5 kN/m L = =
254.672 mm
9403.81 N/m =
b WC = 96.85 N W = 1000 N
L/3 b 3b P
304.8 101.6 97.7 293.0 363.2
= = = =
w3-4 =
9.40 kN/m
mm mm mm mm N
2P
5 kN/m
R = bW L b = RL W
=
97.671 mm
2479.42 N/m =
2.48 kN/m
b
5 kN/m
5 kN/m
D= 100mm
D= 100mm
D= 100mm
D= 100mm
WC = 96.85 N W = 1000 N
H= 679.6
D= 100mm
D= 100mm
H= 679.6mm
5 kN/m
5 kN/m
6.85 N 00 N
a D= 100mm R1 + R3
+ R3
R2 + R4R1
R2 + R4
b
a
b
R1 + R3 = 671.92N
R1/R2
H= 679.6mm R3/R4
R1/R2
l= 304.8mm
R3/R4 l= 304.8mm
l= 304.8mm
R1 R3/R4 = [(Width-D)/L]*Wp25=kPa 451
R1/R2
+ R3 = 671.92N
R1 = [(Width-D)/L]*Wp = 451.47N = 451N R3 = [D/L]*W = 220.45N p R3 = [D/L]*Wp = 220.45N = 220N
R2 + R4 = 328.08N
R2 + R4 = 328.08N
l= 304.8mm
R2 = [(Width-D)/L]*W = 220 l= 304.8mm p = 220.45N = 220N R2 = [(Width-D)/L]*W p R4 = [D/L]*W = 107.64N R4 = [D/L]*Wp = 107.64N = 108N p
FRONT
R2 + R4 = 328.08N
R1 = [(Width-D)/L]*Wp = 451.47N = 451N RIGHT RIGHT R3 =a [D/L]*W = 220.45N = 220N p b
FRONT
R3
= = = =
L L/3 b 3b P
= = = = =
304.8 101.6 83.0 249.1 720.3
R1 + R3 451N+24.21N = 475.68N R2 + R4 220N+24.21N = 244.66N = 475.68N R1 = 451N+24.21N 220N+24.21N =l=244.66N R2 = 220N+24.21N 304.8mm = 244.66N w = 108N+24.21N = 131.85N FRONT R3 = R1 220N+24.21N = 244.66N + R3 = 671.92N
mm mm mm mm N
2P
1-2
b
R4 = 108N+24.21N = 131.85N
R = bW L L = b = RL = L/3 = W
R2 = [(Width-D)/L]*Wp = 220.45N = 220N R4 3.72kN/m R3/R4 L = 304.8 mm R R1/R2 = bW 304.8 mm R = bW R4 = [D/L]*W = 107.64N = 108N 101.6 mm L 101.6 mm L p L/3 =
221.765 mm
b = 3b = 5783.45 P N/m= =
83.0 mm 249.1 mm 5.78 kN/mN 720.3
w1-2 =
R2 + R4 = 328.08N ARCH 365 | ANALYSIS 1
1N 1N 1N 1N
R2 + R4
l= 304.8mm
1 + R3 = 671.92N
R1 R2 R3 R4
R1 + R3
a
D= 100mm
b
2P b
ARCH 365 | ANALYSIS 1 L L/3 b 3b P
= = = =
= = = = =
w1-2 =
475.68N 244.66N 244.66N 131.85N
304.8 mm 101.6 mm FRONT 83.0 mm 249.1 mm 720.3 N
2P b
L L/3 b 3b P
= = = = =
w1-2 =
R = bW L b = RL W
304.8 mm
=
R = bW L b = RL W
5783.45 101.6 mm N/m = 83.0 mm 249.1 mm 720.3 N 2P
5.78 kN/m =
221.765 mm
5783.45 N/m =
b
5.78 kN/m
L L/3 b 3b P
= w3-4 = = = =
w3-4 =
W
w3-4 =
304.8 mm 101.6 mm 67.5 mm 202.6 mm 221.765 376.5 N mm
R = bW L b = RL W
l= 304.8mm 2P
=
237.267 mm
b = 3b = 3.72 P =kN/m
RIGHT
3716.76 N/m =
67.5 mm 202.6 mm 376.5 N
b = RL W
=
237.267 mm
R2
5.
25 kPa
b R1 = [(Width-D)/L]*W = 451.47N = 451N p = 5783.45 N/m = 2P 3716.76 N/m = 3.72 kN/m =kN/m 220.45N =w3-4220N R3 = [D/L]*W5.78 p b WORST CASE SCENARIO PERSON 100mm FROM CORNER 3 R2 = [(Width-D)/L]*Wp = 220.45N = 220N WORST CASE SCENARIO P R4 = [D/L]*Wp = 107.64N = 108N
L L/3 b 3b P
221.765 mm
L = L/3 = b = 3b = b = RL P = =
= = = = =
304.8 101.6 67.5 202.6 376.5
304.8 101.6 67.5 202.6 376.5
=
2P b
ALYSIS 1 CORNER LOAD_PERSON: [P1] VERTICAL
mm mm2P mmb mm N
mm mm mm mm N
R = bW L b = RL W
R = bW
RIGHTL
b = RL W
R4 =
237.267 mm
R3 3716.76 N/m = =
237.267 mm
3.72 kN/m
R4
3.72kN/m R2
R1 5.78kN/m
WORST CASE SCENARIO PERSON 100mm FRO
3716.76 N/m =
3.72 kN/m
WORST CASE SCENARIO PERSON 100mm FROM CORNER 3 of 3
75
ANALYSIS II: OVERTURNING
76
ANALYSIS II: OVERTURNING
ANALYSIS II: OVERTURNING Pieces [p3] and [p4] were selected for the overturning analysis. The natural tipping resistance of the chair is a function of the dead weight of the chair and the frictional resistance of contact points. Both of these parameters are directly related to the weight of the chair, and [p3]/[p4] have the smallest mass generating the least overturning and frictional resistance.
77
YSIS 2
ARCH 365 | ANALYSIS 2
CENTROID CALCULATIONS
ANALYSIS II: OVERTURNING
F
WC D
WC D
o
99 N
00 N
Xc
80 mm
40 mm
60 mm Positive = Clockwise =
YSIS 2
Wc =
518.99N(0.3048 m)
518.99 0.6796 m
Wp =
1000 N
xc =
304.80 mm
xp =
152.40 mm
d =
679.60 mm ڴMo =
0 0 = Wcxc - Fd F =
Wcxc
=
N
232.77 N
o OVERTURNING - STORAGE Xc
Positive = Clockwise =
d
518.99N(0.3048 m) 0.6796 m
ARCH 365 | ANALYSIS 2 OVERTURNING: COMBINED CONFIGURATION 78
=
232.77 N
ANALYSIS II: OVERTURNING
Coefficient of Friction Wood on wood = 0.30-0.70 Assumption: Bottoms of chair legs are not sanded smooth to improve grip. However, hardwood flooring is finished smooth, and the bottom of the legs are cut relatively smooth so assume a value of 0.4 to represent the condition that the interface is smoother than the median value of the provided range. Leather on wood = 0.20-0.50 Assumption: An approximation will be used on this interface to represent the contact between the fabric a person is wearing and the surface of the chair. As leather typically has superior grip compared to fabrics such as cotton or wool, and the finish on the chair seating surfaces is quite smooth, a value of 0.30 will be used for friction calculations Coefficient of Friction between person Wood and onchair. wood = 0.30-0.70
Wc = Wp = WN = Empty Chair
Assumption: Bottoms of chair legs are not sanded smooth to improve grip. However, hardwood flooring is finished smooth, and the bottom of the legs are cut relatively smooth so assume a value of 0.4 to represent the condition that the interface is smoother than the median 70.34 N the provided range. value of
336.2 N
602 N
Leather on wood = 0.20-0.50 672.34 N Assumption: An approximation will be used on this interface to represent the contact between the fabric a person is wearing and the surface of the chair. As leather typically has superior grip compared to fabrics such as cotton or wool, and the finish on the chair Chair seating surfaces is quite smooth, a value of 0.30 will be used for friction calculations to Floor between person and chair.
Fs = µsN = 0.4 x 70.34N Wc = = 28.13508 N Wp = = N W28.1 N =
70.34 N
336.2 N
602 N
180.6 N
672.34 N
268.9 N
Empty Chair Since Fs is less than the force required to tip the chair in its bench position it will Chair to Floor slide, not tip. However, in it's stool position, the friction force exceeds the tipping Fs = µsN force, therefore the =base 0.4 x will 70.34N grip and the stool can topple. = 28.13508 N = 28.1 N
Occupied Chair Since Fs is less Chair to Floor slide, not tip. Fs = µsN force, therefore
than the force required to tip the chair in its bench position it will Person to Chair However, in it's stool position, the friction force exceeds the tipping Fs = µsN the base will grip and the stool can topple.
= 0.4 x 672.34N Occupied = 268.93508 N Chair Chair to = 268.9 N Floor
Fs = µsN = 0.4 x 672.34N Again in the bench position, = 268.93508 the N = 268.9 N the frictional resistance of the
= 0.3 x 602N = 180.6 N Chair = 180.6 N
Person to Fs = µ sN = 0.3 x 602N force required to tip the person and the chair exceeds = 180.6 N = 180.6 N occupant's clothing, and of the frictional resistance
both
between the chair and the floor. First the occupant would merely slide backwards before the Again in the bench position, the force required to tip the person and the chair exceeds both chair moved, but the friction between clothing andfrictional chair was not exceeded, the the if frictional resistanceresistance of the occupant's clothing, and of the resistance between the chair before and the floor. First the occupant chair would slide backwards tipping could occur.would merely slide backwards before the
157.86 N 157.86 N
180.6 N
chair moved, but if the friction resistance between clothing and chair was not exceeded, the chair would slide backwards before tipping could occur.
In the stool position, the force required to tip the chair is less than both the friction In the and stoolthe position, theand force required tipthe the chair is less both the between the person chair, the chairtoto floor. If than a force of friction at least 157.34 between the person and the chair, and the chair to the floor. If a force of at least 157.34 N were applied at the top of the stool, the chair would tip backwards without the occupant N were applied at the top of the stool, the chair would tip backwards without the occupant of the chair sliding. of the chair sliding.
ARCH 365 | ANALYSIS 2
268.9 N
FRICTION - ANALYSIS
ARCH 365 | ANALYSIS 2
FRICTIO
FRICTION ANALYSIS: [P3] VERTICAL + HORIZONTAL 79
ANALYSIS II: OVERTURNING
Wp Wp
Wp
Wp
Xp = 152.40 mm
mm mm Xp = 152.40 Xp = 152.40
W3
F
232.77 N
F
W3
= 215.9mm
o 304.8304.8 mm mm
Wc =
Wc =
70.34 N 70.34 N
Wp =
Wp =
1000 N 1000 N
xc =
xc = 152.40 mm 152.40 mm
xp =
xp = 152.40 mm 152.40 mm
d =
d =
= 215.9mm = 215.9mm
Wp
D= 304.80 mm o
F
F
W3
D= 304.80 D= 304.80 mm mm
Wp
679.60 679.60 mm mm
o
Reduction�of�body�weight�for�sitting�position:�Feet,�lower�legs,�lower�arms,�and�half�the�upper�leg�will�be�supported�by�the�floor. Reduction�of�body�weight�for�sitting�position:�Feet,�lower�legs,�lower�arms,�and�half�the�upper�leg�will�be�supported�by�the�floor. 1000N���F ���FLLeg���Ffeet ���F���1/2F Wp�=� 1000N���F Wp�=�feet LArm LLeg���FULeg LArm���1/2FULeg
304.8 mm
= 1000N���28N���130N���40�N���1/2(200N) = 1000N���28N���130N���40�N���1/2(200N) =
602 N =
602 N
304.80 mm 304.80 mm
ڴMo =
ڴMo0 = Positive Positive = Clockwise = Clockwise 0 0 = Wcxc 0- W =Fd c - Fd 70.34 N cWcx= WFcx= W cx c = = 70.34N x 70.34N 0.1524m x 0.1524m F = c W =d 1000 N d p 0.3048m 0.3048m
ڴMo = =
ڴMo = 0 Positive = Clockwise = Clockwise 0 Positive Wpxp - Fd 0 = Wcxc 0+ =WpWxcpxc -+ Fd WFcx=c + WWpx 70.34 = N 70.34 x 0.1524m N x 0.1524m + 602 N +x 602 0.3048 N x m 0.3048 m= F = cx p c + Wp=xp d d 0.3048 m 0.3048 m
35.16885 35.16885 N N =
= 336.17 N336.17 N
Reduction�of�body�weight�for�sitting�p Wp�=
xc =
152.40 mm
=
xp =
152.40 mm
=
d =
304.80 mm
ARCH ARCH 365 |365 ANALYSIS | ANALYSIS 2 2 ڴMo =
0 0 = Wcxc - Fd Wcxc F = d
Positive = Clockwise =
OVERTURNING OVERTURNING - PIECE - PIECE 3 BENCH 3 BENCH CONFIGURATION CONFIGURA ڴMo =
0 0 = Wcxc + Wpxp - Fd Wcxc + Wpxp F =
679.60 mm
70.34N x 0.1524m 0.3048m
=
35.16885 N
d
Reduction�of�body�weight�for�sitting�position:�Feet,�lower�legs,�lower�arms,�and�half�the�upper�leg�will�be�supported�by�the�floor. Wp�=� 1000N���Ffeet���FLLeg���FLArm���1/2FULeg = 1000N���28N���130N���40�N���1/2(200N) =
602 N
ڴMo 365 = Positive 0 ARCH | ANALYSIS 2 0 = Wcxc + Wpxp - Fd Wcxc + Wpxp F = d
=
= Clockwise
70.34 N x 0.1524m + 602 N x 0.3048 m 0.3048 m
=
336.17 N
OVERTURNING: [P3] HORIZONTAL
Wp
80
OVERTURNING - PIECE 3 BENCH CONFIGURATION
F
= 1000N Ͳ 28N Ͳ 130N Ͳ 40 N Ͳ 1/2(200N) =
602 N
Wp
ANALYSIS II: OVERTURNING Positive = Clockwise
ڴMo =
0 0 = Wcxc + Wpxp - Fd Wcxc + Wpxp F = d
=
= 220.93mm
70.34 N x 0.1524m + 602 N x 0.3048 m 0.3048 m 3
W
Wp
Wp
mm Xp = 152.40 mm Xp = 152.40
F
D= 679.60 mm
336.17 N
=
Wp
Wp
F
= 220.93mm = 220.93mm
W3
W3
W3
W3
W3
D= 679.60 mm D= 679.60 mm
o o Wc =
Wp =
xc = x
xc =
c xp = x
xp =
d =d
=d
p
304.8304.8 mm
mm
mm
1000 N
Wc =
Wp =
304.8304.8 mm
mm
70.34 N
Wp = Wc =
o
304.8
Reduction of body weight for sitting p
70.34 N 70.34 N 1000 N 1000 N
220.93 mm
= 220.93 mm 220.93 mm 152.40 = 152.40 mm 152.40 mm
=
679.60 mm 679.60 679.60 mm
304.8
Wp
mm mm
Wp = Reduction of body weight for sitting position: Feet, lower legs, lower arms, and half the upper leg will be supported by the flo Reduction of body weight for sitting position: Feet, lower legs, lower arms, and half the upper leg will be supported by the floor. 1000N Ͳ F Ͳ FLLeg Ͳ FULeg Wp = feet LArm Ͳ 1/2FULeg Ͳ FLLeg Ͳ Ffeet Wp = 1000N Ͳ F = LArm Ͳ 1/2F
mm
ڴMo0 = Positive = Clockwise 0 Positive = Clockwise Positive = Clockwise =FdWcxc - Fd 0 Wcxc 0- = 0 =ڴMo Wx = 70.34N x 0.1524m F = 70.34N x 0.1524m F = c Fd = Wcxcc c0Wcx= d d 0.6796m 0.6796m
= 1000N Ͳ 28N Ͳ 130N Ͳ 40 N Ͳ 1/2(200N) = 1000N Ͳ 28N Ͳ 130N Ͳ 40 N Ͳ 1/2(200N) = 602 N = 602 N
ڴMo =
F =
Wcxc
=
ڴMo = 0 Positive = Clockwise 0 Positive = Clockwise Wpxp - Fd ڴMo = 0 = Wcxc 0+ =WpWxcpxc -+ Fd + Wp=xp = N x 0.1524m N x 0.3048 m cx WFcx=c + WWpx 70.34 N 70.34 x 0.1524m + 602 N +x 602 0.3048 F = pc 0 = mWcxc += d 0.6796 m d 0.6796 m
ڴMo = =
22.86637 N = 22.86637 N
70.34N x 0.1524m 0.6796m
d
=
22.86637 N
F =
ARCH 365 | ANALYSIS 2 = 1000N Ͳ 28N Ͳ 130N Ͳ 40 N Ͳ 1/2(200N)
0 0 = Wcxc + Wpxp - Fd Wcxc + Wpxp F =
Wcxc + Wpxp
OVERTURNING - PIECE 3 STOOL CO OVERTURNING - PIECE 3 STOOL CONFIG
Reduction of body weight for sitting position: Feet, lower legs, lower arms, and half the upper leg will be supported by the floor. Wp = 1000N Ͳ Ffeet Ͳ FLLeg Ͳ FLArm Ͳ 1/2FULeg
ڴMo =
0 157.86 N1 Wpxp = Fd d
| ANALYSIS 2 ARCH ARCH 365 |365 ANALYSIS 2
=
=
602 N
Positive = Clockwise =
d
OVERTURNING: [P3] VERTICAL
70.34 N x 0.1524m + 602 N x 0.3048 m 0.6796 m
W3OVERTURNING
=
157.86 N
- PIECE 3 STOOL CONFIGURATION 81
ANALYSIS III: FRAME, STABILITY & RACKING
82
ANALYSIS III: FRAME, STABILITY & RACKING
ANALYSIS III: FRAME, STABILITY & RACKING [P1] will be split into four segments for free body diagram analysis. Because each component is intended to be used in either a bench or stool orientation, the analysis will be conducted in both positions to examine the difference in resultant forces.
83
ANALYSIS III: FRAME, STABILITY & RACKING
l= 679.6mm 100 mm
l= 679.6mm 5 kN/m
100 mm a
Wdl(walnut) = 96.85N
b
5 kN/m a
b l= 679.6mm 100 mm moment connections providing lateral stability
c
d 5 kN/m
Wdl(walnut) = 96.85N
moment connections providing lateral stability
a
c
iece - B - C - D - D
b
d
Length (mm) Width (mm) Thickness 679.60 304.80 234.80 304.80 234.80 304.80 679.60 304.80 c
(mm) Density (kg/m3) Weight (N) 32.00 550.00 35.764 32.00 550.00 12.356 32.00 550.00 12.356 32.00 550.00 35.764
) Width (mm) Thickness (mm) Density (kg/m3) Weight (N) CH 365 | ANALYSIS 3 60 304.80 32.00 550.00 35.764 80 304.80 32.00 550.00 12.356 80 304.80 32.00 550.00 12.356 FREE-BODY DIAGRAM: [P1] HORIZONTAL 60 304.80 32.00 550.00 35.764 3
84
Piece
Length (mm)
Width (mm)
Thickness (mm)
mo pr st d
POS 1 |FREE BODY DIAGRA
POS 1 |FREE BODY DIAGRAM|1:5
Density (kg/m3)
Weight (N)
5 kN/m Wdl(walnut) = 96.85N
a
ANALYSIS III: FRAME, STABILITY & RACKING
c
Piece A - B A - C B - D C - D
Length (mm) Width (mm) Thickness (mm) Density (kg/m3) Weight (N) 679.60 304.80 32.00 550.00 35.764 234.80 304.80 32.00 550.00 12.356 234.80 304.80 32.00 550.00 12.356 679.60 304.80 32.00 550.00 35.764
ARCH 365 | ANALYSIS 3
DATA CHART: [P1] 85
1000 N
108.3 mm
ARCH 339.80 365 | ANALYSIS1036 3 N
870.7 N
ANALYSIS III: FRAME, STABILITY & RACKING
100.00
108.3 mm 339.80 5 kN/m
ARCH 365 | ANALYSIS 3
A - B Piece A - B Fi Dead Piece Live
Dead Live
xi
(N)
Vixi
(mm)
35.764 Fi (N) 1000 35.764 1035.764323
339.8 xi (mm) 100
1000 ڴFixi 1035.764323
X =
X = Fi Piece Dead Live
Piece
100
=
Y = Dead Live
A - B l =Y
35.764 1000 1035.764323
3 (mm )
mm 5450.48282 100000 105450.4828
l R2 ==
ڴF 679.6 iyimm
=
101.809
mm
L/3 =
304.8 mm / 3
571.32 mm x 1045 N = 870.74 N = 679.6 mm
870.7 N
1000 N
Dead Live
35.764 N
165.0 N
571.32 mm x 1045 N = 870.74 N = 679.6 mm
Y =
339.80
A - B
1000 1035.764323
100
ڴF x X = ARCH 365 | ANALYSIS 3 F i i
=
mm
304.8 mm / 3 Fi (N) Piece 35.764 1000 -0.2091035.764323 mm
L/3 - Y = Vixi 339.8 100
12152.71694 870.7 100000 112152.7169
=
R1 = 1/2 w x d
108.280
Vixi 152.4 100
X = b =
3 (mm )
101.809
5450.48282 100000 centre105450.4828 portion.
R2 =
mm
108.280 mm 571.320 mm
=
101.809
w x d
= 870.74 N =
= 165.03 N =
870.7 N
165.0 N
-0.209 mm
mm
5713.5 N/m 165.0 N
304.8
L/3 - Y = 870.7 N
108.28 mm x 1045 N = 165.03 N = 679.6 mm
165.0 N
-
R1 = 1/2 w 870.7 N = 0.5 x
1
Assume centroid is along L/3 line.
R2 = 1/2 w x d W =
165.0 N 304.8 mm / 3mm 152.4
L/3 - Y =
165.0 N
35.764 N
Ne
ARCH 365 | ANALYSIS 3
mm
L/3 =
108.28 mm x 1045 N = 165.03 N = 679.6 mm
L/3 - Y =
= 1082.9 N
L/3 =
-0.209 mm
= 1082.9 N/m =
101.6 mm
into centre portion.
R1 = 1/2 w x d 870.7 N = 0.5 x W x 304.8 mm 870.7 N W = = 152.4 mm
=
86
R1 = 1/2 w x d 870.7 N = 0.5 x W x 304.8 mm 870.7 N W = = 152.4 mm
Negligible distance.
1036 N
5713.5 N/m
Assume centroid is along L/3 line.
R2 = 1/2 w x d
165.0 N = 0.5 x W x 304.8 mm 5713.5 N/m
W =
165.0 N 152.4 mm
= 1082.9 N/m
Assume centroi
R2 = 1/2 w x d
101.6 mm
into centre portion.
Negligible distance.
PO
165.0 N = 0.5 x W x 304.8 mm
ARCH 365 | ANALYSIS 3
1000 N
W = mm 165.0 N 101.6152.4 mm mm
165.0 N = 0.5 x W x 304.8 mm
870.7 N
304.8 mm / 3
870.7 N
into centre portion.
571.32 mm x 1045 N = 870.74 N = 679.6 mm
Negligible distance.
5713.5 N/m
571.32 mm x 1045 N = 870.74 N = 679.6 mm
A-B: [P1] HORIZONTAL L/3 =
R2 = 1/2 w x d
W = R2 =
108.280 mm 571.320 mm
R1 =
5450.48282 100000 105450.4828
152.4 100
Fi
N = 0.5 x W x 304.8 mm 870.7 N W = = A - B l 152.4 = mm 679.6 mm mm
679.6 mm
X = b =
3 101.6 Viximm (mm )
into
ڴFiyi
Y =
3 (mm )
xi=(mm)
Dead Live
l =
Assume centroi 108.3 mm
5450.48282 100000 105450.4828
870.7 = 0.5 x= W x 304.8 mm ڴFiyN 101.809 i 108.3 mm Fi 870.7 N W = = 152.4 mm
R1 =
i
L/3 =
3
152.4 100
=
870.7 N A - B
100000 112152.7169
108.280
108.280
Vixi (mm ) -0.209 mm
(mm)
35.764 1000 1035.764323 R1 = 1/2
870.7 N
3 108.28 mm x 1045 165.03 N =Vixi 165.0 N Fi (N) N = x Piece i (mm) (mm ) Dead 35.764 339.8 12152.71694 679.6 mm
Live
xi
Negligible distance.
12152.71694 100000 112152.7169
165.0 N = 0.5 x W x 304.8 mm
5713.5= N/m
L/3 Fi-(N)Y =
Dead Live
339.8 100
304.8 mm / 3
Piece
ARCH 365 | ANALYSIS 3
R2 =
3 )
Vixi (mm (mm) intoxi centre portion.
35.764 339.80 1000 1035.764323
R1 = 1/2 w x d
100.00
mm
1036 N
101.6 mm
870.7 N = 0.5 x W x 304.8 mm 870.7 N ڴFixi = W = X = N L/3 mm = 1036 152.4 Fi
571.320 mm
R1 =
35.764 N
=
A - B Piece i (N) -0.209F100.00 mm
L/3 - Y =
679.6 108.28 mm x 1045 Nmm= 165.03 N = 108.280 mm 679.6 mm
X = b =
1000 N
52.63 N/m
108.280 Fi mm 571.320 mm
A - B
52.63 N/m
Vixi
101.809 152.4 100
=
mm
5450.48282 100000 105450.4828
5 kN/m (mm)
xi
(N)
108.280
3 (mm )
152.4 100
Fi
=
R1 =
mm
= Vixi
ڴFiyi
X = b =
52.63 N/m
100000 mm 112152.7169
108.280
(mm)
35.764 Fi 1000 1035.764323
Fi
10
12152.71694 3 Vixi (mm ) 100000 339.8 112152.716912152.71694
100.00
ڴFixi xi
(N)
870.7 N
3 (mm )
Fi
IS 3
=
100.00
35.764 N
W =
165.0 N 152.4 mm
= 1082.9 N
870.7 N
ANALYSIS III: FRAME, STABILITY & RACKING 5.7135 kN/m 5.7135 kN/m
5.7135 5.7135kN/m kN/m
870.7 N
870.7 N
870.7 N
5.7135 kN/m
5.7135 kN/m
870.7 N
12.356 N 40.5 N/m
883.1 N
12.356 N
883.1 N
5.7135 kN/m
40.5 N/m
5.7135 kN/m
A - C Piece
870.7 N
12.356 N
xi
FiN/m 40.5 (N)
Dead 152.40
304.80
152.4
1883.127378
870.7 883.1
101.6
88466.85704 5.7946 kN/m 90349.98441
202.55
1883.127378
152.40
12.356 N
102.311
mm
A - C Piece
Fi
xi
(N)
12.356
Live
152.4
870.7 L/3 = 883.1 ڴFiyi
Y =
mm
1883.127378
-0.711 mm 102.311
152.40
304.80
101.6 88466.85704 304.8 mm /90349.98441 3 =
L/3 - Y ==
102.311
202.55
A - C Pdead =
Vixi (mm3)
(mm)
=
Fi
883.1 N
304.80
40.5 N/m
Dead
mm
ڴFiyi
Y =
88466.85704 90349.98441
202.55
12.356 N
YAͲC =
101.6 mm
into centremmportion.
Negligible distance.
R1 = PAssume D+R1 =
3 (mm )
12.356
Live
3 (mm )
Vixi
(mm)
152.4 mm 870.7 N centroid 883.1 is along N L/3 line.@
102.31 mm
Fi
152.40
RC = 1/2 w x d
883.1 N = 0.5 x W x 304.8 mm A - C 304.80 202.55 883.1 N W = = 5794.6 N/m Pdead = 12.356 N 152.4 mm YAͲC = 152.4 mm
R1 =
870.7 N
L/3 = = P
304.8 mm @ /102.31 3
883.1 N
D+R1
L/3 - Y =
mm
-0.711 mm
=
101.6 mm
5.7946 kN/m
L/3 = L/3 - Y =
304.8 mm / 3
=
-0.711 mm
101.6 mm
into centre portion.
Negligible distance.
Assume centro
POS 1 | A-C
ARCH 365 | ANALYSIS 3
into centre portion.
RC = 1/2 w xdistance. d Negligible
883.1 N = 0.5 x W x 304.8 mm 883.1 N W = = 152.4 mm
Assume centroid is along L/3 line. 5794.6 N/m
RC = 1/2 w x d
ARCH 365 |= 0.5 ANALYSIS 3 = N101.6 mm x W x 304.8 883.1 mm
304.8 mm / 3
-0.711 mm
W =
883.1 N = 5794.6 N/m Negligible distance. Assume 152.4 mm
into centre portion.
= 1/2 w x d
= 0.5 x W x 304.8 mm 883.1 N = = 152.4 mm
centroid is along L/3 line.
PO
870.7 N 5794.6 N/m
POS 1 | A-C A-C: [P1] HORIZONTAL 87
5.7135 kN/m
165.0 N
165.0 N
165.0 N
ANALYSIS III: FRAME, STABILITY & RACKING 1.0829 kN/m
1.0829 kN/m
1.0829 kN/m1.0829 kN/m
165.0 N
1.0829 kN/m
1.0829 kN/m
165.0 N
1.0829 kN/m1.0829 kN/m
12.356 N 1.0829 kN/m 40.5 N/m
40.5 N/m
165.0 N
165.0 N
165.0 N
12.356 N
1.0829 kN/m 165.0 N
12.356 N
177.4 N
12.356 N
40.5 N/m
177.4 N
1.0829 kN/m
177.4 N
177.
165.0 N
40.5 N/m
1.0829 kN/m
3 ixi (mm )
Vixi
165.0 N
304.80
3 (mm )
304.80
152.40
152.40
202.55
304.80
7378 152.4 1883.127378 1883.127378
40.5 N/m
=
105.139 mm 105.139
B - D Piece
mm
Fi
Dead
xi
(N)
Vixi
(mm)
3 (mm )
1.1639 kN/m1.1
12.356
152.4
1883.127378
Live
165.0 177.4
101.6
16766.79818 18649.92556
202.55
177.4 N
ڴFiyi
=
Fi
202.55
B - D Pdead =
101.6=mm 101.6 mm
105.139 152.40
304.80
3 (mm )
12.356 152.4 1883.127378 L/3 = 165.0L/3 304.8 = mm101.6 L/3 / 3304.8 = mm16766.79818 = 304.8 / 3101.6 mm mm /= 3
Live
xi
(N)
Dead
202.55
Vixi
(mm)
Fi
Y =
304.80
mm
202.55
152.40
12.356 N 1.1639 kN/m
152.40
12.356 N
9818 101.6 16766.79818 16766.79818 2556 18649.92556 18649.92556
B - D Piece 40.5 N/m
12.356 N
YAͲC =
152.4 mm
1.1639 kN/m
177.4 18649.92556 R1 = 165.0 N L/3 - Y = L/3 - -3.539 Y =L/3mm - Y -3.539 = intomm centre -3.539into portion. mm centre into Negligible portion. centre portion. distance. Negligible Negligible Assume distance. centroid distance. Assume is centroid along Assume L/3centroid isline. along is L/3along line.L/3 line.
mm
14 @mm 105.14 mmY =
ڴFiyi
=
105.139
152.40
PD+R1 =
mm
177.4 N
@ 105.14 mm
Fi
B - D Pdead =
L/3 =
SIS 3
RD = 1/2 w xRDb = 1/2 wRDx =b1/2 w x b 304.80 202.55 177.4 N = 0.5 177.4 177.4 NW =x0.5 x W Nx =304.8 0.5 xmm 304.8 x W mm x 304.8 mm 177.4N 177.4N W = W = W177.4N = 1163.9 N/m = 1163.9=N/m1163.9 N/m 152.4 mm 152.4 mm 152.4 mm 12.356 N L/3 =
304.8 mm / 3
YAͲC =
R1 = P D+R1 =L/3
=
152.4 mm 165.0 N
Y =
177.4 N
304.8 mm / 3
101.6 mm
L/3 - Y = @ 105.14 -3.539 mm
mm
into centre portion.
-3.539 mm
L/3 -
=
101.6 mm
177.4 N = 0.5 x W x 304.8 mm 177.4N W mm = Y = -3.539 into centre portion.= ARCH 365 | ANALYSIS 3 152.4 mm
1163.9 N/m Negligible distance.
Negligible centr POS 1 distance. | POS B-D 1 Assume POS | B-D 1 |
Assume centroid is along L/3 line.
ARCH 365 | ANALYSIS 3
177.4 N = 0.5 x W x 304.8 mm 177.4N W = = 152.4 mm
RD = 1/2 w x b
304.8 mm / 3
101.6 mm
into centre portion.
Negligible distance. RD = 1/2 w x b
L/3 =
=
1163.9 N/m
Assume centroid is along L/3 line.
RD = 1/2 w x b 177.4 N = 0.5 x W x 304.8 mm 177.4N W = = 152.4 mm
PO
1163.9 N/m
POS 1 | B-D
165.0 N
B-D: [P1] HORIZONTAL 88
1.0829 kN/m
1096.2 N
1.1639 kN/m
ANALYSIS III: FRAME, STABILITY & RACKING
52.63 N/m
177.4 N
35.764 N
177.4 N
35.764 N
5.7946 kN/m
2.7616 kN/m
ARCH 365 | ANALYSIS 3
1.1639 kN/m
C - D C - D Fi (N) Piece Fi (N) Piece
Dead
Dead Live Live Live Live
xi
x
i (mm) 35.764
35.764 883.1 883.1 177.4 177.4 1096.2 1096.2 ڴFixi
X =
(mm)
Piece Live Live
177.4 ڴFiyi 1096.241604 F
Y =
132.318
=
ARCH Piece 365 | FiANALYSIS x3 (N) i (mm) Live Dead Live
Vixi
mm
mm
POS 1
3 (mm )
101.6
=
103.257
ڴFiyi
C -YD =
132.318
=
X = Y =
l =
679.6 mm
X = Y =
132.318 mm 103.257 mm
mm
i (mm)
i (mm)
52.63 N/m
52.63 N/m
883.1 N
ARCH 365 | ANALYSIS 3
Dead Live Live
L/3 =
679.6 mm / 3
L/3 - Y = Therefore: b = 3X =
X =
123.276 mm
Piece
Fi
xi
(N)
C - D Piece
Live
RC-D = 1/2 w x b Fi 1096.2 (N)
Fi
Piece
Fi
Vixi
(mm)
Dead 35.764 Vixi (mm3) Live 883.1 152.4 5450.48282 Live 177.4 101.6 1096.241604 89722.27529 101.6 18022.21643 113194.9745 Y = 883.1ڴF Niyi
152.4 101.6 101.6
C-D: [P1] HORIZONTAL
=
Fi 103.257
=
ڴFixi
Fi
xi
Vixi
(mm)
152.4 101.6 101.6
883.1 177.4 1096.241604 ڴFiyi
xi
679.6 mm
X = Y =
132.318 mm 103.257 mm
b = 3X =
Y =
mm
3 (mm )
RC-D
=
ڴF y
i i 123.276 mm
=
F
C - D
5450.48282 89722.27529 1096.2 N 18022.21643 226.53 mm 113194.9745
2.7
103.257 Case II Loading for mm distr
396.955 mm 679.6 mm
X = =Y =1/2
w x
L
132.318 mm b 103.257 mm
(mm )
L T b
2761.6 N/m
| A-C
2.7616 kN/m
ARCH 365 | ANALYSIS 3
2.7616 kN/m
103.257
mm
Fi
2761.6 N/m 679.6 mm
L/3 =
132.318 mm 103.257 mm mm
679.6 mm / 3
L/3 - Y = Therefore: b = 3X =
123.276 mm
=
226.53 mm
POS 1
Case II Loading for distributed reactions.
396.955 mm
RC-D = 1/2 w x b 1096.2 N = 0.5 x W x 396.955 mm 1096.2 N W = = 396.955 mm
365 mm | ANALYSIS 3
mm
1096.2 N
89 L/3 =
35.764 N
Vixi
152.4 101.6 101.6
177.4 NN/m i 2761.6
l =
5450.48282 89722.27529 18022.21643 113194.9745
L/3 =
177.4 N
132.318
(mm)
35.764 883.1 177.4 679.61096.241604 mm / 3 1096.2 N
1096.2 N = 0.5 x W x 396.955 L/3 - Y = mm 1096.2 N W = = Therefore: 35.764 N mm 177.4 396.955 N
5450.48282 89722.27529 18022.21643 113194.9745
=
3 (mm )
12152.71694 15454.13206 117445.9596 145052.8086
=
(N)
C - D l =
339.8 17.5 662.1
35.764 N
Dead Live Live
L/3 =
12152.71694 15454.13206 117445.9596 145052.8086
Vixi
(mm)
Case II Loading for distributed reactions.
396.955 mm
3 (mm )
103.257 ARCH
Piece
123.276 mm
mm xi
(N)
l = 145052.8086 X = Y = 132.318
=
Fi 132.318
=
Y =
(N)
Nxi = Wixix(mm3396.955 mm (mm)0.5 x V ) 339.81096.2 12152.71694 N = 17.5 15454.13206 396.955 mm C - D 662.1 117445.9596
Dead 35.764W = Vixi (mm3) Live 883.1 339.8 12152.71694 Live 177.4 17.5 15454.13206 1096.2 662.1 117445.9596 145052.8086 ڴFixi X =
3 i i (mm )
339.8 17.5 662.1
35.764 883.1 177.4 1096.2
1096.2 N = 0.5 x W x 396.955 mm = 226.53 mm 1096.2 N W = = ڴFixi = 132.318 mm 396.955 mm Fi Case II Loading for distributed reactions. POS 1 3
Dead ARCH 365 | ANALYSIS 3 35.764
396.955 mmLive
35.764 V xN
(mm)
35.764 883.1 177.4 1096.2
xi
(N)
226.53 mm Fi
=
RC-D = 1/2 w x b
1.1639 kN/m
C - D Piece
Fi
X =
679.6 mm / 3
L/3 - Y = Therefore: 883.1 N b = 3X =
1.1639 kN/m
mm
C - D Piece Dead Live Live
L/3 =
C - D 5.7946 kN/m
1.1639 kN/m
103.257
132.318 mm 103.257 mm
POS 1 | A-C
883.1 N
18022.21643 52.63 N/m mm 113194.9745
679.6 Fi mm
l =
2.7616 kN/m
152.4 5.7946 kN/m 5450.48282 3 xi101.6 Vixi (mm ) (mm) 89722.27529 152.4 101.6 18022.21643 5450.48282 113194.974589722.27529 101.6
i
mm
52.63 N/m
3 (mm )
339.8 12152.71694 12152.71694 17.5 15454.1320615454.13206 117445.9596117445.9596 662.1 145052.8086145052.8086
339.8 17.5 662.1
Fi
35.764 Fi (N)883.1 35.764 177.4 1096.241604 883.1
Vixi
Vixi (mm3)
=
Fi ڴFixi
X =
ALYSIS 3 Dead
m
ARCH 365 | ANALYSIS 3
883.1 N
m
m
883.1 N
52.63 N/m
5.7946 kN/m
679.6 mm / 3
679.6 mm / 3
= 226.53 mm L/3 177.4 - Y =N 123.276 mm Therefore:
=
226.53 mm
Case II Loading for distributed reactions.
2761.6 N/m
t)
ANALYSIS III: FRAME, STABILITY & RACKING
5 kN/m a
b
100 mm
= 96.85N
Wdl(walnut) = 96.85N moment connections providing lateral stability c
l= 304.8mm
d
th (mm) Width (mm) Thickness (mm) Density (kg/m3) Weight (N) 304.80 304.80 32.00 550.00 16.040 304.80 609.60 32.00 550.00 32.081 304.80 609.60 32.00 550.00 32.081 304.80 304.80 32.00 550.00 16.040
ALYSIS 3
POS 2 |FREE BODY DIAGRAM|1:5
FREE-BODY DIAGRAM: [P1] VERTICAL 90
Piece A - B A - C B - D
Length (mm) Width (mm) Thickness (mm) 304.80 304.80 32.0 304.80 609.60 32.0 304.80 609.60 32.0
Wdl(walnut) = 96.85N
ANALYSIS III: FRAME, STABILITY & RACKING
moment co providing stability c
Piece A - B A - C B - D C - D
l= 304.8mm
d
Length (mm) Width (mm) Thickness (mm) Density (kg/m3) Weight (N) 304.80 304.80 32.00 550.00 16.040 304.80 609.60 32.00 550.00 32.081 304.80 609.60 32.00 550.00 32.081 304.80 304.80 32.00 550.00 16.040
ARCH 365 | ANALYSIS 3
DATA CHART: [P1] 91
3 0 7
52.6 52.6 N/m
5 kN/m
ANALYSIS III: FRAME, STABILITY & RACKING
1000 N
5 kN/m
52.6 N/m A - B Piece
Fi
A - B Dead Piece Live
Fi
Dead Live
xi
(N)
Vixi
(mm)
16.040
152.4 (mm) 100
1016.040267 16.040
1000 ڴFixi 1016.040267
X =
3 (mm )
2444.536733 3 V100000 ixi (mm ) 102444.5367 152.4 2444.536733
xi
(N) 1000
100
=
100000 mm 102444.5367
100.827
Fi
Piece X = Fi Dead Live
ڴFixi xi
(N)
16.040 Fi 1000 1016.040267
Fi
Piece
152.4 100
xi
(N)
ڴFiyi
Y = Dead Live
16.040 1000 1016.040267
V =ixi
l = R2 =
3 (mm )
mm 2444.536733 100000 102444.5367
5 kN/m
=
mm 100.827 mm F304.80 i x 1016 N = 304.8 mm 100.827 mm
X = b =Piece
Fi
(N)
Dead Live365 ARCH
336.1 N =
(mm) 203.973ximm
R1 =
304.8 mm
ڴFiyi
Y =
100.827 mm x 1016 N = 304.8 mm
R2 =
=
0.773 mm
into outer 1000portion. N
101.6 mm Negligible distance.
mm
52.6 N/m
Assume centroid
R2 = 1/2 w x d
679.9 N = 0.5 x W x 304.8 mm 679.9 N W = = L/3 mm = 152.4
3 (mm )
336.1 N =
mm / 3
R1 = 1/2 w x d 4461.5 N/m16.04
304.8 mm / 3
L/3 - Y = N
100.827
Fi
mm304.8
L/3 - Y =
2444.536733 100000 679.94 N = 679.9 102444.5367
=
L/3 =
100.827
336.1 N
Vixi
16.040 152.4 1000 100 | ANALYSIS 3 203.973 mm x 1016 N = 1016.040267
mm
679.9 N
Vixi (mm3) Fi100.827 (N) mm xi (mm) F16.040 i mm 152.4 2444.536733 203.973 1000 100 100000 1016.040267 102444.5367 203.973 mm x 1016 N = 679.94 N = 679.9 R1 = N 304.8 mm A - BX = ڴFixi = 100.827
X = Piece b = Dead Live
mm
100.827
100.827 152.4 100
i i
52.6 N/m
2444.536733 100000 102444.5367
Vixi
=
304.80 ڴF y mm
Y =
3 (mm )
(mm)
Fi
A - B l = A - B
mm
(mm)
6
16.04 N
336.1 N = 0.5 x W x 304.8 mm
N
=
0.773 mm
W =
336.1 N
101.6152.4 mm
= 2205.4 N
mm
into outer portion.
Negli
R1 = 1/2 w x d 679.9 N = 0.5 x W x 304.8 mm 679.9 N W = = 152.4 mm
mm
336.1 N
679.9 N
4461.5 N/m
336.1 N
A - B l =
304.80 mm
X = b =
100.827 mm 203.973 mm
L/3 =
ARCH 365 | ANALYSIS 3 L/3 =
304.8 mm / 3
R1 =
L/3 - Y = mm
R2 =
=
203.973 mm x 1016 N = 679.94 N = 304.8 mm
0.773 mm
100.827 mm x 1016 N = 304.8 mm d R1 = 1/2 w x
679.9 N
0.773 mm
=
101.6 mm
into outer portion.
R1 = 1/2 w x d
Assume centr
R2 = 1/2 w x d
679.9 N = 0.5 x W x 304.8 mm Negligible Assume centroid 679.9 N W = distance. = 4461.5 N/m
336.1 N = 0.5 x W x 304.8 mm
is along L/3 336.1 W =line.
152.4 mm
336.1 N
Negligible distance.
N
= 2205
152.4 mm
R2 = 1/2 w x d
679.9 N = 0.5 x W x 304.8 mm 679.9 N 3 W = | ANALYSIS = ARCH 365 152.4 mm
3 0 7
L/3 - Y =
101.6 mm
into outer portion.
336.1 N =
304.8 mm / 3
336.1 N = 0.5 x W x 304.8 mm 4461.5 N/m
W =
336.1 N
= 2205.4 N/m
152.4 mm
mm
POS 5 kN/m L/3 =
304.8 mm / 3
L/3 - Y =
A-B: [P1] VERTICAL
0.773 mm
=
101.6 mm
into outer portion.
Negligible distance.
R1 = 1/2 w x d 679.9 N = 0.5 x W x 304.8 mm 679.9 N W = = 152.4 mm
Assume centroid is along L/3 N line. 1000
R2 = 1/2 w x d 336.1 N = 0.5 x W x 304.8 mm 4461.5 N/m
52.6 N/m
W =92 336.1 N 152.4 mm
= 2205.4 N/m
16.04 N
POS 2 | A-B
679.9 N
ANALYSIS III: FRAME, STABILITY & RACKING 679.9 N
679.9 N
4.4615 kN/m
679.9 N
679.9 N
4.4615 kN/m
4.4615 kN/m 679.9 N
4.4615 kN/m 4.4615 kN/m 679.9 N
4.4615 kN/m
4.4615 kN/m 4.4615 kN/m
679.9 N
4.4615 kN/m 679.9 N
4.4615 kN/m
712.0 N
32.081 N
105.3 N/m
Vixi
3 (mm )
2.4
4889.073465
1.6
69081.51224 73970.58571
A - C
Dead Live Live
xi 32.081 679.9 679.9 712.0 712.0
Y =
Vixi
(mm)
x105.3 i (mm)N/m 32.081
Vixi 152.4
3 (mm )
3 32.081 N (mm )
152.4 4889.073465 101.6 L/3 = 304.8 mm69081.51224 / 3 = 101.6 69081.51224
101.6 mm
73970.58571
73970.58571 -2.289 mm
L/3 - Y =
ڴFiyi
ڴFiyi
=
FiFi
=
into centre portion.
103.889
103.889
mm
3
3 =
3 - Y =
R1 R1 == PD+R1 = PD+R1 = 304.8 mm / 3
-2.289 mm
L/3 =
L/3w Y = RC = 1/2 x d
mm
Negligible distance. Assume centroid is along L/3 line. 304.80 304.80
POS 2 | A-B
RC = 1/2 w x d
L/3 =
into centre portion.
=
679.9 N
-2.289 mm
ARCH 365 | ANALYSIS 3
into centre portion.
101.6 mm
4.672 kN/m
L/3 - Y L/3 = -2.289 mm -2.289 into portion. Negligible Assume centroi - Y = mm centreinto centre portion.distance. Negligible distance.
Negligible distance.
101.6 mm
mm 304.8 / 3 L/3 304.8 = mm = / 3 101.6 mm=
POS 2 | A-C
679.9 N N 679.9 712.0 N @ 103.89 mm 712.0 N @ 103.89 mm = 101.6 mm
304.8 mm / 3
4.672 kN/m
4672 N/m
AA -- CC 304.80 PPdead 32.081 N N 32.081 dead == 304.80 YYAͲC == 152.4 mm mm 152.4 AͲC
712.0 N
32.081 N
4889.073465
712.0 N = 0.5 x W x 304.8 mm 712.0 N W = = 152.4 mm
mm
4.672 kN/m
712.0 N
304.80
mm
FiN/m APiece - C 105.3 (N) Fi (N) Piece Dead
Y =
32.081 N
105.3 N/m
103.889
103.89 mm
32.081 N
105.3 N/m
RC = 1/2 w x d RC = 1/2 w x d Assume 712.0 centroid line. N = is 0.5along x W xL/3 304.8 mm N712.0 = 0.5N x W x= 304.8 mmN/m W 712.0 = 4672 W152.4 = = mm 712.0 N
Negligible distance.
4672 N/m Assume centroid 152.4 mmis along L/3 line.
712.0 N = 0.5 x W x 304.8 mm 712.0 N W = = 4672 N/m 152.4RCmm= 1/2 w x d
ARCH 365 | ANALYSIS 3 712.0 N = 0.5 x W x 304.8 mm 712.0 N W = = 152.4 mm
POS 2 | A-C
4672 N/m
POS 2 | A-C A-C: [P1] VERTICAL
4.4615 kN/m
4.4615 kN/m
679.9 N
93
336.1 N
336.1 N
ANALYSIS III: FRAME, STABILITY & RACKING
2.2054 kN/m 336.1 N 338.1 N
2.2054 kN/m
336.1 N
2.2054 kN/m
336.1 N
338.1 N
2.2054 kN/m 2.2054 kN/m 338.1 N
2.2054 kN/m
2.2054 kN/m 2.2054 kN/m
338.1 N
2.2054 kN/m
338.1 N
2.2054 kN/m
368.2 N
32.081 N
105.3 N/m
Vixi
3 (mm )
52.4
4889.073465
01.6
34148.17891 39037.25238
105.3 N/m 304.80
106.026
Dead Piece
Fi
xi
32.081 xi (mm) 336.1 32.081 336.1 368.2 368.2
368.2 N
Fi
=
Fi
32.081 N 32.081 N304.80
YYAͲCAͲC ==
32.081 N
4889.073465
39037.25238 -4.426 mm
=
101.6 mm
into centre portion.
106.026
106.026
mm
368.2 N = 0.5 x W x 304.8 mm 368.2 N W = = 152.4 mm
L/3 - Y =
304.80
2.4159 kN/m
2415.9 N/m L/3 =
L/3 304.8 = mm =/ 3 101.6 mm= mm 304.8 / 3
101.6 mm
152.4 152.4 mm mm
-4.426 mm
L/3 =
into centre portion.
304.8 mm / 3
RD = 1/2 w x b
L/3 - Y =
-4.426 mm
368.2 N = 0.5 x W x 304.8 mm 368.2 N336.1 N = W = 152.4 mm
=
L/3 - Y L/3 = -4.426 mm -4.426 into portion. Negligible Assume centroi - Y = mm centreinto centre portion.distance. Negligible distance.
Negligible distance.
101.6 mm
into centre portion.
2.4159 kN/m
POS 2 | B-D
R1 336.1 N N R1 == 336.1 = PPD+R1 368.2 N N @ 106.03 mm mm 368.2 @ 106.03 D+R1 = 304.8 mm / 3 = 101.6 mm
L/3 =
Negligible distance. 304.80 Assume centroid is along L/3 line.
mm
RD = 1/2 w x b
304.80
BB -- DD dead= = PPdead
152.4
L/3 - Y =
ڴFiyi
Y =
3 (mm )
Vixi (mm3)
4889.073465 L/3 152.4 = 101.6 304.8 mm34148.17891 / 3 = 101.6 34148.17891 39037.25238
ڴFiyi
Y =
Vixi
(mm)
105.3 N/m
Live
mm
2.4159 kN/m
32.081 N
(N)
Live Dead
3
32.081 N 368.2 N
mm
B - D 105.3 N/m Fi (N) BPiece - D
106.03 mm
32.081 N
105.3 N/m
RD = 1/2 w x b = 1/2 x b Assume centroid isRDalong L/3w line. 368.2 N = 0.5 x W x 304.8 mm 368.2 N = 0.5 x W x 304.8 mm 368.2 N W = = 2415.9 N/m 368.2 N W152.4 = = 2415.9 N/m mm
Negligible distance.
152.4 mm is along L/3 line. Assume centroid
ARCH 365 | ANALYSIS 3 2415.9 N/m
ARCH 365 | ANALYSIS 3 RD = 1/2 w x b
368.2 N = 0.5 x W x 304.8 mm 368.2 N W = = 152.4 mm
B-D: [P1] VERTICAL
POS 2 | B-D
2415.9 N/m
POS 2 | B-D
2.2054 kN/m 2.2054 kN/m
338.1 N
94
712.0 N
2.4159 kN/m ANALYSIS III: FRAME, STABILITY & RACKING 4.672 kN/m
16.04 N
52.6 N/m
4.672 kN/m
712.0 N
2.4159 kN/m
24.672 kN/mkN/m 4.672 kN/m
712.0 N
2.4159 kN/m
2.4159 kN/mkN/m 2.4159 kN/m 2.4159
712.0 N
2.4159 kN/m
52.6 N/m
1096.2 N
17.50 17.50
C - D Piece
Fi
xi
(N)
(mm)
Dead
3
7.3529 kN/m
16.040 3 712.0 11392.26686 xi (mm) Vixi16 Fi (N) (mm ) 3 xi (mm) Vixi288.8 Fi (N) Piece (mm ) Live 368.2 106331.7291 Dead 16.040 152.4 2444.536733 Dead 16.040 152.4 2444.536733 Live 712.0 16 11392.26686 1096.2 120168.5327
Live 712.0 Live 3 368.2 368.2 VLive ixi (mm ) 1096.2 1096.2 2444.536733 ڴFixi X 2444.536733 = 152.4 2444.536733 11392.26686 16 11392.26686 F 11392.26686 x i = ڴFڴF XX =106331.7291 106331.7291 ixi i i 288.8 106331.7291
16 288.8 288.8
3 mm Vi)xi (mm3) m)
= =
120168.5327 FiFi 120168.5327 120168.5327
Piece
Fi
=
xi
(N)
101.60 101.60 7.3529 kN/mkN/m 7.3529 kN/m 7.3529
11392.26686 106331.7291 106331.7291 120168.5327 120168.5327 109.619
109.619 109.619
(mm)
Vixi
mm
mm 102.343
lC =- D Xl C ==- D Y =
mm
YSIS 3
X l == Y X ==
Y =
L/3 =
101.60
3 (mm )
mm
mm
mm 304.80 mm
L/3 =
109.619 mm mm 304.80 102.343 mm
679.6 mm / 3
L/3 =
109.619 mm mm 304.80 102.343 mm mm L/3 = L/3 mm mm L/3679.6 = / 3mm /679.6 /= 3 101.6 =mm 109.619 = 679.6 3 = mm101.6
L/3 - Y =
=
101.6 mm
679.6 mm / 3
-0.743 mm
L/3 - Y = 101.6 mm
L/3 =
=
101.6 mm
into centre portion.
-0.743 mm
679.6 mm / 3
Negligible distance.
=
into centre portion.
Assume centroid is a
101.6 mm
Negligible distance.
RC-D = 1/2 w x b 304.8- mm 1096.2 N = 0.5 x W xL/3 Y = -0.743 mm into centre portion. 102.343 mm = Negligible 1/2 b =distance. L/3 - L/3 Y = - Y = L/3 -0.743 centre portion. Negligible distance. centroid is along L/3 line. 1096.2 Nw xAssume - Y-0.743 =mm -0.743 mm centre into centre centroid is along W portion. = RC-D 7193.2 N/mAssume mminto into portion. Negligible distance. Assume centroid is along L/3 line. L/3 line. 1096.2 N152.4 = 0.5mmx W x 304.8 mm RC-D N= 1/2 =w 7193.2 x b RC-D =RC-D 1/2 =w 1/2 x bRC-D 1096.2 W = N/m w x = b 1/2 w x b W x 101.6 mm x Wmmx 304.8 mm 1096.2 NW =x 0.5 x304.8 304.8 1096.2 N =x1096.2 152.4 Nmm= 0.5 x W x 304.8 mm 679.6 mm 1096.2 / N3 = 0.5 =0.5 mm W = W = 1096.21096.2 7193.2 N/m =N/m7193.2 N/m N = 1096.2 WN = = N7193.2
ARCH 365 | ANALYSIS 3 L/3 - Y =
101.60
mm
Fi F i
C - D
7.3529 kN/m
mm
3 3 xi x Vixi V(mm FF Piece 109.619 i mm (mm) ) (mm ) Piece = 109.619 109.619 i(N) (N) mm 16.040 imm (mm) ixi Dead 152.4 2444.536733 Dead 16.040 152.4 Dead 16.040 152.4 2444.536733 2444.536733 Live 712.0 101.6 Live 712.0 101.6 72340.89455 72340.89455 Live 712.0 101.6 72340.89455 3 Live 368.2368.2 101.6 37407.56122 37407.56122 Live 101.6 3 3 mm Vi)xi (mm ) VLive 368.2 101.6 37407.56122 m) ixi (mm ) 1096.2 112192.9925 1096.2 112192.9925 2444.536733 mm 152.4 2444.5367331096.2 2444.536733 112192.9925 72340.89455 101.6 72340.89455 72340.89455 ڴFiyi Y = = 102.343 mm 37407.56122 101.6 37407.56122 yi iyi ڴFiڴF YY 37407.56122 == = 102.343 102.343 mm = F i 112192.9925 112192.9925 112192.9925
102.343 = 102.343
287.30 287.30
Vixi (mm ) 152.40 152.4 2444.536733 287.30
C - D Live CPiece - D
152.40
152.40
17.5017.50 17.50 152.40 152.40 152.40 287.30 287.30 287.30
17.50
152.40 287.30
368.2 N
16.04 N
m
1096.2 N 1096.2 N1096.2 N 368.2 N 16.04 N 17.50
368.2368.2 N N 368.2 N 16.0416.04 N N 16.04 N
52.6 N/m 52.6 N/m52.6 N/m
368.2 N
16.04 N
712.052.6 N N/m 712.0 N 712.0 N
-0.743 mm
152.4 mm 152.4 mm Negligible distance. 152.4 mmportion. into centre
ARCH 365 | ANALYSIS 3
W =
1096.2 N
Assume centroid is along L/3 line.
=
Assum
Negl
7193.2 N/m
152.4 mm
POS POS 2 | 2C-D POS 2 | | C-D
RC-D = 1/2 w x b 1096.2 N = 0.5 x W x 304.8 mm 1096.2 N W = = 152.4 mm
ARCH 365 | ANALYSIS 3N/m 7193.2
POS 2 | C-D
5 kN/m 1000 N
C-D: [P1] VERTICAL 95
52.6 N/m
16.04 N
ANALYSIS IV: BEAMS & COLUMNS
96
ANALYSIS IV: BEAMS & COLUMNS
ANALYSIS IV: BEAMS & COLUMNS The structural capacity for the chair must now be examined. At the beginning of the analyses, [P3] and [P4] were identified as the most critical components in terms of structure due to the cantilever of the shorter members with no internal member for load sharing or moment reduction. It stands to reason that if [P3] and [P4] have sufficient shear, crushing, and bending resistance, then all other members will either meet or exceed these values. However, [P5] and [P6] have a reduced cross section in the middle, and the shorter cantilever can actually amplify the compression load carried by the internal member. As such, this internal member will also be examined for column failure.
97
ANALYSIS IV: BEAMS & COLUMNS
l= 679.6mm
l= 679.6mm l= 679.6mm
Wdl(ash) = 69.9N
a
b
a
Wdl(ash) = 69.9N
b
a
b
l= 679.6mm
moment connections providing lateral stability
c
d Wdl(ash) = 69.9N
c
c
moment connections providing lateral stability
a
mome prov stab d
d
iece - B - C - D
Length (mm) Width (mm) Thickness (mm) Density (kg/m3) Weight (N) 679.60 304.80 32.00 600.00 39.016 269.80 304.80 32.00 600.00 15.489 269.80 15.489 Piece Length304.80 (mm) Width (mm) 32.00 Thickness (mm)600.00 Density (kg/m3) Weight (N) A - B 679.60 304.80 32.00 600.00 39.016 CHWidth 365 |(mm) ANALYSIS POS 1 |FREE BODY DIAGRAM (mm) 269.80 Density (kg/m3) A Thickness - 4C 304.80 Weight (N) 32.00 600.00 15.489 c 600.00 0 304.80B - D 32.00 39.016 269.80 304.80 32.00 600.00 15.489 0 304.80 32.00 600.00 15.489 ARCH 365 | ANALYSIS POS 1 | 0 304.80 32.00 4 600.00 15.489 POS 1 |FREE BODY DIAGRAM|1:5
FREE-BODY DIAGRAM: [P3][P4] HORIZONTAL Piece A - B A - C B - D
Length (mm) Width (mm) Thickness (mm) Density (kg/m3) Weight (N) 679.60 304.8098 32.00 600.00 39.016 269.80 304.80 32.00 600.00 15.489 269.80 304.80 32.00 600.00 15.489
POS 1 | A-B | SHEAR ARCH 365||ANALYSIS ANALYSIS44 ARCH 365
POS 1 | A-B | SH
ARCH 365 | ANALYSIS 4
ANALYSIS IV: BEAMS & COLUMNS
887.9 N
88 887.
887.9 N
Resistance) 15.489 NA A- -C C Piece 872.4 NPiece Dead 887.9 NDead
F Fi (N)
i (mm) xix(mm) 15.489 15.489
i (N)
Live Live
872.4 872.4 887.9 887.9
3 π MPa x 1089025 mm4 V2ixxi (mm11800 ) 2 (269.8 mm) x (304.8 mm x 32 mm) 6 247.8261481
A = E(Ash) = I
9753.6 mm! 3 MPa ixi 3 (mm ) ViV x11800 i (mm ) 247.8261481 =1616 bh" 247.8261481 = 832307.2 mm4 16 13957.79893 12 16 13957.79893 A - C (Buckling Resistance) 14205.62507 14205.62507 = 136.526 MPa Pdead = 15.489 N
A - C 6 -C C(Buckling (Buckling Resistance) f xA A13957.79893 V=xResistance) P0.091028 1026.7 = MPa = 0.0910281 -N Piece Fi (N) xi (mm) MPa 14205.62507 5.341 16.00 565.4624787 P == 15.489 a NN 04.8 mm x 32P mm 15.489 Dead 15.489 i (mm)
a
i
3 i (mm )
dead dead
= 872.4 017.5 π16279.97557 EI N f=16.00 = R1R1 Live872.4 N 872.4 ore this member has sufficient P = 887.9 l 052.8 16845.43805 P = 887.9A N Nbuckling resistance 887.9 efore this member has sufficient crushing resistance f = 7.6 MPa 2
CR
2
D+R1 D+R1
C(Ash)
A = 16 A = E(Ash)= = E(Ash) 16 II ==
PD+R1= = PD+R1 fC(Ash)
872.4 N f f= = A - C (Buckling Resistance) 887.9 A- -C C N Pdead =N A35.341
R1 = Vixi (mm3)
Res a(Buckling = Resi P A A- -C Cf (Buckling P 15. a dead = Pdead = 15.4 2 R1 = 87 π f = CR R1 = 872E
CR
PD+R1 = ! ! 9753.6 9753.6 mmmm 247.8261481 11800 MPa 11800 MPa
13957.79893
" fCR = = " bhbh = 14205.62507 1212
88 l2 887 7.
2 π2π x (269 (269.
Piece fNF=iF(N) 1017.5 i (N) Piece f = 101 Dead 35.34 304.8 PD+R1 = 1052.8 N Dead 35.341 304.8 4 π2 x 11800 MPa x 1089025 mm1017.5 Live 1017. 832307.2 Live 832307.2 mmmm 2 f, ,xtherefore therefore (269.8 mm) x (304.8 mm 32 1052.8 mm) 1052. F F <<<<f t 2 F <<f f , MPa ,therefore therefor fCR = πF x<<11800 x 1089 R1 =
a
4
A - C
CR
=
a
4
a a
a a
CR
CR
C(Ash) C(Ash)
3 fa Fi (N) xi (mm) N (679.60 PieceMPa 136.526 ) P 11800MPa MPax x1089025 1089025 A =π π x x11800 9753.6 mm! mm) m fMPa 1026.7 =V=ixi x(mm (304.8 0.0910 a = = = 136.526 mmmm (269.8 mm) x (304.8 mm x 32 mm) Dead 35.341 16.00 565.46 E(Ash)(269.8 = 11800 MPa a mm) x (304.8 mm x 32 mm) 304.8 mm x 32 mm A - C (Buckling Resistance) f = 1026.7 =N 2 Live 1017.5 π16279. EI = I = bh" = 832307.2 mm4 f16.00 ! CR f = 1026.7 N = 0.091028 MPa = 0.0910281 MPa P = 15.489 N A = 9753.6 mm dead 304.8 mm x 32 mm f = 1026.7 = 0.091028 MPa = 0.0910281 MPafCR, therefore 2 Fa << this member has sufficient 12 N l16845. A bu 1052.8 304.8 R1 mm =mmx x3232mmmm 872.4 N E 11800 MPa 304.8 (Ash) = Fa << fC(Ash), therefore this member fC(Ash) has sufficient = 7.6 M this member has PD+R1136.526 = 887.9 N I = F << bh"f , therefore = 832307.2 mm4 suf 4 = MPa 89025 mm thereforethis thismember memberhas hassufficient sufficientbuckling bucklingresistance resistance F F <<<<f f, ,therefore F << 12f , therefore this member has su mm x 32 Fmm) << f , therefore this member has sufficient crushing resistance CR = fCRf=
2
2
4
2
4
2
2
a
a
a
a
a
CR
CR
a
CR
a
C(Ash)
C(Ash) Fa a<< fC(Ash) , therefore this member has sufficient crushing resistance
fCR =
π2 x 11800 MPa x 1089025 mm4
0.091028 MPa = 0.0910281 MPa S= 1 | A-C | CRUSHING RESISTANCE (269.8 mm) x (304.8 mm x 32 mm) ARCH365 365||ANALYSIS ANALYSIS44 ARCH
=
136.526 MPa
2
POS11| POS
1026.7 N = 0.091028 MPa = 0.0910281 MPa a = sufficient buckling fresistance 304.8 mm x 32 mm s sufficient crushing resistance CRUSHING RESISTANCE: [P3][P4] HORIZONTAL - AC Fa << fCR, therefore this member has sufficient buckling resistance Fa << fC(Ash), therefore this member has 99 sufficient crushing resistance
POS 1 | A-C | CRUSHING RESISTA
ANALYSIS IV: BEAMS & COLUMNS
SIS 4 ANALYSIS 4
(N)
ARCH 365 | ANALYSIS 4
P
100 mm
644.6 mm
100 mm 200 mm
644.6 mm
200 mm 100 mm
WLL =5kN/m
WLL =5kN/m
644.6 mm 200 mm
WDL = 60.454 NWDL = 60.454 N
a
WLL =5kN/m
a
b
WDL = 60
a 872.4 N
166.7 N
872.4 N
166
872.4 N
xi (mm)
A - B 9.016 39.016 Piece 1000 1000 Dead 15625 1039.015625 Live
xi
POS 1 |POS A-B1 || MOM A-B
Vixi (mm3) Vixi (mm3) xi (mm) 339.8 339.8 13257.50939 13257.50939 F x Vx 100 100000 100000 100 39.016 339.8 113257.5094 113257.5094 i (N)
i (mm)
i
1000 1039.015625
= !Fixi Fi X =
=
100
=
x) Shear) 679.60 A mm- B (Max Fv(Ash) = 679.60 mm Shear) l 679.60 mm 09.005109.005 mm= mm X 109.005 mm 953742 mm= 570.5953742 mm
V
0
0
V
3 i (mm )
109.005109.005
!Fixi Fi
V 13257.50939 100000 113257.5094
mm
Vmax = 0.134 MPa Vmax = 0.134 MPa
- B (Max A - BShear) (Max Shear) V = 0.13 = 679.60 mm l = 679 A - B (Ma = 109.005109. mm X = l = 0 = mm b = 570.5953742 570.5953 max
R1 =
X = b =
644.6 mm x 10m 644.6 679.6 mm 6
R1 =
mm
R1 =
109.005
Fv(Ash) =
A l X b
mm
R2 =
15 MPa 15 MPa
100 mm 100 x 106 mm 679.6 mm 6 R2 =
R2 =
f = f = 3 x (1005.8 3 x A - B A - B F = 15 MPa = 2 x 304.8 2 fx mm 304x Fi (N) Vixi (mm3) Vixi (mm3) Piece Piece Fi (N)A - B xi (mm) xi (mm) F x Vx Piece17.498 Dead Dead 17.498 152.4 F152.4 2666.767345 2666.76734 b = 570.5953742 mm >> Ff , therefore this >> f , therefor Dead 17.498 152.4 26 .6 mm x 1060.5 N Live 204.8 204800 F 20480 >> f 644.6 mm x 1060.5 = N N = N 872.4 N872.4 N 1000 1000 Live 204.8 = 872.362872.362 = Live 1000 204.8 = = 872.362 N = 872.4 N 679.6R1mm 679.6 mm 644.6 mm x 1060.5 N 1017.498473 207466.7673 1017.498473 207466.767 v
v
v(Ash)
v
i (N)
i (mm)
v(Ash)
i
v v(Ash)
3 i (mm )
v
v(Ash)
679.6 mm
1017.498473
0 mm 100 x 1060.5 N mm x 1060.5 =N N = N 166.7 N = 166.653166.653 = N !F X = 166.7 = i 100 mm x 1060.5 N = = X = 166.653 N ixi = !Fix166.7 N = X = !Fixi 679.6R2mm 679.6 mm
Fi
679.6 mm
x (1005.8 N) 0.134 MPa 3 x (1005.8 N)= = 0.134 MPa f = 3 x (1005.8 N) = 304.8 x 32mmmmx 32 mm 2 x mm 304.8 2 x 304.8 mm x 32 mm v
Fi
v
20
203.899 203.899 =
203
Fi
0.134 MPa
this member has sufficient shear has resistance ,fore therefore this hasthis sufficient shear resistance F >> f , member therefore member sufficient shear resistance v(Ash)
v
SIS 4 ARCH 4 ANALYSIS 365 | ANALYSIS 4
POS 1 |POS A-B1 || SA
SHEAR ANALYSIS : [P3][P4] HORIZONTAL - AB 100
200 mm
4 NALYSIS 4 ARCH 365 | ANALYSIS 4
POS 1 |FREE POS 1 BODY |FREEDIAGRAM|1 BODY DIA POS
WLL =5kN/m
ANALYSIS IV: BEAMS & COLUMNS WDL = 39.016
a
b
POS 1 |FREE BODY DIAGRAM|1:5 200Nmm 519.5
519.5N
200 mm
200 m
Mmax = 353.1 Nm WLL =5kN/m
13257.50939
A - B (Max Moment) l = 679.60 mm a X = 339.8 mm
200 mm
M
339800 353057.5094
0
b =
WLL =5kN/m
39.800
Mmax =
mm
WDL = 39.016
a
WLL =5kN/m WLL =5kN/m WDL = 39.016 W = 39.016 DL
Fb(Ash) = c=
a
a
339.8 mm 519.5N 1060.5 519.5N N x 679.60 mm 2
b I =
=
b
w=
353.058
8.3 MPa b 16 mm
0.128 N/mm
Nm =
519.5 N 353.1
519.5 Nm N
519.5N
Mmax = 353.1 Nm M
max
= 353.1 Nm
= 832307 mm4 (32 mm)3 - B (Max A -Moment) B (Max Moment) 3 xi (mm) = 679.60 mm679.60 Vixi (mm3) l = A x-i (mm) B Vixi (mm ) A mm - B (Max Moment) Fb 6 39.016Piece 339.8 Fi (N) 13257.50939 =x 16 mm 339.8 mm 339.8 339.8 13257.50939 X = " mm fbA= - B xi (mm) Vixi (mm3) lMPa = = 6.787061 6.787 679. MPa 519.5N 519.5 N 3 fbb = F1000 = 339.8 8.339.016 MPa339800 339800 = 339.8 M c mm b(Ash)Dead #i (mm) Fi M x V Piece 0 b = (N) ixi (mm ) 339.8 13257.50939 X = 339 M 0 339.8 339.8 mm 0 10809025 mm c Live = 16 mm1000 353057.5094 Dead 17.498 152.4 I 2666.767345 539.015625 353057.5094 339.8 339800 b = 339 M 0 Mmax = 353.1 Nm ! w= 0.128 N/mm bh1060.5 Mmax = I 1060.5 N x 679.60 mm679.60 = mm353.058 Live 1000 204.8 Mmax == N x204800 = 3 1039.015625 353057.5094 Fb(Ash) > fb, therefore this member has sufficient bending 12 2 207466.7673 = mm 1017.498473 !Fixi = A 339.800 mm 2 Mmaxresistance = 1060.5 N - B (Max339.800 Moment) 3.058 Nm 353.1 ∆max1MPa = 5wl4 Fi X == = 339.800 i l =!FixNm 679.60 mm Fb(Ash) =mm 8.3 4 ∆max1 X= = 5 !F x i0.198 N/mm x (679.60 mm)x = =0.0362001 mm 384EI I = x = 203.899 mm i = mm (32 mm mm)x3 (32 =83230 304.8 mm)3 X = Fi 339.8 mm c= 16 mm I 304.8 4 384Fix 11800 MPa x 1089025 mm 12 12 I = 304.8 m b = 339.8 mm w= 0.128 N/mm M 0 ∆max2 = Pl3 832307 mm4 ∆total = 0.04215 mm oment) fbA= -mmB + f0.5004 360342 mm Nmm x 16 Nmm mm x =16 " mm 0.70 6.78706 360342 " bA= - B 48EI Mmax = F 1060.5 N x 679.60 mm = 353.058 Nm = 353.1 Nm 3 f 0 mm679.60 = 8.3 MPa = M c b f b(Ash) # mm F = 8.3 MPa = b FPiece xi (mm) fbA=xVi360342 xi (mm ) Piece A - B (Max Moment) b(Ash) i (N) Fi (N) 10809025 10809025 mm mm#i (mm)B 2 16 mm 8 mm 339.8 mm c= 16 mmFb(Ash) = Dead E(Ash)Dead 17.498 152.4 I 266 lMPa = = 8.3 MPa = 11800 MPa 17.498Piece 6.787061 6.787 679.60 MPa c =mm Fi 152.4 (N) 1080 ! I I 8 mm 339.8 w =mm 0.128 N/mm = bh X mm = 339.8 c = 16 mm Live 1000 204.8 w= 0.128 N/mm = Live 1000Dead 204.8 I = = 832307 mm4 304.8 mm x (32 mm)3 Fb(Ash) > fb,Fb(Ash) therefore this1017.498473 member sufficient be > f1017.498473 thishas member has 12 suffi b, therefore 207 b = 339.8 mm w= 0.128 N/mm Live 12 4 x 679.60 mm = 353.058 Nm = 353.1 Nm ∆ = 5wl F > f , therefore max1 1060.5 N x 679.60 mm = 353.058 Nm = 353.1 Nm ∆b max1 = b(Ash) 1017. 4 ∆max1 X= = ∆max1 5= !F x 0.198 N/mm x (679.60 mm) ient bending x i0.198 (679.60 2 = N/mm x384EI 2 Mmaxresistance X = ixi 5 !F xi = A -203. = 1060.5 353.058 Nm = 353.1 Nm B3 fbA= - NB x 679.60 360342 mm Nmm x= 16 mm " 6.787061 MPa = 6.787 MPa 4 384Fix 11800 x ∆1089025 384FMPa x 11800 1089025 = = x mm 5 !F x i max1 MPa 3 2 X f i = M c b # F x V x l = Piece i (N) i (mm) i i (mm ) 4 10809025 mm )x = =0.0362001 mm ∆max2 = 1000 N x (679.60 mm)3 = 0.66581 mm ∆ 4 4 mm832307 =∆max2 Pl3 X=384 832307 (32 mm mm)x3 (32 max2 mm =Dead 304.8 mm)3 17.498 152.4 I 2666.767345 = F 4 4 ∆ 0.04215 mm + 0.5004 mm 48 x 11800 MPa x 1089025 mm total = ∆ = 0.04215 mm 48EI +mm0.5004 total 4! 12 3 12 I = 4 mm = 832307 304.8 I = bh wdead = Livemm x (32 mm) 1000 204.8 204800 ∆total = 12 Fb(Ash) >mm fb, therefore this member has sufficient bending resistance 12 1017.498473 207466.7673 mmm x 16 Nmm mm x =16 " mm 0.70 6.787061 MPa = 6.787 E(Ash) = 360342 = MPa " 6.787061 MPa = MPa6.787 MPa E11800 (Ash) ∆max1 = 5wl4 Mmax 4 = fbmm =# 360342 " 6.787061 MPa 6.787 MPa 9025 10809025 mm# ∆max1 X= =Nmm x 16 5 !F xmmi0.198 N/mm x (679.60 mm) = 0.0362001 mm ∆ 1 max2 = 384EI 203.899 xi = mm # 4 384 x 11800 MPa x 1089025 mm 48 x 10809025 mm Fi I ∆max2 = Pl3 his member sufficient bending resistance erefore thishas member has∆total sufficient bending resistance POS 1 | A-B | MOMENT = 0.04215 mm + 0.5004 mm = 0.70 mm 48EI Fb(Ash) > fb, therefore this member has sufficient bending resistance 4 3 .1985 N/mm x (679.60 = 0.0362001 mm ∆max2 = N x 1000 (679.60 = 3 0.66581 x 0.198 N/mm x mm) (679.60 mm)4 = 0.0362001 mm ∆max2 1000 = N x mm) (679.60 mm) = mm 0. f = 11800 MPa E 4 4 (Ash) 4 4 4 11800 x ∆1089025 mm 48 x 11800 MPa x 1089025 mm 384 MPa x 11800 MPa x 1089025 mm 48 x 11800 MPa x 1089025 mm = 5 x 0.198 N/mm x (679.60 mm) = 0.0362001 mm ∆ = 1000 N x (6 max1 max2 384 x 11800 MPa x 1089025 mm4 48 x 11800 MPa 0.04215 mm + 0.5004 = 0.70 0.04215 mm +mm0.5004 mm = mm 0.70 mm Fb(Ash) > ∆total = 0.04215 mm + 0.5004 mm = 0.70 mm ∆max2 =
1000 N x (679.60 mm)3
4 48 x 11800 MPa x 1089025 mm NALYSIS 4 ARCH 365 | ANALYSIS 4
=
304.8 mm x A 12 l X 360342 Nmm
0.66581 mm
4
MOMENT ANALYSIS : [P3][P4] HORIZONTAL - AB
POS 1 | A-B | 101 MOMENT
POS 1 |POS A-B1 || MOMEN A-B
ANALYSIS IV: BEAMS & COLUMNS
a
a
b
b
a
b
69.9N Wdl(ash) = 69.9N
Wdl(ash) = 69.9N
c
c
l= 304.8mm l= 304.8mm
d
d
moment connections providing lateral moment connections providing stability lateral stability
moment providi stabili
c d l= 304.8mm ength (mm) Width (mm) Thickness (mm) Density (kg/m3) Weight (N) ) Width (mm) Thickness Density Weight (N) 304.80 304.80 (mm) 32.00(kg/m3) 600.00 17.498 .80 304.80 32.00 600.00 17.498 615.60 304.80 32.00 600.00 35.341 Piece Length (mm) (mm) 600.00 Thickness (mm) (kg/m3) Weight (N) .60 304.80 32.00 Width 35.341 Density 304.80 304.80 32.00 600.00 17.498 A B 304.80 304.80 32.00 600.00 17.498 .80 304.80 32.00 600.00 17.498 A C 615.60 304.80 32.00 600.00 35.341 ANALYSIS 4 POS 2 |FREE BODY DIAGRAM|1:5 C - D 304.80 304.80 32.00 600.00BODY DIAGRAM|1:5 17.498 4 POS 2 |FREE
POS 2 |
ARCH 365 | ANALYSIS 4
FREE-BODY DIAGRAM: [P3][P4] VERTICAL 102
Piece A - B A - C C - D
Length (mm) Width (mm) Thick 304.80 304.80 615.60 304.80 304.80 304.80
ARCH 365 | ANALYSIS 4
POS 2 | A-B | SHEAR ARCH 365 | ANALYSIS 4 ARCH 365 | ANALYSIS 4
ARCH 365 | ANALYSIS 4
ANALYSIS IV: BEAMS & COLUMNS
1052.8 N
1052.8 N
kling Resistance) A - CN = 35.341 A - C Piece N Fi (N) 1017.5 Piece F Dead N i (N) = 1052.8 Dead Live Live
xi (mm)fa xi (mm)fa
35.341 35.341 1017.5 fCR 1017.5 fCR 1052.8 1052.8 565.4624787 4 C(Ash) π2 x 11800 MPa x 1089025 fmm 6577 fC(Ash) (679.60 mm)2 x (304.8 mm x 32 mm) 16279.97557
A = 9753.6 mm! 3 V x 11800 MPa = E(Ash)iP=i (mm3 ) ViP xi (mm ) = 16.00 565.4624787 I a= bh" = 832307.2 mm4 16.00 a 565.4624787 A - C (Buckling Resistance) 16.00 π2EI 16279.97557 = 12 16.00 16279.97557 A - C (Buckling π2EI = Pdead = Resistance) 35.341 N 16845.43805 l2A - C 16845.43805 P AR1 = 26.5921017.5 N l2A = N = 7.6 MPa26.224 MPa A - C = F 1361.3 N x R1Piece = = 7.6 MPa
0.96 A - C 16845.43805 3466 A - C (Buckling fa - P C = A Resistance)
A - C f(Buckling a = A - C (Buckling R Pdead = Pdead = π fCRR1 == R1 = PD+R1 = PD+R1 = fC(Ash) = 7
A = Vixi (mm3) E(Ash) = PD+R1 = Fi (N) 1052.8xNi (mm) V x 3 fCR = Piece Dead 16.00 i i (mm ) 425.4746577 fCR =I = PD+R1 = 1387.9 26.592 N Dead 26.592 16.00 425.4746577 Live 1361.3 16.00 21780.96 0.108 MPa 1361.3 16.00 21780.96 ViP xi (mm3) Live ! 1387.9 22206.43466 = A 9753.6 mm 3= VixiA(mm=) fa = 4 ! 1387.9 22206.43466 2 4 mm f=CR565.4624787 =fCR =9753.6 = 16.00 aE(Ash) x 1089025 π2 x MPa 11800 MPa x mm 1089025 fa mm = 11800 π x 11800 MPa 16.00 E 425.4746577 2 = 11800 MPa (679.60 mm) x (304.8 mm x 32 mm) 2 (Ash) 2 " (679.60 mm) x (304.8 mm x 32 mm) 4 dead
i (N)
9
i (mm)
b 1(
N Piece = Fi 0.107943721 A 1026.7 - C (Buckling Resistance) xi =(mm)fa (N) Pdead = 35.341 N a F xi (mm) i (N) 304.8 mm P xdead 32= mm Piece N 2 Dead 35.341 35.341 R1 1017.5 N π2EI fCR = = Dead 26.592 R1 = 1017.5 N 3 1017.5 resistance 16.00 π EI 16279.97557 .2 mm4 this member fCR = PD+R1 = Live 1052.8 N buckling bh" = 832307.2 mm l2A herefore has sufficient Live 1361.3 16.00 II == 21780.96 4 PD+R1 = 1052.8 N bh = 832307.2 mm 2 l A f 16845.43805 12 Fa << fCR, therefo =has 7.6 MPa 1052.8 therefore thisfmember sufficient crushing resistance C(Ash) ! = 1026.7 N A - fCa = = 0.1422964 = 1387.9 22206.43466 A = 9753.6 mm Pa <<0.107943721 F f , therefo fa =12 1026.7 N = Fa << fCRC(Ash), there fC(Ash) = 7.6 MPa 304.8 mm x 32 mm F xi ,(mm)theref Piece F 11800 MPax 1089025 mm4 aa << fC(Ash) fCR E =(Ash) = = 26.224 MPa π2 x 11800 MPa 304.8 mm x 32 mmi (N) fCR = = 26.224 MPa π2" x 118002 MPa x 1089025 mm4 Dead 26.592 2 (679.60 mm) x mm x 32 mm) πbuckling EI I = bh = (304.8832307.2 mm4 F << f , therefore this member has fCR sufficient = resistanc (679.60 mm)2 x Resistance) (304.8 mm x 32 mm) Live 1361.3 A - C (Buckling
MPa
a
a
CR
F F<< << f f, ,therefore thisthis member has sufficient crushing resista 12 l 2A therefore member has sufficient buckli a CR ! 1387.9 f = 1026.7 N = 0.107943721 = 0.108 MPa Pdead = 35.341 N A = 9753.6 mm f = 7.6 MPa F << f , therefore this member has sufficient crus C(Ash) a = C(Ash) f = 1026.7 N = 0.107943721 0.108 MPa 304.8 mm x 32 mm1017.5 N 4 R1 = E = 11800 MPa = 26.224 5 mm 304.8 mm xMPa 32 mm f = 3 x (Ash) (1387.9 N) = 0.427 MPa " PD+R1 = 1052.8 N I mm = x 32 bh = 832307.2 x 32 mm) 2 x 152.4 mm F << f , therefore this member has sufficient buckling resistance F << f , therefore this member has sufficient buckling resistance 12 F << f , therefore this member has sufficient crushing resistance F >> f , therefore this member has sufficient shear resistance F << f , = therefore this MPa member has sufficient crushing resistance 0.107943721 0.108 = = 26.224 MPa π2 x 11800 MPa x 1089025 mm4 OS 2 | A-C | CRUSHINGfCRRESISTANCE (679.60 mm)2 x (304.8 mm x 32 mm) ARCH 365 | ANALYSIS 4 POS 2 ARCH 365 | ANALYSIS 4 POS 2 | ient buckling resistance fa = 1026.7 N = 0.107943721 = 0.108 MPa icient crushing resistance 304.8 mm x 32 mm a
C(Ash)
a
a
v
a
a
a
a
CR
CR C(Ash)
v(Ash)
C(Ash)
v
CRUSHING RESISTANCE: [P3][P4] HORIZONTAL - AC
Fa << fCR, therefore this member has sufficient buckling POS 2 |resistance A-C | CRUSHING RESISTANCE 103sufficient crushing resistance Fa << fC(Ash), therefore this member has
NALYSIS 4 4 ARCH 365 | ANALYSIS 4
A-B POS 2 | POS A-B 2| |MOMENT ANALYSIS IV: BEAMS & COLUMNS
ARCH 365 | ANALYSIS 4
WLL =5kn/m
WDL = 17.498N WDL = 17.498N
a
a
b
WDL
b
a
WDL = 17.4
a
1017.49 N
1017.49 N
1017.49
1017.49 N
A -xiB(mm) Vixi (mm ) x Vix V V F x2666.767345 Vixi (mm3) Piece i (mm) 7.498 17.498 152.4 i (N)152.42666.767345 152.4 2666.767345 A1000 -Dead B 204.8 204.817.498 1000 204800 204800 15 MPa 3 Live Fi (N) 1000 204.8 204800 xi (mm)207466.7673 Vixi (mm ) Piece 1017.498473 98473 207466.7673 1017.498473 207466.7673 17.498 152.4 2666.767345 72.4 N Dead
(N)
WLL =5kn/m
3 i (mm )
i (mm) 15 MPa
!FixiLive = X = .4 N Fi
66.7 N
X =
.7Shear) N
3
= 203.899204.8 1000 203.899 !F x = i i 1017.498473 Fi !Fixi Fi
=
mm
0
0
Therefore: VTherefore: 0
mm 204800 203.899 207466.7673 203.899
A - Shear) B (Max A - B (Max l = l = Fv(Total) V = Fv(Total) =0 10
mm
RA =
RA = 10
fv =
fv = 3 2 x
mm
>> fv, Fv(Ash) >> F fv(Ash) v, therefo
A - B mm (Max Shear) 304.80 304.80 mm Fv(Ash) = Fv(Ash) = 15 MPa 15 MPa l = 304.80 mm Fv(Ash) = 15 MPa 1017.498 N 017.498 N A -Fv(Total) B (Max = Shear) 1017.498 N ce l = 304.80 mm Fv(Ash) = 15 MPa Fv(Total) = N 1017.498 N 1017.498 017.498 NTherefore: 1017.498 N RA = Therefore: 3 x (1027.114 N) = 0.156 MPa 0.156 MPa x (1027.114 N) = 1017.498 N R f = 3 x (1027.114 N) = 0.156 MPa A = v 2 xmm 304.8 304.8 x 35mm mmx 35 mm 2 x 304.8 mm x 35 mm fthis 3 has x (1027.114 0.156 MPa v = therefore member sufficient shear=resistance ore this member has sufficient shearN)resistance 2 x 304.8 this mm x member 35 mm has sufficient shear resistance Fv(Ash) >> fv, therefore F
>> f , therefore this member has sufficient shear resistance
v(Ash) v NALYSIS 4 4 ARCH 365 | ANALYSIS 4
SHEAR ANALYSIS : [P3][P4] VERTICAL - AB ARCH 365 | ANALYSIS 4 104
A-B POS 2 | POS A-B 2| |SHEAR
T ANALYSIS IV: BEAMS & COLUMNS
4 ARCH ANALYSIS 4 365 | ANALYSIS 4
POS 2 |FREE DIAGRAM|1: POS 2BODY |FREE BODY PO DI
POS 2 |FREE BODY DIAGRAM|1:5 200 mm
200 mm WLL =5kn/m
WLL =5kn/m
WDL = 17.498N W = 17.498N DL
a
200 mm
WDL = 17.498
ba
a
b
WLL =5kn/m
WDL = 17.498N
a
1017.49 N
b
A - B 1017.49 N fb = fb MVixci (mm= = MVixci (mm3) MVixci (mm3) xi (mm) Piece Fi (N) 3) xi (mm) I I 8 152.4 2666.767345 Dead 17.498 152.4 I 2666.767345 17.498 152.4 2666.767345 ! ! I ! I bh = I bh =F bh = 0 304.80 204.8 204800 mm = Live 1000 204.8 204800 1000 204.8 204800v(Ash) 12 12 12 3 207466.7673 1017.498473 207466.7673 017.498473 207466.7673 017.498 N= 4 ∆max1 4 ∆max1 = 5wl4 (Max Moment) ∆max1 5wl A= - B5wl 384EI 384EI = mm mm !F384EI 203.899 ixi !Fixi = X = = l 203.899 203.899 =304.80 mm X = 203.899 mm F i Fi 3 3 ∆max2 ∆max2 0.05741 = Pl 017.498 N= ∆Mmax2 Pl w=dead = Pl03 n/mm 48EI 48EI 48EI
A - B (Max A Moment) - B (Max Moment) A - B (Max Momen l = 304.80 mm 304.80 l = mm l = X = 203.899 mm203.899 X = mm X = wdeadM= 0 wdead = 00.05741 M n/mm 0 wdead =n/mm 0.05741
fb xi (mm)
Mmax = 1027.114 N x 304.8 mm A -= B (Max Moment) 11800 E(Ash) oment) = 11800 E(Ash) x (1027.114 N) = 0.156 MPa MPa =MPa 11800 MPa E (Ash) .80 mm 304.80 Fb(Ash) = mm Fb(Ash) = 8.3 MPa l = mm 304.80 8.3 304.8 mm x 35 mm 899 mm203.899 c = mm 16 mm X = mm 203.899 c = 16 Mmax = 207.5Nm I =E 304.8 mm x (32 mm)3 741 n/mm = 11800 MPa (Ash) w = 0.05741 n/mm dead 0.05741 n/mm E(Ash) = 11800 12
=
15 MPa M
207.467
Fb(Ash) = MPa mm c = = E(Ash) = MPa
ore this member has sufficient shear resistance
N1027.114 x 304.8 NmmMxmax304.8 207.467 = 207.5 == 1027.114 NNm x 304.8 mm 207.467Nm mm = 207.467 Nm == Nm207.5 3 fb = Nmm x 16 mm mm = 30.66581 " ∆ 1000 N =xmm(679.60 mm)3 308932 0.66581 max2 = xmm) (679.60 mm) 0.66581 mm f= = M c b 4 9025 4 48 x mm 11800 MPa x 1089025 mm4 10809025 mm# I MPa xmm1089025
Mmax =
Fb(Ash) mm= c= E(Ash)
= Nm
8.3 16 mm4 832307 11800
Nm = 207.5 3.988273 MPa
N x 304.8 Nmm 207 Mmax == 102 M1027.114 1027.114 x 304.8 mm max = 8.3 MPa 16 mm
= 207.5NmM = 207.5Nm Mmax = 2 max 3 I =11800MMPa max x (32 mm) I = = mm I 304.8 = 304.8 mm x (32 mm)3 3 12 12 = 207.5 Nm fb = x 16 mm 33 fb308932 = 308932 f Nmm = c f=bx= "16M mm MPa fM Nmm c # # 10809025 mm I mm 10809025 mm I ! I = Ibh MPa = sufficien bh! Fb(Ash) > fb, Ftherefore this member has F12 fb, theref b(Ash) > member has b(Ash) > fb, therefore this 12 ∆ = Nm ∆ wl x = wl mm)4 ∆3.988 (304.8 max1 = ∆max1 = x (3 = MPa∆max1 =0.08896 N/mm 0.08896 N/mm 8EI 8EI 4 8 x 11800 8MPa x 1089025 x 11800 MPa xmm 10
4 3 3 4 832307 == mm)3 304.8 mm x304.8 (32 mm) Imm mmmmx 832307 (32 mm) = bh! 832307 mm4 = mm xI (32 ∆total = Fb(Ash) > fb, therefore this member has sufficient bending resistance 12 12 12 12
∆max1 = wl4 ∆max1 =Nmm 0.08896 N/mm x (304.8 MPa mm)4= = 0.00630651 mm 3.988273 MPa = 3.988 MPa 308932 x 16 mm " 3.988273 3.988 MPa " 3.988273 MPa = 3.988 MPa 8EI 4 8 x 11800 MPa x 1089025 mm 10809025 mm# ∆max2 = Pl3 ∆total this = 0.000765 mm +bending 0.7223resistance mm = 0.30 mm his member hasmember bending resistance Fb(Ash) > sufficient fb, therefore member has sufficient erefore this has sufficient bending resistance 3EI
Nmm308932 x 16 mm Nmm fxb ="16 mm # 09025 mm 10809025 mm#
08896 N/mm x (304.8 mm)4 =N/mm 0.00630651 mmmm)4 ∆N/mm x (304.8 max1 = x (304.80.08896 0.08896 mm)4 = 0.00630651 mm 4 x 11800 8MPa x 1089025 4 8 x mm 11800 MPa x 1089025 mm4 x 11800 MPa xmm1089025 0.000765 mm + ∆0.7223 mm mm mm mm +0.30 total =mm + 0.7223 0.000765 0.000765 mm = =0.7223 0.30 mm ∆max2 = 1000 N x (304.8 mm)3 = 3 x 11800 MPa x 1089025 mm4
1017.49 N
1017.49 N
b
max1
∆ ∆total =
max2
b
4
max1
4
= ∆ Plmm =+ 0.7223 Pl 0.000765 ∆total = mm mm + 3EI0.000765 3EI 3
max2
3
∆max2 = 3
3 ∆max2 mm = 1000 =∆max2 0.29154 = 0.00630651 = 3 1000 N x (304 ∆max2 N= x (304.8 1000 N mm) x (304.8 mm) =mm0.29154 mm 4 3 x 11800 3MPa x 1089025 4 3 x mm 11800 MPa x x 11800 MPa xmm1089025
=
0.30 mm
0.29154 mm
R 4 ARCH ANALYSIS 4 365 | ANALYSIS 4
POS 2 | POS A-B 2| |MOMEN A-B
MOMENT ANALYSIS : [P3][P4] VERTICAL - AB 105 POS 2 | A-B | MOMENT
ANALYSIS IV: BEAMS & COLUMNS
l= 152.4mm l= 152.4mm a
b
e
e
304.8mm
l= 152.4mm b
a
304.8mm
200 mm
152.4 mm l= 152.4 152.4mm mm
b
e
WLL =5kN/m
a
l= 152.4mm
WDL = 17.498N W =e 17.498N DL
a
304.8
200 mm
a
b
e
b
304.8mm
WLL =5kN/m WDL = 17.498N
b 200 mm a 152.4 mm
a
b
WLL =5kN/m
WDL = 17.498N
PLL =1000N
a
PDL =17.498N
b
PLL =1000N P =17.498N DL
PDL =17.498N
Wdl(ash) = 88.18N
l= 152.4mm Wdl(ash) = 88.18N
RA =343.88N
DL
a
88.18N
PLL =1000N
RE =1361.32N P =17.498N
e
R =343.88N
RE = PDL + RA + PLLA
RA =343.88N
b
RE =13
RE =1361.32N RE = PDL + RA + PLL
∑MA = 0
RA =343.88N RE =1361.32N ∑MA = 0 RE (152.4mm) = 17.498N(152.4mm)+1000N(204.8mm)
RE = P=DL17.498N(152.4mm)+1000N(204.8mm) + RA + PLL RE (152.4mm)
RE (152.4mm) = 17.498N(152.4mm
RE = 1361.32 N
RE (152.4mm) = 17.498N(152.4mm
∑MA = 0
RE = PDL + RA + PLL
RE = 1361.32 N
RE (152.4mm) ∑M= =17.498N(152.4mm)+1000N(204.8mm) 0 A = 17.498N(152.4mm)+1000N(204.8mm) RE (152.4mm) RE (152.4mm) = 17.498N(152.4mm)+1000N(204.8mm) REN(152.4mm) = 17.498N(152.4mm)+1000N(204.8mm) RE = 1361.32
ns l
moment connections providing lateral f stability c nt connections l= 304.8mm iding lateral connections ility ing lateral ity
RE = 1361.32 N
Wdl(ash) = 88.18N
c
d
momentf connections providing lateral stability l= 304.8mm
d
f c
l= 304.8mm
f Notch (m3)
d
Width (mm) Thickness (mm) Density (kg/m3) Weight (N) f Piece Length (mm) Thickness (mm) 600.00 Notch (m3) 17.498 Density (kg/m3) Weight (N) 304.80 32.00 Width (mm) n/a c d A B 304.80 304.80 32.00 n/a 600.00 17.498 304.80 32.00 0.001486 600.00 26.592 l= 304.8mm d n/a Piece 32.00 A - C 615.60 304.80 0.001486 600.00 26.592 Length (mm) Width (mm) Thickness (mm) Notch (m3) Density (kg/m3) 304.80 32.00 600.00 17.498 304.8mm C - l= D 304.80 304.80 n/a304.80 600.00 17.498 304.80 32.00 n/a 600. 304.80 32.00 0.001486 A - B 32.00600.00 26.592 E - F 615.60 304.80 600.00 26.592 0.001486 A - C 32.00 615.60 0.001486304.80 32.00 600. gth (mm) Width (mm) Thickness (mm) Notch (m3) Density (kg/m3) Weight (N) C - D 304.80 304.80 32.00 BODY DIAGRAM|1:5 n/a 600. 4 POS 3 |FREE 304.80 32.00 ARCH 365 304.80 | ANALYSIS 4 BO E - F n/a 615.60 600.00 304.80 17.498 32.00 0.001486 POS 3 |FREE600. 615.60 600.00 26.592 Thickness (mm) 304.80 Notch (m3) 32.00 Density0.001486 (kg/m3) Weight (N) 304.80 304.80 32.00 n/a| ANALYSIS 600.00 17.498 ARCH 365 4 17.498 0 32.00 n/a 600.00 moment connections 615.60 304.80 32.00 0.001486 600.00 26.592
0 32.00 0.001486 oment connections 0 n/a | ANALYSIS 4 32.00 roviding lateral tabilityFREE-BODY 0 32.00 0.001486 DIAGRAM: [P5][P6] VERTICAL
600.00 lateral 26.592 providing 600.00 17.498 stability 600.00 26.592 106
Piece A - B A - C
POS f 3 |FREE BODY DIAGRAM|1:5 c
l= 304.8mm
d
POS 3 |FREE BODY DIAGRAM|1:5
Length (mm) Width (mm) Thickness (mm) Notch (m3) Density (kg/m 304.80 304.80 32.00 n/a 6 615.60 304.80 32.00 0.001486 6
ANALYSIS IV: BEAMS & COLUMNS
RE =1361.32N
RE =1361.32N
A - C (Buckling Resistance) Vixi (mm ) 16.00 A - C 425.4746577 fa 16.00 Piece F21780.96 xiP(mm) = i (N) 3 22206.43466 26.592 a VDead ixi (mm )
Pdead = R1 =
3
16.00 Live fCR 1361.3 = 9753.6 mm! 425.4746577 fa 1387.9 11800 MPa 16.00 21780.96 = fC(Ash) =4 22206.43466 bh" = 832307.2 mm A = 12 fCRE ==
π2EI 2 Pl A 7.6 a
PD+R1 = 1387.9 N A - C (Buckling Resistance)
Vixi (mm3) 16.00
425.4746577
16.00
fa 21780.96 = 22206.43466
P a
f
π2EI
MPa
26.592 N 1361.3 N
=
Pdead = R1 = fCR P =D+R1 =
CR 9753.6 mm! 2 l2A π EI 11800 MPa A - C (Buckling (Ash) Resistance) 2 f4 = 7.6 MPa l "A I 26.592 = bh = 832307.2 mmC(Ash) Pdead = N A = 9753.6 mm! 26.224 MPa fC(Ash) = 7.6 MPa 12 R1 = N E(Ash) = 11800 MPa A 1361.3 = 9753.6 mm! PD+R1 = E(Ash) 1387.9 N11800 I = bh" = = MPa = 26.224 MPa MPa x 1089025 mm4 12 I = bh" = 832307.2 mm4 0.108 (304.8MPa mm x 32 mm) 12 fCR = = 26.224 MPa π2 x 11800 MPa x 1089025 mm4 = 0.1422964 = 0.142 MPa 2 (679.60 mm) x MPa (304.8 mm x 32 mm) = 26.224 Pa x 1089025 mm4 mm ce (304.8 mm x 32 mm) ance fa = 1026.7 N = 0.1422964 = 0.142 MPa r has sufficient buckling 304.8 resistance mm x 32 mm = 0.1422964 = 0.142 MPa ber has sufficient crushing resistance mm Fa << fCR, therefore this member has sufficient buckling resistance Fa << fC(Ash) , therefore this member has sufficient crushing resistance has sufficient buckling resistance N) = 0.427 MPa er has sufficient crushing resistance 32 mm
fv = 3 x (1387.9 N) = 0.427 MPa ber has sufficient shear 2resistance ) = 0.427 MPax 152.4 mm x 32 mm 2 mm Fv(Ash) >> fv, therefore this member has sufficient shear resistance
er has sufficient shear resistance
ARCH 365 | ANALYSIS 4
fa
=
ffCRa ==
P a
26.592 N 1361.3 N π2 x 11800 MPa 1387.9 N (679.60 mm)2 x (3
π2 1026.7 x 11800N MPa x
π2EI 304.8 mmmm) x 232 (679.60 x mm (30 l2A fa = P fC(Ash) = 4 7.6 MPa 832307.2 Fa << mm fCR,a therefore this member ha fCR
=
fa =
1026.7 N
π2EI fCR Fa =<< fC(Ash) , therefore this member fV = 15 MPa 304.8 mm x 32 mm l2A fC(Ash) = 7.6 MPa
Fa << fCR, therefore this member ha fv = 3 x (1387.9 N) Fa << f C(Ash), therefore this member f = 15 MPa2 x 152.4 mm x 32 m V
Fv(Ash) f>> fv, therefore this member 3 x (1387.9 N) v = 2 x 152.4 mm x 32 m Fv(Ash) >> fv, therefore this member
POS 3 | A-C | CRUSHING RESISTANCE
POS 3 POS 3 | A-C | CRUSHING RESISTANCE
CRUSHING RESISTANCE: [P5][P6] VERTICAL - EF 107
ANALYSIS V: JOINTS
108
ANALYSIS V: JOINTS
ANALYSIS V: JOINTS The final analysis, and most important for the Parker Brothers’ chair, examines the joints. All 6 pieces share the same finger joint, but in the case of [P3] and [P4], when used as a stool, the shorter member is purely cantilevered with no additional support. The finger joints on these pieces are subject to the greatest bending moment, and will be examined to see if the wood can withstand these loads. The other joint examined is the dado joint connecting the internal members of [P2],[P5] and [P6]. For this scenario, a person is assumed to have “flipped” these pieces and is sitting in the middle of the member. Again, the joint will be examined to see if the wood can withstand these loads.
109
ANALYSIS V: JOINTS
l= 8
P1 = P2 = self weight + weight of person 2 = (26.6N) + 1000N 2 = 513.3N 5 kN/m over 200 mm = 1.6244 kN/m over 615.6 mm therefore Wt = wp + wc = 1.6244 kN/m + 0.043197 kN/m = 1.66760 kN/m Mmax = 1.6676 kN/m x (0.6156m)2 12 = 52.663 Nm =
Wt (1/3)D = 26.332 Nm / (0.016mm/3) = 4.937 kN
F1 = F/2 = 2.469 kN
W
wp = P / 2L = 513.3 N / 2(8mm) = 32.08125 kN/m W1net = W1 + Wp = 649.331 kN/m W2net = W2 - Wp = 585.169 kN/m
F1 = 0.5 x L x w1 w1 = 2 x F1 / L = 2 x 2.469kN / 8 mm = 617.25 kN/m w1 = w2 = 617.25 kN/m
l= 16mm
F
I = BH3 12 = 304.8mm x (16mm)3 12 = 0.104x106mm4
Fb = MC I = 52663 Nmm x 8 mm 0.104x106mm4 = 4.0495 MPa
Fb = 4.05 MPa < 8.3 MPa (allowable for ash) therefore okay in bending Fv = 3V 2A = 3(513.3N) 2(16mm x 304.8mm) = 0.158MPa (Fv allowable = 15.0MPa) therefore okay in shear ARCH 365 | ANALYSIS 5 JOINT ANALYSIS: DADO JOINT [P5][P6] 110
11
ANALYSIS V: JOINTS
l= 8 mm
5.6 mm .043197 kN/m
1.6676 kN/m
W2 = 617.25 kN/m
+ Wp = 649.331 kN/m - Wp = 585.169 kN/m
l= 16mm
2L .3 N / 2(8mm) 08125 kN/m
Wp W1 = 617.25 kN/m
8mm x (16mm)3 12 4x106mm4
P1
ash)
11.66mm 5.83mm
JOINT 2 | DADO JOINT JOINT ANALYSIS: DADO JOINT [P5][P6] 111
ANALYSIS V: JOINTS
ARCH 365 | ANALYSIS 5
JOINT 1 | FINGER JOINT
Finger Joint (Piece 3/4) All 6 pieces share this type of finger joint. However, in the case of pieces 3 and 4, the joint when set up as a bar stool is purely cantilevered with no additional support within the member. Therefore the finger joints for these pieces are subject to the greatest bending moments.
Mmax VR
= =
207.467 Nm 1017.498 N
No. of fingers = Lfinger =
16 19.05
IFinger mm
=
bh3 12
=
416154 mm4
Assume glue has greater shear and bending resistance than the wood it binds, therefore if wood resistance is sufficient, glue resistance will exceed requirements. V = 1017.498 N = w = VFinger
L/2 x w 152.4 mm x w 6.676 N/mm
= wLfinger = 6.740 N/mm x 19.05 mm = 127.1873092 N
fv
=
3V 2A
=
Fv(Ash)
=
15
MPa
3 (128.3892N) 2 (19.05 mm x 35 mm)
0.31296 MPa = = ########
313
kPa
Fv(Ash) >> fv, therefore joint has sufficient shear resistance Mfinger
= =
Mmax No. of fingers 12.9667 Nm
fb
=
Fb(Ash) =
Mc I
=
19308.3 Nmm x 17.5 mm 544513 mm4
0.49853 MPa = ########
8.3 MPa
Fb(Ash) >> fb, therefore joint has sufficient bending resistance
ARCH 365 | ANALYSIS 5
JOINT 1 | FINGER JOINT
JOINT ANALYSIS: FINGER JOINT 112
ANALYSIS V: JOINTS
fig 2. the fingers joints each carry a distributed load
of 6.7396 N/mm as the chair handles self weight and human loads.
fig 1. 16 finger joints serve as the primary joint system for the chair. load is equally distributed through these fingers.
ARCH 365 | ANALYSIS 5
JOINT 1 | FINGER JOINT
JOINT ANALYSIS: FINGER JOINT 113
APPENDIX A : PRECEDENTS
114
APPENDIX A : PRECEDENTS
APPENDIX A: PRECEDENTS
115
APPENDIX A : PRECEDENTS
WOODEN PUZZLE 116
APPENDIX A : PRECEDENTS
WOODEN PUZZLE 117
APPENDIX B : MATERIAL & COST
118
APPENDIX B : MATERIAL & COST
APPENDIX B: MATERIAL & COST
119
APPENDIX B : MATERIAL & COST
Piece 1 Length (mm) Width (mm) Height (mm) Thickness (mm) Volume (m3) Void Length Width Height Volume
(mm) (mm) (mm) (m3)
Net Volume
679.60 304.80 304.80 32.00 0.06
Piece 2 Length (mm) Width (mm) Height (mm) Thickness (mm) Volume (m3)
615.60 304.80 240.80 0.05
Void Length Width Height Volume
0.02
Black Walnut Density (kg/m3) Mass (kg)
Net Volume White Ash Density (kg/m3)
550.00
9.87
Net Mass (kg) =
52.96
(mm) (mm) (mm) (m3)
Mass (kg) or
12.50 13.75 $10.95 $170.14
Board Feet of White Ash +10% Waste Price per Board Foot Cost + 13% HST
= = = =
72.73 80.00 $4.12 $372.16
Miscellaneous =
$6.78
Total Cost =
$549.08
(mm (mm (mm (m3
0.02
Net Volume
600.00
White Ash Density (k
116.51 lbs = = = =
120
615.60 304.80 240.80 0.05
Void Length Width Height Volume
10.77
Board Feet of Black Walnut +10% Waste Price per Board Foot Cost + 13% HST
MATERIAL
679.60 304.80 304.80 32.00 0.06
Piece 3/4 Length (mm Width (mm) Height (mm Thickness Volume (m3
Mass (kg)
Width (mm) Height (mm) Thickness (mm) Volume (m3) Void Length Width Height Volume
304.80 304.80 32.00 0.06 & COST APPENDIX B : MATERIAL
(mm) (mm) (mm) (m3)
615.60 304.80 240.80 0.05
Net Volume
0.02
Black Walnut Density (kg/m3) Mass (kg)
Width Height Thickn Volume
Void Length Width Height Volume
615.60 304.80 240.80 0.05
Void Length Width Height Volume
0.02
Net Vo
600.00
White Densit
10.77
Mass (
(mm) (mm) (mm) (m3)
White Ash Density (kg/m3)
550.00
52.96
304.80 304.80 32.00 0.06
Net Volume
9.87
Net Mass (kg) =
Width (mm) Height (mm) Thickness (mm) Volume (m3)
Mass (kg) or
116.51 lbs
Board Feet of Black Walnut +10% Waste Price per Board Foot Cost + 13% HST
= = = =
12.50 13.75 $10.95 $170.14
Board Feet of White Ash +10% Waste Price per Board Foot Cost + 13% HST
= = = =
72.73 80.00 $4.12 $372.16
Miscellaneous =
$6.78
Total Cost =
ARCH 365 | ANALYSIS 1
COST 121
$549.08
122
123
124