.c om
Contents Preface
5
7 7 10 19 25
Chapter 2. Conditional expectation and Hilbert spaces 2.1. Conditional expectation: existence and uniqueness 2.2. Hilbert spaces 2.3. Properties of the conditional expectation 2.4. Regular conditional probability
35 35 39 43 46
ld
fo
ru
m
Chapter 1. Probability, measure and integration 1.1. Probability spaces and Ďƒ-fields 1.2. Random variables and their expectation 1.3. Convergence of random variables 1.4. Independence, weak convergence and uniform integrability
w
or
Chapter 3. Stochastic Processes: general theory 3.1. Definition, distribution and versions 3.2. Characteristic functions, Gaussian variables and processes 3.3. Sample path continuity
w .jn
tu
Chapter 4. Martingales and stopping times 4.1. Discrete time martingales and filtrations 4.2. Continuous time martingales and right continuous filtrations 4.3. Stopping times and the optional stopping theorem 4.4. Martingale representations and inequalities 4.5. Martingale convergence theorems 4.6. Branching processes: extinction probabilities
49 49 55 62 67 67 73 76 82 88 90 95 95 101 103
Chapter 6. Markov, Poisson and Jump processes 6.1. Markov chains and processes 6.2. Poisson process, Exponential inter-arrivals and order statistics 6.3. Markov jump processes, compound Poisson processes
111 111 119 125
Bibliography
127
Index
129
w w
Chapter 5. The Brownian motion 5.1. Brownian motion: definition and construction 5.2. The reflection principle and Brownian hitting times 5.3. Smoothness and variation of the Brownian sample path
3