Understanding the radioactivity at Fukushima A physics and engineering perspective
Prof. Ben Monreal UCSB Department of Physics Q&A Panel: Ben Monreal Prof. Theo Theofanous, UCSB Chem E. Prof. Patrick McCray, UCSB History Ben Monreal, UCSB Physics 3/11
• Introduction to radioactivity • Radiation hazards and health • What escapes in a meltdown? • Where does it go? • How worried should we be?
Ben Monreal, UCSB Physics 3/11
Chemistry Reference Sheet
Periodic Table of the Elements 1 1A 1 1
H
Hydrogen
1.01
3
2
Li
Beryllium
6.94
9.01
Na
Sodium
Magnesium
22.99
24.31
19 4
5
K
7
20
Ca
Atomic number Element symbol Element name
11
Na Sodium
22.99
3 3B 21
Sc
4 4B 22
5 5B 23
Ti
V
6 6B 24
7 7B 25
8 26
Cr
Mn
Fe
15 5A 7
16 6A 8
17 7A 9
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
10.81
12.01
14.01
16.00
19.00
20.18
14
15
16
9 8B 27
13
10 28
Co
Ni
11 1B 29
Al
C
Si
N P
O S
F
17
Cl
Helium
4.00
10
Ne 18
Ar
12 2B 30
Aluminum
Silicon
Phosphorus
Sulfur
Chlorine
Argon
26.98
28.09
30.97
32.07
35.45
39.95
Cu
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
Calcium
Scandium
Titanium
Vanadium
Iron
Cobalt
Nickel
Copper
Zinc
Gallium
Germanium
Arsenic
Selenium
Bromine
Krypton
39.10
40.08
44.96
47.87
50.94
52.00
54.94
55.85
58.93
58.69
63.55
65.39
69.72
72.61
74.92
78.96
79.90
83.80
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
Rubidium
Strontium
Yttrium
Zirconium
Niobium
85.47
87.62
88.91
91.22
92.91
Rb Cs
Sr 56
Ba
Y
Zr
57
La
72
Hf
Nb 73
Ta
Chromium Manganese
14 4A 6
B
Average atomic mass*
He
13 3A 5
Potassium
55
6
Key
12
Mg
18 8A 2
“Tritium” (hydrogen)
Be
Lithium
11
3
2 2A 4
California Standards Test
Mo
Tc
Ru
95.94
(98)
101.07
76
77
Molybdenum Technetium Ruthenium
74
W
75
Re
Os
Rh
Rhodium
Pd
Palladium
Ag Silver
102.91
106.42
107.87
78
Ir
Au Gold
196.97
Cesium
Barium
Lanthanum
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium
Platinum
132.91
137.33
138.91
178.49
180.95
183.84
186.21
190.23
192.22
195.08
87
88
89
104
105
106
107
108
109
Fr
Ra
Ac
Rf
Db
Sg
Bh
Hs
Radium
Actinium
Rutherfordium
Dubnium
Seaborgium
Bohrium
Hassium
Meitnerium
(223)
(226)
(227)
(261)
(262)
(266)
(264)
(269)
(268)
58
Ce
* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.
Cerium
59
Pr
Praseodymium
60
61
Antimony
Tellurium
Iodine
Xenon
118.71
121.76
127.60
126.90
131.29
82
83
Bi
62
84
Po
85
At
63
64
Mercury
Thallium
Pb Lead
Bismuth
Polonium
Astatine
Radon
200.59
204.38
207.2
208.98
(209)
(210)
(222)
65
Iodine
66
Terbium
Dysprosium
Holmium
Erbium
Thulium
Ytterbium
Lutetium
157.25
158.93
162.50
164.93
167.26
168.93
173.04
174.97
93
94
95
96
97
98
99
100
101
102
103
Thorium
Protactinium
Uranium
Neptunium
Plutonium
Americium
Curium
232.04
231.04
238.03
(237)
(244)
(243)
(247)
Am
Cm
Bk
Cf
Es
Berkelium Californium Einsteinium
(247)
(251)
(252)
Fm
Md
Fermium
Mendelevium
(257)
(258)
Yb
71
Gadolinium
Pu
Tm
70
151.96
Np
Er
69
Europium
U
Ho
68
150.36
92
Dy
67
(145)
91
Tb
Rn
144.24
Neodymium Promethium Samarium
Gd
86
Tl
Uranium and Plutonium Eu
Xe
Sm
90
Copyright © 2008 California Department of Education
Tin
114.82
81
I
Pm
140.91
Pa
Indium
112.41
80
Te
Nd
140.12
Th
Cadmium
Sn
Hg
Sb
54
In
Mt
Francium
Cesium
79
Pt
Cd
No
Lu Lr
Nobelium Lawrencium
(259)
(262)
6
12.0107 0.033% 2 3
Boron
5 2 2
Be
230 keV 0+
+2+4-4
B7
10.811 -8 6.9#10 %
Be6
2p
2.38#10 %
Different elements
2 1
Lithium 3 2
Helium 2 1
H
-259.34° -252.87° -240.18°
Hydrogen 1 1.00794 +1-1
91.0%
180.5° 1342°
Li
Li4
+1
2-
6.941 1.86#10 -7%
He
Li5
1.5 MeV 3/2p
-272.2° -268.93° -267.96°
0
He3
He4
1/2+
0+
4.002602 8.9%
0.000137
H1
H2
1/2+
1+
99.985
0.015
n1
614.8 s 1/2+ !-
H3
2p"
Be8
Li7
1+
3/2-
7.5
92.5
He5
0.60 MeV 3/2-
H4
H5
2-
!-
2
19.9
80.1
Li8
He7
160 keV (3/2)-
Be12
23.6 ms 0+ !-
Li10
Li11
8.5 ms 3/2-
1.2 MeV n
!-n,!-2n,...
He9
He10
0.30 MeV (1/2-) n
6
4
Different isotopes Ben Monreal, UCSB Physics 3/11
!-n
13.81 s 1/2+
Li9
He8
B13
17.36 ms 3/2-
Be11
178.3 ms 3/2-
!-n
H6
!-3"
!-"
119.0 ms 0+
!-
B12
Be10
!-
5730 y 0+
20.20 ms 1+
1.51E+6 y 0+
!-n
!-2"
n
!-
1.10
3/2-
838 ms 2+
He6
98.90
3+
3/2-
806.7 ms 0+
1/2-
B11
100
Li6
0+
B10
Be9
6.8 eV 0+ 2"
99.999863 n 12.33 y 1/2+
EC
B9
53.29 d 3/2EC
20.39 m 3/2-
0.54 keV 3/2-
Be7
92 keV 0+
+2
-9
770 ms 2+ EC2"
Be5
Beryllium 4 9.012182
B8
1.4 MeV (3/2-)
+3
1287° 2471°
19.255 s 0+
ECp,ECp2",... EC
2075° 4000°
B
126.5 ms (3/2-)
http://nndc.lbl.gov
0.3 MeV 0+ n
8
6
12.0107 0.033% 2 3
Boron
5 2 2
Be
230 keV 0+
+2+4-4
B7
10.811 -8 6.9#10 %
Be6
2p
2.38#10 %
Different elements
2 1
Lithium 3 2
Helium 2 1
H
-259.34° -252.87° -240.18°
Hydrogen 1 1.00794 +1-1
91.0%
180.5° 1342°
Li
Li4
+1
2-
6.941 1.86#10 -7%
He
Li5
1.5 MeV 3/2p
-272.2° -268.93° -267.96°
0
He3
He4
1/2+
0+
4.002602 8.9%
0.000137
H1
H2
1/2+
1+
99.985
0.015
n1
614.8 s 1/2+ !-
H3
2p"
Be8
Li7
1+
3/2-
7.5
92.5
He5
0.60 MeV 3/2-
H4
H5
2-
!-
2
19.9
80.1
Li8
He7
160 keV (3/2)-
Be12
23.6 ms 0+ !-
Li10
Li11
8.5 ms 3/2-
1.2 MeV n
!-n,!-2n,...
He9
He10
0.30 MeV (1/2-) n
6
4
Different isotopes Ben Monreal, UCSB Physics 3/11
!-n
13.81 s 1/2+
Li9
He8
B13
17.36 ms 3/2-
Be11
178.3 ms 3/2-
!-n
H6
!-3"
!-"
119.0 ms 0+
!-
B12
Be10
!-
5730 y 0+
20.20 ms 1+
1.51E+6 y 0+
!-n
!-2"
n
!-
1.10
3/2-
838 ms 2+
He6
98.90
3+
3/2-
806.7 ms 0+
1/2-
B11
100
Li6
0+
B10
Be9
6.8 eV 0+ 2"
99.999863 n 12.33 y 1/2+
EC
B9
53.29 d 3/2EC
20.39 m 3/2-
0.54 keV 3/2-
Be7
92 keV 0+
+2
-9
770 ms 2+ EC2"
Be5
Beryllium 4 9.012182
B8
1.4 MeV (3/2-)
+3
1287° 2471°
19.255 s 0+
ECp,ECp2",... EC
2075° 4000°
B
126.5 ms (3/2-)
http://nndc.lbl.gov
0.3 MeV 0+ n
8
Z=0-28 Part 1 of 2
24 23
Vanadium Titanium
22
Scandium
20
Calcium
18 17
Chlorine Sulfur
16
Phosphorus Silicon
14 13
Aluminum Magnesium
12
Sodium
11 2 8
Neon
10 2 7
Fluorine
9 2 6
Oxygen Nitrogen
7 2 4
Carbon
6
Boron
5
Beryllium 4 Lithium
Different elements
1
H
1
+1-1
1.00794 91.0%
EC2"
Be5
Be6
Li4
+1
53.29 d 3/2EC
2-
He3
0
1/2+
4.002602 8.9%
0.000137
H1
H2
1/2+
1+
99.985
0.015
n1
614.8 s 1/2+ !-
19.9
80.1
Be10
7.5
92.5
He6
1+
0+
0.60 MeV 3/2-
99.999863 n
H3
!-2"
He7
806.7 ms 0+
160 keV (3/2)n
!-
H4
Li8
838 ms 2+
3/2-
H5
2-
!-
2
3/2100
He5
12.33 y 1/2+
3+
Li7
1+
0.366
C13
C14
3/2-
!-
!-"
n
He8
119.0 ms 0+
6
!-"
Li11
8.5 ms 3/2!-n,!-2n,...
He9
!-n
!-
N18
!-n
B15
!-n
B16
2.25 s 0+
10
He10
0.3 MeV 0+ n
8
4
Different isotopes
Ben Monreal, UCSB Physics 3/11
12
301 ms 5/2+
197 ms 0+
!-n
B19
14
Mg31
Mg32
230 ms
!-n
Na29
48 ms 2+
!-n,!-2n,...
Ne28 17 ms 0+
!-n
120 ms 0+
!-n
Na30
44.9 ms 3/2
N22
24 ms
F27
O24
O25
O26
!-n
N23
C21
C22 0+
16
N24
P36
0.78 s
60 ms
Mg33 90 ms
Na32
!-n,!-2n,...
F29
0+
Si36 0.45 s 0+
18
20
83.79 d 4+ !-
*
Ca45
32.9 y 0+
K44
Ar43
!-
!-
P38
Si37
Cl43 3.3 s
S41
8.8 s 0+
!-n
P39
0.16 s !-n
P40
260 ms !-n
Si38
Si39
0+
Ar45
P41
!-n
Cl44
434 ms
0+
Cl45
400 ms
P42
Si41
Ne31
Al35
150 ms
Al36
Al37
Al38
Mg35
Mg36
Mg37
Na34
Na35
Al39
!-n
Mg34 20 ms 0+
0+
!-n
Na33 8.2 ms
!-n,!-2n,...
Ne32 0+
22
5.5 ms
!-2n
1.5 ms
!-n
24
26
Ca50 13.9 s 0+
Ar47 700 ms
!-
!-
Cl46
7.0 s 0+
P43
K49
1.26 s (3/2+)
0+
28
0.57 0+
V58
V5
Ti54
Ti55
Ti56
Ti57
Ti5
Ar48
Ca52
10.0 s (3/2-)
4.6 s 0+
0+
0+
Sc54
Sc55
Sc56
Sc5
Ca53
Ca54
Ca55
Ca5
K50
K54
K5
472 ms (0-,1,2-)
K51
365 ms (1/2+,3/2+) !-n
Ar49
90 ms (3/2-,5/2-)
0+
Cl47
S46
P45
K52
105 ms !-n
Ar50
K53
30 ms (3/2+) !-n
Ar51
0+
Cl49
Cl50
S47
S48
S49
0+
30
32
10 ms !-n
Ar52 0+
Cl48
P46
0+
!-n
!-
!-n
!-n
Si42
Cr6 !-
V57
Sc53
Ca51
0+
P44
0.71 (5/2
V56
!-n
33 ms
Mn6 !-
0.74 s
!-
Cl51
!-n
S45
82 ms
*
Cr59
Cr58 !-
0+
8.2 s 3+
0+
223 ms
51 s 0+
V55
6.54 s (7/2-)
Sc52
!-n
!-n
!-n
S44
123 ms 0+ !-n
110 ms
6.8 s (2-)
Cr57
21.1 s 3/2-,5/2-,7/2-
!
Mn60
!-
!-
K48
!-
!-n
!-n
S43
220 ms
!-n
Si40
8.4 s 0+
!-
!-n
120 ms
Ca49
*
!
Mn59
4.6 s 3/2-,5/2-
!-
32.7 s (3/2)-
12.4 s (7/2)-
!-
8.718 m 3/2-
!-n
Ar46
21.48 s
!-n
S42
0.56 s 0+
17.50 s 1/2+ !-
!-
!-
S40 !-
0.64 s
Ar44
6.8 s
K47
105 s (2-)
11.87 m 0+
Cl42
Ca48
3.0 s 0+
!-
Sc51 *
5.94 m 0+
Ti53
1.7 m 0+
Sc50
Cr56
V54
!
Mn58 !-
!-
49.8 s 3+
Ti52 !-
0.187
!-
!-
Ti51
102.5 s 5+
Cr55
3.497 m 3/2-
!-
!
85.4 s 5/2-
!-
!-
V53
5.76 m 3/2!-
0.28
Mn57
!-
1.61 m 7/2!-
!-
6E+18 y 0+ !-,!-!-
K46
17.3 m 3/2+ !-
5.37 m (3/2,5/2)
38.4 s (1/2,3/2)+
S39
K45
22.13 m 2-
Cl41
Ca47
!-
!-
57.2 m 7/2!-
4.536 d 7/2-
0+ 0.004
!-
11.5 s (3/2,5/2,7/2)-
Ca46
162.61 d 7/2-
!-
43.67 h 6+ !-
!-
22.3 h 3/2+
Ar42
3.3492 d 7/2!-
!-n
Al34
!-n,!-2n,...
F28
Cl40
1.35 m 2-
!-n
!-
Si35
13.2 ms (3-,4-)
Ne30
0.2 s
2.31 s
*
!-
!-
P37
5.6 s
17.0 ms 3/2+
Ne29
Sc49
!-
!-
S38
170.3 m 0+ !-
!-n
Na31
!-
!-
F26
61 ms 0+
!-
!-n
!-
335 ms 0+
*
!-
Al33
Cl39
55.6 m 3/2+
S37
!-
!-
Sc48
Ar40
5.05 m 7/2-
2.77 s 0+
Sc47
Ar39
!-
Si34
Al32 33 ms 1+
Mg30
F25
59 ms
!-n
B18
!-
!-n
32 ms
!-
Sc46
6.7302
P35
6.18 s
Sc45
0.0117
47.3 s 1/2+
Si33
Al31
!-
Ne27
P34
!-
!-
Na28
0.02 12.43 s 1+
644 ms (3/2,5/2)+
1.30 s 3/2+
30.5 ms 1+
!-
0+
K43
Cl38
Ti50
V52
3.743 m 3+
7/2-
5.4
K42
Ar41
99.750
5.5
Ca44
109.34 m 7/2-
V51
0.250
7/2-
K41
!-
0+ 2.365
2.2
Mn56
2.5785 h 3+
Cr54
3/2-
Ti49
100
Cr53 9.501
V50
1.4E+17 y 6+ EC,!-
100
0+
0+
K40
0+
330 d 7/2-
5/2-
83.789
73.8
0+
99.600
V49
Mn55
312.3 d 3+
Cr52
Ti48
7/2-
12.360 h 2-
Cr51
91.72
Mn54 EC,!-
7.3
2.086
!-
EC
5/2-
7/2-
3/2+
*
0+
*
Ca43
EC
EC
Mn53
3.74E+6 y 7/2-
8.0
0.135
37.24 m 2-
0+
3.927 h 2+ EC
V48
Ti47
5.591 d 6+
1.8E+17 y 27.702 d 0+ 7/2ECEC EC 4.345
15.9735 d 4+
Ti46
0+
269 y 7/2-
S36
87.51 d 3/2+
172 y 0+
Mg29
!-n
Ne26
!-n
C20
14 ms 0+
3.60 s 3+
24.23
S35
Sc44
EC
5.8
Mn52
46.2 m 5/2-
EC
0.647
!-
3/2+
EC,!-
Ti45
Ca42
1.277E+9 y 4EC,!-
Cl37
V47
32.6 m 3/2-
EC
Mn51
Cr50
42.3 m 5/2-
EC
184.8 m 7/2-
3.891 h 7/2-
Ca41
*
EC
EC
1.03E+5 y 7/2-
0+ 0.063
Cl36
*
EC
Ar38
3.01E+5 y 2+
Si32 !-
Al30
!-
Na27
Ar37
!-n
O23
82 ms !-n
N21
85 ms
!-
!-
!-n
F24
0.34 s (1,2,3)+ !-
O22
!-n
C19
46 ms
602 ms (1/2,3/2)+
!-
93.2581
35.04 d 3/2+
P33
Si31
3/2+
*
EC
25.34 d 1/2+
157.3 m 3/2+
20.91 h 0+
!-n
Ne25
!-
!-
N20
1.072 s 3+
!-
Mg28 !-
Na26
F23
!-
100 ms
!-
!-
2.23 s (3/2,5/2)+
!-n
Be14
4.35 ms 0+ !-n,!-2n,...
Li12
3.38 m 0+
3.10
P32
14.262 d 1+
Al29
9.458 m 1/2+
!-
Ne24
3.42 s (1/2,3/2,5/2)+
!-n
B17
5.08 ms (3/2-)
!-
O21
4.21
6.56 m 5/2+
Mg27
59.1 s 5/2+
!-
F22
4.23 s 4+,(3+)
!-n
C18
95 ms 0+
200 Ps (0-) n
!-
!-n
C17
10.5 ms
!-
!-
N19
0.304 s (1/2-)
193 ms
*
0.75
100
!-
0+ 11.01
Na25
!-
O20
13.51 s 0+
624 ms 1!-n,!-",...
!-n
Be13
!-
C16
B14
!-
O19
0.747 s 0+
13.8 ms 2-
9.25
F21
4.158 s 5/2+
26.91 s 5/2+
0+ 0.200
C15
0.9 MeV (1/2,5/2)+
!-
N17
5/2+
37.24 s 5/2+
95.02
0+
10.00
Ne23
0+
1/2+
Na24
!-
3/2+
0+
4.67
75.77
0+
1/2+
Al28
3/2+
*
S34
Si30
2.2414 m 3+
Cl35
S33
Si29
100
Cl34
K39
7.636 m 3+
0+ 0.337
1.5264 s 0+
0+ 96.941
V46
Sc43
681.3 ms 0+ EC
Ca40
K38
Ar36
1.775 s 3/2+
EC
Ca39
859.6 ms 3/2+
EC
S32
P31
EC
5/2+
14.9590 h 4+
0+
0.27
4.173 s 1/2-
2.449 s 1/2+
n
!-
0.30 MeV (1/2-) n
5/2+
!-
Be12
23.6 ms 0+
3/2+
F20
1/2+ 100
!-
!-n
Li10
3/2+
11.00 s 2+
O18
0.038
B13
1.2 MeV
0+
N16
17.36 ms 3/2-
13.81 s 1/2+
Li9
!-n
!-
Be11
178.3 ms 3/2-
!-n
H6
!-3"
1.51E+6 y 0+
Ne22
F19
7.13 s 2-
5730 y 0+
1/21.10
Ne21
90.48
O17
1/2-
99.634
B12
Ne20
P30
Mg26
Ar35
Cl33
Si28
*
596.3 ms 7/2-
Sc42
Cr49
21.56 h 0+
422.37 ms 0+
63 y 0+
EC
*
EC
EC
EC
Ti44
509 ms 7/2EC
Sc41
EC
1.226 s 3/2+
EC
2.511 s 3/2+
2.498 m 1+
92.23
Mg25
182.3 ms 4-
K37
342 ms 2+
Ar34
2.572 s 1/2+
440 ms 0+
EC
K36
844.5 ms 0+
S31
Ca38
Ca37
ECp,EC",... EC
EC
EC
Al27
Sc40
V45
547 ms 7/2-
EC
Mn50
283.88 ms 0+
Cr48
500 ms 3/2-
EC
EC
Ti43
199 ms 0+ EC
382 ms 5/2-
Cr47
0.26 s 0+
*
EC
Mn49
ECp,EC",... EC
EC
V44
90 ms (2+) EC"
Ti42
80 ms 3/2+
ECp
Sc39
181.1 ms 3/2+
190 ms 3/2+
Cl32
P29
Al26
78.99
Na23
Sc38
K35
298 ms 1+
4.140 s 1/2+
7.4E+5 y 5+
V43
ECp
Mn48
158.1 ms 4+
Cr46
50 ms
800 ms (7/2-)
Ti41
50 ms 0+
EC
ECp
ECp,EC",... EC
EC
4.16 s 5/2+
0+
EC
Na22
EC
N15
20.20 ms 1+
11.317 s 3/2+
Ar33
173.0 ms 1/2+
1.178 s 0+
Si27
EC
2.6019 y 3+
F18
102 ms 0+
ECp
K34
S30
P28
Mg24
22.49 s 3/2+
109.77 m 1+
99.762
N14
0+
EC
100
17.22 s 1/2+
0+
EC
98.90
*
Ca36
50 ms
Cl31
EC
Al25
7.183 s 5/2+
Ti40
26 ms (3/2+)
Sc37
Ca35
ECp
ECp,EC",... EC
EC
Ti39
ECp
ECp
ECp,EC",... EC
150 ms
270.3 ms 3+
2.234 s 0+
Mg23
Na21
Ne19
O16
98 ms 0+
187 ms 5/2+
Si26
Al24
2.053 s 4+ EC"
EC
EC
EC
122.24 s 1/2-
B11
ECp
220 ms 5/2+
3.857 s 0+
Na20
F17
O15
C12
P27
Si25
Mg22
447.9 ms 2+
64.49 s 5/2+
Ar32
ECp
260 ms 1/2+
ECp
ECp
122 ms (3/2,5/2)+
1672 ms 0+
F16
EC
125 ms 0+
EC"
40 keV 0-
N13
S29
P26
0.47 s
Mg21
Ne18
109.2 ms 1/2-
S28
20 ms (3+)
Al23
70 ms
ECp
p
S27
21 ms
102 ms 0+
Al22
Na19
Ne17
9.965 m 1/2-
Be9
He4
p
-272.2°
He -268.93° -267.96°
EC
Be8
2"
Na18
70.606 s 0+
B10
Li6
95 ms 0+
24.3050 0.00350% ECp
p
EC
Li5
1.5 MeV 3/2-
Mg20
+2
O14
B9
Si24
ECp
650° 1090°
ECp,EC",... EC
p
20.39 m 3/2-
Si23
ECp
Al21
+3
F15
C11
6.8 eV 0+
660.32° 2519°
26.981538 0.000277%
1.0 MeV (1/2+)
N12
2p"
Mg
2p
11.000 ms 1+
0.54 keV 3/2-
Be7
92 keV 0+ 2p
180.5° 1342°
6.941 1.86#10 -7% 2
-259.34° -252.87° -240.18°
Hydrogen
+3
+2
Li
B8
770 ms 2+
2 8 2
122 keV 0+
8.58 ms (3/2-)
19.255 s 0+
ECp,ECp2",... EC
B7
1.4 MeV (3/2-)
10.811 -8 6.9#10 %
1287° 2471°
126.5 ms (3/2-)
Al
Ne16
(2-)
EC3"
6 ms 0+
Ar31
V42
100 ms
Cr45
53 ms 0+
EC
(7/2-)
K33
15.1 ms
Cl30
ECp
Si22
Sc36
EC2p
ECp,EC2p,...ECp
21 ms (3/2+)
ECp
Mn47
41 ms
Cr44
Cr43
ECp,EC",... ECp
V41
ECp
ECp
Cl29
Cr42
V40
ECp
Mn46 ECp
+2+3+6
0+
+1
Cl28
1907° 2671°
51.9961 0.000044%
Ti38
47.867 -6 7.8#10 %
ECp
Mn45
+2+3+4+5
0+
K32
Mn44
50.9415 -7 9.6#10 %
+2+3+4
Ca34
+2
1246° 2061°
+2+3+4+7
54.938049 0.000031%
+3
40.078 0.000199%
Ar30
Cr
1910° 3407°
V
1668° 3287°
Ti
39.0983 0.0000123%
-189.35° -185.85° -122.28°
ECp,EC2p,...ECp
P25
2 8 11 2
2 8 13 1
Mn
44.955910 1.12#10 -7%
ECp
S26
P24
2 8 10 2
1541° 2836°
Sc
842° 1484°
35.4527 0.000017%
32.066 0.00168%
28.0855 0.00326% ECp 2 8 3
0
Ca
63.38° 759°
K
39.948 0.000329%
-101.5° -34.04° 143.8° +1+5+7-1
115.21° 444.60° 1041° +4+6-2
44.15° 280.5° 721°
Ar
Cl
S
+1
O13
C10
+3+5-3
2 8 7
2 8 8
30.973761 0.000034%
+2+4-4
22.989770 0.000187%
-248.59° -246.08° -228.7°
ECp
N11
740 keV 1/2+
P
1414° 3265°
Si
97.80° 883°
Na
F14
0.40 MeV 0+ 2p
2 8 1
20.1797 0.0112%
O12
C9
230 keV 0+
2075° 4000°
9.012182 2.38#10 -9% 2 1
3
Helium2
Be
-1
p
C8
0
18.9984032 2.7#10 -6% p
N10
14.00674 0.0102%
12.0107 0.033%
B
15.9994 0.078%
-210.00° -195.79° -146.94° ±1±2±3+4+5
4492t° 3642s°
C
-2
N
+2+4-4
2 3
2 2
8 2 5
-218.79° -182.95° -118.56°
O
Ne
-219.62° -188.12° -129.02°
F
15 2 8 4
2 8 5
2 8 6
2 8 8 1
19
Potassium Argon
2 8 9 2
21 2 8 8 2
ECp
0.00294% 2 8 13 2
25
34
Ar53
3
Different elements Different isotopes
Ben Monreal, UCSB Physics 3/11
The reactor’s job is to turn U into fission products. 95% of reactor power comes from the fission events themselves. 5% comes from the later fission product decays.
n o i Fiss
Different elements
The products include many different elements.
b a t S
Different isotopes
Ben Monreal, UCSB Physics 3/11
Uranium & Plutonium
s e p o t o s le i s t c u d o pr
Fission
While it’s running, the reactor’s neutrons can undergo side reactions that make more unstable elements in the fuel ... and in other materials.
Neutron capture Uranium & Plutonium on fuel Minor Actinides
b a t S
Different elements
n o i Fiss
Different isotopes
s e p o t o s le i s t c u d o pr
Neutron capture on water, air, reactor materials Induced radioactivity
Ben Monreal, UCSB Physics 3/11
Fission
Radiation damage Alpha decay: common in minor actinides (damages every 10th atom it passes.) Beta & gamma decay: fission products (damages every 3000th atom it passes.) Ben Monreal, UCSB Physics 3/11
222Rn
14C
→ 218Po + 4He
→ 14N + e- + ν http://education.jlab.org
How much damage? • • • •
One becquerel = 1 decay per second One curie = 37 billion decays per second. A measure of amount, as in “There are 20 million curies of 137Cs in the fuel pond”
•
One gray = absorbing 1 billion 238U decays, or 10 billion 137Cs decays, per gram of body mass One sievert = absorbing 0.05B 238U decays, or 10B of 137Cs, per gram of body mass A measure of “dose” = fraction of body’s chemical bonds damaged.
•
For fission products, gray = sievert Ben Monreal, UCSB Physics 3/11
Radiation numeracy •
You are all getting irradiated right now.
• natural
40K
• natural
222Rn
Natural backgrounds vary; 1.5 - 7 mSv/y
in your body: ~0.2 mSv/yr. in the air:
~1 mSv/yr.
• Moving to Denver? Add ~1 mSv/yr.
• Are you a flight attendant? Add ~few mSv/yr.
Lesson: a few milliSieverts dose is not worth worrying about at all. (but mSv/h rate can add up.) Ben Monreal, UCSB Physics 3/11
“Chernobyl Record” R.F. Mould, IOP 2000
Radiation and cancer (rarely) Ionization ≈ DNA damage DNA damage ≈ changed cells (rarely) (rarely) changed cells ≈ cancer Type of cancer
Extra cases per 10000 people with 1000mSv doses
Leukemia Breast
3
Stomach
5
Colon
2
Lesson: 1 Sv = 1000 mSv is a risk you would go out 7 Thyroid 1.6 of your way to avoid, Lung like texting while driving. 4
Ben Monreal, UCSB Physics 3/11
From John D. Boice, Natl. Cancer Institute in “Health Effects from Exposure to Low-Level Ionizing Radiation”, IOP 1996
Acute radiation sickness •
Lesson: >5 Sv = run for your life
Extraordinarily rare. “Slotin Incident”: 21 Sv, victim died 9 d later “Daghlian incident”: 5 Sv, victim died 1 month later Goiania accident: 5 Sv/hr medical source got loose. 4 dead (all > 5 Sv), 15 hospitalized (all betwen 0.5 and 5 Sv). Chernobyl first-responders: dose rates of 10 Sv/hr in many areas; 30 dead, 200 hospitalized Many victims of Hiroshima and Nagasaki
• • • • •
Ben Monreal, UCSB Physics 3/11
Units in the news Last Defense at Troubled Reactors: 50 Japanese Workers Published: March 15, 2011 Radiation close to the reactors was reported to reach 400 millisieverts per hour on Tuesday after a blast inside reactor No. 2 and fire at reactor No. 4, but has since dropped back to as low as 0.6 millisieverts at the plant gate.
← we know 5000 mSv = fatal so 400 mSv/hr for would be fatal if you had 5000/400 = 12 hours ← 0.6 mSv per hour 1000 mSv = texting while driving 1000/0.6 = two months
Radiation levels on the edge of the plant compound briefly spiked at 8217 microsieverts per hour but later fell to about a third that.
Ben Monreal, UCSB Physics 3/11
← 8000 µSv/hr = 8 mSv/hr
They meant “millisieverts NYTimes.com per hour”
Ben Monreal, UCSB Physics 3/11
Are low doses proportionally dangerous? •
Probably?? There is no case where a small extra risk was detectable. (Chernobyl area: thyroid cancer at 100 mSv)
added cancer rate
added cancer rate ??
dose
1mSv 100mSv 1Sv 2Sv Fukushima? Ben Monreal, UCSB Physics 3/11
?? ?? years since dose
“Health effects of low-level exposure to ionizing radiation”, ed. Hendee & Edwards, 1oP 1996
What’s getting out? What’s getting out? Minor Actinides
Uranium & Plutonium
b a t S
Different elements
n o i Fiss
Different isotopes
Induced radioactivity
Ben Monreal, UCSB Physics 3/11
s e p o t o s le i s t c u d o pr
Chemistry Reference Sheet
Periodic Table of the Elements 1 1A 1 1
H
Hydrogen
1.01
3
2
Li
9.01
Magnesium
22.99
24.31
5
7
Na Sodium
22.99
3 3B 21
Sc
4 4B 22
5 5B 23
Ti
V
6 6B 24
7 7B 25
8 26
Cr
Mn
Fe
15 5A 7
16 6A 8
17 7A 9
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
10.81
12.01
14.01
16.00
19.00
20.18
14
15
16
9 8B 27
Co
13
10 28
Ni
11 1B 29
Al
C
Si
N P
O S
F
17
Cl
Helium
4.00
10
Ne 18
Ar
12 2B 30
Aluminum
Silicon
Phosphorus
Sulfur
Chlorine
Argon
26.98
28.09
30.97
32.07
35.45
39.95
Cu
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
Calcium
Scandium
Titanium
Vanadium
Iron
Cobalt
Nickel
Copper
Zinc
Gallium
Germanium
Arsenic
Selenium
Bromine
Krypton
39.10
40.08
44.96
47.87
50.94
52.00
54.94
55.85
58.93
58.69
63.55
65.39
69.72
72.61
74.92
78.96
79.90
83.80
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
Rubidium
Strontium
Yttrium
Zirconium
Niobium
85.47
87.62
88.91
91.22
92.91
Rb Cs
Sr 56
Ba
Y
Zr
57
La
72
Hf
Nb 73
Ta
Chromium Manganese
14 4A 6
B
Average atomic mass*
He
13 3A 5
Potassium
55
6
20
Ca
Atomic number Element symbol Element name
11
12
Mg
Sodium
K
Key
Be
Beryllium
19 4
2 2A 4
6.94
Na
18 8A 2
Induced radioactivity
Lithium
11
3
California Standards Test
Mo
Tc
Ru
95.94
(98)
101.07
76
77
Molybdenum Technetium Ruthenium
74
W
75
Re
Os
Rh
Rhodium
Pd
Palladium
Ag Silver
102.91
106.42
107.87
Ir
78
Au Gold
196.97
Barium
Lanthanum
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium
Platinum
137.33
138.91
178.49
180.95
183.84
186.21
190.23
192.22
195.08
87
88
89
104
105
106
107
108
109
Ra
Ac
Rf
Db
Sg
Bh
Hs
Radium
Actinium
Rutherfordium
Dubnium
Seaborgium
Bohrium
Hassium
Meitnerium
(223)
(226)
(227)
(261)
(262)
(266)
(264)
(269)
(268)
58
* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.
Cerium
59
Pr
Praseodymium
60
61
Tellurium
Iodine
Xenon
121.76
127.60
126.90
131.29
83
Bi
84
Po
85
At
86
Mercury
Tl
Thallium
Pb
Rn
Lead
Bismuth
Polonium
Astatine
Radon
200.59
204.38
207.2
208.98
(209)
(210)
(222)
62
63
Gd
65
67
68
69
70
71
minor actinides
Europium
Gadolinium
Terbium
Dysprosium
Holmium
Erbium
Thulium
Ytterbium
Lutetium
(145)
150.36
151.96
157.25
158.93
162.50
164.93
167.26
168.93
173.04
174.97
93
94
95
96
97
98
99
100
101
102
103
91
92
Thorium
Protactinium
Uranium
Neptunium
Plutonium
Americium
Curium
232.04
231.04
238.03
(237)
(244)
(243)
(247)
U
Np
Ben Monreal, UCSB Physics 3/11
Pu
Am
Cm
Tb
66
144.24
Neodymium Promethium Samarium
Eu
64
Sm
90
Copyright Š 2008 California Department of Education
Antimony
118.71
82
Xe
Pm
140.91
Pa
Tin
114.82
81
I
Nd
140.12
Th
Indium
112.41
80
Te
Mt
Francium
Ce
Cadmium
Sn
Hg
Sb
54
In
Fission products
Cesium
132.91
Fr
79
Pt
Cd
Bk
Dy Cf
Ho Es
Berkelium Californium Einsteinium
(247)
(251)
(252)
Er
Fm
Tm Md
Fermium
Mendelevium
(257)
(258)
Yb
No
Lu Lr
Nobelium Lawrencium
(259)
(262)
Chemistry Reference Sheet
Periodic Table of the Elements
California Standards Test
1 1A 1 1
H
Hydrogen
1.01
3
Li
2 2A 4
Key
Lithium
Beryllium
6.94
9.01
11
3
Na
Na Sodium
Sodium
Magnesium
22.99
24.31
19
4
5
K
7
20
Ca
3 3B 21
Sc
4 4B 22
5 5B 23
Ti
V
6 6B 24
7 7B 25
8 26
Cr
Mn
Fe
15 5A 7
16 6A 8
17 7A 9
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
10.81
12.01
14.01
16.00
19.00
20.18
14
15
16
9 8B 27
Co
13
10 28
Ni
11 1B 29
Al
C
Si
Gases
N P
O S
F
17
Cl
Helium
4.00
10
Ne 18
Ar
12 2B 30
Aluminum
Silicon
Phosphorus
Sulfur
Chlorine
Argon
26.98
28.09
30.97
32.07
35.45
39.95
Cu
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
Calcium
Scandium
Titanium
Vanadium
Iron
Cobalt
Nickel
Copper
Zinc
Gallium
Germanium
Arsenic
Selenium
Bromine
Krypton
39.10
40.08
44.96
47.87
50.94
52.00
54.94
55.85
58.93
58.69
63.55
65.39
69.72
72.61
74.92
78.96
79.90
83.80
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
Rubidium
Strontium
Yttrium
Zirconium
Niobium
85.47
87.62
88.91
91.22
92.91
Rb Cs
Sr 56
Ba
Y
Zr
57
La
72
Hf
Nb 73
Ta
Chromium Manganese
14 4A 6
B
Average atomic mass*
He
13 3A 5
Potassium
55
6
22.99
12
Mg
Atomic number Element symbol Element name
11
Be
wat e solu r bl e
2
18 8A 2
Mo
Tc
Ru
95.94
(98)
101.07
76
77
Molybdenum Technetium Ruthenium
74
W
75
Re
Os
Rh
Rhodium
Pd
Palladium
Ag Silver
102.91
106.42
107.87
Ir
78
Pt
Cesium
Barium
Lanthanum
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium
Platinum
132.91
137.33
138.91
178.49
180.95
183.84
186.21
190.23
192.22
195.08
87
88
89
104
105
106
107
108
109
Fr
Ra
Ac
Rf
Db
Sg
Bh
Hs
Actinium
Rutherfordium
Dubnium
Seaborgium
Bohrium
Hassium
Meitnerium
(223)
(226)
(227)
(261)
(262)
(266)
(264)
(269)
(268)
* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.
Cerium
59
Pr
Praseodymium
60
Tellurium
Iodine
Xenon
121.76
127.60
126.90
131.29
80
Hg
61
81
82
83
84
85
Lead
Bismuth
Polonium
Astatine
Radon
208.98
(209)
(210)
(222)
204.38
At
86
207.2
Thallium
Po
Xe
Pb
200.59
Bi
I
Tl
Mercury
Rn
62
63
Gd
65
Gadolinium
Terbium
Dysprosium
Holmium
Erbium
Thulium
Ytterbium
Lutetium
151.96
157.25
158.93
162.50
164.93
167.26
168.93
173.04
174.97
93
94
95
96
97
98
99
100
101
102
103
Thorium
Protactinium
Uranium
Neptunium
Plutonium
Americium
Curium
232.04
231.04
238.03
(237)
(244)
(243)
(247)
Ben Monreal, UCSB Physics 3/11
Am
Cm
Bk
Cf
Es
Berkelium Californium Einsteinium
(247)
(251)
(252)
Fm
Md
Fermium
Mendelevium
(257)
(258)
Yb
71
Europium
Pu
Tm
70
150.36
Np
Er
69
(145)
U
Ho
68
144.24
92
Dy
67
Sm
91
Tb
66
Pm
Neodymium Promethium Samarium
Eu
64
Nd
90
Copyright Š 2008 California Department of Education
Antimony
118.71
Gold
140.91
Pa
Tin
114.82
196.97
140.12
Th
Indium
112.41
79
Te
Mt
Radium
58
Cadmium
Sn
Au
Sb
54
In
Inert metals
Francium
Ce
Cd
No
Lu Lr
Nobelium Lawrencium
(259)
(262)
Healthy reactor: In Zircalloy casing: fuel + fission products + actinides In cooling water: activation products In steam: activation products In environment: practically nothing Ben Monreal, UCSB Physics 3/11
Meltdown: In Zircalloy casing: fuel + fission products + actinides In cooling water: fission products like Cs, I, Tc In steam: fission products like Xe, Kr, Rn In environment: practically nothing Ben Monreal, UCSB Physics 3/11
Three-Mile Island
Meltdown + emergency venting: In Zircalloy casing: fuel + fission products + actinides In cooling water: fission products like Cs, I, Tc In steam: fission products like Xe, Kr, Rn In environment: practically Xe, Kr,nothing Rn
Fukushima Daiishi 2
Meltdown + containment failure: In Zircalloy casing: fuel + fission products + actinides In cooling water: fission products like Cs, I, Tc In steam: fission products like Xe, Kr, Rn In environment: Xe, Kr, Xe,Rn, Kr,Cs, Rn I, Tc
Meltdown + fuel fire ???
In Zircalloy casing: fuel + fission products + actinides In environment: fuel + fission products + actinides Briefly happened at Fukushima spent-fuel pools? (reports vary?) This is very bad but still not as bad as Chernobyl http://mitnse.com
Chernobyl no real “containment vessel” Core filled with graphite (fuel for huge fire) Reactor fissioning during explosions and fire (Fukushima reactors have now been “off” for 5 days) Ben Monreal, UCSB Physics 3/11
Ben Monreal, UCSB Physics 3/11
wikipedia
Saving graces at Fukushima • Reactor survived earthquake intact (!!!!!) • Shut down properly • First hour of containment saved factor of 5x • First day: factor 20x • Evacuation • Biggest fire risk is 100-
day-old spent fuel, i.e. 100x less radioactive than Chernobyl material
Ben Monreal, UCSB Physics 3/11
Nuclides to watch Nuclide
Half-life
Effect at Chernobyl
131Iodine
8 days
quick ~0.5 mSv dose to everyone in Eastern Europe
137Cesium
30 years
Additional ~1 mSv over 30y
90Strontium
30 years
Lower amount than Cs, but accumulates in bone
241Plutonium
9 years
Large doses near reactor site; easier to decontaminate
Ben Monreal, UCSB Physics 3/11
Cooper, Randle, and Sokhi, Wiley 2003
In case of fire ... soot Nuclide
Half-life
95Zirconium
60 days
99Molybdenum
141Cerium
3 days 40 days 30 days
140Barium
14 days
103Ruthenium
•
Worst concern to first responders. Weather may move soot plumes around (Chernobyl: bad plumes to 60km) • This is what the “stay indoors” advisories are talking about. Soot in your driveway doesn’t dose you; soot on your clothes does. • Can be cleaned from streets/buildings. Agriculture, fisheries have to wait it out (or remove top 10cm soil) Ben Monreal, UCSB Physics 3/11
Conclusions •
The worst general-public effects of Chernobyl were stress/fear; HUGE education/communication failure You have the information: count the millisieverts and decide how to respond My feeling: the worst-case radiation hazards from Fukushima are mitigatable and local (early evacuation + controls on 131I in food) My feeling: the global radiation hazard is nil. The best way to reduce worldwide low-level radiation releases is ... stop burning coal Save your energy for those affected by the tsunami and “50 plant workers” at Fukushima
• • • •
• •
Ben Monreal, UCSB Physics 3/11