Materia biologia n° 12

Page 1

UNIVERSIDAD TÉCNICA DE MACHALA DIRECCIÓN DE NIVELACIÓN Y ADMISIÓN SISTEMA NACIONAL DE NIVELACIÓN Y ADMISIÓN CATEDRA DE BIOLOGIA

NOMBRE: José Masache PARALELO: Salud V02 DOCENTE: Bioq. Carlos García TEMA: Núcleo Celular, ADN – ARN NÚCLEO CELULAR En biología, el núcleo celular es un orgánulo membranoso que se encuentra en el centro de las células eucariotas. Contiene la mayor parte del material genético celular, organizado en múltiples moléculas lineales de ADN de gran longitud formando complejos con una gran variedad de proteínas como las histonas para formar los cromosomas. El conjunto de genes de esos cromosomas se denomina genoma nuclear. La función del núcleo es mantener la integridad de esos genes y controlar las actividades celulares regulando la expresión génica. Por ello se dice que el núcleo es el centro de control de la célula.


ADN (ÁCIDO DESOXIRRIBONUCLEICO) ESTRUCTURA. Está formado por la unión de muchos desoxirribonucleótidos. La mayoría de las moléculas de ADN poseen dos cadenas antiparalelas (una 5´-3´y la otra 3´-5´) unidas entre sí mediante las bases nitrogenadas, por medio de puentes de hidrógeno.

La adenina enlaza con la timina, mediante dos puentes de hidrógeno, mientras que la citosina enlaza con la guanina, mediante tres puentes de hidrógeno. El ADN es el portador de la informacion genética, se puede decir por tanto, que los genes están compuestos por ADN.

ESTRUCTURA PRIMARIA DEL ADN Se trata de la secuencia de desoxirribonucleótidos de una de las cadenas. La información genética está contenida en el orden exacto de los nucleótidos.


ESTRUCTURA SECUNDARIA DEL ADN Es una estructura en doble hélice. Permite explicar el almacenamiento de la información genética y el mecanismo de duplicación del ADN. Fue postulada por Watson y Crick, basándose en: - La difracción de rayos X que habían realizado Franklin y Wilkins

- La equivalencia de bases de Chargaff,que dice que la suma de adeninas más guaninas es igual a la suma de timinas más citosinas.


Es una cadena doble, dextrógira o levógira, según el tipo de ADN. Ambas cadenas son complementarias, pues la adenina de una se une a la timina de la otra, y la guanina de una a la citosina de la otra. Ambas cadenas son antiparalelas, pues el extremo 3´de una se enfrenta al extremo 5´de la otra. Existen tres modelos de ADN. El ADN de tipo B es el más abundante y es el descubierto por Watson y Crick. ESTRUCTURA TERCIARIA DEL ADN. Se refiere a como se almacena el ADN en un volumen reducido. Varía según se trate de organismos procariontes o eucariontes: a) En procariontes se pliega como una super-hélice en forma, generalmente, circular y asociada a una pequeña cantidad de proteinas. Lo mismo ocurre en la mitocondrias y en los plastos.

b) En eucariontes el empaquetamiento ha de ser más complejo y compacto y para esto necesita la presencia de proteínas, como son las histonas y otras de naturaleza no histona (en los espermatozoides las proteínas son las portaminas). A esta unión de ADN y proteínas se conoce como cromatina, en la cual se distinguen diferentes niveles de organización: - Nucleosoma - Collar de perlas - Fibra cromatínica - Bucles radiales - Cromosoma.


ARN (ACIDO RIBONUCLEICO) El ARN (ácido ribonucléico) es un ácido nucléico de cadena sencilla compuesto por los nucleótidos Adenina (A), Uracilo (U), Guanina (G) y Citosina (C). En las células sirve como intermediario de la información genética ya que copia ésta del ADN y en el citoplasma dirige la síntesis de proteínas según su secuencia de nuecleótidos. Además de este ARNm o mensajero otros tipos incluyen el ARNt o de transferencia encargado de dirigir a cada aminoácido a su lugar cuando es requerido en la síntesis proteica y el ARN r o ribosómico, que formando parte del ribosoma es esencial en la actividad enzimática de éste para generar enlaces peptídicos entre aminoácidos adyacentes en el proceso de síntesis de proteínas.

LA ESTRUCTURA BÁSICA DEL ARN Sin embargo, la estructura básica del ARN, puede definirse como un azúcar ribosa, que se numera de 1' a 5', con:   

una base unida a la posición 1' un grupo hidroxilo en la posición 2 un fosfato Unido a la posición 3' de una ribosa y la posición 5' de la siguiente

Ácido ribonucleico (ARN) tiene las bases adenina (A), citosina (C), guanina (G) y uracilo (U). Créditos fotográficos: Nacional Instituto de General ciencias médicas BASES DE RNA Una base depende de la posición de 1', generalmente adenina (A), citosina (C), guanina (G) o uracilo (U).


Adenina y guanina son purinas; citosina y uracilo son pirimidinas. Las bases pueden formar enlaces de hidrógeno entre la citosina y guanina, entre adenina y uracilo y entre guanina y uracilo. A diferencia de ADN que contiene sólo cuatro bases A, T, G y C, RNA maduro puede contener bases modificadas y azúcares. Pseudouridina (Ψ), en el que la vinculación entre uracilo y ribosa se cambia de un bono C–N a un enlace C–C y ribothymidine (T), se encuentran en varios lugares. Otra notable base modificada es hipoxantina, una base de adenina desaminada cuyos análogos de los nucleósidos se llaman inosina (I). GRUPO HIDROXILO DE RNA Hay presencia de un grupo hidroxilo en la posición 2' del azúcar ribosa. Esto diferencia a RNA de ADN y hace el ARN adopte una geometría de un formulario en lugar de la forma B más comúnmente observados en el ADN. Esto significa que hay un surco mayor muy profundo y estrecho y un surco poco profundo y ancho menor. El grupo hidroxilo en 2' significa que en las regiones flexibles de una molécula de ARN productos químicos pueden atacar el enlace fosfodiester adyacentes para romper la columna vertebral. GRUPO DE FOSFATO DE RNA Un grupo fosfato está unido a la posición 3' de una ribosa y la posición 5' del siguiente. Los grupos fosfato tienen una carga negativa. Esto hace que el ARN una molécula cargada (polyanion). ESTRUCTURA TERCIARIA DE RNA Una vez que se forma el ARN, como las proteínas requiere someterse a cambios para formar una estructura terciaria específica. El andamio para esta estructura es proporcionado por elementos estructurales secundarios que son enlaces de hidrógeno en la molécula. El filamento forma bucles de horquilla, bultos y bucles internos. Ya está cargada RNA, iones metálicos como Mg2 + son necesarios para estabilizar muchas estructuras secundarias y terciarias.


REPLICACIÓN DEL ADN El proceso de replicación de ADN es el mecanismo que permite al ADN duplicarse (es decir, sintetizar una copia idéntica). De esta manera de una molécula de ADN única, se obtienen dos o más "replicas" de la primera. Esta duplicación del material genético se produce de acuerdo con un mecanismo semiconservativo, lo que indica que las dos cadenas complementarias del ADN original, al separarse, sirven de molde cada una para la síntesis de una nueva cadena complementaria de la cadena molde, de forma que cada nueva doble hélice contiene una de las cadenas del ADN original. Gracias a la complementación entre las bases que forman la secuencia de cada una de las cadenas, el ADN tiene la importante propiedad de reproducirse idénticamente, lo que permite que la información genética se transmita de una célula madre a las células hijas y es la base de la herencia del material genético. La molécula de ADN se abre como una cremallera por ruptura de los puentes de hidrógeno entre las bases complementarias puntos determinados: los orígenes de replicación. Las proteínas iniciadoras reconocen secuencias de nucleótidos específicas en esos puntos y facilitan la fijación de otras proteínas que permitirán la separación de las dos hebras de ADN formándose una horquilla de replicación. Un gran número de enzimas y proteínas intervienen en el mecanismo molecular de la replicación, formando el llamado complejo de replicación o replisoma. Estas proteínas y enzimas son homólogas en eucariotas y arqueas, pero difieren en bacterias.


TRADUCCIÓN DE PROTEÍNAS La traducción es el segundo proceso de la síntesis proteica (parte del proceso general de la expresión génica). La traducción ocurre tanto en el citoplasma, donde se encuentran los ribosomas, como también en el retículo endoplasmático rugoso (RER). Los ribosomas están formados por una subunidad pequeña y una grande que rodean al ARN. En la traducción, el ARN mensajero se decodifica para producir un polipéptido específico de acuerdo con las reglas especificadas por el código genético. Es el proceso que convierte una secuencia de ARNm en una cadena de aminoácidos para formar una proteína. Es necesario que la traducción venga precedida de un proceso de transcripción. El proceso de traducción tiene tres fases: iniciación, elongación y terminación (entre todos describen el crecimiento de la cadena de aminoácidos, o polipéptido, que es el producto de la traducción). La iniciación Primero, una Helicasa separa las hebras de ADN en estas denominadas cajas TATA, ya que entre adenina y timina se establecen dos enlaces de hidrógeno, mientras que entre citosina y guanina se forman tres. Posteriormente se unen los factores y las proteínas de transcripción (TBP, TF2D, TF2B) permitiendo, de esta manera, el acceso de la ARN polimerasa al molde de ADN de cadena simple, siendo esta la última en posicionarse. Aunque la búsqueda del promotor por la ARN polimerasa es muy rápida, la formación de la «burbuja de transcripción» o apertura del ADN y la síntesis del cebador es muy lenta. La burbuja de transcripción es una apertura de ADN desnaturalizado de 18 pares de bases, donde empieza a sintetizarse el ARN cebador a partir del nucleótido número 10 del ADN molde de la burbuja de transcripción. La burbuja de transcripción se llama «complejo abierto». La elongación La ARN polimerasa cataliza la elongación de cadena del ARN. Una cadena de ARN se une por apareamiento de bases a la cadena de ADN, y para que se formen correctamente los enlaces de hidrógeno que determina el siguiente nucleótido del molde de ADN, el centro activo de la ARN polimerasa reconoce a los ribonucleótidos trifosfato entrantes.



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.