Juan carlos

Page 1

nombre : Juan Carlos Moran Morales Grado : 5to Dibujo Vespertina

materia : Quimica fecha : 02/09/2017


La materia, en el Big Bang, era un punto de densidad infinita que, en un momento dado, "explota" generando su expansión en todas las direcciones y creando lo que conocemos como nuestro Universo. Inmediatamente después del momento de la "explosión", cada partícula de materia comenzó a alejarse muy rápidamente una de otra, de la misma manera que al inflar un globo éste va ocupando más espacio expandiendo su superficie. En 1948 el físico ruso nacionalizado estadounidense George Gamow modificó la teoría de Lemaître del núcleo primordial. Gamow planteó que el Universo se creó en una explosión gigantesca y que los diversos elementos que hoy se observan se produjeron durante los primeros minutos después de la Gran Explosión o Big Bang, cuando la temperatura extremadamente alta y la densidad del Universo fusionaron partículas subatómicas en los elementos químicos. Según se expandía el Universo, la radiación residual del Big Bang continuó enfriándose, hasta llegar a una temperatura de unos 3 K (270 °C). Estos vestigios de radiación de fondo de microondas fueron detectados por los radio astrónomos en 1965, proporcionando así lo que la mayoría de los astrónomos consideran la confirmación de la teoría del Big Bang. Según se expandía el Universo, la radiación residual del Big Bang continuó enfriándose, hasta llegar a una temperatura de unos 3 K (-270 °C). Estos vestigios de radiación de fondo de microondas fueron detectados por los radioastrónomos en 1965, proporcionando así lo que la mayoría de los astrónomos consideran la confirmación de la teoría del Big Bang.


¿Cómo nació el universo? Los astrónomos combinan modelos matemáticos y observaciones para hacer teorías que expliquen cómo fue que surgió el universo. En la teoría del Big Bang se incluyen otras teorías, como la de la relatividad de Einstein y teorías estándar de partículas fundamentales. Uno de los objetivos actuales de la investigación es saber si el universo seguirá creciendo o algún día parará y colapsará, algo que se le conoce como el Big Crunch. Si miráramos el universo un segundo después del Big Bang, veríamos un mar de neutrones, protones, electrones, positrones, fotones y neutrinos a alta temperatura. A medida que pasa el tiempo, el universo se va enfriando hasta conseguir que se formen átomos neutros. El universo pasó de opaco a transparente debido a la acción de los fotones. El universo es plano, es decir, que en la geometría del espacio se cumplen las reglas de la geometría euclidiana: las líneas paralelas no se encuentran, relación de círculo-circunferencia y diámetro del pi. Además, el universo es muy homogéneo respecto a temperatura. Esto podría deberse a que, en el momento inmediatamente después del Big Bang, el universo experimentó la inflación, una explosión de expansión en la que había un montón de energía inestable que se habría distribuido de manera desigual en el espacio. Otro dato curioso es que se ha observado recientemente, que no solo el universo no está desacelerando su crecimiento, sino que lo está acelerando. La teoría del Big Bang no es la única teoría del origen del universo, sino más bien la más popular. Uno de las más conocidas es la creada por el físico Robert Gentry, en el que explica su modelo basándose en los defectos de la teoría del Big Bang. Por otra parte, hay que tener en cuenta que en la cosmogonía, la ciencia y Dios parecen encontrarse: dado que la creación fue un evento sobrenatural, vale la pena preguntarse si existe algo más allá de los natural. La teoría del Big Bang sigue siendo una de las más aceptadas, pero aún quedan varias interrogantes por responder. ¿Crees que la teoría del Big Bang es acertada?


De acuerdo con la teoría de la Gran Explosión o del Big Bang, generalmente aceptada, el Universo surgió de una explosión inicial que ocasionó la expansión de la materia desde un estado de condensación extrema. Sin embargo, en la formulación original de la teoría del Big Bang quedaban varios problemas sin resolver. El estado de la materia en la época de la explosión era tal que no se podían aplicar las leyes físicas normales. El grado de uniformidad observado en el Universo también era difícil de explicar porque, de acuerdo con esta teoría, el Universo se habría expandido con demasiada rapidez para desarrollar esta uniformidad. Según la teoría del Big Bang, la expansión del universo pierde velocidad, mientras que la teoría inflacionaria lo acelera e induce el distanciamiento, cada vez más rápido, de unos objetos de otros. Esta velocidad de separación llega a ser superior a la velocidad de la luz, sin violar la teoría de la relatividad, que prohíbe que cualquier cuerpo de masa finita se mueva más rápido que la luz. Lo que sucede es que el espacio alrededor de los objetos se expande más rápido que la luz, mientras los cuerpos permanecen en reposo en relación con él. A esta extraordinaria velocidad de expansión inicial se le atribuye la uniformidad del universo visible, las partes que lo constituían estaban tan cerca unas de otras, que tenían una densidad y temperatura comunes.

El físico y cosmólogo Alan H Guth, del Instituto Tecnológico de Massachussets (M.I.T.), sugirió en 1981 que el universo caliente, en un estadio intermedio, podría expandirse de forma exponencial. La idea de Guth postulaba que este proceso de inflación se desarrollaba mientras el universo primordial se encontraba en el estado de superenfriamiento inestable.


Este estado superenfriado es común en las transiciones de fase; por ejemplo en condiciones adecuadas el agua se mantiene líquida por debajo de cero grados. Por supuesto, el agua superenfriada termina congelándose; este suceso ocurre al final del período inflacionario. En 1982 el cosmólogo ruso Andrei Linde introdujo lo que se llamó "nueva hipótesis del universo inflacionario". Linde se dió cuenta de que la inflación es algo que surge de forma natural en muchas teorías de partículas elementales, incluidos los modelos más simples de los campos escalares.

La teoría inflacionaria, predice que el universo debe ser esencialmente plano, lo cual puede comprobarse experimentalmente, ya que la densidad de materia de un universo plano guarda relación directa con su velocidad de expansión. La otra predicción comprobable de esta teoría tiene que ver con las perturbaciones de densidad producidas durante la inflación. Se trata de perturbaciones de la distribución de materia en el universo, que incluso podrían venir acompañadas de ondas gravitacionales. Las perturbaciones dejan su huella en el fondo cósmico de microondas, que llena el cosmos desde hace casi 13.800 millones de años.


Es una teoría cosmológica formulada en 1948 por Hermann Bondi y Thomas Gold, y sucesivamente ampliada por Fred Hoyle, según la cual el Universo siempre ha existito y siempre existirá Aquellos que rehúsan aceptar que el Universo tuvo un principio, pueden encontrar una opción satisfactoria en la teoría del estado estacionario. Según ésta, el Universo no sólo es uniforme en el espacio, sino también en el tiempo; así como, a gran escala, una región del Universo es semejante a otra, del mismo modo su apariencia ha sido la misma en cualquier época, ya que el Universo existe desde tiempos infinitos El Universo era eterno y, aunque se hallaba en expansión, siempre había permanecido igual, fuera cual fuera la región del espacio que observáramos. Esto era así porque se creaba materia continuamente, de manera que la nueva materia creada iba ocupando el espacio dejado por las galaxias en expansión. Esta propuesta recibió el nombre de “Teoría del Estado Estacionario” y afirma la existencia de un Universo homogéneo, es decir, que tiene el mismo aspecto sea cual sea la región del espacio que observemos y el tiempoen el que lo hagamos. Estas dos características, homogeneidad e isotropía, son conocidas con el nombre de Principio Cosmológico Perfecto. La Teoría del Estado Estacionario rechazaba totalmente la hipótesis de que existiera una radiación cósmica de fondo, puesto que, según ellos, no había habido ninguna explosión inicial, lo que significaba que en caso de descubrirse su existencia esta teoría se vería seriamente comprometida. Se desarrolló en 1949 como una alternativa a la Teoría del Big Bang. Según esta teoría la disminución de la densidad que produce el Universo al expandirse se compensa con la creación continua de materia, pero no se ha podido demostrar directamente.


La teoria del modelo estacionario surgió de la aplicación del principio cosmológico perfecto, en el que se dice que el universo debe parecer igual desde cualquier punto del espacio, y no solo debría verse igual en el espacio, si no que además debería serlo en el tiempo ya que sus propiedades serían constantes tanto en espacio como en tiempo. Esta teoria comenzó a decaer considerablemente a finales de los 60 cuando se empezó a demostrar que el Universo estaba cambiando. De acuerdo con Viquez (2007) en la teoría del estado estacionario, la disminución de la densidad que produce el Universo al expandirse se compensa con una creación continua de materia. Debido a que se necesita poca materia para igualar la densidad del Universo, esta Teoría no se ha podido demostrar directamente. La teoría del estado estacionario surge de la aplicación del llamado principio cosmológico perfecto, el cual sostiene que para cualquier observador el universo debe parecer el mismo en cualquier lugar del espacio. La versión perfecta de este principio incluye el tiempo como variable por lo cual el universo no solamente presenta el mismo aspecto desde cualquier punto sino también en cualquier instante de tiempo siendo sus propiedades generales constantes tanto en el espacio como en el tiempo. Los problemas con esta teoría comenzaron a surgir a finales de los años 60, cuando las evidencias observacionales empezaron a mostrar que, de hecho, el Universo estaba cambiando: se encontraron quásares sólo a grandes distancias, no en las galaxias más cercanas. a mediados del siglo XX, para dar cuenta de ciertos problemas cosmológicos. De acuerdo con la teoría del estado estacionario, la disminución de la densidad que produce el universo al expandirse se compensa con una creación continua de materia. Debido a que se necesita poca materia para mantener constante la densidad del universo mientras este se expande (un protón al año en cada km³ del universo), esta hipótesis no se ha podido demostrar directamente. La teoría del estado estacionario surge de la aplicación del llamado principio cosmológico perfecto, el cual sostiene que para cualquier observador el universo debe parecer el mismo en cualquier lugar del espacio. La versión perfecta de este principio incluye el tiempo como variable por la cual el universo no solamente presenta el mismo aspecto desde cualquier punto sino también en cualquier instante de tiempo, siendo sus propiedades generales constantes tanto en el espacio como en el tiempo.


La teoría del universo oscilante sostiene que nuestro Universo sería el último de muchos surgidos en el pasado, luego de sucesivas explosiones y contracciones. El momento en que el universo se desploma sobre sí mismo atraído por su propia gravedad es conocido como Big Crunch, marcaría el fin de nuestro Universo y el nacimiento de otro nuevo. Esta teoría fue planteada por el profesor Paul Steinhardt, profesor de física teórica en la Universidad de Princeton. Esta hipótesis fue bastante aceptada durante un tiempo (o tal vez sigue siéndolo) por los cosmólogos que pensaban que alguna fuerza debería impedir la formación de singularidades gravitacionales y conecta el big bang con un anterior big crunch: las singularidades matemáticas que aparecían en los cálculos eran el resultado de sobre idealización matemática y serían resueltas por un tratamiento más cuidadoso. Sin embargo, en los años 1960, Stephen Hawking, Roger Penrose y George Ellis mostraron que las singularidades son una característica universal de las cosmologías que incluyen el big bang sin que puedan ser evitadas con ninguno de los elementos de la relatividad general.

Teóricamente, el universo oscilante no se compagina con la segunda ley de la termodinámica: la entropía aumentaría en cada oscilación de manera que no se regresaría a las condiciones anteriores. Otras medidas sugieren también que el universo no es cerrado. Estos argumentos hicieron que los cosmólogos abandonaran el modelo de universo oscilante.


Esta hipótesis fue bastante aceptada durante un tiempo (o tal vez sigue siéndolo) por los cosmólogos que pensaban que alguna fuerza debería impedir la formación de singularidades gravitacionales y conecta el big bang con un anterior big crunch: las singularidades matemáticas que aparecían en los cálculos eran el resultado de sobre idealización matemática y serían resueltas por un tratamiento más cuidadoso. Sin embargo, en los años 1960, Stephen Hawking, Roger Penrose y George Ellis mostraron que las singularidades son una característica universal de las cosmologías que incluyen el big bang sin que puedan ser evitadas con ninguno de los elementos de la relatividad general. Teóricamente, el universo oscilante no se compagina con la segunda ley de la termodinámica: la entropía aumentaría en cada oscilación de manera que no se regresaría a las condiciones anteriores. Otras medidas sugieren también que el universo no es cerrado. Estos argumentos hicieron que los cosmólogos abandonaran el modelo de universo oscilante. La teoría ha vuelto a resurgir en la cosmología de branas como un modelo cíclico, que logra evadir todos los argumentos que hicieron desechar la teoría del universo oscilante en los años 1960. Esta teoría es altamente controvertida debido a la ausencia de una descripción satisfactoria en este modelo del rebote con la teoría de cuerdas. Del mismo modo que se ha especulado hipotéticamente con las posibles formas de vida existentes en un universo en expansión eterna, también se ha hecho lo mismo con formas hipotéticas de vida existentes en los momentos finales de un universo en contracción (durante los estados iniciales de dicha contracción, así cómo incluso ya avanzada ésta y gracias a la tecnología que pudieran desarrollar para adaptarse a las condiciones existentes por entonces, dichos seres vivos no serían muy distintos a nosotros -al menos en el sentido de estar basados en el carbono y basar su metabolismo en reacciones químicas-), y como en el primer caso, dichas formas de vida serían radicalmente distintas a nosotros.


www.astromia.com/astronomia/teoriabigbang.htm http://www.astromia.com/astronomia/teoinflacionaria.htm http://fisicamodernauniverso.blogspot.com/2011/10/la-teoria-del-estado-estacionario.htm http://www.seamp.net/estadoestacionario.htm http://cienciageografica.carpetapedagogica.com/2011/09/teoria-del-universo-oscilante.html


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.