Algae Bio-reactive Building Envelope

Page 1

Algae Bio-reactive Building Envelope

Energy-saving and CO2 Absorption Interactive Building Facade

Instructor: Alexandros Tsamis Course Title: Design Research Studio Course Number: ARCH 6350.81, Fall 2020 Jingshi Zhang

Design Research Studio / Fall 2020


Algae Bloom & Uses of Algae

Algal Bloom in Great Lakes

Pink Lake in Australia

Bioluminescent Waves

https://www.mixerdirect.com/blogs/mixer-direct-blog/10-surprising-uses-of-algae


State of Art

Algae Cultivation System Open-Pond System

Yield (g/m2/day) Initial Cost Operating Cost Contamination Threat Water Use Energy Use Land Use

Low 10-25 Low Low High Use Low High

Fong Qiu, Integration of algae in architecture

Low-Tech Vertical Bioreactor

High-Tech Vertical Bioreactor

Experimental Bioreactor

Yield (g/m2/day) Initial Cost Operating Cost Contamination Threat Water Use Energy Use Land Use

Yield (g/m2/day) Initial Cost Operating Cost Contamination Threat Water Use Energy Use Land Use

Yield (g/m2/day) Initial Cost Operating Cost Contamination Threat Water Use Energy Use Land Use

Mod. 50 Mod. Low Low Low Mod. Low

High 50-60 High Mod. Low Low Mod. Low

Very High 80-100

Mod. Mod. Low Low Mod. Low


State of Art Bio Intelligent Quotient (B.I.Q) Building Bioreactor function 1: thermal mass function 2: biomass

Not doing 1: generating energy onsite 2: Indoor CO2 3: Aesthetic

SolarLeaf: The world’s first bioreactive façade Hinterlüftete Fassadenkonstruktion aus Photobioreaktoren Monitoring Fassadenkonstruktion aus Photobioreaktoren am Pilotprojekt BIQ auf der IBA 2013


State of Art Bio Intelligent Quotient (B.I.Q) Building

Photovoltaics

A Laminated safety glass B Argon filled C Toughened safety glass SolarLeaf: The world’s first bioreactive façade Hinterlüftete Fassadenkonstruktion aus Photobioreaktoren Monitoring Fassadenkonstruktion aus Photobioreaktoren am Pilotprojekt BIQ auf der IBA 2013


Existing System

Input: Energy 1: Solar Energy 2: Electricity Energy 3: Natural Gas Output: Warm contracting Biomass CO2: Gas boiler

SolarLeaf: The world’s first bioreactive façade Hinterlüftete Fassadenkonstruktion aus Photobioreaktoren Monitoring Fassadenkonstruktion aus Photobioreaktoren am Pilotprojekt BIQ auf der IBA 2013


State of Art Vertical Algae Farm 2014

https://cesaregriffa.com/2015/03/16/vertical-algae-farm-2014/


State of Art Different Species

Fong Qiu, Integration of algae in architecture


Hypothesis Using buildings’ waste - CO2 Using buildings’ facade On-site energy generation - Provide energy Provide shading in summer Provide thermal and acoustic buffer Thermal mass Improve CO2 and O2 balance

Algae bioreactive building envelopes that absorb CO2 , generate electricity, store thermal mass on-site and provide interactive shading have great potential to improve the indoor environment quality, reduce the energy use of a building.


Algae Bio-reactor Building Facade


Solar Leaf


Solar Leaf


Energy Generation Calculation

Theoretical Maximum Algal Biofuel Production 38,000 gal·ac−1·year−1 Seagram Surface Area 23,110.4 sq. m = 248,758 sq.ft = 5.7 AC 5.7 x 38,000 x 12.7 = 2,750,820 kwh Coal : 2,750,820 /1,842 = 1493.4 ton Natural gas: 2,750,820 /127 = 21,660 Mcf (1,000 cubic feet) https://energy.cusp.nyu.edu/#/


CO2 Absorption Calculation Seagram Building Total CO2 Emission a Year: 248,758 sq.ft x 18.06 kgCO2/ft2 = 4,492,569.48 kgCO2 = 4952 ton A single hectare of mature trees absorbs approximately 6.4 tonnes of CO2 per year (2.59 ton/acre/year) Algae-fueled bioreactor soaks up CO2 400x more effectively than trees (1036 ton/acre/year)

The Amount of CO2 Seagram Building Could Absorb a Year: 5.7 ac x 1036 = 5905.2 ton/year Seagram Without Algae Bioreactor

Seagram With Algae Bioreator

Building CO2 emission + 4952 ton

Building CO2 emission + 4952 ton

Electricity generated CO2 emission 0.99 lb/kwh x 2,750,820 kwh = + 1,362 ton

Algae Bioreactor Absorption -5905.2 ton

______________________________ Total 6,314

How much CO2 emission when Biofuel burn 5.7ac x 38,000 gal x 2661g = + 635.3 ton ______________________________ Total -317.9

https://energy.cusp.nyu.edu/#/


Standard


Experiment - Prototype Design Comparison of growth curve under normal nutrition at an air flow rate of 6 L/min with the addition of pure CO2 gas at a flow rate of (○) 0 mL/min (■) 20 mL/min (♦) 50 mL/min ( ) 200 mL/min Optical density (OD)

Chlorella Vulgaris Colors: yellow, lime and white

Carbon eater- Oscillatoria Colors: Blue-green or browngreen, purple

https://www.sciencedirect.com/science/article/pii/S2213343713002200


Experiment - Prototype Design

Harvesting of microalgae by bio-flocculation - backward

https://www.sciencedirect.com/science/article/pii/S2213343713002200 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172406/


Before System

After System


Industry City Facade Renovation

https://www.ft.com/content/88745a9c-d52f-11e7-ae3e-563c04c5339a


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.