Forecast

Page 1

ก ก ก (FORECASTING FOR PRODUCTION)

. ! ! ! "# $ # #ก %&' ( )ก " *# #ก % ( %) # + , -ก. (


/0ก # 12 02 *"#3"'%ก - 45 -670 8&1 6 *% ก 9:1"# % 8&1ก ;&1( 0"8 2 *3 ก +<=" #> 4*-ก ;:?0/0$>#1 * *-# )0:=1/0&0 " +<=ก5 )0 @#8 +,?10<?กA - B=&4*@ 84, - < %6C44, +<=45 -670 >&ก @#8/)8 8&% 2 *-670@6& > 16 *) , ก ก 03, -670;,?0 &02 ก/0ก *3#0ก # 12 02 *"#3"'%ก D:=1 +,=#E@62 8#4*+ ก "# % 8&1ก /0$>#1 * *-# 1 6G;8 1)08 - 4*-)A0 @ 8#> ก ก %<"# %(5 ",H% ก/0ก *3#0ก ,10,?0- 4*% :ก. # I<ก ก /0233 > 1E


ก ก ก ก "B& ก " ก 9:1( =1/ ( =1)0:1= +<=4*-ก ;:?0 /0$>#1-# /0&0 " 2 *05 "> ก +<=@ 80,?0% /$8 6 * $0 - B=&ก , ( 0/4/ E ก ก 4*%< "# %(5 ",H/0 8 0 > 1E ,10<? ก /$8/0ก , ( 0/4-ก<= #ก,3;0 ;&1 2 * ,ก. *;&1 ก /$84 , +5 -670 1-# ก 2 *ก "#3"'% #,( '"1" ,1- B&= &3(0&1 >&"# % 8&1ก ;&1 Jก"8 /0 " +<= -)% *(%


ก -1 02 *ก 3,H$< /$8/0ก # 12 0ก >#1)08 -ก<= #ก,3 ก 4, ( 136 *% -1 0 1+'0 ก5 )0 ,3 4> /02 > *$>#1-# - B=&/)83 .+, 5 1& J>/0(9 0*(! " >&1 2 * 5 -0 01 0@6& > 1%<6 *( +I !


6 *-!+;&1ก ก 1. * *(,?0 (3-12 - B&0) ก ก ">&0;8 12%>0 5 ก -6 <= 026 1+ 1 8 0(! #* - .Nก 4 (,1"% ก -%B&1 %< ก *+308& - B=&# 12 0ก 6O 3, 1 0 2. * * # (3 6G, 5 6G, ) B& 10 6G) ก ก 2%>0 5 08& 1 ก -6 <= 026 1+ 1 8 0(! #* - .Nก 4 (,1"% ก -%B&1 4*%< % ก - B=&# 1+ + 1) B&-6S )% + 1I' ก 4 * * 1 - 3 6G - B=&# 12 0 , ( 0/4 - ,?1"&% #- & - ,?1-" B=&14,ก 11 0 * *-# 3 6G;:?0@6 - , ( 0/4-ก<= #ก,32 0;&1&1" ก - + + 1ก ; 11 0 ก ,?1 11 0/)%>


# I<ก ก 1. REGRESSIVE METHOD /$8;8&%J 2 * ,#- ;/0& < -670 ,#$<?&0 " /$8-+"0 "-$ 16 % /0ก ก ( Quantitative Forecasting ) -)% *(5 ) ,3( 0"8 ) ,ก+<@= 86J @#8 < &(%"# 2 8# > # I<04<? * 8&1%<;8&%J +<=-$B=&9B&@ 82 *%<;8&%J 8&% < 2. PROGRESSIVE METHOD @%>%<) B&@%>( % 9/$8;8&%J /0& < -67020#+ 1 (! #*- .Nก 4 (,1"% 2 *ก -%B&12 *(! 26 6 #0% ก -670( 0"8 $0 /)%> /$8-+"0 "ก ก -$ 1"' ! ( Qualitative Forecasting ) > # I<0<?4*+5 ก -กA3;8&%J , +5 market Research , +5 233(&39 % <


-+"0 "ก ก -$ 16 % 1. ก # -" *) &0'ก %-# (TIME SERIES ANALYSIS) - ก # -" *) &0'ก %-# 4* J"# % >&-0B=&1+<= > 0% /0& < D:=1-670# I<+<=/$8ก,0& > 12 >) /06C44'30, %<# I< 1, 0<? 1.1 DECOMPOSITION METHOD 1.2 TIME SERIES MODELS 1.2.1 TREND MODELS 1.2.2 MOVING - AVERAGE MODELS 1.2.3 EXPONENTIAL MODELS 1.2.4 BOX-JENKINS METHODS


2. REGRESSION ANALYSIS CAUSAL MODELS (ก # -" *) -$ 19 9& ) 2.1 SIMPLE LINEAR REGRESSION 2.2 MULTIPLE REGRESSION 2.3 ECONOMETRIC MODELS

> # I<ก 0<?-670ก # -" *) 6C44, +<=% < 2 6C44, ;:?0@6D:=1-670ก # -" *) +<=D,3D8&0-)% *(5 ) ,33 .,+/)H>E- * 8&1%&1 ก *+3) ,# <


-+"0 "ก ก -$ 1"' ! 1. # I<- $q (Delphi Method) (&39 % J8-$<= #$ H)%'0-#< 0 >&-0B=&1 2. # I< Panel Consensus #%ก '>% J8-$<= #$ H&! 6 3. Gross-Root Forecasting (&39 % J8/ก 8$ 6CH) -$>0 J82+0; 4. # I<# 4, (Marketing Research) #3 #%;8&%J # -" *) + (&3


Forecasting


Quantity

Patterns of Demand

Time Figure 12.1

(a) Horizontal: Data cluster about a horizontal line.


Quantity

Patterns of Demand

Time Figure 12.1

(b) Trend: Data consistently increase or decrease.


Patterns of Demand

Quantity

Year 1

Figure 12.1

|

|

|

|

|

|

|

|

|

|

|

|

J

F

M

A

M

J

J

A

S

O

N

D

Months

(c) Seasonal: Data consistently show peaks and valleys.


Patterns of Demand

Quantity

Year 1

Year 2

Figure 12.1

|

|

|

|

|

|

|

|

|

|

|

|

J

F

M

A

M

J

J

A

S

O

N

D

Months

(c) Seasonal: Data consistently show peaks and valleys.


Quantity

Patterns of Demand

Figure 12.1

|

|

|

|

|

|

1

2

3

4

5

6

Years

(c) Cyclical: Data reveal gradual increases and decreases over extended periods.


Demand Forecast Applications Time Horizon

Application

Short Term (0–3 months)

Forecast quantity

Individual products or services

Decision area

Inventory management Final assembly scheduling Workforce scheduling Master production scheduling Time series Causal Judgment

Forecasting technique

Table 12.1

Medium Term (3 months– 2 years)

Long Term (more than 2 years)

Total sales Groups or families of products or services Staff planning Production planning Master production scheduling Purchasing Distribution

Total sales

Causal Judgment

Causal Judgment

Facility location Capacity planning Process management


Causal Methods Linear Regression Dependent variable

Y

X Figure 12.2

Independent variable


Causal Methods Linear Regression Regression equation: Y = a + bX

Dependent variable

Y

X Figure 12.2

Independent variable


Causal Methods Linear Regression Regression equation: Y = a + bX

Dependent variable

Y

Actual value of Y Value of X used to estimate Y

X Figure 12.2

Independent variable


Causal Methods Linear Regression Dependent variable

Y

Deviation, Estimate of or error Y from regression equation

{

Regression equation: Y = a + bX Actual value of Y Value of X used to estimate Y

X Figure 12.2

Independent variable


TIME-SERIES ANALYSIS : DECOMPOSITION METHOD &1" 6 *ก&3;&1&0'ก %-# (COMPONENT OF TIME SERIES)) 1. TREND (20# 08%) - ก -6 <= 026 1;&1 & ; #> @6+ 1@)0 2. SEASONAL (u Jก ) - -) 'ก +<=-ก ;:?0D?5 E/02 > * &36G 3. CYCLICAL (#,O4,ก ) 4. RANDOM ORIRREGULAR ("# %@%>20>0&0)


Demand

Seasonal Patterns

| 0 Figure 12.7

| | | | | | | | | | | | | | | 2 4 5 8 10 12 14 16 Period


Seasonal Patterns

Y = T X S X CX R Y = TIME SERIES FORECASE

Demand

(a) Multiplicative pattern

| 0

| | | | | | | | | | | | | | | 2 4 5 8 10 12 14 16 Period


Seasonal Patterns

Y = T + S + C+ R Y = TIME SERIES FORECASE

Demand

(b) Additive pattern

| 0 Figure 12.8

| | | | | | | | | | | | | | | 2 4 5 8 10 12 14 16 Period


ก ก * *(,?0 (SHORT-RANGE FORECASE) C 2 * R -670& +I /0 * * # 2 >ก ก - B=&ก # 12 0ก -670ก ก /0 * *(,?0 C 2 * R 4:1%<& +I >& ก ก - < 1- Aก08& ,10,?0 ,# 233ก ก 4:1( % 9 4, J6@ 8 ,10<?

Y=TXS


ภ6 *% "> 20# 08% Linear Model

Exponential Model Y = abt

Y = a+bt

Y = a+bt+ct2 Quadralic Model

Quadralic Model


ก 6 *% "> 20# 08% # I<ก5 ,1(&108& +<=(' (Least Squares Technique) ก <20# 08%-(80 1%<"# %$,0

y(t) = a + b(t)


ก 6 *% "> 20# 08% # I<ก5 ,1(&108& +<=(' (Least Squares Technique) ก <20# 08%-(80 1%<"# %$,0 Q Y(t) = a + b (t) ∴ e(t) = y (t) − Y(t) = y (t) − (a + b( t ) ) n [ e 2 ( t )] = n [ y ( t ) − ( a + b ( t ))] 2 t =1 t =1 d [

e2 (t) ] da

= 0

d [

e2 (t) ] db

= 0


e(t) == e(t)

"# %" -" B=&=&0$> 0$>##1-# 1-# tt/ / EE "# %" -" B

y(t) == y(t)

& ; 4 11$>$>##1-# 1-# tt/ / EE & ; 4

Y(t) == Y(t)

ก $$>#>#1-# 1-# tt/ / EE ">"> ก

nn

0#0$>##1-# 1-# 4545 0#0$>

==


ก n

∑ a =

y (t

t =1

n

n

)

b

t

t =1

n

n

n

n

t =1

t =1 n

t =1

n ∑ t y(t) − ∑ y(t) ∑ t b=

n 2

n ∑ t − ( ∑ t) t =1

t =1

2


ภภ!

y(t)

1

7

2

8

3

10

4

12

5

13

6

14

7

16

80

12( 1 & ; 6G;&13 .+, Generox ()0># )


1+<= 3.1 : & ; 6G;&13 .,+ Generox ()0># ) 1 2 3 4 5 6 7

y(t) 7 8 10 12 13 14 16 80

t 1 2 3 4 5 6 7 28

t2 1 4 9 16 25 36 49 140

t y(t) 7 16 30 48 65 84 112 362


( 7 )( 362 ) − ( 80 )( 28 ) b = 7 ( 140 ) − ( 28 ) 2 = 1 .5 80 1 . 5 ( 28 ) a = − 7 7 = 5 .4 y ( t ) = 5 .4 + (1 .5 ) t

t

Y(t)

t

Y(t)

t

Y(t)

1

6.9

4

11.4

7

15.9

2

8.4

5

12,9

8

17.4

3

9.9

6

14.4


ภ" # $%&' !( &) ! *) +&) # I<9,#-‚ <= -" B=&0+<=& > 11> (Sample Moving Average) N

Y (t) =

∑ y(t-1)

i=1

N N = 45 0#04' ;&1;8&%J +<=/$8/0ภ9,#-‚ <= > -$>0 1 6G %< 4 @ % ( , N = 4 <

N

Y(t) =

y(t-1) + y(t-2) +ƒƒ. y(t-N)


12( 1 & ; @ % ( 6 +&)

6G

1

2

3

4

2546

500

1050

250

1800

2547

525

1090

200

2000


,#& > 1ก "5 0# Y(5) =

y(4) + y(3) + y(2) + y(1) N

Y(5) =

500+1050+250+1800 4

Y(6) = Y(6) =

y(5) + y(4) + y(3) + y(2) N 1050+250+1800 +525 4

= 900

= 906.25


"< 2546

2547

Y(5) = 2548

6

t 1 1 2 2 3 3 4 4 1 5 2 6 3 7 500+1050+250+1800 4 4 8 1 9 2 10 3 11 4 12

# y(t) 500 1050 250 1800 525 1090 200 = 900 2000

Y(t)

900.00


"< 2546

2547

2548Y(6)

=

6

t # y(t) Y(t) 1 1 500 2 2 1050 3 3 250 4 4 1800 1 5 525 900.00 2 6 1090 906.25 3 7 200 4 1050+250+1800 8 + 525 2000 = 906.25 1 4 9 2 10 3 11 4 12


"< 2546

2547

2548

6

1 2 3 4 1 2 3 4 1 2 3 4

t 1 2 3 4 5 6 7 8 9 10 11 12

# y(t) 500 1050 250 1800 525 1090 200 2000

Y(t)

900.00 906.25 916.25 903.75 953.75


# I<9,#- <= -" B=&0+<=2339>#10?5 )0,ก (Weight Moving Average) " 8 ก,3# I<9,#- <= -" B=&0+<=& > 11> 2 >@ 8/$8 #, 9>#10?5 )0,ก+<= -)% *(%- B=&6 ,3"> /)8/ก 8-"< 1ก,3;8&%J 4 1% ก 1= ;:?0 Y (t) =

N

∑ W(N-k+1) y(t-1)

i=1

W(t-k) "B& "> 9>#10?5 )0,ก(5 ) ,3$>#1-# (t-k) %< #% -+> ก,3 1 /0+ 1I' ก 44*/)8"# %(5 ",Hก,3;8&%J $' > (' % กก#> ;8&%J -ก>


ก 12( 1 & ; @ % ( 6 +&)

6G

1

2

3

4

2546

500

1050

250

1800

2547

525

1090

200

2000

(%% "> 9>#10?5 )0,ก = 1/6 , 1/3 , 1/3 , 1/6

( #%ก,0 = 1)


ก Y(5) = W(4)y(4) +W(3) y(3) +W(2) y(2) +W(1) y(1) Y(5) = (1/6)500+(1/3)1050+(1/3)250+(1/6)1800 = 816.66 Y(6) = W(4)y(5) +W(3) y(4) +W(2) y(3) +W(1) y(2) Y(6) = (1/6)1025+(1/3)250+(1/3)1800+(1/6)525 = 945.83


"< 2546

2547

2548

6

1 2 3 4 1 2 3 4 1 2 3 4

t 1 2 3 4 5 6 7 8 9 10 11 12

# y(t) 500 1050 250 1800 525 1090 200 2000

Y(t)

816.66 945.83 998.32 904.99 850.82


ก "5 0# "> ก # I&< 0'ก %-# 2332 ก&1" 6 *ก&3 ก <%<&1" 6 *ก&320# 08%2 *u Jก

TREND AND SEASONAL


1+<= 3.7 2( 1;8&%J & ; @ % (;&13 .,+2)>1)0:=1 /0& < 4 6G+<= > 0% (2539-2542) . .

1

@ % (+<= 2

2539

56

2540

3

4

50

60 ) 6 +&

67

62

56

65

71

2541

65

60

70

77

2542

73

66

75

85


Y(t) = b

53.2+1.52 t

(16)(9510) (1058)(136) = = 1.52 (16)(1496) (136)2

2 * a

=

1058 (1.52)(136) 16 16

= 53.2


1+<= 3.8 2( 1"> 20# 08%233-(80 1%<"# %$,0 @ % ( (Trend) @ % (+<= . .

1

2

3

4

2539

54.72

56.24

57.76

59.28

2540

60.80

62.32

63.84

65.36

2541

66.89

68.41

69.93

71.45

2542

72.97

74.49

76.01

77.53


ก ) "> ,$0<u Jก # I<&, (>#0 >&"> 20# 08% -%B=&

y(t)

=

Y(t) = t

=

y(t) / Y(t) & ; 4 1/0$>#1-# t (4 ก 1+<= 3.7) "> ก 20# 08%/0$>#1-# t ( 1+<= 3.8) 1,2,3, ,16

ก "5 0# 2( 1/0 1+<= 3.9


1+<= 3.9 2( 1&, (>#0 & ; 4 1 >&"> 20# 08%;&12 > *@ % (

@ % (+<= . . 2539 2540 2541 2542 #% - <= ) "> - <=

1 1.023 1.020 0.972 1.000 4.015 1.004

2 0.889 0.899 0.877 0.886 3.551 0.888 ,$0<u Jก

3 1.039 1.018 1.001 0.987 4.045 1.011

4 1.130 1.086 1.078 1.096 4.390 1.097


ก "5 0# "> ก +<= 4 "> 20# 08%2 *u Jก T = 53.2 + 1.52 t 6G+<= @ % (+<= $>#1-# +<= "> 20# 08% ,$0<u Jก "> ก 1

2

T

S

Y=TxS

1

1

54.72

1.004

54.9

2

2

56.24

0.888

49.9

3

3

57.76

1.011

58.4

4

4

59.28

1.097

65.10

1

5

60.80

1.004

61.0

2

6

62.32

0.888

55.3


1+<= 3.15 12( 1"> ก +<= 4 "> 20# 08%2 *u Jก /0 *)#> 16G 2539 2542 @ % (+<= . .

1

2

3

4

2539

54.9

49.9

58.4

65.10

2540

61.0

55.3

64.6

71.7

2541

67.1

60.7

70.7

78.4

2542

73.2

66.1

76.9

85.1


1+<= 3.10

12( 1"> ก 6G 2543 2 * 2544 4 &1" 6 *ก&320# 08%2 *u Jก (1) (2) (3) (4) (5) . . @ % ( T "> 20# 08% ,$0<u Jก "> ก 2543 1 17 79.04 1.004 79.36 2 18 80.56 0.888 71.54 3 19 82.08 1.011 82.98 4 20 83.60 1.097 91.71 2544 1 21 85.12 1.004 85.46 2 22 86.64 0.888 76.94 3 23 88.16 1.011 89.13 4 24 89.68 1.097 98.38


ก # -" *) "# %" -" B=&0;&1ก ก 1. ) "> - <= ;&1"# %-3<= 1-30(%3J (Mean Absolute Deviation, MAD) #, 2 >;0 ;&1"> -3<= 1-30

N

∑ MAD =

y(t) − Y(t)

t =1

N

2. "> - <= "# %" -" B=&0ก5 ,1(&1 (Mean Sauared Error, MSE) N

∑ {y(t) − Y(t) } MAD =

2

t =1

N


3. "> - <= -6& -DA0 ;&1"# %" -" B=&0(%3J (Mean Absolute Percent Error, MAP)

100 MAD = N

∑ t =1

[y(t) − Y(t) ] y(t)

> -670ก #, "' ! ;&1ก ก


2( 1ก "5 0# "# %" -" B=&0;&1ก ก +,?1 3 # I<

$>#1-#

& ; 4 1

"> ก

"# %" -" B=&0 (%3J

"# %" 2 %"# %" -" B=&0 -" B=&0ก5 ,1 (%3J (&1

1

20

18

2

4

10.00 %

2

30

25

5

25

16.67 %

3

10

15

5

25

4

40

30

10

100

50.00 % 25.00 %

5

30

35

5

25

16.67 %


"> - <= ;&1"# %-3<= 1-30(%3J =

"> - <= "# %" -" B=&0ก5 ,1(&1 =

2+5+5+10+5 5 4+25+25+100+25 5

= 5.4

= 35.8

"> - <= -6& -DA0 "# %" -" B=&0(%3J = 10 + 16.67+50+25+16.67 = 23.6 5


1+<= 3.11 12( 1"> -3<= 1-30(%3J *)#> 1 & ; 4 12 *"> ก /0 *)#> 16G 2539-2542 Y − y ( t ) (t) @ % (+<= . . 1 2 3 4 2539 1.1 0.1 1.6 1.9 2540 1.0 0.7 0.4 0.7 2541 2.1 0.7 0.7 1.4 N 2542 0.2 0.1 1.9 0.1 ∑ y(t) − Y (t) #%"> -3<= 1-30(%3J = 14.7 t = 1 "> - <= -3<= 1-30(%3J = 14.7 = .919 16

MAD


1+<= 3.12 12( 1"> "# %" -" B=&0ก5 ,1(&1 . . 2539 2540 2541 2542

1 1.21 1.0 4.41 0.04

@ % (+<= 2 3 0.01 2.56 0.49 0.16 0.49 0.49 0.01 3.61

4 3.61 0.49 1.96 0.01

#%"# %" -" B=&0ก5 ,1(&1 = 20.55 "> - <= "# %" -" B=&0ก5 ,1(&1 = 20.55 = 1.28 16


1+<= 3.13 12( 1"> &, (>#0"# %" -" B=&0 >& & ; 4 1 @ % (+<= . . 1 2 3 4 2539 0.019 0.002 0.027 0.028 2540 0.016 0.012 0.006 0.009 2541 0.032 0.012 0.01 0.018 2542 0.003 0.002 0.025 0.001 #%&, (>#0"# %" -" B=&0 >& & ; 4 1 = 0.222 "> - <= -6& -DA0 "# %" -" B=&0(%3J = 1.39


ภภ" ! & ! ?ภ@ "! !A& (Exponential Smoothing) 6 ,3- < 3-&Aภ6 -080-$< & > 11> (Simple Exponential Smoothing) Y(t)

= Îą y(t) + (1- Îą)Y(t-1)

Y(t) = "> ภ6 ,3- < 3-&AภD 6-00-$< $>#1-# t Îą = "> 9>#10?5 )0,ภ6 ,3- < 39,#-‚ <= ( ภ5 )0 "> *)#> 1 0.1-0.3)

y(t) = & ; 4 1 $>#1-# t


Y(t)

= α y(t) + (1- α)Y(t-1)

+<= t = 1 Y(1)

ก "5 0# "> - =% 80 = α y(1) + (1- α)Y(0)

Y(0) = X(1) - (L/2) T(0)

> /03 1ก < Y(0) = & ; 4 1;&1 period +<= 1 กA@ 8

# T(O) ' 6# Q ก T(0) = [X(m) - X(1) ]/(m-1)L


X(1) = "> - <= >&$>#1-# ;&16G+<= 1 L = 45 0#0$>#1-# /0 1 6G ( -$>0 1 6G %< 4 @ % ( L= 4 ) X(m) = "> - <= >&$>#1-# ;&16G+<= m m = 45 0#06G+,?1)% ;&1;8&%J 4 1 T(0) = "> 20# 08%(5 ) ,3$>#1-# +B= 0


ก ก " ! & ! ?ก@ "! !A& 1;8&%J & ; @ % ( 5 6G > (' @ % (+<= .

6G+<=

1

2

3

4

2543

1

107

84

68

135

2544

2

115

96

49

162

2545

3

109

102

67

140

2546

4

102

75

58

151

2547

5

99

74

42

125

m = 5 , L = 4 , α = 0.2


ก ! $ ) 1;8&%J & ; @ % ( 5 6G > (' @ % (+<= .

6G+X(1) <= "> - <= =1 (107+84+68+135)/4 2 3 4 = 98.5

2543

1

107

84

68

135

2544

2

115

96

49

162

2545

3

109

102

67

140

2546

4

102

75

58

151

2547

5

99

74

42

125

98.5


ก ! $) 1;8&%J & ; @ % ( 5 6G > (' @ % (+<= .

6G+<=

1

2

3

4

"> - <=

2543

1

107

84

68

135

98.5

2544

2

115

96

49

162

2545

3

109

102

67

140

2546

4

102

75

58

151

2547

5

99

74

42

125

85

X(m) = X(5) = (99+74+42+125)/4 = 85


ก ! $)

1;8&%J & ; @ % ( 5 6G > (' @ % (+<= .

6G+<=

1

2

3

4

"> - <=

2543

1

107

84

68

135

98.5

2544

2

115

96

49

162

422

2545

3

109

102

67

140

104.5

2546

4

102

75

58

151

96.5

2547

5

99

74

42

125

85


T(0) =

85 - 98.5 (5-1)/4

= -0.8438

Y(0) = 98.5 – (4/2)(-0.8438) = 100.1876

1ก "5 0# "> ก 233 Simple Exponential Smoothinh 6G+<=

@ % (+<=

t

1

1

1

Y(1) = 0.2(107) + (1-0.2)100.1876 = 101.55

2

2

Y(2) = 0.2(84) + (1-0.2)101.55

= 98.04

3

3

Y(3) = 0.2(68) + (1-0.2)98.04

= 92.03

4

4

Y(4) = 0.2(135) + (1-0.2)92.03

= 100.63

1

5

Y(5) = 0.2(115) + (1-0.2)100.63 = 103.50

2

6

Y(6) = 0.2(96) + (1-0.2)103.50

2

Y(t) = α y(t) + (1- α)Y(t-1)

= 102.00


Trick ' !ภ$#+ Q 'U "<+&) t = 20 "<+&) 5 ภQ 6# Y(20) = ιy(20)+(1- ι)Y(19) Y(21) = ιy(21)+(1- ι)Y(20) , Y(21) = ι y(20)+(1- ι)Y(20) Y(22) = ιy(22)+(1- ι)Y(21) , Y(22) = ι y(20)+(1- ι)Y(21) Y(23) = ιy(23)+(1- ι)Y(22) , Y(23) = ι y(20)+(1- ι)Y(22) @U) ! Q 6 ' y(21),y(22),y(23) 6# # Y ! Q A y(20) + y(21),y(22),y(23) !A


ก ก " ! & ! ?ก@ "! !A& # $Q " ก Y(t) = α y(t) + (1- α)Y(t-1) T(t) = β[Y(t) Y(t-1)]+(1- β) T(t-1) E(t+1) = Y(t) + 1-β β T(t) + T(t) β

= "> 9>#10?5 )0,ก6 ,3- < 320# 08%

T(t)

= "> 20# 08%(5 ) ,3$>#1-# t


Y(t) = "> ก & ; 6 ,3- < 39,#- <= $>#1-# t E(t+1) = "> ก 2336 ,3- < 3-&Aก 6-080-$< 4 &1" 6 *ก&320# 08%(5 ) ,3$>#1-# t+1


ก ก " ! & ! ?ก@ "! !A& # $Q " ก 1;8&%J & ; @ % ( 5 6G > ('

@ % (+<= .

6G+<=

1

2

3

4

2543

1

107

84

68

135

2544

2

115

96

49

162

2545

3

109

102

67

140

2546

4

102

75

58

151

2547

5

99

74

42

125

m=5

, L = 4 , α = 0.2 , β = 0.1


ภ"5 0# Y(1)

= 0.2(107) + (1-0.2)100.1876 = 101.55

T(1)

= 0.1(101.55-100.1876) +(1-0.1)(-0.8438) = -0.623

E(1+1) = 101.55 + 1-0.1 (-0.623) + (-0.623) = 95.32 0.1 Y(1) = 0.2(84) + (1-0.2)101.55 = 98.04 T(2)

= 0.1(98.04 -101.55) + (1-0.1)(-0.623) 1-0.1 E(1+1) = 98.04 + (-0.912) + (-0.912) 0.1

> +5 9:1 period +<= 20 Y(t) "1+<=+<= 20

= - 0.912 = 88.923

264*@ 8-670-(80 1 - *


ก ก 2336 ,3- < 3 -&AกD 6-00-$< 4 &1" 6 *ก&320# 08%2 *u Jก Y(t) = T(t) = I(t)

=

E(t+k) =

y(t) α I(t-L) + (1- α)[Y(t-1) + T(t-1)] β[Y(t) Y(t-1)]+(1- β) T(t-1) y(t) γ + (1-γ) I(t-L) Y(t) [Y(t) + {k x T(t)}] x I(t-L+k)

I(t) = ,$0<u Jก $>#1-# t Y(t) = "> ก 4 &1" 6 *ก&320# 08%2 *u Jก (5 ) ,3$>#1-# t E(t+k) = "> ก 2336 ,3- < 3-&Aก 6-080-$< 4 &1" 6 *ก&320# 08%2 *u Jก (5 ) ,3$>#1-# t+1


ก ก " ! & ! ?ก@ "! !A& # $Q " ก Z# ก 1;8&%J & ; @ % ( 5 6G > ('

@ % (+<= .

6G+<=

1

2

3

4

2543

1

107

84

68

135

2544

2

115

96

49

162

2545

3

109

102

67

140

2546

4

102

75

58

151

2547

5

99

74

42

125

m=5

, L = 4 , α = 0.2 , β = 0.1 , γ = 0.3


ก # A &Z# ก ! $) "> u Jก /02 > *$>#1-# ( % 9"5 0# @ 8 1, 0<? I(t) =

y(t) X (i) [(L + 1)/2-j]T(0)

I(t) = ,$0<u Jก ;&1$>#1-# t j = 5 2)0>1;&1$>#1-# t /0 &36G+<= i

, t = 1,2,3 ., ml


12( 1ก ) "> u Jก /02 > *$>#1-# "<+&) (i)

A ! (t)

1

1

I(1) = 107/ 98.5 [(4+1)/2-1](-0.8438) = 1.0725

1

2

I(2) = 84/ 98.5 [(4+1)/2-2](-0.8438) = 0.849

1

3

I(3) = 68/ 98.5 [(4+1)/2-3](-0.8438) = 0.693

1

4

I(4) = 135/ 98.5 [(4+1)/2-4](-0.8438) = 1.388

2

5

I(5) = 107/ 105.5 [(4+1)/2-1](-0.8438) = 1.077

2

6

I(6) = 115/ 105.5 [(4+1)/2-2](-0.8438) = 0.906

2

7

I(7) = 96/ 105.5 [(4+1)/2-3](-0.8438) = 0.466

2

8

I(8) = 49/ 105.5 [(4+1)/2-4](-0.8438) = 1.554

X1


ก "5 0# ,$0<u Jก 6 +&) "< 2543 2544 2545 2546 2547 #% - <=

1 1.0725 1.077 1.03 1.043 1.147 5.3695 1.0739

,$0<u Jก - =% 80 I(1)

2 0.849 0.906 0.972 0.774 0.866 4.367 0.8734

3 0.693 0.466 0.644 0.604 0.496 2.903 0.5806

4 1.388 1.554 1.356 1.586 1.493 7.377 1.4754

I(2)

I(3)

I(4)


ก ก " ! & ! ?ก@ "! !A& # $Q " ก Z# ก 107 ]+ 0.8{100.1876 + (-0.8438)} Y(1) = 0.2 [ 1.074

= 99.42

T(1) = 0.1(99.72 100.1876) + 0.9 (-0.8438) 107 ] + 0.7(1.074) I(1) = 0.3[ 1.074

= - 0.836 = 1.074

E(2) = [ 99.42 + {1 x (-0.836)}] x 0.8734

= 86.103


ก ก " ! & ! ?ก@ "! !A& # $Q " ก Z# ก

84 ]+ 0.8{99.42 + (-0.836)} Y(2) = 0.2 [0.8734

= 98.12

T(2) = 0.1(98.12 99.42) + 0.9 (-0.836) 84 ] + 0.7(0.8734) I(2) = 0.3[ 98.12

= - 0.883

E(3) = [ 98.12 + {1 x (-0.833)}] x 0.58

= 56.39

= 0.868

68 ] + 0.8{98.12 + (-0.883)} Y(3) = 0.2 [ 0.58

= 101.24

T(3) = 0.1(101.24 98.12) + 0.9 (-0.883) 68 ] + 0.7(0.58) I(3) = 0.3[101.24

= - 0.483

E(4) = [ 101.24 + {1 x (-0.483)}] x 1.475

= 148.52

= 0.608


ก ก " ! & ! ?ก@ "! !A& # $Q " ก Z# ก

135 ] + 0.8{101.24 + (-0.483)} Y(4) = 0.2 [ 1.475

= 98.92

T(4) = 0.1(98.12 101.24) + 0.9 (-0.483) 135 ] + 0.7(1.475) I(4) = 0.3[ 98.92

= - 0.483 = 1.44

E(5) = [ 98.92 + {1 x (-1.0267)}] x 1.074 = 105.14 115 Y(5) = 0.2 [ 1.074 ] + 0.8{98.92 + (-1.0267)} = 99.73 T(5) = 0.1(99.73-98.92) + 0.9 (-1.0267) 115 ] + 0.7(1.074) I(5) = 0.3[ 99.73

= - 0.843 = 1.098

E(6) = [ 99.73 + {1 x (-0.843)}] x 0.868

= 85.834


ก ก " ! & ! ?ก@ "! !A& # $Q " ก Z# ก

2 *(5 ) ,3"> ก /06G+<= 5 t

y(t)

Y(t)

T(t)

I(t)

E(t+1)

17

99

95.03

-0.63

1.066

84.45

18

74

92.26

-0.844

0.859

54.45

19 20

42 125

87.11 85.45

-1.27 -1.309

0.565 1.48

127.9 89.69


ก ก " ! & ! ?ก@ "! !A& # $Q " ก Z# ก

4 ก ก "5 0# 6G(' +8 +5 /)8- @ 8"> ,#233 +<=4*/$8-670N 0 (5 ) ,3ก ก /0&0 " ,10<? t= 20

Y(20) = 85.45

T(20) = - 1.309

I(17) = 1.066 (@ % (+<= 1) I(18) = 0,859 (@ % (+<= 2)

α = 0.2 , β = 0.1 , γ = 0.3

I(19) = 0.565 (@ % (+<= 3) I(20) = 1.48 (@ % (+<= 4)

E(t+k) = [Y(t) + {k x T(t)}] x I(t-L+k)


ก ก " ! & ! ?ก@ "! !A& # $Q " ก Z# ก

/$8 ,#233+<=-670N 0/0ก ก ก 2+0"> k = 1,2,3 %$>#1-# +<= 8&1ก ก @6;8 1)08 6G+<= @ % (+<= t k E(t+k) 6 6 6 6 7 7 7 7

1 2 3 4 1 2 3 4

20 20 20 20 20 20 20 20

1 2 3 4 5 6 7 8

E(21) E(22) E(23) E(24) E(24) E(24) E(24) E(24)

[Y(t) + {k x T(t)}] x I(t-L+k) [85.45 + {1 x (-1.309)}] x 1.066 [85.45 + {2 x (-1.309)}] x 1.066 [85.45 + {3 x (-1.309)}] x 1.066 [85.45 + {4 x (-1.309)}] x 1.066 [85.45 + {5 x (-1.309)}] x 1.066 [85.45 + {6 x (-1.309)}] x 1.066 [85.45 + {7 x (-1.309)}] x 1.066 [85.45 + {8 x (-1.309)}] x 1.066

= = = = = = = =

89.96 71.15 46.06 118.72 84.11 66.65 43.10 110.96


[" > $%& sample Moving Average ! ภ+&)6 " " ภ> $%& Weight Moving Average ภ$%& sample Moving Average &ภA ' Y ภQU &ภ" ภ! & ภQ $ ภUY > $%& Exponential Smoothing (6 & Trend & Seasonal) ! A ŕ¸

+&) & +&) ( c Q ภ$%& Weight Moving Average ) > $%& Exponential Smoothing ( $Q Trend & Seasonal) !"d $%&+&) $ A ภ+& ) [#! & ! & # ŕ¸


ก !ef $# ก [ ก ก CFE Tracking signal = MAD

CFE = #%"# %" -" B=&0;&1ก ก $>#1-# +<= n MAD = "> -3<= 1-30(%3J - <= $#1-# +<= n

σ = MAD = 0,8 σ

Σ(yt – Yt )2 n–1

or

σ = 1.25 MAD


Tracking Signals ( "#! $!#)

> /$8 J#> model ,1/$8@ 8& J> :-6 > - *;8&%J -6 <= 0+5 /)8 model ,#- %/$8@%>@ 8 > /$8 control chart % -670 ,#"#3"'%"' ! " &98 &&ก% 0&ก control 4* 6ก 6 *% + 2 σ 2 8#-& "> Tracking Signal % Plot 98 &&ก;8 10&ก2( 1#> model @%> <2 8#


Tracking Signals Percentage of the Area of the Normal Probability Distribution within the Control Limits of the Tracking Signal Control Limit Spread (number of MAD) ± 1.0 ± 1.5 ± 2.0 ± 2.5 ± 3.0 ± 3.5 ± 4.0 Table 12.2

Equivalent Number of σ

Percentage of Area within Control Limits


Tracking Signals

Percentage of the Area of the Normal Probability Distribution within the Control Limits of the Tracking Signal Control Limit Spread (number of MAD)

Equivalent Number of σ

± 1.0 ± 1.5 ± 2.0 ± 2.5 ± 3.0 ± 3.5 ± 4.0

± 0.80 ± 1.20 ± 1.60 ± 2.00 ± 2.40 ± 2.80 ± 3.20

Table 12.2

Percentage of Area within Control Limits


Tracking Signals

Percentage of the Area of the Normal Probability Distribution within the Control Limits of the Tracking Signal Control Limit Spread (number of MAD)

Equivalent Number of σ

Percentage of Area within Control Limits

± 1.0 ± 1.5 ± 2.0 ± 2.5 ± 3.0 ± 3.5 ± 4.0

± 0.80 ± 1.20 ± 1.60 ± 2.00 ± 2.40 ± 2.80 ± 3.20

57.62 76.98 89.04 95.44 98.36 99.48 99.86

Table 12.2


Tracking Signals Control Limits

=

0 ± 2σ


Tracking Signals

CFE Tracking signal = MAD Control limit

+2.0 — +1.5 — +1.0 — Tracking signal

+0.5 — 0— –0.5 — –1.0 — –1.5 — Control limit

--2.0 — 0 Figure 12.9

| 5

| | | 10 15 20 Observation number

| 25


Tracking Signals

CFE Tracking signal = MAD

Out of control Control limit

+2.0 — +1.5 — +1.0 — Tracking signal

+0.5 — 0— –0.5 — –1.0 — –1.5 —

Control limit

--2.0 — 0 Figure 12.9

| 5

| | | 10 15 20 Observation number

| 25


;8&"# 4 /0ก - B&ก-+"0 "ก ก 1. 6 *( +I ! "# %2%>0 5 "# % ก1> ;&1ก "5 0# "# % B ) '>02 *6 ,3@ 8 # - A# * *-# /0ก ก (Lead Time) 2. 80+'0 "> /$84> ;&1ก ก "> /$84> ;&1"# % 3. &B=0 E "# %(%3J ;&1;8&%J /0& < "# %-)% *(%ก,3ก /$81 0 ( * *(,?0 - * * #) * *-# +<=(JH-(< @6ก,3ก ก


6 * $0 ;&1ก ก ก # 12 0ก ,?1136 *% (BUDGET PLANNING)

ก # 12 0ก ;

(SALE PLANNING)

ก # 12 0 8 0ก5 ,1"0

(STAFF PLANNING)

ก # 12 0ก

(PRODUCTION PLANNING)

ก # 12 0ก -กA3( &"

(STOCK PLANNING)


6 * $0 8 0ก # 12 0ก ,1? 136 *%

+5 /)8- + 3 -1 0+'0+<= 8&1/$8 "> /$84> 8 0ก 4, ก 2 *ก ; "> /$84> 8 0ก 4, 45 )0> "> /$84> 8 0(>1-( %ก ; 2 * . ก5 @ 2 *; +'0

6 * $0 8 0ก # 12 0ก ;

$># /)8- ก5 )0 2 0ก ; @ 89Jก 8&1 -6S )% ก ; ก 5 -0 0ก ; 0 3 8 0 !, 0 3 ก ; ก (>1-( %ก ;


6 * $0 8 0ก # 12 0ก -กA3( &ก * ,3ก -กA3( &ก

;0 ;&1ก (,=1 * ,3ก (,=1DB?&) B& ,3;&1"1" ,1(5 &1


6 * $0 8 0ก # 12 0ก5 ,1"0

$># /)8# 12 0ก5 ,1"0@ 8-)% *(%ก,3-6S )% ก ; 4, ก ; )0># ก ; )0># (>1-( % / 3 ก ก ; )0># 3 ) ก ; 6 * $0 8 0ก # 12 0ก /0ก # 12 0ก 4* 8&1/$8-# >#1)08 &(%"# (5 ) ,3- < %1 0 8 0 > 1 E -1 0+'0+<= 8&1/$8 -" B=&14,ก #, 9' 3 ( &ก#, 9' 3 ก5 ,1"0(5 ) ,3ก ก5 ,1ก


ก # 4, +5 /)8+ 3 ;0 ;&1 (MARKET SIZE)

ก ; ,#;&1 (MARKET GROWTH) ก 2 ก6 *-!+) B&(>#023>1;&1 (MARKET / TARGET SEGMENTATION) ก 6 *-% 0(% 90*;&1"J> >&(J8 (EVALUATION ON COMPETITOR S STRENGTH & WEAKNESS)

1 0+ 1I' ก 4+<= 8&1& , ก ก 1. ก ก 8 0-+" 0 < 2. ก ก 8 0- .Nก 4 3. ก ก 8 0"# % 8&1ก


6C44, +<=%<& +I >&&'6(1" #14 + 1I' ก 4 (THE BUSINESS CYCLE)

#14 & ';&1 !, (PRODUCT LIFE CYCLE) &B=0 E


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.