Klasická teoretická fyzika (Ukázka, strana 99)

Page 1

≪ R,s<h

vd = 2gR z0 R z0 = 2gR h R + h .

d = √2gh h ≫ R

d = 2gR, 11, 2km

vz = √2
vd z = R
h
gs
v
z t ξ2 = z/z0 t = z z0 √z0z 2gR2(z0 z) dz = 1 R 2z3 0 g √z/z0 1 ξ2 1 ξ2 dξ = 1 R z3 0 2g z z0 1 z z0 +arccos z z0 . ξ2 1 ξ2 dξ = 1 ξ2 1 1 ξ2 dξ = 1 ξ2dξ + dξ 1 ξ2 = ξ 1 ξ2 ξ2 1 ξ2 dξ + dξ 1 ξ2 h z = R t
1
2
R
R R
h
π/
t
π 2
2
2 . h
arccos R R
h ≈
h R = h R + O h R 3/2 tR = 2h/g h Fz = 1 2 CSρv2 ρ S C C =0, 03 C =0, 48 C =1, 33
v
· s 1
R =
R R + h
g
Rh +(
+ h)arccos
+ h
≫ R
2
R =
h3
gR
≪ R x √1 x2
+
arcsin

h

mz = mg + Kv2 z

k = K/m> 0

z = g + kv2 z

(¨z< 0 ⇒ kv2 z <g) ξ = k g vz

t = vz 0 dvz g + kv2 z = 1 gk

√k/gvz 0 dξ 1 ξ2 = 1 2 1 gk ln 1+ ξ 1 ξ

vz = g k tgh( gkt),z = t 0 vz dt = h 1 k ln[cosh( gkt)]. k → 0

vz = gt + 1 3 g 2kt3 + O(kt5),z = h 1 2 gt2 + 1 12 g 2kt4 + O(kt6).

g/k k

vz →
v
CSρ m =100kg,C =1, 33, d =6 ρ =1, 276 3 v ≈ 6, 5 1 1 1 1◦ z′ x′ y′
= 2mg

r′ = r R(t) R

a ′ = ag A Ω × (Ω × r ′) Ω × r ′ 2Ω × v ′

=7, 292 10 5 1

= Ω×(Ω×R) S′

r′ dv′ dt = g +2v ′ × Ω

C =2mv′Ωsin φ φ g ≡ (0, 0, g), Ω ≡ (0, Ωcos φ, Ωsin φ)

′ =2y′Ωsin φ 2z′Ωcos φ, y′ = 2x′Ωsin φ, z′ = g +2x′Ωcos φ.

Ω Φ
O
Ω z’ y’
R O x’
R Ω2
φ′ R φ′ Ω2R
, 4 2 g 6′ 11′ φ S′
x
Ukázka elektronické knihy
A
cos
=3
F

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.