Regras Diferenciacao

Page 1

Regras de Diferenciação d 1 arc sen ( x ) = dx 1− x2 d 1 arc cos( x ) = − dx 1− x2

1

d (c ) = 0 dx

19

2

d [c f (x )] = c f ' (x ) dx

20

3

d [f (x ) + g(x )] = f ' (x ) + g' (x ) dx

21

4

d [f (x ) − g(x )] = f ' (x ) − g ' (x ) dx

22

5

d [f (x ) g(x )] = f ' (x ) g(x ) + f (x ) g' (x ) dx

23

6

d  f (x )  f ' (x ) g(x ) − f (x ) g' (x ) = dx  g(x )  [g(x )]2

24

d 1 arc cot g ( x ) = − dx 1+ x2

7

d f (g ( x )) = f ' (g ( x )) g ' ( x ) dx

25

d senh ( x ) = cosh( x ) dx

8

d n ( x ) = n x n −1 dx

26

d cosh( x ) = senh ( x ) dx

9

d x (e ) = e x dx

27

d tgh ( x ) = sec h 2 ( x ) dx

10

d x (a ) = a x ln(a ) dx

28

d cos sec h ( x ) = − cos sec h ( x ) cot gh ( x ) dx

11

d 1 ln x = dx x

29

d sec h ( x ) = − sec h ( x ) tgh ( x ) dx

12

d 1 log a ( x ) = dx x ln(a )

30

d cot gh ( x ) = − cos sec h 2 ( x ) dx

13

d sen ( x ) = cos( x ) dx

31

14

d cos( x ) = −sen ( x ) dx

32

15

d tg ( x ) = sec 2 ( x ) dx

33

16

d cos sec( x ) = − cos sec( x ) cot( x ) dx

34

17

d sec( x ) = sec( x ) tg ( x ) dx

35

d 1 arc sec h ( x ) = − dx x 1− x2

18

d cot g ( x ) = − cos sec2 ( x ) dx

36

d 1 arc cot gh ( x ) = dx 1− x2

d 1 arc tg ( x ) = dx 1+ x2 d 1 arc cos sec( x ) = − dx x x2 −1 d 1 arc sec( x ) = dx x x 2 −1

d 1 arc senh ( x ) = dx 1+ x2 d 1 arc cosh( x ) = dx x 2 −1 d 1 arc tgh ( x ) = dx 1− x2 d 1 arc cos sec h ( x ) = − dx x x2 +1


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.