Regras de Diferenciação d 1 arc sen ( x ) = dx 1− x2 d 1 arc cos( x ) = − dx 1− x2
1
d (c ) = 0 dx
19
2
d [c f (x )] = c f ' (x ) dx
20
3
d [f (x ) + g(x )] = f ' (x ) + g' (x ) dx
21
4
d [f (x ) − g(x )] = f ' (x ) − g ' (x ) dx
22
5
d [f (x ) g(x )] = f ' (x ) g(x ) + f (x ) g' (x ) dx
23
6
d f (x ) f ' (x ) g(x ) − f (x ) g' (x ) = dx g(x ) [g(x )]2
24
d 1 arc cot g ( x ) = − dx 1+ x2
7
d f (g ( x )) = f ' (g ( x )) g ' ( x ) dx
25
d senh ( x ) = cosh( x ) dx
8
d n ( x ) = n x n −1 dx
26
d cosh( x ) = senh ( x ) dx
9
d x (e ) = e x dx
27
d tgh ( x ) = sec h 2 ( x ) dx
10
d x (a ) = a x ln(a ) dx
28
d cos sec h ( x ) = − cos sec h ( x ) cot gh ( x ) dx
11
d 1 ln x = dx x
29
d sec h ( x ) = − sec h ( x ) tgh ( x ) dx
12
d 1 log a ( x ) = dx x ln(a )
30
d cot gh ( x ) = − cos sec h 2 ( x ) dx
13
d sen ( x ) = cos( x ) dx
31
14
d cos( x ) = −sen ( x ) dx
32
15
d tg ( x ) = sec 2 ( x ) dx
33
16
d cos sec( x ) = − cos sec( x ) cot( x ) dx
34
17
d sec( x ) = sec( x ) tg ( x ) dx
35
d 1 arc sec h ( x ) = − dx x 1− x2
18
d cot g ( x ) = − cos sec2 ( x ) dx
36
d 1 arc cot gh ( x ) = dx 1− x2
d 1 arc tg ( x ) = dx 1+ x2 d 1 arc cos sec( x ) = − dx x x2 −1 d 1 arc sec( x ) = dx x x 2 −1
d 1 arc senh ( x ) = dx 1+ x2 d 1 arc cosh( x ) = dx x 2 −1 d 1 arc tgh ( x ) = dx 1− x2 d 1 arc cos sec h ( x ) = − dx x x2 +1