Determinación de funciones lineales

Page 1

Paralelas

Perpendiculares


Para graficar una funciĂłn lineal desde su fĂłrmula ordinaria: đ?‘“(đ?‘Ľ) â&#x;ź đ?‘šđ?‘Ľ + đ?‘?

Para ir de la recta a la ecuaciĂłn de la recta (fĂłrmula ordinaria de la funciĂłn)

3 đ?‘“(đ?‘Ľ) â&#x;ź đ?‘Ľ − 2 4

đ?‘“(đ?‘Ľ) â&#x;ź đ?‘šđ?‘Ľ + đ?‘?

3 đ?‘“(đ?‘Ľ) â&#x;ź đ?‘Ľ − 2 4 1. Ubicar el corte en el intercepto Y 2. Trazar el triĂĄngulo de la pendiente

1. Trazar el triĂĄngulo de la pendiente 2. Observar el corte en Y


DeterminaciĂłn de funciones lineales A partir de dos puntos dados: đ??´(2; 3) đ??ľ(5; 6)

đ??´(2; 3)

đ??ľ(5; 6)

(đ?‘Ľ1 ; đ?‘Ś1 )

(đ?‘Ľ2 ; đ?‘Ś2 )

1. Busco la pendiente mediante fĂłrmula:

2. Reemplazo valores:

m=

6− 3 5− 2

3. Elijo uno de los puntos dados:

=

m= 3 3

A partir de un punto y pendiente: 1 đ??´(2; 3) đ?‘š= 1

y2 − y1 x2 − x1

m=

3 3

=1

đ??´(2; 3)

4. Regreso sobre la fĂłrmula ordinaria de la funciĂłn y reemplazo valores: đ?‘“(đ?‘Ľ) = đ?‘šđ?‘Ľ + đ?‘? đ?‘Ś = 1(2) + đ?‘? 3 = 1(2) + đ?‘? 3=2+đ?‘? 3−2=đ?‘? 1=đ?‘? 5. Anoto la regla de la funciĂłn o ecuaciĂłn de la recta: đ?‘“(đ?‘Ľ) â&#x;ź đ?‘Ľ + 1

1. Regreso sobre la fĂłrmula ordinaria de la funciĂłn y reemplazo valores: đ?‘“(đ?‘Ľ) = đ?‘šđ?‘Ľ + đ?‘? đ?‘Ś = 1(2) + đ?‘? 3 = 1(2) + đ?‘? 3=2+đ?‘? 3−2=đ?‘? 1=đ?‘? 2. Anoto la regla de la funciĂłn o ecuaciĂłn de la recta: đ?‘“(đ?‘Ľ) â&#x;ź đ?‘Ľ + 1


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.