Acido

Page 1

DICCIONARIO DE QUIMICA

POR: LINA MARCELA ZAPATA 10.3


A ACIDO: Un ácido es considerado tradicionalmente como cualquier compuesto químico que, cuando se disuelve en agua, produce una solución con una actividad de catión hidronio mayor que el agua pura, esto es, un pH menor que 7. Esto se aproxima a la definición moderna de Johannes Nicolaus Brønsted y Thomas Martin Lowry, quienes definieron independientemente un ácido como un compuesto que dona un catión hidrógeno (H+) a otro compuesto (denominado base). Algunos ejemplos comunes son el ácido acético (en el vinagre), el ácido clorhídrico (en el Salfumant y los jugos gástricos), el ácido acetilsalicílico (en la aspirina), o el ácido sulfúrico (usado en baterías de automóvil). Los sistemas ácido/base se diferencian de las reacciones redox en que, en estas últimas hay un cambio en el estado de oxidación. Los

ácidos pueden existir en forma de sólidos, líquidos o gases, dependiendo de la temperatura y también pueden existir como sustancias puras o en solución. A las sustancias químicas que tienen la propiedad de un ácido se les denomina ácidas.

ABSORCIÓN:

La absorción es una operación química que trata la separación de los componentes que conforman una mezcla gaseosa, ayudándose de un solvente en estado líquido, con el que conseguirá formar una solución. El proceso incluye una difusión molecular o un paso de masa del soluto a través del gas. Para calcular la concentración de un soluto de dos fases que se encuentren en equilibrio se necesitan una serie de datos experimentales del equilibrio. También hay que decir, que si ambas fases no se encuentran en equilibrio, la velocidad de traspaso de la masa es proporcional a la fuerza que las impulsa, la cual es la desviación que respecta con el equilibrio. Las variables que son de importancia y que afectan al equilibrio en un soluto son la temperatura, la concentración y también la presión. El equilibrio que tiene lugar entre dos fases se rige por la regla de fases, dada por la igualdad: F= C – P + 2, de donde la P hace referencia al número de fases que se encuentran en equilibrio, la C es igual al número de componentes que hay en las dos fases en total, y la F, sería el número de variantes del sistema. En un equilibrio entre un líquido y un gas, existirán 2 componentes, así como también dos fases, por lo cual al sustituir los valores en la igualdad nos daría: F= 2-2+2= 2. Así se dice que el equilibrio tiene 2 grados de libertad.


B BIOMOLECULAS: Las biomoléculas son las moléculas constituyentes de los seres vivos. Los cuatro bioelementos más abundantes en los seres vivos son el carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N), representando alrededor del 99 por ciento de la masa de la mayoría de las células. Estos cuatro elementos son los principales componentes de las biomoléculas debido a que: 1.- Permiten la formación de enlaces covalentes entre ellos, compartiendo electrones, debido a su pequeña diferencia de electronegatividad. 2.- Permiten a los átomos de carbono la posibilidad de formar esqueletos tridimensionales –C–C–C–para formar compuestos con número variable de carbonos. 3.- Permiten la formación de enlaces múltiples (dobles y triples) entre C y C, C y O, C y N, así como estructuras lineales ramificadas cíclicas, heterocíclicas, etc. 4.- Permiten la posibilidad de que con pocos elementos se den una enorme variedad de grupos funcionales (alcoholes, aldehídos, cetonas, ácidos, aminas, etc.) con propiedades químicas y físicas diferentes. Se pueden clasificar en: a) Biomoléculas inorgánicas: agua y sales minerales b) Biomoléculas orgánicas: glúcidos (hidratos de carbono), lípidos, proteínas y ácidos nucleicos.

C CALOR: El calor se define como la forma de energía que se transfiere espontáneamente entre diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a distintas temperaturas, sin embargo en termodinámica generalmente el término calor significa simplemente transferencia de energía. Este flujo de energía siempre ocurre desde el cuerpo de mayor temperatura hacia el cuerpo de menor temperatura, ocurriendo la transferencia hasta que ambos cuerpos se encuentren en equilibrio térmico (ejemplo: una bebida fría dejada en una habitación se entibia). La energía calórica o térmica puede ser transferida por diferentes mecanismos de transferencia, estos son la radiación, la conducción y la convección, aunque en la mayoría de los procesos reales todos se encuentran presentes en mayor o menor grado. Cabe resaltar que los cuerpos no tienen calor, sino energía térmica. La energía existe en varias formas. En este caso nos enfocamos en el calor, que es el proceso mediante el cual la energía se puede transferir de un sistema a otro como resultado de la diferencia de temperatura.


CARBOHIDRATOS: Los carbohidratos o hidratos de carbono están formados por carbono (C), hidrógeno (H) y oxígeno (O) con la formula general (CH2O) n. Los carbohidratos incluyen azúcares, almidones, celulosa, y muchos otros compuestos que se encuentran en los organismos vivientes. Los carbohidratos básicos o azúcares simples se denominan monosacáridos. Azúcares simples pueden combinarse para formar carbohidratos más complejos. Los carbohidratos con dos azúcares simples se llaman disacáridos. Carbohidratos que consisten de dos a diez azúcares simples se llaman oligosacáridos, y los que tienen un número mayor se llaman polisacáridos.

COMBUSTION: La combustión es una reacción química de oxidación, en la cual generalmente se desprende una gran cantidad de puntos en forma de calor y luz, manifestándose visualmente gracias al fuego, u otros. En toda combustión existe un elemento que arde (combustible) y otro que produce la combustión (comburente), generalmente el oxígeno en forma de O2 gaseoso. Los explosivos tienen oxígeno ligado químicamente, por lo que no necesitan el oxígeno del aire para realizar la combustión. Los tipos más frecuentes de combustible son las materias orgánicas que contienen carbono e hidrógeno (ver hidrocarburos). En una reacción completa todos los elementos que forman el combustible se oxidan completamente. Los productos que se forman son el dióxido de carbono (CO2) y el agua, el dióxido de azufre (SO2) (si el combustible contiene azufre) y pueden aparecer óxidos de nitrógeno (NOx), dependiendo de la temperatura, la cantidad de oxígeno en la reacción y, sobre todo de la presión. En la combustión incompleta los productos que se queman pueden no reaccionar con el mayor estado de oxidación, debido a que el comburente y el combustible no están en la proporción adecuada, dando como resultado compuestos como el monóxido de carbono (CO). Además, puede generarse carbón. El proceso de destruir materiales por combustión se conoce como incineración. Para iniciar la combustión de cualquier combustible, es necesario alcanzar una temperatura mínima, llamada temperatura de ignición, que se define como la temperatura, en °C y a 1 atm (1013 hPa) de presión, a la que los vapores de un combustible arden espontáneamente. La temperatura de inflamación, en °C y a 1 atm, es aquella a la que, una vez encendidos los vapores del combustible, éstos continúan por sí mismos el proceso de combustión.

D


DENSIDAD: En química, la densidad (símbolo ρ) es una magnitud escalar referida a la cantidad de masa en un determinado volumen de una sustancia. La densidad media es la razón entre la masa de un cuerpo y el volumen que ocupa.

Si un cuerpo no tiene una distribución uniforme de la masa en todos sus puntos la densidad alrededor de un punto puede diferir de la densidad media. Si se considera una sucesión pequeños volúmenes decrecientes

(convergiendo hacia un

volumen muy pequeño) y estén centrados alrededor de un punto, siendo la masa contenida en cada uno de los volúmenes anteriores, la densidad en el punto común a todos esos volúmenes:

La unidad es kg/m³ en el SI. Como ejemplo, un objeto de plomo es más denso que otro de corcho, con independencia del tamaño y masa.

DETERGENTE:

es una sustancia tensioactiva y anfipática que tiene la propiedad química de disolver la suciedad o las impurezas de un objeto sin corroerlo. La palabra inglesa equivalente es detergente. El término alemán empleado es tensid, que parece más preciso, ya que hace referencia directa a sus propiedades físicoquímica. En medicina se entiende por deterger, limpiar una úlcera o herida, y se denominan detersorios las sustancias que se emplean para ello. Esto implica que puedan calificarse como detergentes sustancias tan dispares como la saliva, el jabón o la gasolina dependiendo de sobre qué superficies sean empleadas, ya que cuando limpian tienen un efecto detergente. También se podría definir que detergente es cualquier sustancia que tiene propiedades de disolver a otra sustancia incorporando la sustancia disuelta en la sustancia detergente inicial. La mayoría de los detergentes son compuestos de sodio del sulfonato de benceno sustituido, denominados sulfonatos de al quilbenceno lineales (LAS). Otros son compuestos de alquilbencen sulfatos de cadena ramificada (ABS), que se degradan más lentamente que los LAS. Hasta 1970 un detergente típico de lavandería de gran potencia contenía 50% de tripolifosfato de sodio (fosfato) y sólo un 18% de LAS. Como se mencionó anteriormente es el LAS el que tiene la acción detergente, y desde entonces algunos fabricantes han reducido el porcentaje de fosfatos.


E ENERGIA: La Energía se conoce como la capacidad de un sistema físico para realizar trabajo. La materia posee energía como resultado de su movimiento o de su posición en relación con las fuerzas que actúan sobre ella. La radiación electromagnética posee energía que depende de su frecuencia y, por tanto, de su longitud de onda. Esta energía se comunica a la materia cuando absorbe radiación y se recibe de la materia cuando emite radiación. La energía asociada al movimiento se conoce como energía cinética, mientras que la relacionada con la posición es la energía potencial.

ENLACE COVALENTE: Un enlace covalente entre dos átomos o grupos de átomos se produce cuando estos átomos se unen, para alcanzar el octeto estable, comparten electrones del último nivel.1 La diferencia de electronegatividades entre los átomos no es suficiente. De esta forma, los dos átomos comparten uno o más pares electrónicos en un nuevo tipo de orbital, denominado orbital molecular. Los enlaces covalentes se suelen producir entre elementos gaseosos o no metales. El enlace covalente se presenta cuando dos átomos comparten electrones para estabilizar la unión. A diferencia de lo que pasa en un enlace iónico, en donde se produce la transferencia de electrones de un átomo a otro; en el enlace covalente, los electrones de enlace son compartidos por ambos átomos. En el enlace covalente, los dos átomos no metálicos comparten uno o más electrones, es decir se unen a través de sus electrones en el último orbital, el cual depende del número atómico en cuestión. Entre los dos átomos pueden compartirse uno, dos o tres pares de electrones, lo cual dará lugar a la formación de un enlace simple, doble o triple respectivamente. En la representación de Lewis, estos enlaces pueden representarse por una pequeña línea entre los átomos.


ENZIMAS:

son moléculas de naturaleza proteica y estructural que catalizan reacciones químicas, siempre que sean termodinámicamente posibles: una enzima hace que una reacción química que es energéticamente posible (ver Energía libre de Gibbs), pero que transcurre a una velocidad muy baja, sea cinéticamente favorable, es decir, transcurra a mayor velocidad que sin la presencia de la enzima.2 3 En estas reacciones, las enzimas actúan sobre unas moléculas denominadas sustratos, las cuales se convierten en moléculas diferentes denominadas productos. Casi todos los procesos en las células necesitan enzimas para que ocurran a unas tasas significativas. A las reacciones mediadas por enzimas se las denomina reacciones enzimáticas. Debido a que las enzimas son extremadamente selectivas con sus sustratos y su velocidad crece sólo con algunas reacciones, el conjunto (set) de enzimas sintetizadas en una célula determina el tipo de metabolismo que tendrá cada célula. A su vez, esta síntesis depende de la regulación de la expresión génica. Como todos los catalizadores, las enzimas funcionan disminuyendo la energía de activación (ΔG‡) de una reacción, de forma que se acelera sustancialmente la tasa de reacción. Las enzimas no alteran el balance energético de las reacciones en que intervienen, ni modifican, por lo tanto, el equilibrio de la reacción, pero consiguen acelerar el proceso incluso millones de veces. Una reacción que se produce bajo el control de una enzima, o de un catalizador en general, alcanza el equilibrio mucho más deprisa que la correspondiente reacción no catalizada. Al igual que ocurre con otros catalizadores, las enzimas no son consumidas por las reacciones que catalizan, ni alteran su equilibrio químico. Sin embargo, las enzimas difieren de otros catalizadores por ser más específicas. Las enzimas catalizan alrededor de 4 000 reacciones bioquímicas distintas.4 No todos los catalizadores bioquímicos son proteínas, pues algunas moléculas de ARN son capaces de catalizar reacciones (como la subunidad 16S de los ribosomas en la que reside la actividad peptidil transferasa).5 6 También cabe nombrar unas moléculas sintéticas denominadas enzimas artificiales capaces de catalizar reacciones químicas como las enzimas clásicas.7 La actividad de las enzimas puede ser afectada por otras moléculas. Los inhibidores enzimáticos son moléculas que disminuyen o impiden la actividad de las enzimas, mientras que los activadores son moléculas que incrementan dicha actividad. Asimismo, gran cantidad de enzimas requieren de cofactores para su actividad. Muchas drogas o fármacos son moléculas inhibidoras. Igualmente, la actividad es afectada por la temperatura, el pH, la concentración de la propia enzima y del sustrato, y otros factores físico-químicos. Algunas enzimas son usadas comercialmente, por ejemplo, en la síntesis de antibióticos y productos domésticos de limpieza. Además, son ampliamente utilizadas en diversos procesos industriales, como son la fabricación de alimentos, distinción de vaqueros o producción de biocombustibles.


ETER:

En química orgánica x y bioquímica, un éter es un grupo funcional del tipo R-OR', en donde R y R' son grupos alquilo, estando el átomo de oxígeno unido y se emplean pasos intermedios: ROH + HOR' → ROR' + H2O Normalmente se emplea el alcóxido, RO-, del alcohol ROH, obtenido al hacer reaccionar al alcohol con una base fuerte. El alcóxido puede reaccionar con algún compuesto R'X, en donde X es un buen grupo saliente, como por ejemplo yoduro o bromuro. R'X también se puede obtener a partir de un alcohol R'OH. RO- + R'X → ROR' + XAl igual que los ésteres, no forman puentes de hidrógeno. Presentan una alta hidrofobicidad, y no tienden a ser hidrolizados. Los éteres suelen ser utilizados como disolventes orgánicos. Suelen ser bastante estables, no reaccionan fácilmente, y es difícil que se rompa el enlace carbono-oxígeno. Normalmente se emplea, para romperlo, un ácido fuerte como el ácido yodhídrico, calentando, obteniéndose dos halogenuros, o un alcohol y un halogenuro. Una excepción son los oxiranos (o epóxidos), en donde el éter forma parte de un ciclo de tres átomos, muy tensionado, por lo que reacciona fácilmente de distintas formas. El enlace entre el átomo de oxígeno y los dos carbonos se forma a partir de los correspondientes orbitales híbridos sp³. En el átomo de oxígeno quedan dos pares de electrones no enlazantes. Los dos pares de electrones no enlazantes del oxígeno pueden interaccionar con otros átomos, actuando de esta forma los éteres como ligandos, formando complejos. Un ejemplo importante es el de los éteres corona, que pueden interaccionar selectivamente con cationes de elementos alcalinos o, en menor medida, alcalinotérreos

ESTEVIA:

La estevia se obtiene de un arbusto (Stevia rebaudiana Bertoni) cuyas hojas producen extractos que son hasta 300 veces más dulces que el azúcar. El esteviósido y el rebaudiósido son dos de los glucósidos dulces en las hojas del arbusto. El esteviósido consiste de una molécula de esteviol en la cual el átomo de hidrógeno inferior se sustituye con una molécula de beta-D-glucosa, y el hidrógeno superior se sustituye con dos moléculas de beta-Dglucosa. La estevia se comercializó en los EE.UU. como un suplemento herbal cuando no había suficientes datos científicos para certificarlo como un aditivo alimentario. Los experimentos con rodentes demostraron que dosis elevadas de esteviósido reducen la producción de esperma en los machos y disminuyen la producción de crías en las hembras. En diciembre de 2008, la Administración de Medicamentos y Alimentos aprobó el uso del rebaudiósido A purificado para uso general. El rebaudiósido A, también llamado Reb-A y rebiana, reemplaza el hidrógeno inferior de esteviol con una molécula de beta-D-glucosa y el hidrógeno superior con una cadena de tres moléculas de beta-D-glucosa. La estevia se vende bajo las marcas comerciales Truvia y PureVia, pero los paquetes no contienen solamente rebiana. Truvia y PureVia ambos contienen eritritol, un azúcar-alcohol bajo


en calorías. Un paquete de Truvia (3.5 gramos) contiene 3 gramos de eritritol, y "sabores naturales" cuya composición química no es revelada.

F FLAVONOIDES:

El colesterol alto o hipocolesterolemia es un problema de salud pública, ya que predispone a sufrir enfermedades arteriales. Para hacer frente a las altas concentraciones de colesterol se recomienda una vida sana y una dieta que incluya alimentos con flavonoides. Estos son metabolitos secundarios de las plantas, que se reconocen en su labor de pigmentos naturales distribuidos en plantas, frutas, verduras y diferentes bebidas. No podemos producirlos en nuestro organismo, sólo los obtenemos comiendo. Los flavonoides pueden unirse a diferentes polímeros biológicos, como enzimas, ADN y transportadores de hormonas, ayudando a eliminar los radicales libres y a reducir la oxidación de las grasas. Reducen la probabilidad de acumular ateromas en las paredes arteriales. Son sintetizados a partir de una molécula de fenilalanina y 3 de malonil coenzima A, a través de la "vía biosintética de los flavonoides". La estructura base, un esqueleto C6C3-C6, puede modificarse, por eso los flavonoides son una familia muy diversa de compuestos. Pero tienen algo en común: son polifenólicos y solubles en agua. Los encontramos en forma natural en cítricos, como naranjas y limones; vegetales de hojas verdes, como lechuga, repollo, puerros y endibias; frutas como manzana, cerezas, uva; y en productos industriales como vino, café, té verde y chocolate.

FUSION: La fusión es un proceso físico que consiste en el cambio de estado de la materia del estado sólido al estado líquido por la acción del calor. Cuando se calienta un sólido, se transfiere calor a los átomos, los cuales vibran con más rapidez a medida que ganan energía. El proceso de fusión de la materia es el mismo que el de fundición, pero este último término se aplica generalmente a sustancias como los metales, que se licúan a altas temperaturas, y a sólidos cristalinos. Cuando una sustancia se encuentra a su temperatura de fusión, el calor que se suministra es absorbido por la sustancia durante su transformación, y no produce variación


de su temperatura. Este calor adicional se conoce como calor de fusión. El término fusión se aplica también al proceso de calentar una mezcla de sólidos para obtener una disolución líquida simple

G

GEOQUIMICA: Disciplina que busca conocer la distribución de los elementos en la Tierra y en el Sistema Solar; descubrir las causas de la composición química en los materiales terrestres y extraterrestres; estudiar las reacciones químicas que ocurren en la superficie terrestre, en su interior y en nuestro sistema solar. Así, se pueden comprender los ciclos del pasado y cómo pueden ser alterados en el futuro. La mayoría de los elementos químicos están involucrados en ciclos que los conducen alternativamente de la superficie al interior de la Tierra. Pero no sólo en la Tierra, también en el Universo, estudio que desarrolla la Cosmoquímica, identificando los procesos que han dado lugar a las diferencias planetarias e interplanetarias. Numerosas interrogantes científicas pueden ser abordadas desde la Geoquímica. ¿Todos los volcanes se comportarán como el Cordón Caulle?, ¿por qué Chile tiene cobre?, ¿podríamos usar geotermia en nuestro país? Conocimiento que, al ser aplicado, podría cambiar y mejorar nuestra forma de vivir.

GRASAS SALUDABLES: Los ácidos grasos omega-3 (ácido linolénico) son un tipo de grasa poli insaturada fundamental para nuestro organismo. Son insaturados porque al carecer de dos átomos de hidrógeno, poseen en su lugar dos átomos adicionales de carbono. Estos “súper ácidos grasos” tienen múltiples funciones como la formación de las membranas celulares, hormonas, retina y neuronas, además de aportar al funcionamiento del sistema inmunológico. Además son anticancerígenos, antiinflamatorios y benefician el desarrollo del embarazo, entre otros. Aunque son indispensables para el funcionamiento del organismo, éste no los produce y necesita obtenerlos a través de los alimentos. Los encontramos en forma natural en pescados azules como salmón, caballa, atún, trucha, entre otros. Vegetales como lechuga, espinacas, pepino, piña, frutillas. Aceite de linaza, canola y soja. En productos industriales enriquecidos: huevo, margarina, aceite, leche, galletas, jugos de fruta.


H HELIO:

Elemento químico gaseoso, símbolo He, número atómico 2 y peso atómico de 4.0026. El helio es uno de los gases nobles del grupo O de la tabla periódica. Es el segundo elemento más ligero. La fuente principal de helio del mundo es un grupo de campos de gas natural en los Estados Unidos. El helio es un gas incoloro, inodoro e insípido. Tiene menor solubilidad en agua que cualquier otro gas. Es el elemento menos reactivo y esencialmente no forma compuesto químico. La densidad y la viscosidad del vapor de helio son muy bajas. La conductividad térmica y el contenido calórico son excepcionalmente altos. El helio puede licuarse, pero su temperatura de condensación es la más baja de cualquier sustancia conocida. El helio fue el primer gas de llenado de globos y dirigibles. Esta aplicación continúa en la investigación de alta altitud y para globos meteorológicos. El uso principal del helio lo constituye el gas inerte de protección en soldadura autógena. Su mayor potencial lo encontramos en aplicaciones a temperaturas muy bajas. El helio es el único refrigerante capaz de alcanzar temperaturas menores que 14 K (-434ºF). El principal valor de la temperatura ultra baja está en el desarrollo del estado de superconductividad, en el cual hay prácticamente una resistencia cero al flujo de la electricidad. Otras aplicaciones son su uso como gas presurizante en combustibles líquidos de cohetes, en mezclas helio-oxígeno para buzos, como fluido de trabajo en los reactores nucleares enfriados por gas y como gas transportador en los análisis químicos por cromatografía de gases. El helio terrestre se forma por decaimiento radiactivo natural de elementos más pesados. La mayor parte de este helio migra a la superficie y entra en la atmósfera. Cabría suponer que la concentración atmosférica del helio (5.25 partes por millón al nivel del mar) fuese superior. Sin embargo, su peso molecular bajo le permite escapar al espacio a una velocidad equivalente a la de su formación. Los gases naturales lo contienen en concentraciones superiores a la atmosférica.

Efectos del Helio sobre la salud Efectos de la exposición: La sustancia puede ser absorbida por el cuerpo por inhalación. Inhalación: Elevación de la voz. Mareos. Pesadez. Dolor de cabeza. Asfixia. Piel: Congelación en contacto con el líquido. Riesgo de inhalación: Si hay pérdidas en el contenedor este gas puede provocar asfixia, ya que hace disminuir el contenido de oxígeno en el aire en los lugares cerrados. Comprobar la concentración de oxígeno antes de entrar en el recinto.


HUELLA DE CARBONO: Todo lo que hacemos, día a día, deja una huella en la atmósfera que nos rodea, como la pisada que queda al caminar por la playa. Esta huella no se puede ver o tocar, sin embargo, permanece durante el tiempo dañando la vida de todos y todas en el planeta, incluso de las próximas generaciones. Hay acciones que podemos emprender para aminorar nuestra huella de carbono. Reducir nuestro uso de electricidad, transporte, industria, energía y de combustible en general, ayudan a disminuir esta marca. La Huella de Carbono es la medición de los Gases de Efecto Invernadero (GEI) que emitimos cada día. Se le llama “huella”, porque estas emisiones permanecen en el medio ambiente a través del tiempo y se utiliza el término “carbono” en referencia al dióxido de carbono (que es uno de los GEI).

HIDROGENO: Primer elemento de la tabla periódica. En condiciones normales es un gas incoloro, inodoro e insípido, compuesto de moléculas diatónicas, H2. El átomo de hidrógeno, símbolo H, consta de un núcleo de unidad de carga positiva y un solo electrón. Tiene número atómico 1 y peso atómico de 1.00797. Es uno de los constituyentes principales del agua y de toda la materia orgánica, y está distribuido de manera amplia no sólo en la Tierra sino en todo el universo. Existen 3 isótopos del hidrógeno: el protio, de masa 1, que se encuentra en más del 99.98% del elemento natural; el deuterio, de masa 2, que se encuentra en la naturaleza aproximadamente en un 0.02%, y el tritio, de masa 3, que aparece en pequeñas cantidades en la naturaleza, pero que puede producirse artificialmente por medio de varias reacciones nucleares. Usos: El empleo más importante del hidrógeno es en la síntesis del amoniaco. La utilización del hidrógeno está aumentando con rapidez en las operaciones de refinación del petróleo, como el rompimiento por hidrógeno (hydrocracking), y en el tratamiento con hidrógeno para eliminar azufre. Se consumen grandes cantidades de hidrógeno en la hidrogenación catalítica de aceites vegetales líquidos insaturados para obtener grasas sólidas. La hidrogenación se utiliza en la manufactura de productos químicos orgánicos. Grandes cantidades de hidrógeno se emplean como combustible de cohetes, en combinación con oxígeno o flúor, y como un propulsor de cohetes impulsados por energía nuclear. Propiedades: El hidrógeno común tiene un peso molecular de 2.01594. El gas tiene


una densidad de 0.071 g/l a 0ºC y 1 atm. Su densidad relativa, comparada con la del aire, es de 0.0695. El hidrógeno es la sustancia más inflamable de todas las que se conocen. El hidrógeno es un poco más soluble en disolventes orgánicos que en el agua. Muchos metales absorben hidrógeno. La adsorción del hidrógeno en el acero puede volverlo quebradizo, lo que lleva a fallas en el equipo para procesos químicos. A temperaturas ordinarias el hidrógeno es una sustancia poco reactiva a menos que haya sido activado de alguna manera; por ejemplo, por un catalizador adecuado. A temperaturas elevadas es muy reactivo. Aunque por lo general es diatómico, el hidrógeno molecular se disocia a temperaturas elevadas en átomos libres. El hidrógeno atómico es un agente reductor poderoso, aun a la temperatura ambiente. Reacciona con los óxidos y los cloruros de muchos metales, entre ellos la plata, el cobre, el plomo, el bismuto y el mercurio, para producir los metales libres. Reduce a su estado metálico algunas sales, como los nitratos, nitritos y cianuros de sodio y potasio. Reacciona con cierto número de elementos, tanto metales como no metales, para producir hidruros, como el NaH, KH, H2S y PH3. El hidrógeno atómico produce peróxido de hidrógeno, H2O2, con oxígeno. Con compuestos orgánicos, el hidrógeno atómico reacciona para generar una mezcla compleja de productos; con etileno, C2H4, por ejemplo, los productos son etano, C2H6, y butano, C4H10. El calor que se libera cuando los átomos de hidrógeno se recombinan para formar las moléculas de hidrógeno se aprovecha para obtener temperaturas muy elevadas en soldadura de hidrógeno atómico. El hidrógeno reacciona con oxígeno para formar agua y esta reacción es extraordinariamente lenta a temperatura ambiente; pero si la acelera un catalizador, como el platino, o una chispa eléctrica, se realiza con violencia explosiva. Con nitrógeno, el hidrógeno experimenta una importante reacción para dar amoniaco. El hidrógeno reacciona a temperaturas elevadas con cierto número de metales y produce hidruros. Los óxidos de muchos metales son reducidos por el hidrógeno a temperaturas elevadas para obtener el metal libre o un óxido más bajo. El hidrógeno reacciona a temperatura ambiente con las sales de los metales menos electropositivos y los reduce a su estado metálico. En presencia de un catalizador adecuado, el hidrógeno reacciona con compuestos orgánicos no saturados adicionándose al enlace doble. Compuestos principales: El hidrógeno es constituyente de un número muy grande de compuestos que contienen uno o más de otros elementos. Esos compuestos incluyen el agua, los ácidos, las bases, la mayor parte de los compuestos orgánicos y muchos minerales. Los compuestos en los cuales el hidrógeno se combina sólo con otro elemento se denominan generalmente hidruros. Preparación: Se pueden aplicar muy diversos métodos para preparar hidrógeno gaseoso. La elección del método depende de factores como la cantidad de hidrógeno deseada, la pureza requerida y la disponibilidad y costo de la materia prima. Entre los procesos que más se emplean están las reacciones de metales con agua o con ácidos, la electrólisis del agua, la reacción de vapor con hidrocarburos u otros materiales orgánicos, y la descomposición térmica de hidrocarburos. La principal materia prima para la producción de hidrógeno son los hidrocarburos, como el gas natural, gas de aceite refinado, gasolina, aceite combustible y petróleo crudo. Efectos del Hidrógeno sobre la salud Efectos de la exposición al hidrógeno: Fuego: Extremadamente inflamable. Muchas reacciones pueden causar fuego o explosión. Explosión: La mezcla del gas con el aire es explosiva. Vías de exposición: La sustancia puede ser absorbida por el cuerpo por inhalación. Inhalación: Altas concentraciones de este gas pueden causar un ambiente deficiente de oxígeno. Los individuos que respiran esta atmósfera pueden experimentar síntomas que incluyen dolores de cabeza, pitidos en los oídos, mareos, somnolencia, inconsciencia, náuseas, vómitos y depresión de todos los sentidos. La piel de una víctima puede presentar una coloración azul. Bajo algunas circunstancias


se puede producir la muerte. No se supone que el hidrógeno cause mutagénesis, embriotoxicidad, teratogenicidad o toxicidad reproductiva. Las enfermedades respiratorias pre-existentes pueden ser agravadas por la sobreexposición al hidrógeno. Riesgo de inhalación: Si se producen pérdidas en su contenedor, se alcanza rápidamente una concentración peligrosa. Peligros físicos: El gas se mezcla bien con el aire, se forman fácilmente mezclas explosivas. El gas es más ligero que el aire. Peligros químicos: El calentamiento puede provocar combustión violenta o explosión. Reacciona violentamente con el aire, oxígeno, halógenos y oxidantes fuertes provocando riesgo de incendio y explosión. Los catalizadores metálicos, tales como platino y níquel, aumentan enormemente estas reacciones. Elevadas concentraciones en el aire provocan una deficiencia de oxígeno con el riesgo de inconsciencia o muerte. Comprobar el contenido de oxígeno antes de entrar en la habitación. No hay advertencia de olor si hay concentraciones tóxicas presentes. Medir concentraciones de hidrógeno con un detector de gas adecuado (un detector normal de gas inflamable no es adecuado para este propósito).

Efectos ambientales del Hidrógeno Estabilidad ambiental: El hidrógeno existe naturalmente en la atmósfera. El gas se disipará rápidamente en áreas bien ventiladas. Efecto sobre plantas o animales: Cualquier efecto en animales será debido a los ambientes deficientes de oxígeno. No se anticipa que tenga efectos adversos sobre las plantas, aparte de la helada producida en presencia de los gases de expansión rápida. Efecto sobre la vida acuática: Actualmente no se dispone de evidencia sobre el efecto del hidrógeno en la vida acuática.

N

Nanoquímica: son las actividades de la Nanociencia y la Nanotecnología que trabajan para crear, desarrollar y estudiar objetos que presenten propiedades útiles debido a sus dimensiones nanoscópicas, como los nano materiales. La Nanoquímica busca organizar la materia a escala nanoscópica a partir de átomos o moléculas para conseguir con ellos nuevas propiedades y aplicaciones de los denominados nano materiales. Un ejemplo de nano materiales son las nanopartículas metálicas que, por sus tamaños y propiedades ópticas y eléctricas, pueden ser utilizadas en diagnóstico y terapia de diferentes patologías como la enfermedad de Alzheimer y el cáncer. Las nanopartículas actualmente se utilizan para la denominada “teranosis” que consiste en diagnosticar y a la vez tratar las enfermedades en un mismo procedimiento.


Neuroquímica: Nuestro sistema nervioso, al igual que el resto de nuestro organismo, no solo está constituido por sustancias químicas sino que funciona sobre la base de procesos químicos. Las proteínas y los lípidos que conforman su estructura están siendo constantemente construidos, modificados y destruidos. Además, la transmisión del impulso nervioso de una célula a otra requiere la síntesis, el almacenamiento, la liberación, el reconocimiento, la eliminación y en algunos casos la recuperación de moléculas neurotransmisoras. Nuestros sentidos químicos – el gusto y el olfato – también funcionan sobre la base del reconocimiento de compuestos químicos. Cuando una molécula neurotransmisora o una molécula de un compuesto con sabor u olor entra en contacto con la estructura química que la reconoce se produce un proceso semejante al reconocimiento de una llave por una cerradura. Entonces se desencadena una serie de fenómenos químicos que podemos asimilar a lo que sucede cuando la cerradura se abre y, en lugar de abrir una puerta, contraemos un músculo, generamos un pensamiento, recordamos una palabra, vemos un color, sentimos un sabor o un olor, o miles de cosas más. El estudio de todos estos procesos es el campo de la neuroquímica.

Q Química Ambiental: Área de la química que estudia el comportamiento y la conservación del medioambiente. Problemas como la lluvia ácida, la contaminación atmosférica urbana, aguas servidas, el efecto invernadero, la destrucción de la capa de ozono, el cambio climático, entre muchos otros, son los temas que aborda. Investigando los procesos químicos y las interacciones que tienen lugar en el medio ambiente global, o en alguno de sus compartimentos: la atmósfera, la hidrósfera, la litósfera y la biósfera. También se ocupa del comportamiento de compuestos químicos contaminantes, tanto de origen natural como humano, y el impacto ocasionado en los ecosistemas, permitiendo adoptar medidas preventivas, antes de que se generen daños en la "antropósfera", es decir, el lugar que habitamos y que es nuestra responsabilidad.


Y YODO: Elemento no metálico, símbolo I, número atómico 53, masa atómica relativa 126.904, el más pesado de los halógenos (halogenuros) que se encuentran en la naturaleza. En condiciones normales, el yodo es un sólido negro, lustroso, y volátil; recibe su nombre por su vapor de color violeta. La química del yodo, como la de los otros halógenos, se ve dominada por la facilidad con la que el átomo adquiere un electrón para formar el ion yoduro, I-, o un solo enlace covalente –I, y por la formación, con elementos más electronegativos, de compuestos en que el estado de oxidación formal del yodo es +1, +3, +5 o +7. El yodo es más electropositivo que los otros halógenos y sus propiedades se modulan por: la debilidad relativa de los enlaces covalentes entre el yodo y elementos más electropositivos; los tamaños grandes del átomo de yodo y del ion yoduro, lo cual reduce las entalpías de la red cristalina y de disolución de los yoduros , en tanto que incrementa la importancia de las fuerzas de van der Waals en los compuestos del yodo, y la relativa facilidad con que se oxida éste. El yodo se encuentra con profusión, aunque rara vez en alta concentración y nunca en forma elemental. A pesar de la baja concentración del yodo en el agua marina, cierta especie de alga puede extraer y acumular el elemento. En la forma de yodato de calcio, el yodo se encuentra en los mantos de caliche de Chile. Se encuentra también como ion yoduro en algunas salmueras de pozos de petróleo en California, Michigan y Japón. El único isótopo estable del yodo es el 127I (53 protones, 74 neutrones). De los 22 isótopos artificiales (masas entre 117 y 139), el más importante es el 131I, con una vida media de 8 días; se utiliza mucho en el trabajo con trazadores radiactivos y ciertos procedimientos de radioterapia. El yodo existe como moléculas diatónicas, I2 en las fases sólida, líquida y de vapor, aunque a temperaturas elevadas (>200ºC, o sea, 390ºF) la disociación para formar átomos es apreciable. Las cortas distancias intermoleculares I ... I en el sólido cristalino indican la presencia de fuertes fuerzas intermoleculares de van der Waals. El yodo es moderadamente soluble en líquidos no polares y el color violeta de las soluciones sugiere que se encuentran presentes las moléculas I2, como en su fase vapor. Aun cuando, por lo común, es menos vigoroso en sus reacciones que los otros halógenos (halogenuros), el yodo se combina directamente con la mayor parte de los elementos; excepciones importantes son los gases nobles, el carbono, el nitrógeno y algunos metales nobles. Los derivados inorgánicos del yodo pueden agruparse en tres clases de compuestos: aquéllos con más elementos electropositivos, es decir, los yoduros; los formados con otros halógenos, y los formados con el oxígeno. Los compuestos órganos yódicos caen en dos categorías: los yoduros y los derivados en que el yodo se encuentra en un estado de oxidación formal positiva, en virtud del enlace con otro elemento más electronegativo. El yodo parece ser un elemento que, en cantidades muy pequeñas, es esencial para la vida animal y vegetal. El yoduro y el yodato que se encuentran en las aguas marinas entran en el ciclo metabólico de la mayor parte de la flora y la fauna marinas, mientras que en los mamíferos superiores el yodo se concentra en la glándula tiroides, allí se convierte en aminoácidos yodados (principalmente tiroxina y yodo tirosinas). Éstos se encuentran almacenados en la tiroides como tiroglobulina y, aparentemente, la tiroxina es secretada por la glándula. La deficiencia de yodo en los mamíferos lleva al bocio, una condición en que la glándula tiroides crece más de lo normal. Las propiedades bactericidas del yodo apoyan sus usos principales para el tratamiento de heridas o la esterilización del agua potable. Asimismo los compuestos de yodo se


utilizan para tratar ciertas condiciones de la tiroides y del coraz贸n, como suplemento diet茅tico (en la forma de sales yodatadas) y en los medios de contraste para los rayos X.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.