*3090*
3090
(Pages : 3)
Reg. No. : .................................... Name : .........................................
III Semester B.Tech. Degree Examination, June 2009 (2003 Scheme) 03 – 301 : ENGINEERING MATHEMATICS – II (CMNPHETARUFB) Time : 3 Hours
Max. Marks : 100 PART – A
Answer all questions.
(10×4=40 Marks)
1. Solve P(p + y) = x(x + y) 2. Find the orthogonal trajectory of the family of parabolas y = ax2. 3. State the Dirichlet’s condition for the convergence of a Fourier series. −π≤ x ≤0 ⎧0, 4. Obtain the Fourier series of f ( x ) = ⎨ ⎩sin x , 0 ≤ x ≤ π π 2 aec θ 2 5. Evaluate ∫ ∫ r cos 2θ dr dθ 0 0
6. Find the angle between the tangents to the curve x = t, y = t2, z = t3 at t = ± 1. 7. Find the directional derivative of u = xy + yz + zx at the point (1, 2, 3) along the X-axis. B
(
)
8. Show that ∫ 2xy + z 3 dx + x 2dy + 3xz 2dz is independent of path joining the A
points A and B.
(
)
9. Evaluate ∫∫ F.nds where F = x + y2 i − 2 xj + 2 yz k and S is the surface of the plane S
2x + y + 2z = 6 in the first octant. 10. Solve (D2 – 4D + 4)y = e2x. P.T.O.
3090
*3090*
-2-
PART – B Answer one question from each Module.
(3×20=60 Marks)
Module – 1 11. a) Solve P2 + x2 = 4y. b) Solve (D2 – 4D + 4)y = x2 + ex + cos 2x. c) Solve by the method of variation of parameters d2y
12. a) Solve (1 + x )
2
b) Solve
d 2x dt 2
dx
2
+ (1 + x )
− 3x − y = e t ;
d2y dx 2
+ 4 y = sec 2 x
dy + y = 4 cos log(1 + x ) dx
dy − 2x = 0 dt
Module – 2 0 ≤ x ≤1 ⎧ πx , 13. a) Obtain the Fourier series of f ( x ) = ⎨ in the interval (0, 2) ( 2 x ), 1 x 2 π − ≤ ≤ ⎩ 1
b) Evaluate ∫
0
∫
2−x2
x
x x2 + y2
dy dx by changing the order of integration.
0 < x < l /2 ⎩k(l − x), l / 2 < x < l
kx, 14. a) Obtain the half range cosine series for f (x) = ⎧ ⎨
b) Evaluate ∫∫ r 3 dr dθ over the area bounded by r = 2 sin θ and r = 4 sin θ .
*3090*
3090
-3-
Module – 3 _
−
15. a) Using Stoke’s theorem evaluate ∫ F.d r where F = ( 2 x − y) i − yz 2 j− y 2z k and S c
is the upper half surface of the sphere x2 + y2 + z 2 = 1 and C is its boundary. b) Using Stoke’s theorem prove that div curl F = 0 . ⎛ 1⎞ 16. a) Show that div grad ⎜ r ⎟ = 0. ⎝ ⎠ −
_
b) If F = x 2y j + x 2z k + x 3 i , evaluate ∫∫ F.n ds by using divergence theorem where s
S is the surface bounding the region x2 + y2 = a2; z = 0 and z = b.
———————