Table of the Isotopes
11-134 Elem. or Isot. 158 159
160 161
Gd Gd
Gd Gd
Natural Abundance (Atom %) 24.84(7)
21.86(19)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
157.924104 158.926389
18.6 h
β- 0.971
159.927054 160.929669
> 1.9 × 1019 y 3.66 m
β- ββ- /1.956
162
Gd
161.930985
8.4 m
β- /1.39
163
Gd
162.9340
1.13 m
β- /3.1
Gd Gd 166 Gd 167 Gd 168 Gd 169 Gd
163.9359 164.9394 165.942 166.946 167.948 168.953
45. s 10 s ~ 4.8 s
β- /2.3 β-
164 165
65
Tb
158.92535(2)
Tb Tb 139 Tb
137.9532 138.9483
135 138
0.9 ms
p
2.4 s
β+, EC/11
Tb Tb 142m Tb 142 Tb 143 Tb 144m Tb 144 Tb 145m Tb
140.9415
3.5 s 25 μs 0.30 s 0.60 s 12. s 4.1 s < 1.5 s 30. s
β+, EC/~ 8.3
Tb Tb
144.9293
Tb Tb
145.92725
Tb
146.92405
142m2
145
146m
146
147m
147
Tb
148m
487_S11.indb 134
141.9387 142.9351 143.93305
0+ 3/2-
1.56/85
0+ 5/2-
1.0/
0+
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b) -0.44
γ-Energy / Intensity (MeV/%) Tb k x-ray 0.36351 0.058-0.855 Tb k x-ray 0.1023 0.3149 0.3609 0.4030 0.4421 0.2868 0.214 1.685
0+ 0+
(0.040-1.015)
p/1.179
1.6 s
139.946
141
0.971/58 0.913/29 0.607/12
Spin (h/2 π)
0+
Tb
140
Particle Energy/ Intensity (MeV/%)
0.109 0.120 0.329 0.355–0.740
β+, EC/ β+, EC/10. β+, EC/7.4 IT β+, EC/8.4 β+, EC/~ 6.6
40+ 11/251+ 11/2-
β+, EC/6.5 β+ /76 / EC/24 /
½+ (5-)
~ 8. s 1.8 m
β+ /8.1 β+ /35 / EC/65 /
1+ 11/2-
1.6 h
β+ /42 /4.61 EC/58 /
5/2+
2.3 m
β+ /25 / EC/75 /
9+
23. s
ann.rad./ 0.2577 0.5370 0.9876 ann.rad./ Gd k x-ray 1.0789 1.5795
+1.70
ann.rad./ Gd k x-ray 1.3977 1.7978 ann.rad./ Gd k x-ray 0.6944 1.1522 (0.120–3.318) ann.rad./ Gd k x-ray 0.3945 0.6319 0.7845
4/17/06 11:00:06 AM
Table of the Isotopes Elem. or Isot. 148
Tb
Natural Abundance (Atom %)
Atomic Mass or Weight 147.92427
Tb
149m
149
Tb
148.923246
Tb
150m
150
Tb
149.92366
Tb
151m
151
Tb
150.923103
Tb
152m
11-135 Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV) β+, EC/5.69
2-
4.16 m
EC/88 / β+ /12 /
11/2-
4.13 h
β+ /4 /3.636 α/16/
6.0 m
β+ /17 / EC/83 /
3.3 h
β+, EC/4.66
2-
-0.90
25. s
I.T./95 / β+, EC/7 /
11/2-
17.61 h
β+/1 /2.565 EC/99 /
4.3 m
I.T./79 /0.5018 EC/21 /4.35
17.5 h
β+ /20 /3.99 EC/80 /
153
Tb
152.923435
2.34 d
Tb
Tb
154
487_S11.indb 135
Tb
153.92468
-1.75
+1.35
151.92407
1.8/ 3.97/
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
½+
Tb
154m1
Spin (h/2 π)
1.00 h
152
154m2
Particle Energy/ Intensity (MeV/%)
0.70/
1/2+
-0.3
+0.92
(8+)
2.5/ 2.8/
2-
-0.58
+0.3
EC/1.570
5/2+
+3.44
+1.1
23.1 h
EC/98 / I.T./2 /
(7-)
0.9
9. h
β+ /78 / I.T./22 /
(3-)
1.7
21.5 h
EC/99 /3.56 β+ /1 /
1.86/ 2.45
0-
+3.
γ-Energy / Intensity (MeV/%) 0.8824 ann.rad./ Gd k x-ray 0.4888 0.7845 (0.14–3.8) ann.rad./ Gd k x-ray 0.1650 0.7960 Gd k x-ray 0.1650 0.3522 0.3886 (0.1–3.2) ann.rad./ Gd k x-ray 0.4384 0.6380 0.6504 0.8275 ann.rad./ 0.4963 0.6380 (0.3–4.29) 0.0229 0.0495 0.3797 0.8305 Gd k x-ray 0.1083 0.2517 0.2870 (0.1–1.8) Tb k x-ray Gd k x-ray 0.2833 0.3443 0.4111 ann.rad./ Gd k x-ray 0.3443 (0.2–2.88) Gd k x-ray 0.2119 (0.05–1.1) Gd k x-ray 0.1231 0.2479 0.3467 1.4199 Gd k x-ray 0.1231 0.2479 0.5401 (0.12–2.57) Gd k x-ray 0.1231 1.2744 2.1872
4/17/06 11:00:07 AM
Table of the Isotopes
11-136 Elem. or Isot. 155
Natural Abundance (Atom %)
Tb
Atomic Mass or Weight 154.92351
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
5.3 d
EC/0.82
3/2+
Tb
1.02 d
I.T./
(7-)
Tb
5.3 h
I.T./0.0884
(0+)
156m2
156m1
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b) +2.01
+1.41
156
Tb
155.924747
5.3 d
EC/2.444
3-
~ 1.7
+2.
157
Tb
156.924025
1.1 × 102 y
EC/0.0601
3/2+
+2.01
+1.4
10.5 s
I.T./0.11
0-
157.925413
1.8 × 102 y
EC/80 /1.220 β- /20 /0.937
3-
+1.76
+2.7
158.925347 159.927168
72.3 d
β- /1.835
0.57/47 0.86/27
3/2+ 3-
+2.014 +1.79
+1.43 3.8
2.2
+1.2
Tb
158m
158
Tb
159
Tb Tb
160
100.
161
Tb
160.927570
6.91 d
β- /0.593
0.46/23 0.52/66 0.6/10
3/2+
162
Tb
161.92949
7.6 m
β- /2.51
1.4
(1/2-)
163
Tb
162.930648
19.5 m
β- /1.785
0.80/
3/2+
164
Tb
163.9334
3.0 m
β- /3.9
1.7/
(5+)
165
Tb
164.9349
2.1 m
β- /3.0
166
Tb Tb
165.9380 166.9401
26 s 19 s
β-/
167.944 168.946 169.950 170.953
8s
167
Tb Tb 170 Tb 171 Tb 168 169
Dy
162.500(1)
Dy
138.960
66
139
487_S11.indb 136
0.6 s
3/2+
γ-Energy / Intensity (MeV/%) (0.12–3.14) Gd k x-ray 0.08654 0.10530 Tb k x-ray 0.0496 Tb k x-ray 0.0884 Gd k x-ray 0.08896 0.19921 0.53435 1.22245 Gd k x-ray 0.0545 Gd k x-ray 0.0110 Gd k x-ray 0.0795 0.9442 0.9621 Dy k x-ray 0.08678 0.29857 0.87936 0.96615 Dy k x-ray 0.02565 0.04892 0.07458 Dy k x-ray 0.2600 0.8075 0.8882 Dy k x-ray 0.3511 0.3897 0.4945 Dy k x-ray 0.1689 0.2157 0.6110 0.6885 0.7548 0.5389 1.1785 1.2920 1.6648 0.057 0.070 0.075–0.227
β+, p
4/17/06 11:00:09 AM
Table of the Isotopes Elem. or Isot. Dy Dy 142 Dy 143 Dy 144 Dy 145m Dy 146m Dy 146 Dy 147m Dy 140
Natural Abundance (Atom %)
141
Atomic Mass or Weight 139.954 140.9514 141.9464 142.9438 143.93925 144.9365 145.93285
11-137 Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
0.9 s 2.3 s 3.9 s 9.1 s 14. s 0.15 s 30. s 56. s
EC, β+ /9. EC, β+ /7.1 EC, β+ /~ 8.8 EC, β+ /~ 6.2 EC, β+ I.T. EC, β+ /5.2 I.T./40 / β+, EC/60 /
147
Dy
146.93109
75. s
EC, β+ /6.37
148
Dy
147.92715
3.1 m
β+ /4 /2.68 EC/96 /
149
Dy
148.92731
4.2 m
β+, EC/3.81
150
Dy
149.925585
7.18 m
Dy
150.926185
17. m
β+, EC/67 /1.79 α/33 / β+ /5 /2.871 EC/89 / α /6 /
151
152
153
154 155
156 157
158 159
Dy
151.92472
2.37 h
Dy
152.925765
6.3 h
Dy Dy
3. × 106 y 9.9 h
α/2.95 β+ /2 /2.095 EC/98 /
0+
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%)
0+
1.2/
0+ 11/210+ 0+ (11/2-)
-0.66
½+
-0.92
0+
(7/2-)
4.233/
+0.7
-0.12
-0.62
-0.95
-0.30
(7/2-)
-0.78
~-0.15
0+ 3/2-
-0.385
+1.04
Tb k x-ray 0.0655 0.2269
0+ 7/2-
4.067/
3.63/ 0.89/
0+
3.46/
2.87/ 0.845/
Dy k x-ray 0.072 0.6787 ann.rad./ 0.1007 0.2534 0.3653 ann.rad./ Tb k x-ray 0.6202 ann.rad./ 0.1008 0.1063 0.2534 0.6536 0.7894 1.7765 1.8062 Tb k x-ray 0.3967 Tb k x-ray 0.1764 0.3030 0.3861 0.5463 (0.16–2.09) Tb k x-ray 0.2569 Tb k x-ray 0.0807 0.0997 0.2137 (0.08–1.66)
0.056(3)
155.92428 156.92547
8.1 h
EC/1.34
0+ 3/2-
-0.301
+1.30
Dy Dy
0.095(3)
157.924409 158.925739
144. d
EC/0.366
0+ 3/2-
Tb k x-ray (0.0609–1.319)
-0.354
+1.37
2.329(18) 18.889(42) 25.475(36) 24.896(42) 28.260(54)
159.925198 160.926933 161.926798 162.928731 163.929175
Tb k x-ray 0.3262
-0.480
+2.51
+0.673
+2.65
Dy Dy 162 Dy 163 Dy 164 Dy 165m Dy 161
487_S11.indb 137
153.92442 154.92575
Spin (h/2 π)
Dy Dy
160
165
EC/0.60 α/ β+ /1 /2.171 EC/99 / α /0.01 /
Particle Energy/ Intensity (MeV/%)
Dy
164.931703
1.26 m
I.T./98 /0.108 β- /2 /
2.33 h
β- /1.286
0+ 5/2+ 0+ 5/20+ 1/2-
1.29/
7/2+
-0.52
+3.5
Dy k x-ray 0.1082 0.5155 Ho k x-ray
4/17/06 11:00:10 AM
Table of the Isotopes
11-138 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
166
Dy
165.932807
3.400 d
β- /0.486
0.40/
0+
167
Dy
166.9357
6.2 m
β- /~ 2.35
1.78
(1/2-)
168
Dy
167.9371
8.5 m
β- /1.6
Dy Dy 171 Dy 172 Dy 173 Dy
168.9403 169.9424 170.9462 171.9488 172.953
~ 39. s
β- /3.2
169 170
Ho
67
Ho Ho 141 Ho 142 Ho 143 Ho 144 Ho 145 Ho 146 Ho 147 Ho 148m Ho 148 Ho 140
141m
139.969 140.963 141.960 142.9546 143.9515 144.9472 145.9446 146.94006 147.9377
Ho
6 ms 8 μs 4.2 ms 0.4 s > 0.2 μs 0.7 s 2.4 s 3.3 s 5.8 s 9. s 2. s
p/ p/ β+, p EC/β+, p
p/1.09 p/1.23 p/1.71
β+, EC/12 β+ β+, EC/10.7 β+, EC/8.2 β+, EC/ β+, EC/9.4
(10+) 11/241+
21. s
β+, EC/
11/2-
1/2+ (9+)
> 30. s 25. s
β+, EC/6.01 β+, EC/
Ho
149.93350
1.3 m
β+, EC/6.6
47. s
β+, EC/87 / α/13
4.605/
35.2 s
β+, EC/80/5.13 α/20 /
4.519/
50. s
β+, EC/90/ α/10/
4.453/
Ho
Ho
Ho
152m
487_S11.indb 138
0+
148.93378
151m
151
0+
Ho Ho
150m
150
0+
γ-Energy / Intensity (MeV/%) 0.09468/3.8 Ho k x-ray 0.0282 0.0825 Ho k x-ray 0.2593 0.3103 0.5697 (0.06–1.4) Ho k x-ray 0.1925 0.4867
164.93032(2)
149m
149
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
150.93169
0.307
(9+)
ann.rad./ ann.rad./ ann.rad./ ann.rad./ 0.6615 1.6883 ann.rad./ 1.0733 1.0911
+5.9
-1.
ann.rad./ 0.3939 0.5511 0.6534 0.8034 ann.rad./ 0.5913 0.6534 0.8034 ann.rad./ 0.2102 0.4889 0.6948 0.7762 ann.rad./ 0.3522 0.5274 0.9676 1.0471 ann.rad./ 0.4929 0.6138 0.6474
4/17/06 11:00:11 AM
Table of the Isotopes Elem. or Isot. 152
Ho
Natural Abundance (Atom %)
Atomic Mass or Weight 151.93171
Ho
153m
153
Ho
152.93020
Ho
154m
11-139 Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
2.4 m
β+, EC/88/6.47 α/12/
9.3 m
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
(3+)
-1.02
β+, EC/99+/4.12 α/ 4.01/
5/2
+1.19
2.0 m
β+, EC/99+/4.13 α/ 3.91/
11/2-
+6.8
-1.1
3.3 m
β+, EC/
(8+)
5.7
-1.0
4.387/
+0.1
154
Ho
153.93060
12. m
β+, EC/5.75
1-
-0.64
+0.2
155
Ho
154.92910
48. m
β+/6/3.10 EC/94 /
(5/2+)
+3.51
+1.5
5.8 m
I.T./0.0352 β+ /25 / EC/75 /
+2.99
+2.3
7/2-
+4.35
+3.0
+2.44
+1.6
+3.77
+4.1
Ho
156m
1.8/ 2.9/
156
Ho
155.92984
56. m
β+, EC/4.4
157
Ho
156.92826
12.6 m
β+/5/2.54 EC/95/
Ho
28. m
I.T./44/ EC/56/
2-
Ho
21. m
β+, EC/
(9+)
11.3 m
β+/8/4.24 EC/92/
158m2
158m1
158
487_S11.indb 139
Ho
157.92894
(5+)
1.18/
1.30/
5+
γ-Energy / Intensity (MeV/%) 0.6835 ann.rad./ 0.6140 0.6476 ann.rad./ 0.0905 0.1089 0.1618 0.2302 0.2707 0.3659 0.4565 ann.rad./ 0.2958 0.3346 0.4381 0.6383 ann.rad./ 0.3346 0.4124 0.4771 ann.rad./ Dy k x-ray 0.3346 0.5700 0.8734 ann.rad./ Dy k x-ray 0.0474 0.1363 0.3254 (0.06–2.24) ann.rad./ Dy k x-ray 0.1378 0.2666 (0.28–2.9) ann.rad./ 0.1378 0.2665 ann.rad./ Dy k x-ray 0.2800 0.3411 ann.rad./ Dy k x-ray 0.0989 0.2182 ann.rad./ 0.0981 0.1664 0.2182 0.3205 0.4062 0.9774 1.0532 0.4846 ann.rad./ Dy k x-ray 0.0989
4/17/06 11:00:13 AM
Table of the Isotopes
11-140 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Ho
159m
159
Ho
158.927712
Ho Ho
160m
Ho
159.92873
Ho
161m
161
Ho
160.927855
Ho
162m
162
Ho
161.929096
Ho
163m
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
IT/0.206
1/2+
33.0 m
EC/1.838
7/2-
+4.28
+3.2
1+ 2-
+2.52
+1.8
5+
+3.71
+4.0
IT/67/0.060 EC/33/3.35
25.6 m
β+, EC/3.29
0.57/
6.8 s
IT/0.211
2.48 h
EC/0.859
7/2-
+4.25
+3.2
1.12 h
IT/61/ EC/39/
6-
+3.60
+4.
15. m
EC/96 /0.295 β+ /4 /
1+
1.09 s
I.T./0.298
(1/2+) +4.23
+3.6
+4.17 3.6
+3.49 -3.
Ho Ho
162.928734
4.57 × 103 y 38. m
EC/0.00258 I.T./0.140
7/2(6-)
164
Ho
163.930234
29. m
EC/58 /0.987 β- /42 /0.963
1+
165
Ho Ho
1.2 × 103 y
β- /
163
164m
166m
100.
164.930322
7/27-
166
Ho
165.932284
1.117 d
β- /1.855
1.776/48 1.855/51
0-
167
Ho
166.93313
3.1 h
β- /1.007
0.31/43 0.61/21
(7/2-)
487_S11.indb 140
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
8.3 s
3. s 5.0 h
160m2
160
Half-life/ Resonance Width (MeV)
γ-Energy / Intensity (MeV/%) 0.2182 0.9488 Ho k x-ray 0.1660 0.2059 Dy k x-ray 0.1210 0.1320 0.2529 0.3096 (0.06–1.2) 0.0868 0.1970 0.6464 0.7281 0.8791 0.9619 0.9658 See Ho[166m] 0.7282 0.8794 Ho k x-ray 0.2112 Dy k x-ray 0.0256 0.0592 0.0774 0.1031 Dy k x-ray Ho k x-ray 0.0807 0.1850 0.2828 0.9372 1.2200 Dy k x-ray 0.0807 1.3196 1.3728 Ho k x-ray 0.2798 Dy M x-rays Ho k x-ray 0.0373 0.0566 0.0940 Dy k x-ray 0.0734 0.0914 Er k x-ray 0.18407 0.71169 0.81031 Er k x-ray 0.08057 1.37943 Er k x-ray 0.0793
4/17/06 11:00:14 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
169
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
2.2 m 3.0 m
I.T./ β- /2.91
Ho
168.93687
4.7 m
β- /2.12
43. s
β- /
1+
6+
Ho
170
Ho
169.93962
2.8 m
β- /3.87
171
Ho Ho
170.941 171.9448
53 s 25. s
β- / β- /
Ho Ho 175 Ho
172.9473 173.951 174.954
173 174
Er
68
143.9604 144.9574 145.9520 146.9495 147.9446 148.94231 149.93791
> 0.2 μs 0.9 s ~ 1.7 s 2.5 s 4.5 s 10. s 10.7 s 18. s
Er Er
150.93745 151.93505
23. s 10.2 s
153
Er
152.935063
37.1 s
154
Er
153.93278
3.7 m
155
Er
154.93321
5.3 m
156
Er
155.93107
20. m
145
152
487_S11.indb 141
2.0/
3+
1.2/ 2.0/
(7/2-)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.0835 0.2379 0.3213 0.3465 Er k x-ray 0.7413 0.8159 0.8211 (0.08–2.34) 0.1496 0.7610 0.7784 0.7884 0.8529 0.0787 0.8123 1.8940 1.9726 Er k x-ray 0.1816 0.2582 0.8902 0.9321 0.9414 1.1387 Er k x-ray (0.077–1.186)
167.259(3)
Er Er 146 Er 147 Er 148 Er 149m Er 149 Er 150 Er 144
151
Spin (h/2 π)
167.93552
170m
172
Particle Energy/ Intensity (MeV/%) 0.96/15 0.97/15
Ho Ho
168m 168
11-141
0+
β+ β+ E.C, β+ /~ 9.1 β+, EC/6.8 IT ECβ+ /8.1 β+ /36 /4.11 EC/64 / β+, EC/5.2 β+, EC/10/3.11 α/90/ α/ β+, EC/47/4.56 β+, EC/99+/2.03 α/0.5/ β+, EC/47/3.84 EC/53 /
β+, EC/1.7
0+ 0+ 11/2½+ 0+
4.804/ 4.674 4.35/ 4.166/
ann.rad./ Ho k x-ray 0.4758 ann.rad./ ann.rad./
7/20+ -0.934
-0.42
0.351 (0.0945–1.700) ann.rad./
-0.669
-0.27
ann.rad./ Ho k x-ray 0.1101 0.2415 ann.rad./ 0.0298 0.0352 0.0522 0.1336
0+ (7/2-)
0+
4/17/06 11:00:16 AM
Table of the Isotopes
11-142 Elem. or Isot.
156.93192
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 25. m β+, EC/3.5
Er
157.92989
2.2 h
EC/99.5 /1.78 β+ /0.5 /
Er
158.930684
36. m
β+ /7 /2.769 EC/93 /
3/2-
Er
159.92908
1.191 d
EC/0.33
0+
Er
160.93000
3.21 h
EC/2.00
3/2-
1.25 h
EC/1.210
0+ 5/2-
10.36 h
EC/0.376
2.27 s
I.T./0.208
0+ 5/20+ ½7/2+ 0+ ½-
+0.485
0+ 5/2-
0.66
Er
157
Natural Abundance (Atom %)
158
159
160
161
Atomic Mass or Weight
Particle Energy/ Intensity (MeV/%)
0.74/
Spin (h/2 π) 3/2-
0+
Er Er
0.139(5)
161.928778 162.93003
Er Er 166 Er 167m Er
1.601(3)
163.929200 164.930726 165.930293
Er Er 169 Er
22.869(9) 26.978(18)
166.932048 167.932370 168.934590
9.40 d
β- /0.351
Er Er
14.910(36)
169.935464 170.938030
7.52 h
β- /1.491
Er
171.939356
2.05 d
β-/0.891
Er
172.9424
1.4 m
β- /2.6
(7/2-)
174
Er
173.9442
3.1 m
β- /1.8
0+
Er Er 177 Er
174.9478 175.9501 176.954
1.2 m
β-
~ 1.9 μs 3.1 μs
p p// ~ 10
162 163
164 165
167 168
170 171
172
173
175 176
33.503(36)
Tm
168.93421(2)
Tm Tm
144.9701
69
144 145
487_S11.indb 142
0.35/~ 100
0.28/48 0.36/46
0+
0+
Nuclear Elect. γ-Energy / Magnetic Quadr. Intensity Mom. (nm) Mom. (b) (MeV/%) -0.412 +0.92 ann.rad./ 0.117 0.385 1.320 1.660 1.820 2.000 Ho k x-ray 0.0719 0.2486 0.3868 -0.304 +1.17 ann.rad./ Ho k x-ray 0.6245 0.6493 (0.07–2.5) Ho k x-ray (0.05–0.96) -0.37 +1.36 Ho k x-ray 0.8265 (0.07–1.74) +0.557
+2.55
Ho k x-ray 0.4361 0.4399 1.1135
+0.643
+2.71
Ho k x-ray
-0.5639
+3.57
Er k x-ray 0.2078
Tm k x-ray 0.1098 0.1182 2.9
Tm k x-ray 0.11160 0.29591 0.30832 (0.08–1.4) Tm k x-ray 0.0597 0.4073 0.6101 Tm k x-ray 0.1928 0.1992 0.8952 Tm k x-ray (0.100–0.152) (0.0765–1.168)
1.70, 1.43 1.73/91
4/17/06 11:00:19 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
11-143 Atomic Mass or Weight
Tm
146m
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
0.198 s
β+, p
Tm
145.9664
0.08 s
β+/14. p
147
Tm Tm
146.9610
0.4 ms 0.56 s
Tm Tm 149 Tm 150 Tm 151 Tm 152m Tm 152 Tm 153 Tm
147.9578
0.7 s
β+, p EC, β+/85 p/15/ β+, EC/12.
148.9527 149.9500 150.94548
0.9 s 2.3 s 4. s 8. s 5. s 1.6 s
146
147m
148m 148
151.9444 152.94201
Tm
3.3 s
154m
Tm
154.93920
30. s
Tm Tm
155.93898
19. s 1.40 m
α/ β+, EC/7.6 α/
4.23/
Tm
156.93697
3.6 m
β+, EC/4.5 α/
2.6 3.97/
Tm
157.93698
4.0 m
Tm
158.93498
Tm Tm
159.93526
156
157
158
159
160m 160
(0.1007–2.177) ann.rad./ ann.rad./ ann.rad./ ann.rad./ 0.4605–0.7960 ann.rad./ 0.0315 0.0638 0.0881 0.2268 0.5320 0.6067
4.46/
4.46/
γ-Energy / Intensity (MeV/%)
ann.rad./
5.109/ α/5.031/100 4.84/0.24 α/4.956/100 4.83/0.45
8.1 s
156m
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
9+
153.94157
155
Spin (h/2 π)
11/26-
Tm
154
487_S11.indb 143
β+, EC/~ 9.2 β+, EC/~ 11.5 β+, EC/7.5 β+, EC/ β+, EC/8.8 β+, EC/10 /6.46 α/90 / β+, EC/15 / α/ β+, EC/56 /7.4 α/44 / β+, EC/5.58 α/
Particle Energy/ Intensity (MeV/%) 1.4/9 p/1.118/100 1.01/ 0.89/8 p/1.19/100 1.01/28 0.94/22 p/1.115 ~ 10.7 1.052/
2-
+0.40
-0.5
½
+0.48
β+, EC/74 /6.5 EC/26 /
(2-)
+0.04
+0.7
9.1 m
β+/23 /3.9 EC/77 /
5/2+
+3.42
+1.9
1.24 m 9.4 m
IT β+/15 /5.9 EC/85 /
(5) 1-
+0.16
+0.58
ann.rad./ 0.3446 0.4529 0.5860 ann.rad./ 0.1104 0.3484 0.3855 0.4550 (0.1–1.58) ann.rad./ Er k x-ray 0.1921 0.3351 0.6280 1.1498 (0.18–2.81) ann.rad./ Er k x-ray 0.0591 0.0848 0.2713 (0.05–1.27) ann.rad./ Er k x-ray 0.1264 0.2642 0.7285 0.8544
4/17/06 11:00:20 AM
Table of the Isotopes
11-144 Elem. or Isot.
Natural Abundance (Atom %)
Tm
Atomic Mass or Weight
160.93355
161
Tm
162m
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
31. m
β+, EC/3.2
7/2+
24. s
I.T./90 / β+, EC/10 /
5+
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
+2.40
+2.9
+0.69
Tm
161.93400
21.7 m
β+ /8 /4.81 EC/92 /
1-
+0.07
Tm
162.93265
1.81 h
EC/98 /2.439 β+ /1 /
½+
-0.082
5.1 m
I.T./80 / β+, EC/20 /
6-
162
163
Tm
164m
Tm
163.93356
2.0 m
β+ /36 /3.96 EC/64 /
1+
+2.38
Tm
164.932435
1.253 d
EC/1.593
½+
-0.139
Tm
165.93355
7.70 h
EC/98 /3.04 β+ /2 /
2+
+0.092
Tm
166.932852
9.24 d
EC/0.748
½+
-0.197
Tm
167.934173
93.1 d
EC/1.679
3+
+0.23
+3.2
168.934213 169.935801
128.6 d
½+ 1-
-0.232 +0.247
-1.2 +0.74
Tm
170.936429
1.92 y
β- /99.8/0.968 EC/0.2 /0.314 β- /0.096
½+
-0.230
Tm
171.93840
2.65 d
β- /1.88
Tm
172.939604
8.2 h
β- /1.298
164
165
166
167
168
Tm Tm
169 170
171
172
173
487_S11.indb 144
Half-life/ Resonance Width (MeV)
100
2.94/
0.883/24 0.968/76 0.03/2 0.096/98 1.79/36 1.88/29
0.80/21
2-
½+
+0.71
+2.14
γ-Energy / Intensity (MeV/%) 0.8614 1.3685 ann.rad./ Er k x-ray 0.0595 0.0844 1.6481 (0.04–2.15) Tm k x-ray Er k x-ray 0.0669 0.8115 0.9003 ann.rad./ Er k x-ray 0.1020 0.7987 (0.1–3.75) Er k x-ray 0.0692 0.1043 0.2414 0.0914 0.1394 0.2081 0.2405 0.3149 ann.rad./ Er k x-ray 0.0914 Er k x-ray 0.0472 0.0544 0.29728 0.80636 Er k x-ray 0.0806 0.1844 0.7789 1.2734 2.0524 Er k x-ray 0.0571 0.20778 Er k x-ray 0.19825 0.4475 0.81595 Yb k x-ray 0.08425 0.06674 Yb k x-ray 0.07879 1.38722 1.46601 1.52982 1.60861 Yb k x-ray
4/17/06 11:00:21 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
11-145 Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%) 0.86/71
Spin (h/2 π)
Tm Tm
173.94217
2.29 s 5.4 m
β- /3.08
0.70/14 1.20/83
(4-)
Tm
174.94384
15.2 m
β- /2.39
0.9/36 1.9/23
(1/2+)
176
Tm
175.9470
1.9 m
β-/4.2
2.0/ 1.2/
(4+)
Tm Tm 179 Tm
176.9490 177.9526 178.955
1.4 m
β-
70
Yb
173.04(3)
Yb Yb 150 Yb 151 Yb 152 Yb 153 Yb 154 Yb
147.967 148.964 149.9584 150.9554 151.9503 152.9495 153.94639
0.7 s > 0.2 μs 1.6 s 3.2 s 4. s 0.40 s
β+, p
Yb
154.9458
1.7 s
Yb
155.94282
26. s
Yb
156.94263
39. s
Yb
157.93987
1.5 m
β+, EC/1.9
Yb
158.94005
1.4 m
EC, β+/5.1
Yb
159.93755
4.8 m
β+, EC/2.0
0+
Yb
160.93790
4.2 m
β+, EC/3.9
3/2-
Yb
161.93577
18.9 m
β+, EC/1.7
0+
174m 174
175
177 178
148 149
155
156
157
158
159
160
161
162
487_S11.indb 145
β+ /8.5 β+ EC/5.5 β+ EC/6.7 β+ EC/7 /4.49 α/93 / β+, EC/16 /6.0 α/84 / β+, EC/21/3.57 α/79 / β+, EC/99+/5.5 α/0.5/
p/2.5–6.4/
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.3988 0.4613 Yb k x-ray 0.07664 0.17669 0.27332 0.3666 0.99205 (0.08–1.6) Yb k x-ray 0.36396 0.51487 0.94125 0.98247 Yb k x-ray 0.1898 0.3819 1.0691
0+
0.647
0+ 0+
5.32/ 5.19/ 4.69/
0+
ann.rad./ -0.8
-1.
0+
ann.rad./ -0.64
4.69/
ann.rad./
0+
-0.37
-.022
-0.33
+1.03
ann.rad./ 0.231 (0.035–0.670) ann.rad./ 0.0741 0.2526 Tm k x-ray 0.1661 0.1772 0.3297 0.3903 ann.rad./ 0.1404 0.1737 0.2158 ann.rad./ Tm k x-ray 0.0782 0.5999 0.6315 ann.rad./ Tm k x-ray 0.1188
4/17/06 11:00:23 AM
Table of the Isotopes
11-146 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Yb
162.93633
11.1 m
β+ /26 /3.4
Yb
163.93449
1.26 h
EC/1.0
Yb
164.93528
9.9 m
β+ /10 /2.76 EC/90 /
Yb
165.93388
2.363 d
EC/0.30
Yb
166.934950
17.5 m
β+ /0.5 /1.954 EC/99.5 /
46. s
I.T./0.0242
0+ 1/2-
32.02 d
EC/0.909
7/2+
4.19 d
β- /0.470
0+ 1/20+ 5/20+ 7/2-
11.4 s
I.T./1.051
175.942572
1026 y 6.41 s
β-βI.T./0.3315
Yb
176.945261
1.9 h
β- /1.399
1.40
9/2+
178
Yb
177.94665
1.23 h
β- /0.65
0.25/
0+
Yb Yb 181 Yb
178.9502 179.9523 180.9562
8. m 2. m
β- /2.4 β-
163
164
165
166
167
Yb Yb
168
169m
0.13(1)
Yb
168.935190
169
Yb Yb 172 Yb 173 Yb 174 Yb 175 Yb 170 171
167.933897
3.04(15) 14.28(57) 21.83(67) 16.13(27) 31.83(92)
169.934762 170.936326 171.936382 172.938211 173.938862 174.941277
Yb
176m
Yb Yb
176
177m
177
179 180
Lu
71
487_S11.indb 146
12.76(41)
1.4/
Spin (h/2 π) 3/2-
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b) -0.37
+1.24
+0.48
+2.48
+0.62
+2.70
0+
1.58/
(5/2-)
0+
0.639/
0.466/73 0.071/21 0.353/6.2
5/2-
(8-)
0+ 1/2-
0+
-0.63
+3.5
γ-Energy / Intensity (MeV/%) 0.1635 ann.rad./ Tm k x-ray 0.0636 0.8603 (0.06 –1.9) Tm k x-ray 0.0914 0.6752 ann.rad./ Tm k x-ray 0.0801 1.0903 Tm k x-ray 0.0828 0.1844 0.7789 1.2734 2.0524 Tm k x-ray 0.06296 0.10616 0.11337 0.17633 Yb L x-ray 0.0242 0.1979/35.9 0.3078/10.05 0.0207–0.2611
+0.49367 -0.67989 0.77
+2.80 Lu k x-ray 0.3963/13 (0.114–0.28) Yb k x-ray 0.0961 0.1901 0.2929 0.3897 Yb k x-ray 0.1131 0.2084 Lu k x-ray 0.1504 0.1415 0.3246 0.3516 0.3815 0.6125 0.1028–0.4423
174.967(1)
4/17/06 11:00:25 AM
Table of the Isotopes Elem. or Isot.
154.95432
Half-life/ Resonance Width (MeV) 0.045 ms 43. ms 16 μs 0.08 s 0.7 s 0.9 s 1.0 s 2.6 ms 0.07 s
155.9530
0.20 s ~ 0.5 s
Lu Lu
156.95010
~ 9.6 s 4.8 s
Lu
157.94931
10.4 s
Lu
158.94663
12.3 s
β+, EC/6.0
Lu
159.9460
36.1 s
β+, EC/7.3
Lu
160.94357
1.2 m
β+, EC/5.3
Lu Lu
161.9433
~ 1.5 m 1.37 m
EC/ β+, EC/6.9
Lu
162.94118
4.1 m
β+, EC/4.6
Lu
163.94134
3.14 m
β+, EC/6.3
1.6/ 3.8/
Lu
164.93941
10.7 m
β+, EC/3.9
2.06/
2.1 m
β+ /35 / EC/65 /
Lu Lu 151m Lu 151 Lu 152 Lu 153 Lu 154 Lu 155m Lu 155 Lu 150m 150
Lu 156 Lu
Natural Abundance (Atom %)
11-147 Atomic Mass or Weight
149.973 150.9676 151.9641 152.9588 153.9575
156m
157m 157
158
159
160
161
162m 162
163
164
165
Lu
166m2
487_S11.indb 147
Decay Mode/ Energy (/MeV) p/1.29 p p/1.31 p/1.231
β+, EC/10.8 α/7.41 EC/8.0 α/ α/ β+, EC/9.5 α/ α β+, EC/94 /6.93 α/ β+, EC/99 /8.0 α/
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
5.66/90 5.57/
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%)
ann.rad./
5.45/ 4.925/
ann.rad./
5.00/ 4.67/
41-
1/2+
(0-)
ann.rad./ 0.3682 0.4770 ann.rad./ 0.1505 0.1875 0.3693 ann.rad./ 0.2434 0.3957 0.5773 ann.rad./ 0.0437 0.0671 0.1003 0.1108 0.1562 0.2562 ann.rad./ 0.1666 0.6314 ann.rad./ 0.0539 0.0581 0.1504 0.1631 0.3717 0.1238 0.2621 0.7404 0.8639 0.8804 ann.rad./ 0.1206 0.1324 0.1742 0.2036 (0.04–2.0) ann.rad./ Yb k x-ray 1.0673 1.2566 2.0986
4/17/06 11:00:26 AM
Table of the Isotopes
11-148 Elem. or Isot. Lu
166m1
Natural Abundance (Atom %)
Atomic Mass or Weight
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π) (3-)
Lu
165.93986
2.8 m
β+ /25 /5.5 EC/75 /
Lu
166.93827
52. m
β+ /2 /3.1 EC/98 /
6.7 m
β+ /12 / EC/88 / IT/<0.8
5.5 m
β+ /6 /4.5 EC/94 /
2.7 m
I.T./0.0290
1.419 d
EC/2.293
0.7 s
I.T./0.0929
2.01 d
EC/3.46
1.31 m
I.T./0.0711
8.24 d
EC/1.479
3.7 m
I.T./0.0419
1-
166
167
Lu
168m
Lu
168
167.93874
Lu
169m
Lu
169
168.93765
Lu
170m
Lu
170
169.93848
Lu
171m
Lu
171
170.937913
Lu
172m
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
(6-)
2.1/
7/2+
3+
1.2/
(6-)
1/21.271/
7/2+
2.30
3.5
2.30
3.42
4-
2.44/
0+
1/20.362/
7/2+
Lu
171.939086
6.64 d
EC/2.519
4-
2.90
3.80
Lu
172.938931
1.37 y
EC/0.671
7/2+
2.28
3.63
142. d
IT/99.3/ EC/0.7 /
6-
1.50
172
173
Lu
174m
487_S11.indb 148
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 1.4 m β+, EC/58 / I.T./42 /0.0344
0.17086
γ-Energy / Intensity (MeV/%) ann.rad./ 0.1024 0.2281 0.2861 0.8119 0.8301 ann.rad./ Yb k x-ray 0.1024 0.2281 0.3375 0.3679 Yb k x-ray 0.0297 0.2392 (0.03–2.0) ann.rad./ Yb k x-ray 0.1988/190 0.8960/100 0.9792/128 0.018–2.65 ann.rad./ Yb k x-ray 0.1114 0.1124 0.2286 0.3483 1.4836 Lu L x-ray 0.0290 Yb k x-ray 0.19121 0.9606 (0.08–2.1) Lu L x-ray 0.04449 0.0484 Yb k x-ray 0.58711 0.5908 1.28029 (0.1–3.38) Lu k x-ray 0.07119 Yb k x-ray 0.01939 0.66744 (0.02–1.3) Lu L x-rays 0.04186 Yb k x-ray 0.18156 1.09367 (0.07–2.2) Yb k x-ray 0.07860 0.27198 Lu k x-ray 0.067055
4/17/06 11:00:27 AM
Table of the Isotopes Elem. or Isot. Lu
174
Natural Abundance (Atom %)
11-149 Atomic Mass or Weight
173.940338
Lu Lu
97.41(2)
174.940772
Lu
2.59(2)
175.942686
175
176m
176
Lu Lu
177m2 177m
Lu
177
176.943758
Lu
178m
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 3.3 y EC/1.374
3.66 h
β- /1.315
3.73 × 1010 y
β- /1.192 β+/ < 0.9
6. m 160.7 d
βIT/22/0.9702 β- /78
6.65 d
β- /0.498
23.1 m
β- /
Particle Energy/ Intensity (MeV/%)
1.229/ 1.317/
Spin (h/2 π) 1-
7/2+ 17-
39/223/2-
0.497/
7/2+ (9-)
Lu
177.945955
28.5 m
β-/2.099
2.03/
1+
Lu
178.94733
4.6 h
β- /1.405
1.35/
7/2+
Lu
179.9499
5.7 m
β- /3.1
1.49/
Lu
180.9520
3.5 m
β- /2.5
Lu
181.9550
2.0 m
β- /~ 4.1
Lu Lu
182.9576 183.9609
58. s 20 s
β- / β-
7/2+
72
Hf
178.49(2)
Hf Hf 155 Hf 156 Hf 157 Hf 158 Hf
152.971 153.965 154.9634 155.9594 156.9584 157.95480
> 0.2 μs 2. s 0.9 s 25. ms 0.11 s 2.9 s
0+
Hf
158.95400
5.6 s
Hf
159.95068
~ 12. s
Hf Hf
160.95028 161.94721
17. s 38. s
EC, β+/~ 6.7 EC, β+/8. α/ α/ EC/54 /5.1 α/46 / β+, EC/88 /6.9 α/12 / β+, EC/97 /4.9 α/4.78 α/ β+, EC/3.7
Hf
162.94709
40. s
β+, EC/5.5
178
179
180
181
182
183 184
153 154
159
160
161 162
163
487_S11.indb 149
(7/2+)
Nuclear Elect. γ-Energy / Magnetic Quadr. Intensity Mom. (nm) Mom. (b) (MeV/%) 1.9 Yb k x-ray 0.07664 1.2419 +2.2327 +3.49 +0.318 -1.47 Hf k x-ray 0.088372 +3.169 +4.92 Hf k x-ray 0.20187 0.30691 0.089 2.33 5.4 Lu k x-ray Hf k x-ray 0.11295 0.20836 0.37850 0.41853 +2.239 +3.39 0.11295 0.20836 0.2166 0.3317 Hf k x-ray 0.0932 1.3099 1.3408 (0.09–1.7) 0.2143 0.3377 0.40795/50. (0.07–1.9) 0.0458 0.2059 0.5749 0.0978 0.7208 0.8182
0+
5.27/ 5.09/
4.60/
0+ ann.rad./ 0+
ann.rad./
0+
ann.rad./ 0.1739 0.1963 0.4101 ann.rad./ 0.0454 0.0621 0.0710
4/17/06 11:00:29 AM
Table of the Isotopes
11-150 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Hf Hf 166 Hf
163.94438 164.94457 165.94218
2.8 m 1.32 m 6.8 m
EC, β+/3.0 EC/4.6 EC/93 /2.3 β+ /7 /
0+ 11/20+
Hf
166.94260
2.0 m
β+ /40 /4.0 EC/60 /
(5/2-)
Hf
167.94057
25.9 m
β+, EC/1.8
0+
Hf
168.94126
3.25 m
EC/85 /3.3 β+ /15 /
(5/2-)
Hf
169.93961
16.0 h
EC/1.1
0+
Hf Hf
170.94049
30. s 12.2 h
EC, β+ /2.4
(1/2-) 7/2+
Hf
171.93945
1.87 y
EC/0.35
0+
Hf
172.94051
23.6 h
EC/1.6
½-
2.0 × 1015 y 71. d
EC/0.686
0+ 5/2-
51.4 m
I.T./2.740
0+ 37/2-
1.1 s
I.T./
23/2+
31. y
I.T./
7/216+
4.0 s
I.T./
8-
164 165
167
168
169
170
171m 171
172
173
Hf Hf
0.16(1)
173.940046 174.941509
Hf Hf
5.26(7)
175.941409
174 175
176
177m2
Hf
177m1
Hf Hf
177
178m2
Hf
178m1
487_S11.indb 150
18.60(9)
176.943221
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.6882
ann.rad./ Lu k x-ray 0.0788 ann.rad./ Lu k x-ray 0.1754 0.3152 ann.rad./ (0.0144–1.311) ann.rad./ Lu k x-ray 0.3695 0.4929 Lu k x-ray 0.0985 0.1202 0.1647 0.5729 0.6207
+0.53 -0.67
+3.46
ann.rad./ Lu k x-ray 0.1221 0.6620 1.0714 Lu k x-ray 0.02399 0.12582 (0.0818–0.123) Lu k x-ray 0.12367 0.13963 0.29697 0.31124 (0.1–2.1)
-0.60
+2.7
Lu k x-ray 0.08936 0.34340
+0.7935 +8.16
+0.337 +6.00
Hf k x-ray 0.2140 0.2951 0.3115 0.3267 Hf k x-ray 0.20836 0.22847 0.37851 Hf k x-ray 0.32555 0.42635 0.089–0.574 Hf k x-ray 0.21342 0.32555
4/17/06 11:00:30 AM
Table of the Isotopes Elem. or Isot. Hf Hf
178
179m2
Natural Abundance (Atom %) 27.28(7)
11-151 Atomic Mass or Weight
177.943699
Hf
179m1
Hf Hf
179
180m
Hf Hf 181 Hf 180
181m
13.62(2)
178.945816
35.08(16)
179.946550 180.949101
Hf
182m
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
25.1 d
I.T./1.1057
0+ 25/2-
18.7 s
I.T./0.375
½-
5.52 h
I.T./1.1416
9/2+ 8-
1.5 ms 42.4 d
/1.738 β- /1.027
0.408/
0+ 25/21/2-
62. m
β- /54 /1.60 IT/46 /1.173
0.49/43 0.95/10
8-
Hf
181.95055
8.9 × 106 y
β- /0.37
Hf
182.95353
1.07 h
β- /2.01
1.18/68 1.54/25
3/2-
184
Hf
183.95545
4.1 h
β- /1.34
0.74/38 0.85/16 1.10/46
0+
Hf Hf 187 Hf 188 Hf
184.9588 185.9609 186.9646 187.967
~ 3.5 m ~ 2.6 m > 0.3 μs > 0.3 μs
β- /
p/1.77 β+ /~ 11.6 p/ α/ p/ α/
182
183
185 186
Ta
180.94788(2)
Ta Ta
154.975 155.9723
12 μs 0.11 s
Ta
156.9682
10 ms
Ta
157.9667
37. ms
Ta
158.96302
0.6 s
Ta
159.9615
1.4 s
Ta
160.9584
3.16 s
Ta
161.9573
4. s
73
155 156
157
158
159
160
161
162
487_S11.indb 151
0+
0+
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.42635
7.4
Hf k x-ray 0.1227 0.1461 0.3626 0.4537 Hf k x-ray 0.1607 0.2141
-0.641 +9.
+3.79 +4.6
Hf k x-ray 0.2152 0.3323 0.4432
Ta k x-ray 0.13294/54 0.48200/100 0.3459/20 Hf k x-ray 0.0509 0.2244 0.3441 0.4558 0.5066 0.9428 Ta k x-ray 0.2704/79 (0.098-0.270) Ta k x-ray 0.0732 0.4591 0.7837 Ta k x-ray 0.0414 0.1391 0.3449 0.165 0.738
0+
β+, EC/20 /8.5 α/80 / β+, EC/10.1 α β+, EC/7.5 α/ EC/8.6
1.02/~ 100 6.117 0.927/3.4 6.05/100 5.97/100 α/5.52/34 5.60/55 5.41/ 5.15
ann.rad./ ann.rad./ ann.rad./
4/17/06 11:00:32 AM
Table of the Isotopes
11-152 Elem. or Isot. Ta Ta
163 164
Natural Abundance (Atom %)
Atomic Mass or Weight 162.95433 163.95353
Particle Energy/ Intensity (MeV/%)
4.62/
Spin (h/2 π)
164.95077 165.95051
31. s 34. s
ECβ+/5.9 β+ /82 /7.7 EC/18 /
Ta Ta
166.94809 167.94805
1.4 m 2.4 m
β+, EC/5.6 β+ /77 /6.7 EC/23 /
Ta
168.94601
4.9 m
β+, EC/4.4
Ta
169.94618
6.8 m
β +/70 /6.0 EC/35 /
(3+)
Ta
170.94448
23.3 m
β+, EC/3.7
(5/2-)
Ta
171.94490
36.8 m
β+ /25 /4.9 EC/75 /
(3-)
Ta
172.94375
3.6 h
β+ /24 /3.7 EC/76 /
(5/2-)
Ta
173.94445
1.12 h
β+ /27 /3.8 EC/73 /
(3+)
Ta
174.94374
10.5 h
EC/2.0
7/2+
Ta
175.94486
8.1 h
EC/3.1
1-
Ta
176.944472
2.356 d
EC/1.166
7/2+
2.4 h
EC/
(7-)
9.29 m
EC/99 /1.9 β+ /1 /
1+
166
167 168
169
170
171
172
173
174
175
176
177
Ta
178m
Ta
178
177.94578
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
3+
Ta Ta
165
487_S11.indb 152
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 10.6 s EC/6.8 14.2 s β+ /8.5 α/
γ-Energy / Intensity (MeV/%) ann.rad./ 0.2110 0.3768
3+
1.70
-1.9
2.27
+3.7
2.25
+2.74
+0.65
ann.rad./ Hf k x-ray 0.1587 0.3117 0.8101 ann.rad./ ann.rad./ Hf k x-ray 0.1239 0.2615 0.7502 ann.rad./ 0.0288 0.1535 0.1924 ann.rad./ Hf k x-ray 0.1008 0.2212 0.0496 0.5018 0.5064 (0.05–1.02) ann.rad./ Hf k x-ray 0.21396 1.10923 (0.09 –3.8) ann.rad./ Hf k x-ray 0.06972 0.17219 (0.06 –2.7) ann.rad./ Hf k x-ray 0.09089 0.20638 (0.09–3.64) Hf k x-ray 0.2077 0.2671 0.3487 Hf k x-ray 0.08837 1.15735 Hf k x-ray 0.11295 (0.07–1.06) Hf k x-ray 0.08886 0.21342 0.32555 0.42635 ann.rad./ Hf k x-ray
4/17/06 11:00:33 AM
Table of the Isotopes Elem. or Isot. Ta Ta 180 Ta
Natural Abundance (Atom %)
179
180m
Ta Ta
181
182m
0.0120(2)
99.9880(2)
11-153 Atomic Mass or Weight
178.945930 179.947465
180.947996
Half-life/ Resonance Width (MeV) 1.8 y >1.2 × 1015 y 8.15 h
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
EC/0.110 EC/87 /0.854 β- /13 /0.708
15.8 m
I.T./0.5198
0.61/3 0.71/10
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
7/2+ (9-) 1+
2.29 4.82
3.37
7/2+ 10-
+2.370
+3.3
+2.6
Ta
181.950152
114.43 d
β- /1.814
0.25/30 0.44/20 0.52/40
3-
+3.02
Ta
182.951373
5.1 d
β- /1.070
0.45/5 0.62/91
7/2+
+2.36
Ta
183.95401
8.7 h
β- /2.87
1.11/15 1.17/81
(5-)
Ta
184.95556
49. m
β- /1.99
1.21/5 1.77/81
(7/2+)
186
Ta
185.9586
10.5 m
β- /3.9
2.2/
(3-)
Ta Ta 189 Ta
186.9605 187.9637 188.9658
> 0.3 μs 5 μs > 0.3 μs
W
183.84(1)
W W 159 W 160 W 161 W
157.975 158.9729 159.9685 160.9674
0.14 ms 1.3 ms 7. ms 0.08 s 0.41 s
W
161.9635
1.39 s
163
W
162.9625
2.8 s
164
W
163.95895
6. s
W
164.95828
5.1 s
W
165.95503
16. s
W W
166.95482 167.95181
20. s 53. s
182
183
184
185
187 188
74
158m 158
162
165
166
167 168
487_S11.indb 153
γ-Energy / Intensity (MeV/%) 0.09316 Hf k x-ray Hf k x-ray W k x-ray 0.09333 0.10340 Ta k x-ray 0.14678 0.17157 W k x-ray 1.12127/100 1.22138/79 0.085–1.289 W k x-ray 0.0847 0.0991 0.1079 0.2461 0.3540 W k x-ray 0.2528/44. 0.4140/74. (0.09–1.4) W k x-ray 0.0697 0.1739 0.1776 W k x-ray 0.1979 0.2149 0.5106 (0.09–1.5) 0.292
α α/ α/ α/ β+, EC/18 /8.1 α/82 / β+, EC/54 /5.8 α/46 / β+, EC/59 /7.5 α/41 / β+, EC/97 /5.0 α/3 / β+, EC/99 /7.0 α/1 / β+, EC/99 /4.2 α/1 / EC/5.6 EC/3.8 α/10-5/
8.28(3)/ 6.433/96
0+
5.92/
0+
5.78/ 5.54/ 5.38/ 5.15/ 4.91/ 4.74/
4.40(1)
0+
0+
ann.rad./ ann.rad./
0+
ann.rad./
0+
ann.rad./ Ta k x-ray 0.1755
4/17/06 11:00:35 AM
Table of the Isotopes
11-154 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
169
W
168.95178
1.3 m
EC/5.4
170
W
169.94923
2.4 m
EC/2.2
171
W
170.94945
2.4 m
EC/4.6
172
W
171.94729
6.6 m
β+, EC/2.5
173
W
172.94769
6.3 m
EC/4.0
174
W
173.94608
35. m
EC/1.9
0+
175
W W
174.94672 175.94563
35. m 2.5 h
EC/2.9 β+, EC/0.8
½0+
177
W
176.94664
2.21 h
EC/2.0
(1/2-)
178
W W
177.94588
21.6 d 6.4 m
0+ (1/2-)
179
W
178.94707
38. m
EC/0.091 IT/99.7/0.222 EC/0.3/ EC/1.06
180
W W
0.12(1)
179.946704 180.948197
1.8 × 1018 y 121.1 d
α/ EC/0.188
0+ 9/2+
W W
26.50(16)
181.948204
> 7.7 × 1021 y 5.15 s
α/ I.T./
0+ (11/2+)
14.31(4) 30.64(2)
182.950223 183.950931
> 4.1 × 1021 y > 8.9 × 1021 y 1.6 m
α/ α/ I.T./0.1974
½0+ 11/2+
28.43(19)
184.953419 185.954364
74.8 d > 8.2 × 1021 y 1.6 μs 23.9 h
β- /0.433 α/ IT β- /1.311
176
179m
181
182
183m
W W 185m W 183 184
W W 187m W 187 W 185 186
487_S11.indb 154
186.957161
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
0+
0+
(7/2-)
0.433/99.9 0.411 0.624/66
3/20+ 11/2+ 3/2-
γ-Energy / Intensity (MeV/%) (0.037–0.573) ann.rad./ Ta k x-ray 0.123 (0.097–0.699) ann.rad./ Ta k x-ray 0.3162 (0.060–0.144) ann.rad./ Ta k x-ray 0.1842 (0.052–0.479) ann.rad./ Ta k x-ray 0.0389 (0.034–0.674) ann.rad./ Ta k x-ray 0.4576 (0.035–0.623) ann.rad./ Ta k x-ray 0.3287 0.4288 (0.056–0.429) (0.015–0.27) 0.03358 0.06129 0.09487 0.10020 Ta k x-ray 0.15505 0.18569 0.42694 Ta k x-ray W k x-ray 0.2220 Ta k x-ray 0.0307 Ta k x-ray 0.13617 0.15221
+0.1177848
W k x-ray 0.0465 0.0526 0.0991 0.1605
W k x-ray 0.0659 0.1315 0.1737 0.12536
0.62
(0.014-0.287) Re k x-ray
4/17/06 11:00:36 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
11-155 Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%) 1.315/16 0.081–1.18 0.349/99
Spin (h/2 π)
188
W
187.958489
69.78 d
β- /0.349
189
W
188.9619
9.7 m
β- /2.5
(3/2-)
W W
189.9632
~ 0.06 ms 30. m
1.4/ 2.5/
β- /1.3
0.95/
0+
W W
190.9666 191.968
> 0.3 μs > 0.3 μs
Re
186.207(1)
Re
159.9821
0.7 ms
Re
160.9776
14 ms
Re
161.9760
0.10 s
Re
162.97208
0.26 s
Re
163.9703
0.9 s
Re 165 Re
164.96709
~ 2.37 s 2.6 s
Re
165.9658
2.5 s
Re 167 Re
166.9626
6.2 s 3.4 s
Re
167.96157
4.4 s
190m 190
191 192
75
160
161
162
163
164
165m
166
167m
168
Re
169m
8.1 s
β+, EC/9.0 α/ β+, EC/10.7 α/ α/ β+, EC/87 /8.1 α/ β+, EC/9.4 α/ α, EC/ β+, EC/7.4 α/ β+, EC/9.1 α/ α
16. s 9.2 s
β+, EC/9.0
Re Re
170.95572
15.2 s 55. s
EC/~ 5.7 β+, EC/
Re
171.9554
15. s
β+, EC/7.3
Re Re
172.95324 173.95312
2.0 m 2.4 m
EC/~ 3.9 β+, EC/5.6
Re Re
174.95138 175.95162
5.8 m 5.3 m
β+, EC/4.3 β+, EC/5.6
Re
176.95033
14. m
EC/78 /3.4 β+ /22 /
171
172m
172
173 174
175 176
177
487_S11.indb 155
p/ α/ α/ p α/
168.95879 169.95822
170
γ-Energy / Intensity (MeV/%) 0.68572/33 0.134–0.773 0.0636 0.2271 0.2907 0.2604 (0.1262-1.466) (0.0585-0.694) Re k x-ray 0.1576 0.1621
0+
Re Re
169
0+
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
1.261(6)/91 6.54/ 6.24 1.35 6.12/94 6.09/94 α/5.87/32 5.92/66 5.78/ 5.502/ 5.49/ < 5. 5.50/
5.015/ 0.1117
4.833/ 4.70/ 4.87/
0.1560 0.3055 0.4125 (2)
(3+)
(5/2-)
ann.rad./ 0.1234 0.2537 0.3504 ann.rad./ 0.1234 0.2537 ann.rad./ ann.rad./ 0.1119 0.2430 ann.rad./ ann.rad./ 0.1089 0.2406 ann.rad./ W k x-ray
4/17/06 11:00:38 AM
Table of the Isotopes
11-156 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Re
177.95099
13.2 m
Re Re
178.94999
0.47 ms 19.7 m
Re
179.95079
Re
180.95007
178
179m 179
180
181
Re
182m
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.0797 0.0843 0.1968 ann.rad./ W k x-ray 0.1059 0.2373 0.9391 W k x-ray 0.1199 0.2900 0.4154 0.4302 1.6803 ann.rad./ W k x-ray 0.1036 0.9028 (0.07–2.2) W k x-ray 0.3607 0.3655 0.6390 W k x-ray 0.0677 1.1214 1.2215 (0.06–2.2) W k x-ray 0.0678 0.2293 1.1213 1.2214 W k x-ray 0.16232 Re k x-ray 0.1047 0.2165 0.92093 (0.10–1.1) W k x-ray 0.79207 0.90328 (0.1–1.4)
β+ /11 /4.7 EC/89 /
3.3/
(3+)
EC/99 /2.71 β+ /1 /
0.95/
(5/2+)
2.8
2.45 m
EC/92 /3.80 β+ /8 /
1.76/
1-
1.6
20. h
EC /1.74
5/2+
3.19
12.7 h
EC/
2+
3.3
+1.8
0.55/ 1.74/
Re
181.9512
2.67 d
EC/2.8
(7+)
2.8
+4.1
Re
182.95082
70. d
EC/0.56
(5/2+)
+3.17
+2.3
165. d
I.T./75 /0.188 EC/25 /
8+
+2.9
38. d
EC/1.48
3-
+2.53
+2.8
2.0 × 105 y
I.T./0.150
5/2+ 8+
+3.1871
+2.18
185.954986
3.718 d
β- /92 /1.070 EC/8 /0.582
0.973/21 1.07/71
1-
+1.739
+0.62
186.955753
4.2 × 1010 y 18.6 m
β- /0.00266 I.T./0.172
0.0025/
5/2+ (6-)
+3.2197
+2.07
Re
187.958114
17.00 h
β- /2.120
1.962/20 2.118/79
1-
+1.788
+0.57
Re
188.95923
24. h
β- /1.01
1.01/
(5/2+)
182
183
Re
184m
Re
183.952521
184
Re Re
185
186m
37.40(2)
Re
186
Re Re
187
188m
188
189
487_S11.indb 156
Half-life/ Resonance Width (MeV)
62.60(2)
184.952955
Re k x-ray 0.0590 W k x-ray 0.1227/0.6 0.1372/9.5 (0.63–0.77) Re k x-ray 0.0925 0.1059 Os k x-ray 0.15502 0.309–2.022 0.1471
4/17/06 11:00:43 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
11-157 Atomic Mass or Weight
Re
190m
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
3.0 h
β- /51 / I.T./49 /
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
(6-)
190
Re
189.9618
3.0 m
β- /3.2
1.8/
Re Re 192 Re 193m Re 193 Re 194 Re
190.96313
9.7 m ~ 0.12 ms 16. s ~ 0.08 ms > 0.3 μs > 0.3 μs
β- /2.05
1.8/
β- /4.2
~ 2.5/
76
Os
190.23(3)
Os Os 164 Os 165 Os 166 Os
161.984 162.9827 163.9780 164.9768 165.97269
1.8 ms 5.5 ms 0.04 s 0.07 s 0.18 s
6.60 6.51
Os
166.9716
0.7 s
Os
167.96780
2.2 s
Os
168.96702
3.3 s
α/ α/ α α β+, EC/28 /6.3 α/72 / β+, EC/76 /8.2 α/24 / β+, EC/51 /5.7 α/49 / β+, EC/89 /7.7 α/13 /
Os
169.96358
7.1 s
Os
170.96319
8.4 s
Os
171.96002
19. s
Os
172.95981
16. s
Os
173.95706
44. s
Os
174.95695
1.4 m
β+, EC/5.3
Os
175.95481
3.6 m
β+, EC/3.2
0+
Os
176.95497
2.8 m
β+, EC/4.5
(1/2-)
Os
177.95325
5.0 m
β+, EC/2.3
0+
191
192m
162 163
167
168
169
170
171
172
173
174
175
176
177
178
487_S11.indb 157
191.9660 192.9675 193.9704
β+, EC/5.0 α/ β+, EC/98 /7.1 α/19 / β+, EC/99 /4.5 α/1.1/ β+, EC/6.3 α/0.4 / β+, EC/3.9 α/0.02 /
6.27/ 5.98/ 5.84/
5.57/80 5.51/12 5.54/8 5.40/ α/5.24/93.5 5.17/6.5 5.10/ 4.94/ 4.76/
(2-)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.2167 0.2194 0.2451 Re k x-ray 0.1191 0.2238 0.6731 (0.1–1.79) Os k x-ray 0.1867 0.5580 0.6051 (0.0606-0.146) (0.2–0.75) (0.061-0.146)
0+ 0+ 0+
ann. rad./ ann.rad./
0+
ann. rad./ ann.rad./
0+
0+
0+
ann.rad./ (0.162–0.216) ann.rad./ 0.190–0.705 ann.rad./ (0.063–1.120) ann.rad./ 0.142–0.299 0.118 0.138 / 0.001 0.158 0.325 0.125 0.181 0.248 0.8155 0.7758 0.8573 1.2093 1.2909 0.0848 0.1958 0.3002 1.2686 ann.rad./ 0.5946
4/17/06 11:00:45 AM
Table of the Isotopes
11-158 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Os
178.95382
7. m
β+, EC/3.7
Os
179.95238
21.5 m
β+, EC/1.5
0+
1.75 h
EC/
(1/2-)
179
180
Os
181m
Os
180.95324
2.7 m
EC/2.9
(7/2-)
Os
181.95211
21.5 h
EC/0.9
0+
9.9 h
EC/84 / I.T./16 /
½-
182.95313
13. h
EC/2.1
9/2+
93.6 d
EC/1.013
0+ ½-
2. × 1015 y
α/
5.8 h
I.T./0.0308
0+ ½0+ 9/2-
9.9 m
I.T./1.705
3/2+ 10-
13.1 h
I.T./0.0744
0+ 3/2-
15.4 d
β- /0.314
6.0 s
I.T./2.0154
191.961481 192.964152
30.5 h
β- /1.141
1.04/20
Os
193.965182
6.0 y
β- /0.097
Os Os
194.968 195.96964
6.5 m 34.9 m
β- /2.0 β- /1.16
0.054/33 0.096/67 2.0/ 0.84/
181
182
Os
183m
Os
183
Os Os
0.02(1)
183.952489 184.954042
Os Os 188 Os 189m Os
1.59(3) 1.96(2) 13.24(8)
185.953838 186.955750 187.955838
Os Os
16.15(5)
188.958148
Os Os
26.26(2)
189.958447
184 185
186 187
189
190m
190
191m
Os
190.960930
191
Os
192m
Os Os
192 193
194
195 196
487_S11.indb 158
Half-life/ Resonance Width (MeV)
40.78(19)
~ 2.75/
0.140/100
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
-0.79
+3.1
Re k x-ray 0.6461 0.8748 0.8805 +0.0646519
+0.65993 -0.6
9/2-
+0.86
+2.5
(10-)
0+ 3/2-
0+
0+
γ-Energy / Intensity (MeV/%) 0.6850 0.9687 1.3311 ann.rad./ 0.0654 0.2186 0.5938 Re k x-ray 0.0202–0.7174 ann.rad./ 0.0489 ann.rad./ 0.11794 0.23868 0.8267 (0.07–2.64) Re k x-ray 0.1802 0.5100 Os k x-ray Re k x-ray 1.1020 1.1080 Re k x-ray 0.1144 0.3818
+0.730
+0.47
Os L x-ray 0.0308 Os k x-ray 0.1867 0.3611 0.5026 0.6161 Os k x-ray 0.0744 Ir k x-ray 0.1294 Os k x-ray 0.2058/65.9 0.5692/70 (0.201–1.000) Ir k x-ray 0.1389 0.4605 Ir L x-ray 0.0429 0.1262/5 0.4079/5.9
4/17/06 11:00:47 AM
Table of the Isotopes Elem. or Isot. Os
197
Natural Abundance (Atom %)
11-159 Atomic Mass or Weight
Ir
192.217(3)
Ir Ir
163.9922 164.9875
77
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 2.8 m β-
167
Ir
166.98167
32. ms
Ir Ir 169 Ir 170 Ir 171 Ir 172 Ir
167.9799 168.97630 169.9750 170.97163 171.9705
0.16 s 280. ms 353. ms 0.43 s 1.3 s 2.1 s
p p/87 α/13 α/98.2 p/1.8 α/93 p/6.9 α/48, β+ p/32 α/80, β+ p/0.4 α/82 α/ α/ α/ α/ α/
Ir
172.96750
3.0 s
α/
5.665/
Ir
173.96686
4. s
α/
5.478/
Ir Ir
174.96411 175.96365
~ 4.5 s 8. s
5.393/
Ir
176.96130
30. s
Ir
177.96108
12. s
α/ EC, β+/80 α/3.2/ EC, β+/5.7 α/0.06/ β+, EC/6.3
Ir
178.95912
4. m
EC/4.9
Ir
179.95923
1.5 m
EC/6.4
Ir
180.95763
4.9 m
β+, EC/4.1
Ir
181.95808
15. m
β+ /44 /5.6 EC/56 /
Ir
182.95685
57. m
β+, EC/3.5
Ir
183.95748
3.0 h
β+ /12 /4.6 EC/88 /
Ir
184.95670
14. h
β+ /3 /2.4 EC/97 /
164 165
Ir
14.3 ms
166m
Ir
166
165.9858
Ir
169m
173
174
175 176
177
178
179
180
181
182
183
184
185
487_S11.indb 159
0.010 s 26. ms
167m
168
0.06 ms 0.3 ms
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.2239 (0.0412-0.406)
1.78 1.71 6.72 6.545 1.32 6.56 1.15 6.39/90 1.25/0.42 6.35/48 1.06/39.3 6.12/59 5.99/42 6.03/ 5.91/ 5.811/
0.228 (0.379–0.475) 0.0493 (0.092–0.296) 0.1587 (0.276–1.33) 0.1056 0.260 (0.135–0.415) 0.184 (0.062–0.194)
5.118/ 5.011/
(7/2+)
2.3/ 2.9/
5-
0.70
+2.41
(5/2-)
2.60
-2.1
0.1320 0.2667 0.3633 0.0975 (0.045–0.220) 0.2765 ((0.132–1.106) ann.rad./ 0.1076 (0.0196–1.715) ann.rad./ Os k x-ray 0.1273 0.2370 ann.rad./ 0.0877 0.2285 0.2824 ann.rad./ Os k x-ray 0.11968 0.2640 0.3904 ann.rad./ Os k x-ray 0.2543 1.8288
4/17/06 11:00:48 AM
Table of the Isotopes
11-160 Elem. or Isot.
Ir
185.95795
15.7 h
EC/98 /3.83 β+ /2 /
(5+)
Ir
186.95736
10.5 h
EC/1.50
3/2+
Ir
187.95885
1.72 d
β+ /2.81 EC/99+ /
Ir
188.95872
13.2 d
EC/0.53
3/2+
3.09 h
(11-)
1.12 h 11.8 d
β+, EC/95 / I.T./5 / I.T. /0.0263 EC/2.0
Nuclear Elect. γ-Energy / Magnetic Quadr. Intensity Mom. (nm) Mom. (b) (MeV/%) 0.64 +1.46 Os k x-ray 0.1371 0.7675 3.9 -2.55 Os k x-ray 0.1372 0.2968 0.4348 (0.13–3.0) +0.94 Os k x-ray 0.0743 0.4009 0.4271 0.6109 0.9128 0.30 +0.48 Os k x-ray 0.1550 0.4780 0.6330 2.2146 0.13 +0.88 Os k x-ray 0.2449 0.376
7+ (4+)
0.04
4.93 s
I.T./0.1714
11/2-
+0.603
241. y 1.44 m
I.T./0.161 I.T./0.0580
3/2+ (9+) (1+)
+0.151
+0.82
73.83 d
β- /1.460
(4-)
+1.92
+2.15
10.53 d
I.T./0.0802
11/2-
170. d
β- /
3/2+ 11
+0.164
+0.75
19.3 h
β-/2.247
1.92/9 2.25/86
1-
+0.39
+0.34
3.9 h
β- /
0.41/ 0.97/
(11/2-)
2.8 h
β- /1.120
(3/2+)
1.40 h
β-/
1.0/80 1.11/13 1.16/
Ir
186m
Natural Abundance (Atom %)
186
187
188
189
Atomic Mass or Weight
Ir
190m2
Ir
190m1
Ir
190
189.960546
Ir
191m
Ir
191
Ir 192m1 Ir 192m2
37.3(2)
Ir
190.960594
191.962605
192
Ir
193m
Ir Ir
193
194m
Ir
194
62.7(2)
192.962926
193.965078
Ir
195m
Ir
195
Ir
196m
487_S11.indb 160
194.965980
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 1.7 h EC /
Particle Energy/ Intensity (MeV/%)
1.13/ 1.64/
Spin (h/2 π) (2-)
(2-)
+2.8
Ir L x-ray Os k x-ray 0.1867 0.4072 0.5186 0.5580 0.6051 (0.2–1.4) Ir k x-ray 0.1294 Ir k x-ray Ir L x-ray 0.0580 0.3165 Pt k x-ray 0.31649/83. 0.46806/48. Ir L x-ray 0.0803 Pt k x-ray 0.3284 0.4829 0.5624 0.2935 0.3284 0.6451 (0.1–2.2) Pt k x-ray 0.3199/9.6 0.3649/9.5 0.4329/9.6 0.6849/9.6 Pt k x-ray 0.0989/9.7 Pt k x-ray
4/17/06 11:00:50 AM
Table of the Isotopes Elem. or Isot.
Ir
196
Natural Abundance (Atom %)
11-161 Atomic Mass or Weight
195.96840
Ir
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
52. s
β- /3.21
8.9 m
Ir
196.96965
5.8 m
β- / I.T./ β- /2.16
Ir
197.9723
8. s
β- /4.1
Ir
198.97380
78
Pt
195.084(9)
Pt Pt 168 Pt
165.995 166.930 167.9882
0.3 ms 0.9 ms 2.1 ms
Pt Pt
168.9867 169.98250
Pt
197m
2.1/15 3.2/80
Spin (h/2 π)
(11/2-) (3/2+)
α/ α/ α
7.11/ 6.98/ 6.82
0+
7.0 ms 14.0 ms
α α
6.69 6.55
170.9812
0.05 s
α
6.45
Pt Pt
171.97735 172.9764
0.10 s 0.36 s
Pt
173.97282
0.89 s
6.31/94 6.23 6.20/
Pt
174.97242
2.5 s
α/ β+, EC/8.2 α/ β+, EC/17 /5.6 α/83 / β+, EC/65 /7.6 α/35 /
Pt
175.96895
6.3 s
β+, EC/60 /5.1 α/40 /
Pt
176.96847
11. s
EC/91 /6.8 α/9 /
Pt
177.96565
21. s
EC/93 /4.5 α/7 /
Pt
178.96536
33. s
Pt
179.96303
52. s
Pt Pt
180.96310 181.96117
51. s 2.7 m
β+, EC/5.7 α/ 5.16/ β+, EC/99.7 /3.7 0+ 5.140/ α/0.3 / β+, EC/5.2 β+, EC/2.9
198
199
166 167
169 170
171
172 173
174
175
176
177
178
179
180
181 182
Pt
183m
43. s
β+, EC/ I.T./
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
0-
1.5/ 2.0/
197
487_S11.indb 161
Particle Energy/ Intensity (MeV/%)
6.040/ 5.831/5 5.96/54 6.038/ 5.528/0.6 5.750/41 5.53/ 5.485/3 5.525/6 5.286/0.2 5.442/7
γ-Energy / Intensity (MeV/%) 0.3557 0.3935 0.4471 0.5214 0.6473 0.3329 0.3557 0.7796 0.3465 see Ir[197] 0.0531 0.1351 0.4306 0.4697 0.4074 0.5070
0+
0.582/69 0.594/69 0.725/62
0+
0.509/100 0.662/86 0.214–0.726 0.4450 (0.1564-1.208)
0+
0+ 0.0774 0.1354 0.2128 0+
ann.rad./ 0.2277 0.0908
0+
+0.43
0+
(7/2-)
+0.48
+0.78
+3.4
ann.rad./ 0.1360 0.1460 0.2100 ann.rad./ 0.3132/26
4/17/06 11:00:51 AM
Table of the Isotopes
11-162 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Pt
182.96160
7. m
β+, EC/4.6
Pt
183.95992
17.3 m
β+, EC/2.3
0+
Pt Pt
184.96062
33. m 1.18 h
β+, EC/ β+, EC/3.8
½(9/2+)
Pt
185.95935
2.0 h
β+, EC/1.38
0+
Pt
186.96059
2.35 h
β+, EC/3.1
3/2-
Pt
187.95940
10.2 d
EC/0.51
0+
Pt
188.96083
10.9 h
β+, EC/1.97
4.5 × 1011 y 2.86 d
183
184
185m 185
186
187
188
189
Pt Pt
0.014(1)
189.95993 190.961677
Pt Pt
0.782(7)
191.961038
32.967(99)
192.962988 193.962680
33.832(10) 25.242(41)
194.964791 195.964952
190 191
192
193m
Pt Pt 195m Pt 193 194
Pt Pt 197m Pt 195 196
Pt
196.967340
197
Pt Pt
198
199m
Pt
199
487_S11.indb 162
Half-life/ Resonance Width (MeV)
7.163(55)
197.967893
198.970593
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
+0.50
+0.5 -0.75
+3.7
-0.41
-1.1
3/2-
-0.43
-1.2
EC/1.02
0+ (3/2-)
-0.50
-0.9
4.33 d
I.T./0.1498
0+ 13/2+
-0.75
60. y
EC/0.0566
4.01 d
I.T./0.2952
(1/2-) 0+ 13/2+
+0.60
1/20+ 13/2+
+0.6095
0.51
1.590 h
I.T./97 / β- /3 /
19.9 h
β- /0.719
1/2-
13.6 s
I.T./0.424
0+ 13/2+
30.8 m
β- /1.70
0.90/18
(5/2-)
-0.61
γ-Energy / Intensity (MeV/%) 0.3164/59 0.6296/100 0.058–1.75 ann.rad./ 0.119/100 0.307/93 0.260/90 0.058–1.377 ann.rad./ 0.1549 0.1919 0.5484 ann.rad./ 0.1353 0.1974 0.2296 0.2551 ann.rad./ 0.6115 0.6892 ann.rad./ Ir k x-ray 0.1064 0.1100 0.2015 0.2849 0.7092 Ir k x-ray 0.1876 0.1951 Ir k x-ray 0.0943 0.6076 0.7214 (0.09–1.47) Ir k x-ray 0.3599 0.4094 0.5389 Pt k x-ray 0.1355 Ir k x-rays
+1.4
Pt k x-ray 0.0989
Pt k x-ray 0.0530 0.3465 Au k x-ray 0.1914 0.2688 Pt k x-ray 0.3919 0.3170/3.88
4/17/06 11:00:53 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
11-163 Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Spin (h/2 π)
Pt
199.971441
12.5 h
β- /~ 0.66
0+
Pt
200.97451
2.5 m
β- /2.66
(5/2-)
Pt Pt
201.9757
0.3 ms 1.8 d
Au
196.966569(4)
200
201
202m 202
79
Au
0.62 ms
170m
Au
170
169.9961
Au
0.30 ms 1.09 ms
171m
p/58 α/42 p/89 α/11 α/66 p/34 p/100
1.74/ 7.11/ 1.46/ 7.00/ 6.995 1.694 1.437 6.86 6.732 6.672 6.54
Au
170.99188
0.022 ms
Au Au 173 Au 174 Au 175 Au 176 Au
171.9900 172.98624 173.9848 174.98127 175.9801
4 ms 15 ms 0.02 s 0.14 s 0.15 s 0.9 s
α/7.02 α/92 α/94 α α β+, EC/10.5 α/
177
Au
176.97687
1.2 s
α/
Au Au 180 Au
177.9760 178.97321 179.97252
2.6 s 7.5 s 8.1 s
α/ α/ EC/8.6 α/
Au
180.97008
11.4 s
Au
181.96962
21. s
EC/97.5/6.3 α/2.7/ β+, EC/6.9 α/0.13/
Au
182.96759
42. s
EC/5.5 α/0.8/
Au Au
183.96745
48 s 21. s
I.T. EC, β+/7.1 α/0.013/ β+, EC/ I.T./0.145 β+, EC/4.71 α/0.26/ β+, EC/ β+, EC/6.0
172
173m
178 179
181
182
183
184m 184
Au
6.8 m
185m
Au
184.96579
4.3 m
Au Au
185.96595
< 2. m 10.7 m
185
186m 186
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
0+
171
487_S11.indb 163
Particle Energy/ Intensity (MeV/%) 1.14/14
6.260/80 6.290/20 6.115/ 6.150/ 5.920/ 5.85/ 5.65 5.61 5.50
γ-Energy / Intensity (MeV/%) 0.49375/4.47 0.5430/11.7 (0.055–1.293) Au k x-ray 0.13590 0.22747 0.24371 0.070 0.152 0.222 1.760 (0.535-0.719) 0.440
0.1522 0.2564 0.5242 0.6765 0.8084 0.8597
5.482/
+1.97
ann.rad./ 0.1549 0.2649 (0.13–1.4) 0.1630 0.2730 0.3625 0.069(IT)
(2+) (5+)
+1.44 +2.07
+1.9 +4.7
(5/2-)
+2.17
-1.1
ann.rad./
3-
-1.26
+3.1
0.1915 ann.rad./
4/17/06 11:00:55 AM
Table of the Isotopes
11-164 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Decay Mode/ Energy (/MeV) α/8(10)-4/
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.1915 0.2988 ann.rad./ 0.9152 1.2668 1.3321 1.4081 ann.rad./ 0.2660 0.3404 0.6061 0.1667 ann.rad./ Pt k x-ray 0.4478 0.7133 0.8128 ann.rad./ Pt k x-ray 0.2958 0.3018 0.5977 Au k x-ray 0.2414 0.2526 Pt k x-ray 0.5864/16 (0.088–1.30) ann.rad./ Pt k x-ray 0.2959 0.3165 Au k x-ray 0.2580 Pt k x-ray 0.1862 0.2556 ann.rad./ Pt k x-ray 0.2935 0.3284/61 Au k x-ray 0.2617 Pt k x-ray Au k x-ray 0.1478 0.1883 0.0847 Pt k x-ray Au k x-ray 0.1302 0.2790
Au Au
186.96457
2.3 s 8.3 m
IT β+, EC/3.60
9/21/2+
+0.54
Au
187.96532
8.8 m
β+, EC/5.3
(1-)
-0.07
Au Au
188.96395
4.6 m 28.7 m
β+, EC/ EC/96 /3.2 β+ /4 /
11/21/2+
+6.19 +0.49
Au
189.96470
43. m
β+ /2 /4.44 EC/98 /
1-
-0.07
0.9 s
I.T./0.2663
(11/2-)
6.6
3/2+
+0.137
+0.72
1-
-0.011
-0.23
187m 187
188
189m 189
190
Au
191m
Au
190.96370
3.2 h
EC/1.83
Au
191.96481
4.9 h
β+ /5 /3.52 EC/95 /
3.9 s
I.T./0.2901
11/2-
6.2
+1.98
3/2+
+0.140
+0.66
1-
+0.076
-0.24
191
192
Au
193m
2.19/ 2.49/
Au
192.96415
17.6 h
EC/1.07
Au
193.96537
1.64 d
β+ /3 /2.49 EC/97 /
30.5 s
I.T./0.3186
11/2-
6.2
+1.9
186.10 d 9.7 h
EC/0.227 I.T./0.5954
3/2+ 12-
+0.149 5.7
+0.61
8.1 s 6.17 d 7.8 s
I.T./0.0846 EC/92 /1.506 I.T./0.4094 β- /8 /0.686
8+ 211/2-
+0.591 +6.0
0.81 +1.7
2.30 d
I.T./0.812
3/2+ (12-)
+0.14575
+0.55
2.695 d
β- /1.372
2-
+0.5934
+0.64
193
194
Au
195m
Au Au
194.965035
195
196m2
Au Au 197m Au 196m1
195.966570
196
Au Au
197
198m
Au
198
487_S11.indb 164
Half-life/ Resonance Width (MeV)
100.
196.966569
197.968242
1.49/
0.290/1 0.961/99
Au k x-ray 0.0972 0.1803 0.2419 Hg k x-ray 0.411794
4/17/06 11:00:57 AM
Table of the Isotopes Elem. or Isot. Au
199
Natural Abundance (Atom %)
11-165 Atomic Mass or Weight
198.968765
Au
200m
Au
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 3.14 d β- /0.453
18.7 h
β- /84 /1.0 I.T./16 /
Particle Energy/ Intensity (MeV/%) 0.25/22 0.292/72 0.462/6 0.56/
Spin (h/2 π) 3/2+
12-
200
199.97073
48.4 m
β- /2.24
0.7/15 2.2/77
1-
Au Au 203 Au 204 Au
200.971657 201.9738 202.975155 203.9777
26. m 29. s 1.0 m 40. s
β- /1.28 β- /3.0 β- /2.14 β- /4.5
1.27/82
3/2+ (1-) 3/2+ (2-)
Au
204.9799
31. s
β- /
Hg
200.59(2)
Hg Hg 173 Hg 174 Hg 175 Hg 176 Hg 177m Hg 177 Hg 178 Hg
171.0038 171.9988 172.9972 173.99286 174.9914 175.98736 176.9863 177.98248
0.06 ms 0.3 ms 0.8 ms 1.9 ms 0.02 s 21 ms 1.5 μs 0.13 s 0.26 s
Hg
178.98183
1.05 s
Hg
179.97827
2.6 s
α α α α α α IT α EC/50 /6.1 α/50 / EC/8.0 α/ EC/5.5 α/
Hg
180.97782
3.6 s
β+ EC/76 /~ 7.3 α/24 /
Hg
181.97469
10.8 s
β+, EC/85/5.0 α/15/
Hg
182.97445
9. s
β+, EC/77/6.3 α/
Hg
183.97171
30.9 s
β+, EC/99/4.1 α/1/
21. s
β+, EC, IT, α/
184.97190 185.96936
51. s 1.4 m
186.96981
1.7 m 2.4 m
β+, EC/95/5.8 β+, EC/3.3 α β+, EC/ β+, EC/4.9
201 202
205
80
171 172
179
180
181
182
183
184
Hg
185m
Hg Hg
185 186
Hg 187 Hg 187m
487_S11.indb 165
~ 1.9/
7.49 7.36 7.20 7.07 6.74/94 6.58 6.43/ 6.29/ 6.12/33 5.69/.03
5.87/8.6 5.45/0.03 5.83/ 5.91/ 5.54/1.3 5.07/0.002 5.37/
5.09/0.02
Nuclear Elect. γ-Energy / Magnetic Quadr. Intensity Mom. (nm) Mom. (b) (MeV/%) +0.2715 +0.51 Hg k x-ray 0.15837 0.20820 5.9 Au k x-ray 0.2559/71 0.3680/77 0.4978/73 0.5793/72 0.084–0.904) 0.3679/19 1.2254/10.6 (0.077–1.570) (0.027–0.732) 0.4396 (0.04–0.37) 0.4366 1.5113 (0.38–1.33)
0+ 0+ 0+
0.246
0+
0+
(1/2-)
+0.507
0+
½-
+0.524
0+
13/2+
-1.02
½0+
+0.509
13/2+ 3/2-
-1.04 -0.594
+0.2
+0.5 -0.8
0.1250 0.3005 0.3812 0.0663 0.0811 0.0924 0.1474 0.1587 0.2142 0.2398 0.129/122 0.2176/66 0.0256–0.543 0.0714 0.0874 0.1538 0.1565/102 0.2367/100 0.2384/18 (0.018-0.4227) 0.211 0.292 0.02–0.55 0.1119 0.2518 see Hg187 0.1034/32
4/17/06 11:00:59 AM
Table of the Isotopes
11-166 Elem. or Isot.
Natural Abundance (Atom %)
Hg
Atomic Mass or Weight
187.96758
188
Hg
189m
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
3.2 m
β+, EC/2.3 α
8.6 m
EC/
13/2+
-1.06
+0.7
-0.6086
-0.8
4.61
0+
Hg
188.96819
7.6 m
EC/4.2
3/2-
Hg
189.96632
20.0 m
EC/1.5
0+
51. m
β+ /6 / EC/94 /
13/2+
-1.07
+0.6
-0.62
-0.8
189
190
Hg
191m
Hg
190.96716
50. m
β+, EC/3.2
(3/2-)
Hg
191.96563
5.0 h
EC/~ 0.5
0+
11.8 h
β+, EC/91 / I.T./9 /0.2901
13/2+
-1.05843
+0.92
191
192
Hg
193m
Hg
192.96667
3.8 h
EC, B+/2.34
3/2-
-0.6276
-0.7
Hg Hg
193.96544
520. y 1.67 d
EC/0.04 I.T./(54)/0.3186 EC/(46)/
0+ 13/2+
-1.04465
+1.1
Hg
194.96672
10.5 h
EC/1.51
1/2-
+0.541475
195.965833
>2.5 × 1018 y 23.8 h
I.T./(93)/0.2989
0+ 13/2+
-1.02768
196.967213
2.69 d
EC/0.600
1/2-
+0.527374
193
194
195m
195
Hg Hg
196
197m
0.15(1)
Hg
197
Hg
198
487_S11.indb 166
Half-life/ Resonance Width (MeV)
9.97(20)
197.9667690
0+
+1.2
γ-Energy / Intensity (MeV/%) 0.2334/100 0.2403/33 0.27151/31 0.3763/38 0.5254/30 0.10–2.18 0.0988 0.1148 0.1424 0.1900 0.0780 0.3210 0.4345 0.5655 (0.08–2.170) 0.2005 0.2038 0.2386 0.2485 0.1296 0.1426 ann.rad./ Au k x-ray 0.2741 0.4203 0.5787 (0.07–1.9) 0.1963 0.2247 0.2524 Au k x-ray 0.1572 0.2748 0.3065 Hg k x-ray 0.1866 0.2580 0.4076 0.5733 0.9324 (0.1–1.96) 0.1866 0.2580 0.8611 Au L x-rays Hg k x-ray Au k x-ray 0.2617 0.5603 0.7798 Au k x-ray 0.0614 0.7798 Hg k x-ray Au k x-ray 0.13398 Au k x-ray 0.07735
4/17/06 11:01:00 AM
Table of the Isotopes Elem. or Isot. Hg
199m
Hg Hg 201 Hg 202 Hg 203 Hg
Natural Abundance (Atom %)
11-167 Atomic Mass or Weight
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 42.7 m I.T./0.532
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π) 13/2+
16.87(22) 23.10(19) 13.18(9) 29.86(26)
198.9682799 199.9683260 200.970302 201.970643 202.972873
46.61 d
β- /0.492
0.213/100
1/20+ 3/20+ 5/2-
6.87(15)
203.9734939 204.976073
5.2 m
β- /1.531
1.33/4
0+ 1/2-
206
205.97751
8.2 m
β- /1.31
0.935/34 1.3/63
Hg Hg 209 Hg 210 Hg
206.9826 207.9859 208.9910 209.9945
2.9 m 41. m 36 s > 0.3 μs
β- /4.8 βββ-
p p/51 α/49 α/73 p/27 α/
199 200
Hg Hg
204 205
Hg
207 208
Tl
204.3833(2)
Tl Tl
176.0006
5 ms 0.23 ms
Tl
176.99643
0.017 s
Tl
177.9949
0.25 s
81
176
177m
177
178
Tl
1.7 ms
Tl Tl
178.99109 179.9899
0.3 s 1.5 s
α α α α//8
Tl Tl 182 Tl
180.98626 181.9857
1.4 ms 3.2 ms 3. s
α α/ < 10 β+, EC/10.9
53. ms
α
5. s 11. s
β+, EC/7.7 β+, EC/(98)/9.2 α/(2)/
1.8 s 20. s 4. s 28. s
I.T./0.453 α/5.97 EC/β+/6.6 I.T./0.374 β+, EC/7.5
15.6 s 50. s 1.18 m
I.T./~ 0.33 β+, EC/6.0 β+, EC/
179m
179 180
181m 181
Tl
183m
Tl Tl
183 184
182.98219 183.98187
Tl
185m
Tl Tl 186 Tl 185
186m
Tl Tl 188m Tl
184.9788 185.9783
187m 187
487_S11.indb 167
186.97591
Nuclear Elect. γ-Energy / Magnetic Quadr. Intensity Mom. (nm) Mom. (b) (MeV/%) -1.014703 +1.2 Hg k x-ray 0.15841 +0.505885 -0.560226
+0.39
+0.8489
+0.34
+0.6010
Tl k x-ray 0.279188 0.20378 (0.2–1.4) Tl k x-ray 0.3052 0.6502
0+
(9/2+) 0+
0.474 0.324
0+
1.26/~ 100 1.95 7.48
6.704 6.785 6.62 6.859 /7.21/80 /7.10/20 6.57/ 6.28/30 6.36/30 6.21/18 6.56/15 6.47/7 6.58/100 6.19/100
6.33/80 6.38/16 6.46/4
0.351 (0.26–0.41) 0.0618 (0.046-0.0894)
9/2-
½+
0.208 0.2868 0.3399 0.3667 0.1688 0.2840
6.16/
6.01
(9/2-)
(9/2+) ½+ (7+)
+3.8 1.6
-2.4
0.3738 0.3567 0.4026 0.4053 0.2995 Hg k x-ray 0.4129
4/17/06 11:01:02 AM
Table of the Isotopes
11-168 Elem. or Isot.
Tl
188
Natural Abundance (Atom %)
Atomic Mass or Weight
187.97601
Tl
189m
Tl
189
188.97359
Tl
190m
Tl
190
189.97388
Tl
191m
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
1.2 m
β+, EC/7.8
(2-)
+0.48
+0.13
1.4 m
β+, EC/
(9/2-)
+3.878
-2.29
2.3 m
β+, EC/5.2
(1/2+)
3.7 m
β+, EC/
4.2/
(7+)
+0.495
+0.29
2.6 m
β+, EC/7.0
5.7/
(2-)
+0.25
-0.33
5.2 m
β+, EC/(98)/
(9/2+)
+3.903
-2.3
10.8 m
β+, EC/
(1/2) (7+)
1.59 +0.518
0.46
Tl Tl
190.97179
Tl
191.97223
9.6 m
β+, EC/6.4
(2-)
+0.20
-0.33
Tl Tl
192.9707
2.1 m 22. m
I.T./(75)/ β+, EC/3.6
(9/2-) (1/2+)
+3.948 +1.591
-2.2
32.8 m
β+ /(20)/~ 0.30 EC/(80)/
(7+)
+0.540
+0.61
33.0 m
β+, EC/5.3
2-
0.140
-0.28
3.6 s
I.T./0.483
9/2-
1.16 h
EC/97/2.8 β+ /(3)/
1/2+
+1.58
1.41 h
β+, EC/95/4.9
(7+)
0.55
191
192m
192
193m 193
Tl
194m
Tl
194
193.9712
Tl
195m
Tl
195
Tl
196m
487_S11.indb 168
Half-life/ Resonance Width (MeV)
194.96977
+0.76
γ-Energy / Intensity (MeV/%) 0.5043 0.5921 see Tl[188m] 0.4129 0.2156 0.2284 0.3175 0.4452 0.3337 0.4510 0.5223 0.9422 0.1968 0.4164 0.7311 0.4164 0.6254 0.6838 1.0999 0.2157 0.2647 0.3256 0.3359 0.1740 0.4228 0.6348 0.7863 0.7455 0.3975 0.4228 0.6908 0.3650 0.2077 0.3244 0.3440 0.6761 1.0447 1.5793 ann.rad./ Hg k x-ray 0.4282 0.6363 0.7490 0.4279/75.2 0.6452/10.8 (0.395-1.623) Tl k x-ray 0.0990 0.3836 ann.rad./ Hg k x-ray 0.2422 0.5635 0.8845 1.3639 (0.13–2.5) 0.0840 0.4261 0.6353
4/17/06 11:01:03 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
Tl
11-169 Atomic Mass or Weight
195.97048
196
Tl
197m
Tl
196.96958
197
Tl
198m
Decay Mode/ Energy (/MeV)
0.54 s
IT/53/0.608 β+, EC/47/
9/2-
2.83 h
β+ /(1)/2.18 EC/(99)/
1/2+
+1.58
1.87 h
β+, EC/(53)/ IT/47/0.5347
7+
+0.64
EC, β+ /(1)/3.5
Tl
198.96988
7.4 h
EC/1.4
Tl
199.97096
1.087 d
EC/2.46
Tl
200.97082
3.038 d
Tl
201.97211
201
202
Tl Tl
29.524(14)
202.972344 203.973864
Tl Tl
70.476(14)
204.974428
203 204
205
206m
Tl
206
205.976110
Tl
207m
1.4/ 2.1/ 2.4/
1/2-
+1.60
2-
0.04
EC/0.48
1/2+
+1.605
12.47 d
EC/1.36
2-
0.06
3.78 y
β- /97/0.7637 EC/(3)/0.347
1/2+ 2-
+1.622258 0.09
3.76 m
I.T./2.644
1/2+ 12-
+1.638215
4.20 m
β- /1.533
1.3 s
I.T./1.350
1.07/ 1.44/
0.763/97
1.53/99.9
011/2-
206.97742 207.982019
4.77 m 3.053 m
β- /1.423 β- /5.001
1.43/99.8 1.28/23 1.52/22 1.796/51
1/2+ (5+)
Tl
208.98536
2.16 m
β-/3.98
1.8 /100
(1/2+)
208
209
+0.072
2-
Tl Tl
207
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
2-
5.3 h
200
Spin (h/2 π)
β+ /(15)/4.4 EC/(85)/
197.9405
199
Particle Energy/ Intensity (MeV/%)
1.84 h
Tl
198
487_S11.indb 169
Half-life/ Resonance Width (MeV)
+1.88 +0.29
-0.18
γ-Energy / Intensity (MeV/%) 0.6954 (0.08–1.0) ann.rad./ Hg k x-ray 0.4257 0.6105 (0.03–2.4) Tl k x-ray 0.2262 0.4118 0.5872 0.6367 Hg k x-ray 0.1522/8.2 0.4258 Hg k x-ray Tl k x-ray 0.4118 0.5872 0.6367 Hg k x-ray 0.4118 0.6367 0.6759 (0.23–2.8) Hg k x-ray 0.2082 0.2473 0.4555 Hg k x-ray 0.36799 1.2057 (0.11–2.3) Hg k x-ray 0.13528 0.16740/10.0 Hg k x-ray 0.43957 Hg k x-ray
Tl k x-ray 0.2166 0.2661 0.4534 0.6866 1.0219 Pb k x-ray 0.80313 Tl k x-ray 0.3501 1.0000 0.89723 Pb k x-ray 0.27728 0.51061 0.58302 2.61448 Pb k x-ray
4/17/06 11:01:05 AM
Table of the Isotopes
11-170 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Tl
209.99007
1.30 m
β- /5.48
Tl Tl
210.9935 211.9982
> 0.3 μs > 0.3 μs
ββ-
Pb
207.2(1)
210
211 212
82
Pb Pb 180 Pb 181 Pb 182 Pb 183m Pb
178.00383 179.0022 179.99792 180.9966 181.99267
183
Pb
178 179
Particle Energy/ Intensity (MeV/%)
1.3/25 1.9/56
~ 0.2 ms α/ α/ α α
182.99187
0.54 s
α/
Pb Pb 185 Pb
183.98814 184.98761
0.48 s 4.3 s 6.3 s
α/~ 80 α α/
Pb
185.98424
5. s
β+, EC/95/5.5 α/(5)/
15.2 s
β+, EC/ α/12
6.32/ 6.34/<100 6.01/<0.2 5.99/ 6.19/
6.08/
185m
186
Pb
187m
Pb
186.98392
18.3 s
EC/7.2 α/7
Pb
187.98087
23. s
EC/(78)/4.8 α/(22)/
Pb
188.98081
51. s
Pb
189.97808
1.2 m
EC/6.1 α/ β+ (13)/4.1 EC/(86)/ α/(0.9)/
187
188
189
190
Pb
191m
β+, EC/
190.97827
1.3 m
β+, EC/5.5
Pb
191.97579
3.5 m
β+, EC/~ 3.4 α/.006/
192
487_S11.indb 170
2.2 m
Pb
191
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
(5+)
γ-Energy / Intensity (MeV/%) 1.5670/100 0.4651/95 (0.12–1.33) Pb k x-ray 0.081 0.2981 0.79788
0+
5 ms 0.05 s 55 ms 0.42 s
184
Spin (h/2 π)
7.25 7.07 6.90 6.70/82.7 6.86/1.9 6.57/4.3 6.78/11.0 6.63/ 6.41/100 6.29/56 6.49/44 6.55/<1.4
5.98/<10 5.61/<0.1 5.58/
0+ 0+ 13/2+ (3/2-) 0+ 13/2+ 3/2-
-1.2 -1.1
0.205 0.269
0+
(1/2-)
0.0674 0.2080 0.2755 0.2995 0.4487 0.7477 0.1930 0.3314 0.3435 0.3934 0.1850 0.7582
13/2+
0+
0+
5.58/
13/2+
5.11
0+
-1.17
+0.085
ann.rad./ Tl k x-ray 0.1415 0.1512 0.9422 ann.rad./ 0.3871 0.6135 0.7122 ann.rad./ 0.9368 ann.rad./ 0.1675 0.6082 1.1954
4/17/06 11:01:07 AM
Table of the Isotopes Elem. or Isot. Pb
193m
Pb Pb
193 194
Natural Abundance (Atom %)
11-171 Atomic Mass or Weight
192.97617 193.97401
Pb
~ 2. m 10. m 15. m
195m
EC/5.2 β+, EC/2.7 α β+ /(8)/ EC/(92)/
Particle Energy/ Intensity (MeV/%)
4.64
Spin (h/2 π) 13/2+
3/2 (-) 0+ 13/2+
Nuclear Elect. γ-Energy / Magnetic Quadr. Intensity Mom. (nm) Mom. (b) (MeV/%) -1.15 +0.19 ann.rad./ 0.3650 0.3922
-1.132
+0.30
Pb
194.97454
~ 15. m
β+, EC/5.8
Pb
195.97277
37. m
β+, EC/2.1
0+
43. m
EC/79/ β+ /2/ IT/19/0.3193
13/2+
-1.104
+0.38
-1.075
-0.08
-1.074
+0.08
195
196
Pb
197m
Pb
196.97343
~ 8. m
EC/97/3.6 β+ /3/
(3/2-)
Pb
197.97203
2.4 h
EC/1.4
0+
12.2 m
IT/93/0.4248 β+, EC/(7)/ EC/(99)/2.9 β+ /(1)/
13/2+
197
198
Pb
199m
Pb
198.97292
1.5 h
Pb
199.97183
21.5 h
EC/0.81
0+
1.02 m
I.T./0.6291
13/2+
9.33 h
EC/1.90
5/2-
+0.675
-0.009
3.53 h
IT/90/2.170 β+ /10/
9-
-0.228
+0.58
+0.686
+0.10
199
200
Pb
201m
Pb
201
200.97289
Pb
202m
5/2-
Pb Pb
201.97216
5.3 × 104 y 6.2 s
EC/0.05 I.T./0.8252
0+ 13/2+
Pb
202.97339
2.163 d
EC/0.98
5/2-
1.13 h
I.T./2.185
9-
202
203m
203
Pb
204m
487_S11.indb 171
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 5.8 m β+, EC/
ann.rad./ 0.2036 ann.rad./ Tl k x-ray 0.3836 0.3942 0.8784 ann.rad./ 0.3836 0.3937 0.7776 Tl k x-ray 0.2531 0.5021 Tl k x-ray 0.3079 0.3877 0.7743 (0.2–2.2) Tl k x-ray 0.3755 0.3858 0.7611 Tl k x-ray 0.1734 0.2903 0.3654 Pb k x-ray 0.4255 Tl k x-ray 0.3534 0.7202 1.1350 (0.22–2.4) Tl k x-ray 0.14763 Pb k x-ray 0.6288 Tl k x-ray 0.33120 0.36131 (0.11–1.8) Pb k x-ray Tl k x-ray 0.42219 0.78700 0.96271 Tl L x-ray Pb k x-ray 0.8203 0.8252 Tl k x-ray 0.279188 Pb k x-ray 0.37481 0.89922
4/17/06 11:01:08 AM
Table of the Isotopes
11-172 Elem. or Isot.
Natural Abundance (Atom %)
Pb Pb 206 Pb 207m Pb
1.4(1)
Pb Pb 209 Pb 210 Pb
22.1(1) 52.4(1)
Atomic Mass or Weight
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.91175
+0.712
Tl L x-ray
1.51 × 107 y
EC/0.0512
0.80 s
I.T./1.632
0+ 5/20+ 13/2+
206.975897 207.976652 208.981090 209.984189
> 2 × 1019 y 3.25 h 22.6 y
sf β- /0.644 β- /0.0635
1/20+ 9/2+ 0+
+0.59258 -1.474
-0.3
Pb
210.988737
36.1 m
α β- /1.37
(9/2+)
-1.404
+0.09
Pb
211.991898
10.64 h
β- /0.574
Pb Pb
212.99658 213.999805
10.2 m 26.9 m
β- /2.1 β- /1.0
Pb
215.0048
36 s
83
Bi
208.98040(1)
Bi Bi 185 Bi
184.0011 184.9976
204 205
207 208
211
212
213 214
215
24.1(1)
203.973044 204.974482 205.974465
Half-life/ Resonance Width (MeV)
Bi
185.9966
9.8 ms
α α p/90 α/10 α p/<0.5 α
187
Bi Bi
186.99316
~ 8. ms 32. ms
α/12 α/7
Bi Bi 189 Bi 190m Bi
187.99227
0.271 s 7.0 ms 0.68 s 5.7 s
α α α α/90
Bi
189.9883
~ 5.9 s
Bi Bi
190.98579
0.12 ms 12.4 s
Bi
191.98546
40. s
β+, EC/(30)/8.7 α/70 α/ β+, EC/(60)/7.3 α/(40)/ β+, EC/(80)/9.0 α/(20)/ β+, EC/ α/ β+, EC/40/7.1 α/(60)/ β+, EC/99.9/8.2 α/0.1/
184m 184
Bi
15. ms
186m
186
187m
188
189m
190
188.9892
191m 191
192
Bi
3.2 s
193m
Bi
192.98296
1.11 m
Bi
193.98283
1.8 m
193
194
487_S11.indb 172
0.007 s 13. ms 60. μs
0.645/100 0.017/81 0.061/19 3.72 0.57/5 1.36/92
0.28/83 0.57/12
0+
0.67/48 0.73/42
0+
(7.22-7.85)
+0.23
Pb k x-ray 0.56915 1.06310
0.40486 0.42700 0.83186 (0.09–1.27) Bi k x-ray 0.23858 Bi k x-ray 0.24192 0.29509 0.35187
0.449 0.124
1.55 8.03 7.07-7.23
(0.087-0.520)
7.26 7.37
0.1085
7.00/88.3 7.61/8.0 7.37/3.7 6.81 7.30
(0.071-0.320)
6.43 (6.23-6.72) α/6.45 (6.39-6.82) 6.87/100
(0.105-0.314) (0.089-0.374)
6.31 6.06/ 6.48/ 5.91/
1/2+ 9/2+ (10-)
0.1661 0.1740 0.2802 0.421
4/17/06 11:01:10 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
11-173 Atomic Mass or Weight
Bi
Half-life/ Resonance Width (MeV)
1.45 m
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Bi
194.98065
2.9 m
196
Bi
195.98067
5. m
β+, EC/(94)/ α/(6)/ β+, EC/99.8/5.8 α/(0.2) EC/~ 7.4
Bi Bi 198 Bi
196.97886 197.97921
5. m 7.7 s 11.8 m
β+, EC/5.2 I.T./0.2485 β+, EC/6.6
1/2+ (10-) (7+)
198.97767
24.7 m 27. m
β+, EC/ β+, EC/4.3
9/2-
31. m
β+, EC/
(2+)
36. m
EC/(90)/5.9 β+ /(10)/
7+
59.1 m
I.T./0.846 β+, EC/ EC/3.84
(1/2+)
195m
195
197
198m
Bi Bi
199m 199
Bi
200m
Bi
200
199.97813
Bi
201m
Bi
200.97701
1.8 h
Bi
201.97774
1.72 h
β+ /(3)/5.16 EC/(97)/
Bi
202.97688
11.8 h
EC/99.8/3.25 β+ /(0.2)/
Bi
203.97781
11.2 h
Bi
204.97739
Bi
205.97850
201
202
203
204
205
206
487_S11.indb 173
6.11/ 5.45/
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
3/20.1376 0.3720 0.6880 1.0486
4.6
9/2-
4.8
5+
+4.26
-0.72
9/2-
+4.02
-0.69
EC/4.44
6+
+4.32
-0.43
15.31 d
EC/2.71
9/2-
+4.07
-0.59
6.243 d
EC/3.76
6+
+4.36
-0.39
1.35/
γ-Energy / Intensity (MeV/%) 0.5754 0.9650
0.2485 0.0900 0.1976 0.5624 1.0635 ann.rad./ 0.7203 0.8374 0.8417 0.9460 1.0528 1.3056 (0.12–3.2) 0.2453 0.4198 0.4624 1.0265 ann.rad./ Pb k x-ray 0.4198 0.4623 1.0265 Bi k x-ray 0.8464 Pb k x-ray 0.6288 0.9357 1.0138 (0.13–2.4) ann.rad./ Pb k x-ray 0.57860 0.92734 (0.08–3.5) Pb k x-ray 0.1865 0.8203 0.8969 1.8475 (0.1–2.9) Pb k x-ray 0.37481 0.89922 0.98409 Pb k x-ray 0.70347 1.76435 Pb k x-ray 0.51619
4/17/06 11:01:11 AM
Table of the Isotopes
11-174 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
Bi
206.978471
31.55 y
EC/2.399
9/2-
4.08
-0.6
Bi
207.979742
3.68 × 105 y
EC/2.880
5+
4.63
-0.64
208.980399
1.9 × 1019 y 3.0 × 106 y
α α/
9/29-
+4.111 +2.73
-0.37 -0.47
Bi
209.984120
5.01 d
β- /1.163
3.13 4.420(3)/0.29 4.569(3)/3.9 4.584(3)/1.4 4.908(4)/39 4.946(3)/55 1.16/99
1-
-0.0445
+0.136
Bi
210.98727
2.14 m
α/(99.7)/ β- /(0.3)/0.58 β- / α/(93)/ β- /(7)/
6.279/16 6.623/84
9/2-
207
208
Bi Bi
209
210m
210
211
100.
Bi Bi
7. m 25.0 m
212m2 212m1
Bi
211.991286
1.009 h
β- /(64)/2.254 α/(36)/
Bi
212.994385
45.6 m
β- /(98)/1.43 α/(2)/
Bi
213.99871
19.7 m
β- /3.27
Bi Bi
215.00177
37. s 7.7 m
β β- /2.3
Bi
216.00631
2.3 m
β-/4.0
Bi
217.0095
98 s
β/
Bi
218.0143
33. s
β-
Po
187.99942
0.27 ms
α
Po
188.99848
5 ms
α
Po
189.99510
2.4 ms
α/
93. ms
α
212
213
214
215m 215
216
217
218
6.300/40 6.340/53
(15-) (9-)
(1-)
+0.32
+0.1
1.02/31 1.42/66 5.549/0.16 5.869/2.0
9/2-
+3.72
-0.60
7.91/80 7.320 7.532/8 7.259/80 7.309/12 7.53/96.4 7.01/3.3 7.376/50 6.888/46
0+
6.051/25 6.090/9.6
γ-Energy / Intensity (MeV/%) 0.80313 0.88100 Pb k x-ray 0.56915 1.06310 Pb k x-ray 2.61435 Tl k x-ray 0.2661 0.3052 0.6502 0.2661 0.3.52 Tl k x-ray 0.3501 0.120 0.233 0.275 0.404 0.727 Tl k x-ray Po k x-ray 0.2881 0.72725 0.78551 1.62066 Po k x-ray 0.4404 (0.15–1.328) 1.10006 0.60931 1.12027 1.76449 (0.19–3.2) (0.158-0.498) 0.2937/35.2 (0.271–1.399) 0.5498 0.4192 0.2646/100 (0.254-1.017) 0.5097/134 0.3857/100 (0.174-0.703)
Po
84
188
189
190
Po
191m
487_S11.indb 174
0+
4/17/06 11:01:12 AM
Table of the Isotopes Elem. or Isot.
190.99457
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 22 ms α/
Po
191.99134
32. ms
α/8.5
Po Po 194 Po
192.99103 193.98819
~ 0.07 s 0.45 s 0.2 s
α/ α/ α/
Po Po 196 Po
194.98811 195.98554
~ 2.8 s ~ 3.9 s 5. s
α/ α/ α/(95)/ β+, EC/(5)/~4.6 α/(84)/ β+, EC/(16)/ α/(44)/ β+, EC/(56)/6.2 α/(70)/ β+, EC/(30)/4.0 β+, EC/(51)/ α/(39)/
Po
191
192
Natural Abundance (Atom %)
11-175 Atomic Mass or Weight
193m 193
195m 195
Po
25.8 s
197m
Po
196.98566
53. s
Po
197.98339
1.76 m
197
198
199m
Po
4.2 m
β+, EC/(88)/7. α/(12)/
5.952/7.5
Po
199.981780
11.5 m
β+, EC/85/3.4 α/(15)/
5.863/11.1
8.9 m
β+, EC/(57)/ IT/40/0.418 α/(3)/
5.786/~ 3.
Po
201m
0+ 13/2+
0+
5.2 m
13/2+
0+
13/2+
1.00
3/2-
0.94
200.98226
15.3 m
β+, EC/98/4.9 α/(2)/
5.683(3)/1.1
Po
201.98076
45. m
β+, EC/98/2.8 α/(2)/
5.588/1.9
1.2 m
IT/96/0.6414 β-EC/(4)/
13/2+
5/2-
202
Po
203m
Po
202.98142
35. m
β+, EC/4.2
Po
203.98032
3.53 h
EC/2.34 α
Po
204.98120
1.7 h
β+, EC/3.53
203
204
205
5.377/0.66
0.99
(3/2-)
Po
201
γ-Energy / Intensity (MeV/%)
0+
6.18/57 5.27/7.6 × 10-4 6.059/24
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
0+
(3/2-)
198.98367
200
Spin (h/2 π)
6.282(4)/76
Po
199
487_S11.indb 175
Particle Energy/ Intensity (MeV/%) 7.334/77 6.97/8 7.17/98.6 6.59/1.4 7.00 6.95 6.84/93 6.19/0.22 6.70/ 6.62/ 6.53/94 5.77/0.02 6.385(3)/55
0+
+0.74
0+
5/2-
+0.76
+0.17
ann.rad./ 0.2745 0.4998 1.0020 Bi k x-ray 0.1877 0.3616 1.0214 1.0344 0.14748 0.32792 0.6176 0.6709 Bi k x-ray Po k x-ray 0.2726 0.4123 0.4179 0.9670 Bi k x-ray 0.2056 0.2250 0.8483 0.9048 0.0410 0.1656 0.3158 0.6884 Bi k x-ray Po k x-ray 0.6414 0.17516 0.21477 0.89350 0.90863 1.09095 Bi k x-ray 0.2702 0.8844 1.0162 (0.11–1.9) Bi k x-ray
4/17/06 11:01:14 AM
Table of the Isotopes
11-176 Elem. or Isot.
Po
206
Natural Abundance (Atom %)
Atomic Mass or Weight
205.98048
Po
207m
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
EC/(95)/1.85 α/(5)/
2.8 s
I.T./1.383
19/2-
5/2-
206.98159
5.80 h
EC, β+/2.91
Po
207.981246
2.898 y
α/5.213
Po
208.982430
102. y
α/4.976
Po
209.982874
138.4 d
α/5.407
25.2 s
α/
0.516 s
α/7.594
45. s
α/
208
209
210
Po
211m
Po
211
210.986653
Po
212m
Po Po
211.988868 212.992857
0.298 μs 3.7 μs
α/8.953 α/8.537
Po
213.995201
163.7 μs
α/7.833
Po
214.999420
1.780 ms
α/7.526
Po
216.001915
0.145 s
α/6.906
Po Po
217.00634 218.008973
1.53 s 3.04 m
α/6.662 α/6.114
Po Po
219.0137 220.0166
~2m > 0.3 μs
212 213
214
215
216
217 218
219 220
Spin (h/2 π)
8.8 d
Po
207
Particle Energy/ Intensity (MeV/%)
5.223/5.5
4.233/0.0002 5.1158/100 4.624/0.56 4.879/99.2 4.516/0.001 5.304/100 7.273/91 7.994/1.7 8.316/0.25 8.875/7.0 6.570/0.54 6.892/0.55 7.450/98.9 8.514/2.0 9.086/1.0 11.650/97 8.784/100 7.614/0.003 8.375/100 6.904/0.01 7.686/99.99 6.950/0.02 6.957/0.03 7.386/100 5.895/0.002 6.778/99.99 6.539/ 6.003/99.999 5.181/0.11
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
0+
+0.79
0+ 1/20+ 25/2+
9/2+
~ +0.77
+0.28
γ-Energy / Intensity (MeV/%) 0.83681 0.84983 0.87241 1.00124 (0.12–2.7) Bi k x-ray 0.28644 0.31156 0.51134 0.80737 1.03228 (0.11–1.5) Po k x-ray 0.2682 0.30074 0.81448 Bi k x-ray 0.74263 0.91176 0.99225
0.26049 0.8964 0.80313 Pb k x-ray 0.32808 0.56915 0.89723 1.06310 0.56915 0.89723
16+
0+ 9/2+ 0+ (9/2+)
0.7995 0.298
0+
0+
0+
At
85
At
191m
At At
191
193m
487_S11.indb 176
2.1 ms
α
~ 1.7 ms 21 ms
α α
7.65/98 7.72/2 7.55/100 7.33/98 7.42/2
4/17/06 11:01:16 AM
Table of the Isotopes Elem. or Isot. At At 195m At 195 At 196m At 196 At 197m At 197 At 193 194
Natural Abundance (Atom %)
11-177 Atomic Mass or Weight
192.9998 193.9987 194.99627 195.9958 196.99319
At
1.0 s
198m
At 199 At 198
197.99284 198.99053
At At
4.1 s 6.9 s 47. s 3.5 s
200m2 200m
Decay Mode/ Energy (/MeV) α/ α/ α α/ α/ α β+, EC/7.8 α/ β+, EC/(75)/ α/(25)/ α/ β+, EC/8/5.6 α/(92)/ α β+, EC/(80) α/(20)/ β+, EC/65/~ 8.0 α/(35)/
Particle Energy/ Intensity (MeV/%) 7.24/100
7.05/ 6.707 6.960/ 6.856/86 6.755/94 6.643/ 6.411/ 6.538/12
199.99035
43. s
At
200.98842
1.48 m
At At
201.98863
0.46 s 3.02 m
At
202.98694
7.4 m
β+, EC/69/5.1 α/(31)/6.210
6.088/
At
203.98725
9.1 m
β+, EC/95/6.5 α/(5)/
5.951/
At
204.98607
26. m
β+, EC/90/4.54 α/(10)/6.020
5.902/
At
205.98667
29.4 m
β+, EC/99/5.72 α/(1)/5.881
5.703/
At
206.98578
1.81 h
β+, EC/90/3.91 α/(10)/5.873
5.758/
At
207.98650
1.63 h
β+, EC/99/4.97 α/(1)/5.752
At
208.98617
5.4 h
β+, EC/96/3.49 α/(4)/5.757
201
202m 202
203
204
205
206
207
208
209
β+, EC/29/5.9 α/(71)/6.474 I.T./0.391 β+, EC/88/7.2 α/(12)/
Spin (h/2 π)
7.07-7.22 6.95
At
200
487_S11.indb 177
Half-life/ Resonance Width (MeV) 28 ms 40 ms 147 ms 0.33 s 8 μs 0.39 s 2.0 s 0.39 s
6.412/44 6.465/57 6.344/
6.135/7.7 6.225/4.3
5.626/0.01 5.641/0.53
5.647/4.1
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%)
0.158 (1/2+) (9/2-)
9/2-
105+
9/2-
5+
9/2-
(5+)
(9/2-)
5+
9/2-
(6+)
(6+)
ann.rad./ 0.4413 0.5697 0.6753 0.1458 0.2459 0.6414 1.0020 1.0340 Po k x-ray 0.3271 0.4254 0.5156 0.6837 Po k x-ray 0.1543 0.6696 0.7194 Po k x-ray 0.20186 0.39561 0.47716 0.70071 Po k x-ray 0.16801 0.58842 0.81448 Po k x-ray 0.1770 0.2060 0.6601 0.6852 0.8450 1.0281 Po k x-ray 0.10422 0.54503
4/17/06 11:01:17 AM
Table of the Isotopes
11-178 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
At
209.98715
8.1 h
EC/99.8/3.98 α/(0.2)/5.632
At
210.987496
7.21 h
EC/(58)/0.787 α/(42)/5.980
0.119 s
α/
210
211
At
212m
Particle Energy/ Intensity (MeV/%)
5.361/0.05 5.442/0.05
5.211/0.004 5.868/42 7.837/65 7.897/33 7.058/0.4 7.088/0.6 7.618/15 7.681/84 9.080/
Spin (h/2 π)
5+
9/2-
(9-)
212
At
211.99075
0.314 s
α/7.828
At At 214 At 215 At
212.992937 213.996372 214.99865
0.11 μs 0.76 μs 0.56 μs 0.10 ms
α/9.254 α/8.762 α/8.987 α/8.178
At
216.002423
0.30 ms
α/7.947
At
217.004719
32. ms
α/7.202
218
At
218.00869
1.6 s
α/6.883
At At 221 At 222 At 223 At
219.011162 220.0154 221.0181 222.0223 223.0252
50. s 3.71 m 2.3 m 0.9 m 50. s
α/6.390 β- /3.7 β β β
5 ms 6 ms 4. ms 0.02 s 0.07 s 64. ms 0.32 s 0.62 s 1.06 s
α α α/ α α/ α α α/ α/(98)/ EC/(2)/5. EC/(10)/ α/(90)/ α/(80)/ EC/(20)/
7.56 7.54 7.46 7.36 7.26 7.205 7.060 6.989 6.901/
α/(12)/ EC/(88)/ α/
6.641/
0+
6.551
13/2+
213
214m
216
217
219 220
8.819/100 7.626/0.045 8.023/99.9 7.595/0.2 7.697/2.1 7.800/97 6.812/0.06 7.067/99.9
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.78189 0.79020 (0.1–2.6) Po k x-ray 0.24535 0.52758 1.18143 1.43678 1.48335 (0.04–2.4) Po k x-ray 0.66956 0.6870 0.74263
(1-)
9/2(9-) (1-) (9/2-)
0.40486
(1-)
(9/2-)
0.2595 0.3345 0.5940
6.654/6 6.695/90 6.748/4 6.275/
(0.24–0.70)
Rn
86
Rn Rn 196 Rn 197m Rn 197 Rn 198 Rn 199m Rn 199 Rn 200 Rn 195m 195
195.00544 196.00212 197.0016 197.99868 198.9984 199.99570
Rn
3.8 s
201m
Rn
200.9956
7.0 s
Rn
201.99326
9.9 s
201
202
Rn
203m
487_S11.indb 178
28. s
6.773/ 6.725/ α/6.778
0+
0+ (13/2+) 3/20+
0.4329 0.5043
13/2+ (3/2-)
-0.96
+1.3
0.5695 0.2876–0.6255
4/17/06 11:01:19 AM
Table of the Isotopes Elem. or Isot. Rn
203
Natural Abundance (Atom %)
11-179 Atomic Mass or Weight
202.99339
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 45. s α/(66)/6.629 EC/(34)/~ 7.4 1.24 m α/(68)/ EC/(32)/3.8 2.8 m α/(23)/6.390 EC/(77)/5.2
Particle Energy/ Intensity (MeV/%) 6.499/
3/2-
6.420/
0+
6.123(3)/0.02 6.262(3)/23
(5/2-)
6.258(3)/
0+
Rn
203.99143
Rn
204.99172
Rn
205.99021
5.7 m
α/(68)/6.384 EC/(32)/3.3
Rn
206.99073
9.3 m
β+, EC/77/4.6 α/(23)/6.252
Rn
207.98964
24.3 m
Rn
208.99042
29. m
α/(60)/6.260 EC/(40)/2.85 β+ /(83)/3.93 α/(17)/
5.469(2)/0.003 6.140(2)/60 2.16/2.3 5.887(3)/0.04 5.898(3)/0.02 6.039(2)/16.9
Rn
209.98970
2.4 h
α/(96)/6.157 EC/(4)/2.37
5.351(2)/0.005 6.039(2)/96
Rn
210.99060
14.6 h
β+, EC/74/2.89 α/(26)/5.964
Rn
211.990704
24. m
α/6.385
213
Rn
212.99388
19. ms
α/8.243
Rn Rn 216 Rn 217 Rn
213.99536 214.99875 216.00027 217.003928
0.27 μs 2.3 μs 45. μs 0.6 ms
α/9.209 α/8.840 α α/7.885
Rn
218.005601
35. ms
α/7.267
Rn
219.009480
3.96 s
α/6.946(1)
204
205
206
207
208
209
210
211
212
214 215
218
219
487_S11.indb 179
5.995(4)/0.02 6.068(3)/0.15 6.126(3)/22.8
5.619(1)/0.7 5.784(1)/16.4 5.851(1)/8.8
5.587(4)/0.05 6.260(4)/99.95 7.552(8)/1.0 8.087(8)/98.2 7.254/0.8 9.037(9)/ 8.674(8)/ 7.500/0.1 7.742(4)/100 6.534(1)/0.16 7.133(1)/99.8 6.3130(5)/0.05
Spin (h/2 π)
5/2-
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
+0.80
+0.06
+0.82
+0.22
+0.8388
+0.31
0+ 5/2-
0+
1/2-
+0.60
0+ 9/2+
γ-Energy / Intensity (MeV/%)
0.2652 0.3553 0.4648 0.6205 0.6753 0.7300 0.06170 0.0968 0.3245 0.3862 0.4822 0.4973 0.7728 At k x-ray 0.32947 0.34455 0.36767 0.40267 0.74723 (0.18–1.4)
At k x-ray 0.27933 0.33753 0.40841 0.68942 0.74594 (0.18–3.2) At k x-ray 0.19625 0.45824 0.57104 0.64868 (0.14–1.7) At k x-ray 0.16877 0.25022 0.37049 0.67412 0.67839 1.36298 (0.11–2.7)
0.540
0+ (9/2+) 0+ 9/2+ 0+ (5/2+)
-0.44
+0.93
0.6093 0.6653 Po k x-ray
4/17/06 11:01:20 AM
Table of the Isotopes
11-180 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Rn
220.011394
55.6 s
α/6.404
Rn
221.01554
25. m
α/(22)/6.148 β- /(78)/1.2
Rn
222.017578
3.823 d
α/5.590
Rn Rn
223.0218 224.0241
23. m 1.8 h
β- / β- /
Rn Rn 227 Rn 228 Rn
225.0284 226.0309 227.0354 228.0380
4.5 m 7.4 m 2. s 65. s
β- / β- / β- / β- /
Fr Fr 201m Fr 201 Fr 202m Fr 202 Fr 203 Fr 204m2 Fr 204m1 Fr 204 Fr
199.00726 200.0066
12 s 49 ms ~ 0.02 s ~ 60 ms 0.29 s 0.30 s 0.54 s 0.8 s 2. s 1.8 s
α α α/ α/ α α/7.590 α/7.280 α α α/
Fr Fr 206 Fr 207 Fr 208 Fr
204.99859 205.99867 206.99695 207.99714
3.9 s 0.7 s 16.0 s 14.8 s 59.1 s
Fr
208.99595
50.0 s
Fr
209.99641
3.2 m
α/7.050 α/ α/7.416 α/6.900 α/(77)/6.770 EC/(23)/6.99 α/(89)/5.1 EC/(11)/5.16 α/6.670/71 EC/6.26
Fr
210.99554
3.10 m
Fr
211.99620
Fr
212.99619
220
221
222
223 224
225 226
Particle Energy/ Intensity (MeV/%) 6.425(3)/7.5 6.5309(4)/0.12 6.5531(3)/12.2 6.8193(3)/81 5.7486(5)/0.07 6.2883(1)/99.9 5.778(3)/1.8 5.788(3)/2.2 6.037(3)/18
4.987(1)/0.08 5.4897(3)/99.9
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.13057 0.27113 0.40170 (0.1–1.05)
-0.020
-0.38
Fr L x-ray 0.07384 0.08323 0.0610 0.18639 0.510
-0.78
+0.80
-0.70
+0.84
0+ 7/2+
0+
0+
7/20+
0.1085 0.2601 0.2655
0+
Fr
87
199 200
205
206m
209
210
211
212
213
487_S11.indb 180
201.0039 202.00337 203.00093
204.00065
7.66 7.47 7.454 7.36/ 7.236/ 7.24/100 7.132(5)/ 7.01 6.97 7.03/96 6.97/90 7.01/74 6.914(5)/ 6.93 6.792(5)/84 6.766(5)/ 6.636(5)/
9/27+
+3.9 -4.8
-0.16 +0.004
6.646(3)/
9/2-
+3.9
-0.24
6.543(5)/99.87 (5.90-6.42)
6+
+4.4
+0.19
α/6.660/87 EC/4.61
6.534(5)/99.94 (5.87-6.20)
9/2-
+4.0
-0.19
20. m
EC/(57)/5.12 α/(43)/6.529
(5+)
+4.6
-0.10
34.6 s
α/6.905
6.261(1)/16 6.335(1)/4 6.335(1)/4 6.343(1)/1.3 6.383(1)/10 6.406(1)/9.5 6.08–6.18 8.476(4)/51
9/2-
+4.0
-0.14
(9/2-)
(9/2-)
(9/2-)
0.531(IT)
0.7978 (0.1103–1.384) 0.2030 0.6438 0.8175 0.9008 0.220 0.2799 0.5389 0.9169 Rn x-ray 0.08107 0.08378 0.2277 1.1856 1.2748 0.014–1.178 (0.408-0.577)
4/17/06 11:01:22 AM
Table of the Isotopes Elem. or Isot. Fr
214m
Natural Abundance (Atom %)
11-181 Atomic Mass or Weight
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 3.4 ms α/
214
Fr
213.99897
5.0 ms
α/8.587
Fr Fr 217 Fr 218m Fr 218 Fr
215.00034 216.00320 217.00463 218.007578
0.12 μs 0.70 μs 0.016 ms 22. ms 1. ms
α/9.537 α/9.175 α/8.471 α α/8.014
Fr
219.00925
21. ms
α/8.132
Fr
220.012327
27.4 s
α/6.800
Fr
221.014255
4.8 m
α/6.457
Fr
222.01755
14.3 m
Fr
223.019736
22.0 m
β- /2.03 α/5.850 β- /1.149 α//0.006
Fr
224.02325
3.0 m
β- /2.82
Fr Fr
225.02557 226.0294
3.9 m 49. s
Fr Fr 229 Fr 230 Fr 231 Fr 232 Fr
227.0318 228.0357 229.03845 230.0425 231.0454 232.050
215 216
219
220
221
222
223
224
225 226
227 228
Particle Energy/ Intensity (MeV/%) 8.547(4)/46 6.775–8.046 7.409(3)/0.3 7.605(8)/1.0 7.940(3)/1.0 8.355(3)/4.7 8.427(3)/93 9.360(8)/ 9.005(10)/95 8.315(8)/ 7.384(10)/0.5 7.542(15)/1.0 7.572(10)/5 7.732(10)/0.5 7.867(2)/93 6.802(2)/0.25 6.967(2)/0.6 7.146(2)/0.25 7.313(2)/99 6.582(1)/10 6.630(2)/6 6.641(1)/12 6.686(1)/61 6.39–6.58 5.9393(7)/0.17 5.9797(7)/0.49 6.0751(7)/0.15 6.1270(7)/ 6.2433(3)/1.3 6.3410(7)/83.4 1.78/
Spin (h/2 π) 9-
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
(1-)
(0.073-0.966)
(9/2-)
(0.045–0.160)
(9/2-) (1-)
(9/2-)
1+
-0.67
+0.47
(5/2-)
+1.58
-1.0
2-
+0.63
+0.51
(3/2+)
+1.17
+1.17
1-
+0.40
+0.517
β- /1.87 β- /3.6
3/2 1
+1.07 +0.071
+1.3 -1.35
2.48 m 39. s 50. s 19. s 17. s 5. s
β- /2.5 β- /~ 3.5 β- / β- / β- / β- /
1/2 2-
+1.50 -0.76
+2.4
~ 1.6 ms ~ 0.02 ms 24 ms ~ 31 ms 0.06 s ~ 0.17 s 0.22 s 0.4 s
α α α α α
7.91/ 7.74 7.61 7.59 7.48
α α/7.416
7.34 7.272(5)/
α/5.291 5.314 5.403
γ-Energy / Intensity (MeV/%)
0.0450 0.061 0.1060 0.1539 0.1617 At k x-ray 0.0995 0.21798 0.4091
0.1509 0.0589 0.1453 0.13150 0.21575 0.8367 (0.1–2.21) 0.18606 0.25373
(3) (0.0545-0.721)
Ra
88
Ra Ra 203m Ra 203 Ra 204 Ra 205m Ra 205 Ra 206 Ra 201 202
487_S11.indb 181
202.0099 203.0093 204.0065 205.0063 206.00383
0+
0+
0+
4/17/06 11:01:23 AM
Table of the Isotopes
11-182 Elem. or Isot. Ra Ra 209 Ra 210m Ra 210 Ra 211m Ra 211 Ra 207 208
Natural Abundance (Atom %)
Atomic Mass or Weight 207.0038 208.00184 209.00199 210.00050 211.00090
Half-life/ Resonance Width (MeV) 1.3 s 1.4 s 4.6 s 2.4 μs 3.7 s 3.9 μs 13. s
Decay Mode/ Energy (/MeV) α/7.270 α/7.273 α/7.150
Particle Energy/ Intensity (MeV/%) 7.133(5)/ 7.133(5)/ (6.50-7.14)
Spin (h/2 π) 0+ 5/2-
α/7.610
7.020(5)/
0+
α/7.046 EC/5.0
6.907/99. (6.26-6.79)
(5/2-)
α/7.033 IT
6.901(2)/
0+
Ra 212 Ra 213m Ra
211.99979
8.3 μs 13.0 s 2.1 ms
Ra
213.00038
2.7 m
Ra Ra
214.00011
> 0.015 ms 2.46 s
α/7.272
0+
Ra Ra
215
215.00272
7.6 μs 1.64 ms
7.14/99.8/ 6.51/0.2
α/8.864
(9/2+)
Ra Ra 218 Ra 219 Ra
216.00353 217.00632 218.00714 219.01009
0.18 μs 1.6 μs 26. μs 0.010 s
α/9.526 α/9.161 α/8.547 α/8.132
Ra
220.01103
18. ms
α/7.593
Ra
221.013917
29. s
α/6.879
Ra
222.015375
36.2 s
α/5.590
Ra
223.018502
11.43 d
α/5.979
Ra
224.020212
3.66 d
α/5.789
Ra
225.023612
14.9 d
β- /0.36 α
Ra
226.025410
1599. y > 4 × 1018 y
α/4.870 sf/4 × 10-14
7.883(6)/2.8 8.171(3)/1.4 8.700(3)/95.9 9.349(8)/ 8.992(8)/ 8.390(8)/ 7.680(10)/65 7.982(9)/35 7.39/5 7.45/95 6.254(10)/0.7 6.578(5)/3 6.585(3)/8 6.608(3)/35 6.669(3)/21 6.758(3)/31 6.237(2)/3.0 6.556(2)/97 5.287(1)/0.15 5.338(1)/0.13 5.365(1)/0.13 5.433(5)/2.3 5.502(1)/1.0 5.540(1)/9.2 5.607(3)/24 5.716(3)/52 5.747(1)/9 5.857(1)/0.32 5.872(1)/0.85 5.034(10)/0.003 5.047(1)/0.007 5.164(5)/0.007 5.449(2)/4.9 5.685(2)/95 0.32/100 5.01 × 10-5 4.98 × 10-6 4.194(1)/0.001 4.343(1)/0.006 4.601(1)/6.16
212m
213
214m 214
215m
216 217
220
221
222
223
224
225
226
487_S11.indb 182
EC/(20)/3.88 α/(80)/6.860
6.521(3)/4.8 6.622(3)/39 6.730(3)/36
(1/2-)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
+0.87
+0.40
+0.878
+0.48
(0.196-1.048) 0.773/100 0.852/74 0.055–1.048
0.465 -0.180
+1.9
0+ +0.271
0+
(3/2+)
0+
(0.120-0.665) (0.440-0.824)
(0.181-1.382) 0.642
0+
(3/2+)
(0.387-0.634) (0.0967-0.775) 574.9 (0.396-0.802)
(0.160-1.061) 0.1024 0.11010 0.2125
+0.613
0+ 9/20+
5/2+
γ-Energy / Intensity (MeV/%)
+1.25
0.324 0.1448–0.8402 Rn k x-ray 0.12231 0.14418 0.15418 0.15859 0.26939 0.32388 0.33328 0.44494 (0.10–0.7) Rn k x-ray 0.2407 0.4093 0.6501
-0.734
Ac k x-ray 0.0434 Rn k x-ray 0.1861/3.64 0.2624
4/17/06 11:01:25 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
11-183 Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Ra
227.029178
42. m
β- /1.325
Ra
228.031070
5.76 y
β- /0.046
Ra Ra
229.03496 230.03706
4.0 m 1.5 h
β- /1.76 β- /1.0
231.0412 232.0436 233.0481 234.051
1.7 m 4. m 30. s ~ 30. s
ββββ-/
208.0116 209.00949 210.0094 211.0077 212.0078 213.0066 214.00690
0.04 s ~ 26 ms 27 ms ~ 25. ms ~ 0.1 s ~ 0.10 s 0.34 s 0.20 s 0.9 s 0.73 s 8.2 s
α α α/ α/ α/ α/ α/7.610 α/7.620 α/7.520 α/7.500 α/(86)/7.350 EC/(14)/6.34
215.00645
0.17 s
α/7.750
0.44 ms
α/
227
228
229 230
Ra Ra 233 Ra 234 Ra 231 232
Particle Energy/ Intensity (MeV/%) 4.784(1)/93.8 1.03/ 1.30/ 0.039/50 0.014/30 0.026/20 1.76/ 0.7/
Spin (h/2 π) (3/2+)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b) -0.404
+1.5
+0.503
+3.1
0+
(3/2+) 0+
γ-Energy / Intensity (MeV/%) 0.053–2.448 Ac L x-ray Ac k x-ray 0.02739 0.0135 (0.006–0.0306) 0.0145–0.1715 0.0631 0.0720 0.2028 0.4698 0.4787
0+ 0+
Ac
89
Ac Ac 207 Ac 208m Ac 208 Ac 209 Ac 210 Ac 211 Ac 212 Ac 213 Ac 214 Ac 206m 206
Ac
215
206.0145 207.0120
Ac
216m
Ac
216.00872
44. ms
α/9.241
Ac Ac 218 Ac 219 Ac 220 Ac
217.00935 218.01164 219.01242 220.01476
0.7 μs 0.07 μs 1.1 μs 0.012 ms 26. ms
α/ α/9.832 α/9.380 α/8.830 α/8.350
Ac
221.01559
52. ms
α/7.790
63. s
α/(>89)/
216
217m 217
221
Ac
222m
487_S11.indb 183
7.79 7.75 7.69 7.72 7.62 7.58 7.462(8)/ 7.480(8)/ 7.379(8)/ 7.364(8)/ 7.215/54 7.081/42 (6.48-7.15) 7.60/99.57 7.21/0.46 7.03/0.20 6.96/0.14 8.198(8)/1.7 8.283(8)/2.5 9.028(5)/49 9.106(5)/46 8.990(2)/10 9.070(8)/90 10.540/100 9.650(10)/100 9.205(15)/ 8.664(10)/ 7.610(20)/23 4.680(20)/21 7.790(10)/13 7.850(10)/24 7.985(10)/4 8.005(10)/5 8.060(10)/6 8.195(10)/3 7.170(10)/2 7.375(10)/10 7.440(15)/20 7.645(10)/70 6.710(20)/7
(9/2-) (5+)
(0.0626-0.754)
(9/2-)
0.399 0.582 0.654
(9-)
(0.0826-1.375)
(1-)
9/2(9/2-)
4/17/06 11:01:27 AM
Table of the Isotopes
11-184 Elem. or Isot.
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV) EC/(1)/ I.T./(<10)/
Ac
222.01784
5. s
α/7.141
Ac
223.01914
2.1 m
α/(99)/6.783 EC/(1)/0.59
Ac
224.021723
2.7 h
EC/(90)/1.403 α/(10)/6.323
Ac
225.023230
10.0 d
α/5.935
Ac
226.026098
1.224 d
EC/(17)/0.640 β- /(83)/1.116 α/(0.006)/5.51
222
223
224
225
226
Ac
227.027752
21.77 y
β- /98.6/0.045 α/(1.4)/5.043
Ac
228.031021
6.15 h
β- /2.127
227
228
487_S11.indb 184
Natural Abundance (Atom %)
Particle Energy/ Intensity (MeV/%) 6.750(20)/13 6.810(20)/24 6.840(20)/9 6.890(20)/13 6.970(20)/7 7.000(20)/13 6.967(10)/6 7.013(2)/94 6.131(2)/0.12 6.177(2)/0.94 6.293(1)/0.47 6.326(1)/0.3 6.332(2)/0.14 6.360(1)/0.22 6.397(1)/0.13 6.448(1)/0.2 6.473(1)/3.1 6.523(2)/0.6 6.528(1)/3.1 6.563(1)/13.6 6.582(3)/0.3 6.646(1)/44 6.661(1)/31 5.841(1)/0.5 5.860(1)/0.75 5.875(1)/1.7 5.941(1)/4.4 6.000(1)/6.7 6.013(1)/1.4 6.056(1)/22 6.138(1)/26 6.154(1)/1.0 6.204(1)/12 6.210(1)/20 5.286(1)/0.2 5.444(3)/0.1 5.554(1)/0.1 5.608(1)/1.1 5.636(1)/4.5 5.681(1)/1.4 5.722(1)/2.9 5.731(1)/10 5.791(1)/9 5.793(1)/18
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
1(5/2-)
0.0725 0.0839 0.0927 0.0990 0.1917 0.2158 0.3588 0.4768
0-
Ra L x-ray Ra k x-ray 0.08426 0.13150 0.1571 0.21575 0.2619 (0.03–0.3)
3/2
Fr k x-ray 0.06296/0.48 0.09982/1.36 0.1084 0.1116 0.1451 0.150.02/0.691 0.15724 0.18795/0.54 0.0075–0.8085 Ra k x-ray Th k x-ray 0.07218 0.15816 0.23034 0.0838/23. 0.0811/14. 0.2696/13. (0.044–1.27) Th L x-ray Th k x-ray 0.12903 0.33842 0.91116 0.96897 (0.2–1.96)
(1-)
5.399(5)/0.006
0.045/54 4.869(1)/0.09 4.938(1)/0.52 4.951(1)/0.65 1.11/32 1.85/12 2.18/11
γ-Energy / Intensity (MeV/%)
(3/2-)
(3+)
+1.1
+1.7
4/17/06 11:01:28 AM
Table of the Isotopes Elem. or Isot.
229.03302
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 1.04 h β- /1.10
Particle Energy/ Intensity (MeV/%) 1.1/
Ac
230.0363
2.03 m
β- /2.7 β-, sf
1.4/ /0.000119
1+
231
Ac
231.0386
7.5 m
β- /2.1
2.1/100
(1/2+)
Ac Ac 234 Ac
232.0420 233.0446 234.0484
2.0 m 2.4 m 40. s
β- /3.7 β- / β- /
~ 0.01 s ~ 9 ms 0.04 s ~ 30. ms 0.14 s 0.10 s 1.2 s
α α α α/ α/7.840 α/7.825 α/7.660
0.14 ms
α
Ac
229
230
232 233
Th
Natural Abundance (Atom %)
11-185 Atomic Mass or Weight
90
232.03806(2)
Th Th 211 Th 212 Th 213 Th 214 Th 215 Th
209.0177 210.0158 211.0149 212.01298 213.0130 214.01150 215.01173
209 210
Th
216m
Th
216.01106
27. ms
α/8.071
217
Th
217.01311
0.25 ms
α/9.424
Th Th 220 Th 221 Th
218.01328 219.01554 220.01575 221.01818
0.11 μs 1.05 μs 10. μs 2. ms
α/9.847 α/9.510 α/8.953 α/8.628
Th
222.01847
2.24 ms
α/8.129
Th
223.02081
0.60 s
α/7.454
Th
224.02147
1.05 s
α/7.305
Th
225.023951
8.72 m
EC/(10)/0.68 α/(90)/6.920
Th
226.024903
30.83 m
α/6.454
216
218 219
222
223
224
225
226
487_S11.indb 185
Spin (h/2 π) (3/2+)
(2-) (1/2+) (1+)
8.08 7.90 7.79 7.80/ 7.692(10)/ 7.677(10)/ 7.33(10)/8 7.395(8)/52 7.524(8)/40 9.93/74 8.00, 9.31 7.92/99.46 7.30/0.54 9.27/94.6 8.46/3.8 8.73/1.6 9.665(10)/ 9.340(20)/ 8.790(20)/ 7.732/7 8.142/72 8.469/21 7.980/97.7 7.599/2.3 7.29(1)/41(5) 7.32(1)/29(5) 7.350(15)/20(5) 7.390(15)/10(4) 6.768(5)/1.2 6.997(5)/19 7.170(5)/7 6.441(2)/15 6.479(2)/43 6.501(3)/14 6.627(3)/3 6.650(5)/3 6.700(5)/2 6.743(3)/7 6.796(2)/9 6.026(1)/0.2
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.09335/2.43 0.16451/2.61 0.56916/2.24 0.0111–0.898 Th k x-ray 0.45497 0.50820 (0.12–2.5) 0.14379 0.18574 0.22140 0.28250 0.3070
0+ 0+ 0+ (1/2-)
0+
0.134 0.192 (0.069-0.295) (0.0905-1.478) 0.628 (0.546-0.822)
0+ 0+
0+
0+
(3/2+)
0+
Ra k x-ray
4/17/06 11:01:29 AM
Table of the Isotopes
11-186 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Th
227.027704
18.72 d
α/6.146
Th
228.028741
1.913 y
α/5.520
Th Th
229.031762
13.9 h 7.9 × 103 y
α α/5.168
Th
230.033134
7.54 × 104 y
α/4.771
> 2 × 1018 y
sf/< 4 × 10-12
231.036304
1.063 d
β- /0.390
232.038055
1.40 × 1010 y 1.2 × 1021 y
α/4.081 sf/1.1 × 10-9
Th
233.041582
22.3 m
β-/1.245
Th
234.043601
24.10 d
β- /0.273
Th
235.04751
7.2 m
β- /1.9
Th
236.0499
37.5 m
β- /~ 1.0
Th Th
237.0539 238.0565
5.0 m 9.4 m
β-
91
Pa
231.03588(2)
Pa Pa 214 Pa 215 Pa 216 Pa
212.0232 213.0211 214.0209 215.0192 216.0191
~ 5 ms 7 ms 17 ms 15. ms 0.19 s
α α α α α/
227
228
229m 229
230
Th
231
Th
232
233
234
235
236
237 238
212 213
487_S11.indb 186
100.
Particle Energy/ Intensity (MeV/%) 6.041(1)/0.19 6.098(1)/1.3 6.2283(4)/23 6.3375(4)/75
5.1770(2)/0.18 5.2114(1)/0.4 5.3405(1)/26.7 5.4233(1)/73 4.83-5.08 4.814/9.3 4.845(5)/56 4.9008(5)/10.2 4.689–5.077 4.4383(6)/0.03 4.4798(6)/0.12 4.6211(6)/23.4 4.6876(6)/76.3 0.138/22 0.218/20 0.305/52
3.830(10)/0.2 3.952(5)/23 4.010(5)/77 1.245/
0.102/20 0.198/72
Spin (h/2 π)
γ-Energy / Intensity (MeV/%) 0.1112 0.2421 0.1310 0.1733–0.9295 Ra L x-ray Ra k x-ray 0.05014 0.23597 0.25624 (0.02–1.0)
+0.46
0.1935/4.3 0.21089/277 0.13697/1.21 0.0111–0.6036 0.0677/0.46 0.1439/0.078
(3/2+)
0+
5/2+
0+
5/2+
0+
½+
0+
0+
0+
8.27 8.24 8.12 8.08/100 7.95/51 7.82/45 7.79/4
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
+4.
Pa L x-ray Pa k x-ray 0.02564 0.084203/ (0.02–0.3) 0.0590 0.124 Pa L x-ray Pa k x-ray 0.02938 0.08653 0.45930 (0.02–1.2) Pa L x-ray 0.06329/4.1 0.09235/2.4 0.09278/2.4 0.4162 0.6594 0.7272 0.747 0.9318 Pa k x-ray 0.1107 0.0890
0.134
4/17/06 11:01:31 AM
Table of the Isotopes Elem. or Isot. Pa
217m
Natural Abundance (Atom %)
11-187 Atomic Mass or Weight
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 1.08 ms α/
Pa
217.0183
3.8 ms
α/8.490
218
Pa
218.02004
0.12 ms
α/
Pa Pa 221 Pa 222 Pa
219.0199 220.0219 221.0219 222.0237
0.05 μs 0.8 μs 6. μs ~ 4.3 ms
α α α α/8.700
Pa
223.0240
~ 6.5 ms
α/8.340
Pa
224.02563
0.84 s
α/7.630
Pa
225.0261
1.8 s
α/7.380
Pa
226.02795
1.8 m
α/(74)/6.987 EC/(26)/2.83
Pa
227.02881
38.3 m
α/(85)/6.582 EC/(15)/1.02
Pa
228.031051
22. h
EC/(98)/2.111 α/(2)
Pa
229.032097
1.5 d
EC/(99.8)/0.32 α/(0.2)/5.836
Pa
230.034541
17.4 d
EC/(90)/1.310 β-/(10)/0.563
Pa
231.035884
3.25 × 104 y
α/5.148
> 2 × 1017 y
sf/< 1.6 × 10-15
217
219 220
223
224
225
226
227
228
229
230
231
487_S11.indb 187
Particle Energy/ Intensity (MeV/%) 10.16/72 8.306/11 9.55/6 9.69/2 8.337/99 7.873/0.4 7.728/0.3 7.710/0.3 9.54/31 9.61/69
9.08(3) 8.180/50 8.330/20 8.540/30 8.006(10)/55 8.196(10)/45 7.555(10)/75(3) 7.46(1)/25(3) 7.195(10)/30 7.245(10)/70 6.728(10)/0.7 6.823(10)/35 6.863(10)/39 6.357(4)/7 6.376(10)/2.2 6.401(4)/8 6.416(4)/13 6.423(10)/10 6.465(4)/43 5.779/0.23 5.805/0.15 6.078/0.4 6.105/0.25 6.118/0.22
5.536(2)/0.02 5.579(2)/0.09 5.668(2)/0.05 0.51/
4.6781(5)/1.5 4.7102(5)/1.0 4.7343(5)/8.4 4.8513(5)/1.4 4.9339(5)/3 4.9505(5)/22.8 4.9858(5)/1.4 5.0131(5)/25.4 5.0292(5)/20 5.0318(5)/2.5
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) 0.4504–0.8208
0.0466–0.634
0.092
0.1945 (0.028–0.412)
(5/2-)
(3+)
0.0649 0.0669 0.1100
+3.5
Th k x-ray 0.409/100 0.4631/222 0.91116/242 0.96464/120 0.96897/149 0.058–1.96 0.04244 (0.024–0.18)
(2-)
2.0
3/2-
2.01
Th L x-ray Th k x-ray 0.4437 0.45477 0.89876 0.91856 0.95199 (0.053–1.07) Ac L x-ray Ac k x-ray 0.01899 0.027396 0.03823 0.04639 0.25586 0.26029 0.28367 0.30007
(5/2+)
-1.7
4/17/06 11:01:32 AM
Table of the Isotopes
11-188 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
232.03859
1.31 d
β- /1.34
Pa
233.040247
27.0 d
β-/0.571
1.17 m
β- /99.9/2.29 IT/0.13/
233
Pa
234m
Particle Energy/ Intensity (MeV/%) 5.0587(5)/11
Spin (h/2 π)
0.15/40 0.256/60
3/2-
(0-)
234.043308
6.69 h
β- /2.197
0.51/
(4+)
Pa Pa
235.04544 236.0487
24.4 m 9.1 m
β- /1.41 β- /2.9
1.4/97 1.1/40 2.0/50 3.1/10
(3/2-) (1-)
Pa
237.0512
8.7 m
β- /2.3
1.1/60 1.6/30 2.3/10
(1/2+)
Pa
238.0545
2.3 m
β- /3.5
1.2/ 1.7/
(3-)
Pa
239.0573
1.8 h
U
238.02891(3) α α α α α α/ α/ α/
8.02 10.68 8.61 9.68(4)/
α/7.560
235 236
237
238
239
U U 218 U 219 U 222 U 223 U 224 U 225 U
217.0244 218.02354 219.0249 222.0261 223.0277 224.02761 225.02939
~ 0.2 ms ~ 0.56 ms 0.5 ms ~ 0.08 ms ~ 1.μs 0.02 s ~ 1. ms 84. ms
U
226.02934
0.26 s
217
218m
226
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
(2-)
Pa
234
487_S11.indb 188
Decay Mode/ Energy (/MeV)
Pa
232
92
Half-life/ Resonance Width (MeV)
8.78(4)/ 8.46/100 7.87/83 7.82/15 7.63/2 7.56/86 7.38/14
+4.0
-3.0
γ-Energy / Intensity (MeV/%) 0.30264 0.33007 (0.02–0.61) U k x-ray 0.10900 0.15009 0.89439 0.96934 (0.10–1.17) U L x-ray U k x-ray 0.30017 0.31201/38.4 (0.0286-0.456) U k x-ray 0.25818/0.07 0.76641/0.32 1.0009/0.86 (0.06–1.96) U L x-ray U k x-ray 0.1312/0.03 0.5695/0.02 0.9256/0.02 (0.02–1.99) 0.0308–0.65893 U k x-ray 0.64235 0.68759 1.7630 (0.04–2.18) 0.4986 0.5293 0.5407 0.8536 0.8650 (0.04–1.4) 0.10350 0.1785 0.4484 0.6350 0.6800 1.01446 (0.04–2.5)
0+ 0+ 0+
0+
4/17/06 11:01:34 AM
Table of the Isotopes Elem. or Isot. 227 228
U U
Natural Abundance (Atom %)
11-189 Atomic Mass or Weight
227.03116 228.03137
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 1.1 m α/7.200 9.1 m α/6.803
229
U
229.03351
58. m
EC/(80)/1.31 α/(20)/6.473
230
U
230.033940
20.8 d > 4 × 1010 y
α/5.992 sf/< 10-10
231
U
231.036294
4.2 d
EC/0.36 α/(10-3)
232
U
232.037156
70. y 2.6 × 1015 y
α/5.414 sf/2.7 × 10-12
233
U
233.039635
1.592 × 105 y > 2.7 × 1017 y
α/4.909 sf/6 × 10-11
234
U
0.0054(5)
234.040952
2.455 × 105 y 1.5 × 1016 y
α/4.856 sf/1.6 × 10-9
U U
0.7204(6)
235.043930
26. m 7.04 × 108 y 1.0 × 1019 y
IT/0.0007 α/4.6793 sf/7 × 10-9
235m 235
Particle Energy/ Intensity (MeV/%) 6.870/ 6.404(6)/0.6 6.440(5)/0.7 6.589(5)/29 6.681(6)/70 6.223/3 6.297(3)/11 6.332(3)/20 6.360(3)/64 5.5866(3)/0.01 5.6624(3)/0.26 5.6663(3)/0.38 5.8178(3)/32 5.8887(3)/67 5.46/1.6 × 10-3 5.47/1.4 × 10-3 5.40/1. × 10-3 4.9979(1)/0.003 5.1367(1)/0.3 5.2635(1)/31 5.3203(1)/69 4.7830(8)/13.2 4.8247(8)/84.4 4.510–4.804 4.604(1)/0.24 4.7231(1)/27.5 4.776(1)/72.5 4.1525(9)/0.9 4.2157(9)/6. 4.3237(9)/4.6 4.3641(9)/19. 4.370(4)/6 4.3952(9)/57. 4.4144(9)/2.1 4.5025(9)/1.7 4.5558(9)/4.2 4.5970(9)/4.8 4.332(8)/0.26 4.445(5)/26 4.494(3)/74
Spin (h/2 π) 0+
0+
0+
+0.59
3.66
Th L x-ray 0.04244 0.09714 (0.0252–1.119) 0.05323/0.156 0.12091
-0.38
4.9
Th L x-ray Th k x-ray 0.10917 0.14378 0.16338 0.18574 0.20213 0.20533 0.22140 (0.03–0.79) Th L x-ray 0.04946/100 0.11279/24.1 0.17115/0.080 Np L x-ray Np k x-ray 0.05953 0.20801 Th L x-ray 0.04955/.06 0.1135/.01 (0.522–0.681)
0+
1/2+ 7/2-
U
236.045568
2.342 × 107 y 2.5 × 1016 y
α/4.569 sf/9 × 10-8
237
U
237.048730
6.75 d
β- /0.519
0.24/ 0.25/
1/2+
238
U
238.050788
4.47 × 109 y 8.2 × 1015y
α sf/5 × 10-5
0+
239
U
239.054293
23.5 m
β- /1.265
240
U
240.05659
14.1 h
β- /0.39
4.0395/0.23 4.147(5)/23 4.196(5)/77 1.2/ 1.3/ 0.36/
242
U
242.0629
16.8 m
β- /~ 1.2
487_S11.indb 189
Th L x-ray 0.07218 0.15421 0.23034 (0.081–0.8565) Pa L x-ray Pa k x-ray 0.02564 0.08420
(5/2-)
5/2+
0+
5/2+ 0+
0+
γ-Energy / Intensity (MeV/%) 0.095 0.152 0.187 0.246
(3/2+)
236
99.2742(10)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
Np L x-ray 0.04410 0.05558 0.06760
4/17/06 11:01:35 AM
Table of the Isotopes
11-190 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%)
Np
93
Np Np 227 Np
225.0339 226.0352 227.0350
> 2 μs 0.03 s 0.51 s
Np
228.0362
61. s
Np Np
229.0363 230.0378
4.0 m 4.6 m
Np
231.03825
48.8 m
Np
232.0401
14.7 m
EC/99 /2.7
(4-)
Np
233.04074
36.2 m
EC/1.2
(5/2+)
Np
234.04290
4.4 d
β+, EC/1.81
Np
235.044063
1.085 y
EC/99.9 /0.124 α/0.001/5.191 EC/52 / β- /48 /
5/2+
(6-)
225 226
228
229 230
231
232
233
234
235
Np
22.5 h
236m
EC/60(7)/ α/40(7)/, sf α/7.010 EC/97 /3.6 α/3 EC/98 /1.8 α/2 /6.368
8.04(2)/ 7.65(2)/ 7.68(1)/
6.890(20) 6.660(20) 6.280/2
0.79/
5/2
(1-)
236.04657
1.55 × 105 y
EC/91 /0.94 β- /9 /0.49
Np
237.048173
2.14 × 106 y 1 × 1018 y
α/4.957 sf/2.1 × 10-10
Np
238.050946
2.117 d
β- /1.292
Np
239.052939
2.355 d
β- /0.722
0.341/30 0.438/48
5/2+
7.22 m
β- /99.9 / IT/0.1 /
2.18/
(1+)
237
238
239
Np
240m
0.2629 0.3475 0.3703 U L x-ray U k x-ray 0.3268 0.81925 0.86683 U L x-ray U k x-ray 0.29887 0.31201 U L x-ray U k x-ray 1.5272 1.5587 1.6022 U k x-ray
(0+)
Np
236
487_S11.indb 190
α/ α/
4.6395(5)/6.5 4.766(5)/9.7 4.7715(5)/22.7 4.7884(5)/47.8 4.558–4.873 1.2/
5/2+
2+
+3.14
+3.89
U L x-ray Pu L x-ray U k x-ray 0.64235 0.68759 U L x-ray U k x-ray 0.10423 0.16031 Pa L x-ray Pa k x-ray 0.029378/15 0.08653/12 (0.03–0.28) Pu L x-ray Pu k x-ray 0.98447/25.2 1.02855/18.3 (.044–1.026) Pu L x-ray Pu k x-ray 0.10613 0.228186/11 0.27760/15 (0.04–0.50) 0.25143 0.26333 0.55454 0.59735
4/17/06 11:01:37 AM
Table of the Isotopes Elem. or Isot. Np
240
Np
241
Natural Abundance (Atom %)
11-191 Atomic Mass or Weight
240.05616
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 1.032 h β- /2.20
Particle Energy/ Intensity (MeV/%) 0.89/
5+
241.0583
13.9 m
β- /1.3
1.3/
5/2+
2.2 m
β- /
β- /2.7
2.7/
6+
7.81(2)/ 7.46/ 7.06/81 7.00/19
0+
Np
242m
Np
242.0616
5.5 m
Np Np
243.06428 244.0679
1.9 m 2.3 m
Pu Pu 230 Pu
228.03874 229.0402 230.03965
~ 1.1 s ~ 1.5 m 1.7 m
α/ α/ α/
Pu
231.04110
8.6 m
Pu
232.04119
34. m
EC/90 α/10 EC/>80/1.1 α/<20/6.716
Pu
233.04300
20.9 m
EC(99.9)/1.9 α/0.1 /6.416
Pu
234.04332
8.8 h
EC/94 /0.39 α/6 /6.310
Pu
235.04529
25.3 m
Pu Pu
236.046058
1.2 μs 2.87 y 1.5 × 109 y
EC/99+ /1.2 α/0.003/5.957
Pu
237.048410
45.7 d
EC/99.9 /0.220 α/0.003 /5.747
Pu
238.049560
87.7 y 4.75 × 1010 y
α/5.593 sf/1.8 × 10-7
Pu
239.052163
2.410 × 104 y 8. × 1015 y
α/5.244 sf/3 × 10-10
242
243 244
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
(1+)
γ-Energy / Intensity (MeV/%) 0.1471/ 0.5664 0.6008 0.1330/ 0.1740 0.280 0.15910 0.2651/ 0.78570 0.9448/ 0.6209 0.73620 0.78074 1.47340 (0.04–2.37)
Pu
94
228 229
231
232
233
234
235
236m 236
237
238
239
487_S11.indb 191
α/5.867 sf/1.9 × 10-7
6.72 6.542(10)/38 6.600(10)/62
0+
0+
0.1503 0.1804 0.2353 0.5002 0.5346/ 1.0352/
6.300(20)/0.1
6.035(3)/0.024 6.149(3)/1.9 6.200(3)/4. 5.850(20)/0.003 5.611/0.21 5.7210/30.5 5.7677(1)/69.3 5.334(4)/0.0015 5.356(4)/0.0006 5.650(4)/0.0007
5.3583(1)/0.10 5.465(1)/28.3 5.4992(1)/71.6 5.055/0.047 5.076/0.078 5.106/11.9 5.144/17.1 5.157/70.8 (4.74 –5.03)
0+
(5/2+)
0+
7/2-
0+
1/2+
+0.203
0.0476/0.07 0.109/0.02 (0.17–0.97) Np L x-ray Np k x-ray 0.026344 0.03319 0.05954 (0.03–0.5) U k x-ray 0.04347 (0.04–1.1) U k x-ray 0.05162 0.05682 0.12928 0.37502 0.41369
4/17/06 11:01:38 AM
Table of the Isotopes
11-192 Elem. or Isot. Pu
240
Natural Abundance (Atom %)
Atomic Mass or Weight 240.053814
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 6.56 × 103 y α/5.255 sf/5.7 × 10-6 1.14 × 1011 y
Particle Energy/ Intensity (MeV/%) 5.0212(1)/0.07 5.1237(1)/26.4 5.1681(1)/73.5
Spin (h/2 π)
4.853/3 × 10-4 4.897/0.002
5/2+
4.7546(7)/0.098 4.8564(7)/22.4 4.9006(7)/78 0.49/21 0.58/60
0+
0+
Pu
241.056852
14.3 y
Pu
242.058743
< 6 × 1016 y 3.75 × 105 y 6.77 × 1010 y
β-/99+/0.0208 α/0.002 /5.139 sf/> 2.4 × 10-14 α/4.983 sf/5.5 × 10-4
Pu
243.062003
4.956 h
β- /0.582
Pu
244.064204 245.06775
α/99.9/4.665 sf/0.12 β- /1.21
4.546(1)/19.4 4.589(1)/80.5 0.93/57 1.21/11
0+
Pu
8.00 × 107 y 6.6 × 1010 y 10.5 h
Pu
246.07021
10.85 d
β- /0.40
0.150/85 0.35/10
0+
Pu
247.0741
2.3 d
Am Am 234 Am 235 Am
232.0466 233.0464 234.0478 235.0480
0.9 m ~ 3.2 m 2.3 m 10.3 m
Am Am 237 Am
236.0496 237.0500
2.9 m 3.6 m 1.22 h
Am
238.05198
Am
241
242
243
244
245
246
247
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
-0.683
+6.
γ-Energy / Intensity (MeV/%) U L x-ray 0.04524 0.10423 (0.04–0.97) 0.14854 0.1600 U L x-ray 0.04491 0.10350 Am L x-ray 0.0417 0.0839 U L x-ray 0.0439 Am L x-ray Am k x-ray 0.2804 / 0.30832 0.32752 0.56014 (0.03–1.2) Am L x-ray Am k x-ray 0.04379 0.22371
7/2+
(9/2-)
Am
95
232 233
236m
6.78
6.46/0.4
EC EC/99.98 /1.7 α/0.02 /6.20
6.042(5)/0.02
1.63 h
EC/2.26 α/0.0001 /6.04
5.940/0.0001
239.053025
11.9 h
EC/99.99/0.803 α/0.01/5.924
Am
240.05530
2.12 d
EC/1.38 α/5.592
Am
241.056829
432.7 y 1.2 × 1014 y
α/5.637 sf/3.6 × 10-10
236
238
239
240
241
487_S11.indb 192
EC/~ 5.0 α EC/4.2 EC α
5.734(2)/0.001 5.776(2)/0.008
5.378(1)/16 × 10-4
5.2443(1)/0.002 5.3221(1)/0.015 5.3884(1)/1.4 5.4431(1)/12.8
(1-) (5-) (5/2-)
1+
5/2-
(3-)
5/2-
+1.58
+3.1
Pu K x-ray 0.291/100 (0.170-0.828) (0.583-0.713) (0.158-1.038) Pu k x-ray 0.14559 0.28026 0.43845 Pu L x-ray Pu k x-ray 0.91870 0.96278 Pu L x-ray Pu k x-ray 0.18172 0.22818 0.27760 Pu L x-ray Pu k x-ray 0.88878 0.98764 (0.1–1.3) Np L x-ray 0.02634 /.024 0.03319/.00126 0.05954/0.359
4/17/06 11:01:40 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
11-193 Atomic Mass or Weight
Am
Half-life/ Resonance Width (MeV)
141. y
242m
> 3 × 1012 y
Decay Mode/ Energy (/MeV)
IT/99.5/0.048 α/0.5/5.62 sf/< 4.7 × 10-9
Particle Energy/ Intensity (MeV/%) 5.4857(1)/85.2 5.5116(1)/0.20 5.5442(1)/0.34 5.141(4)/0.026 5.2070(2)/0.4
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) (0.03–1.128)
5-
+1.0
+6.5
Am L x-ray 0.04863 0.08648 0.10944 0.16304 Pu L x-ray Cm L x-ray Pu k x-ray 0.0422 0.04453 0.04354 0.07467 0.08657 0.11770 0.14197 0.0429 Am L x-ray Cm k x-ray 0.7460 0.9000 Cm L x-ray Cm k x-ray 0.25299 Cm L x-ray Cm k x-ray 0.27002 0.79881 1.06201 1.07885 (0.04–2.29) Cm L x-ray Cm k x-ray 0.1529 0.2046 0.6786 Cm L x-ray Cm k x-ray 0.2267 / 0.2853 /
Am
242.059549
16.02 h
β- /83 /0.665 EC/17 /0.750
0.63/46 0.67/37
1-
+0.388
-2.4
Am
243.061381
7.37 × 103 y 2. × 1014 y
α/5.438 sf/3.7 × 10-9
5/2-
+1.5
+2.9
Am Am
244.064285
~ 26. m 10.1 h
β- /1.498 β- /1.428
5.1798(5)/1.1 5.2343(5)/11 5.2766(5)/88 5.394(5)/0.12 5.3500(5)/0.16
Am
245.066452
2.05 h
β- /0.894
0.65/19 0.90/77
(5/2+)
25.0 m
β- /
1.3/79. 1.60/14 2.1/7
2-
1.2/
(7-)
7.34/ 7.24/
0+
242
243
244m 244
245
Am
246m
Am
246.06978
39. m
β- /2.38
Am
247.0721
22. m
β- /1.7
~ 51. s
α/ α
246
247
(1-)
Cm
96
Cm Cm 235 Cm 236 Cm 237 Cm 238 Cm 233 234
Cm
239.0550
~ 3. h
EC/1.7 EC/2.5 EC/>90 /0.97 α/<10 /6.632 EC/1.7
Cm
240.055530
27. d
α/6.397
1.9 × 106 y
sf/3.9 × 10-6
239
240
487_S11.indb 193
233.0508 234.05016 235.0514 236.0514 237.0529 238.05303
2.4 h
0+
6.520(50)/<10
5.989/0.014 6.147/0.05 6.2478(6) /28.8 6.2906(6) /70.6
0+
0+
0.0407 0.1466 0.1874
4/17/06 11:01:41 AM
Table of the Isotopes
11-194 Elem. or Isot. Cm
241
Cm
242
Cm
243
Cm
244
Cm
245
Natural Abundance (Atom %)
Atomic Mass or Weight 241.057653
242.058836
243.061389
244.062753
245.065491
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 32.8 d EC/99 /0.768 α/1 /6.184
162.8 d
α/6.216
7.0 × 106 y
sf/6.4 × 10-6
29.1 y
α/6.167
5.5 × 1011 y
sf/5.3 × 10-9
18.1 y
α/5.902
1.32 × 107 y
sf/1.4 × 10-4
8.48 × 103 y
α/5.623
1.4 × 1012 y
sf/6.1 × 10-7
α/5.476 sf/0.026 α/5.352
Cm
246.067224
Cm
247.070354
4.76 × 103 y 1.8 × 107 y 1.56 × 107 y
Cm
248.072349
3.48 × 105 y
α/99.92 /5.162
Cm
249.075953
4.15 × 106 y 64.15 m
sf/8.38 β- /0.900
Cm
250.07836
~ 9.7 × 103 y
Cm
251.08229
16.8 m
sf/85.8 α/5.27 β- /1.42
Cm
252.0849
<2d
238.0583 239.0583 240.0598 241.0602 242.0620 243.063008
2.4 m
EC/5.0
~ 4.8 m 4.6 m 7.0 m 4.5 h
EC EC/3.0 EC/99.8 /1.508
246
247
248
249
250
251
252
Particle Energy/ Intensity (MeV/%) 5.8842(4)/0.12 5.9291(4)/0.18 5.9389(4)/0.69
Spin (h/2 π) 1/2+
5.9694(1)/0.035 6.069(1)/25 6.1129(1)/74
0+
5.6815(5) /0.2 5.6856(5)/1.6 5.7420(5)/10.6 5.7859(5)/73.3 5.9922(5)/6.5 6.0103(5)/1.0 6.0589(5)/5 6.0666(5)/1.5
5/2+
5.6656/0.02 5.7528/23 5.8050/77 5.515/0.004 5.235(10)/0.3 5.3038(10)/5.0 5.3620(7)/93 5.4927(11)/0.8 5.5331(11)/0.6
0+
5.343(3)/21 5.386(3)/79 4.818(4)/4.7 4.8690(20)/71 4.941(4)/1.6 4.9820(20)/2.0 5.1436(20)/1.2 5.2104(20)/5.7 5.2659(20)/13.8 4.931(5)/0.07 5.0349(2)/16.5 5.0784(2)/(75)/1 0.9/
0+
7/2+
9/2-
0.41
0.5
0.37
γ-Energy / Intensity (MeV/%) Am k x-ray 0.13241 0.16505 0.18028 0.43063 0.47181 Pu L x-ray 0.04408 0.10189 (0.04–1.2) Pu L x-ray Pu k x-ray 0.10612 0.20975 0.22819 0.27760 0.28546 0.33431 (0.04–0.7) Pu L x-ray 0.04282 0.09885 0.15262 Pu L x-ray Pu k x-ray 0.04195 0.13299 0.13606 0.17494 Pu L x-ray 0.04453 Pu k x-ray 0.2792 0.2886 0.3471 0.4035
0+
1/2+
0+ 0.90/16
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
(1/2+)
0+
Bk k x-ray 0.56039/0.84 0.63431/1.5 (0.085-0.653)
0.3896 / 0.5299 0.5425
Bk
97
Bk Bk 240 Bk 241 Bk 242 Bk 243 Bk 238 239
487_S11.indb 194
(0.152-0.262) 6.542(4)/0.03
(3/2-)
0.1466
4/17/06 11:01:43 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
11-195 Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV) α/0.15 /6.871
Bk
244.06518
4.4 h
EC/99.99 /2.26 α/0.01 /6.778
Bk
245.066362
4.94 d
EC/99.9 /0.810 α/0.1 /6.453
Bk
246.0687
1.80 d
EC/1.35
Bk
247.07031
1.4 × 103 y
α/5.889
Bk
248.07310
23.7 h
β- /70 /0.87 EC/30 /0.72
Bk
249.074987
320. d
Bk
250.078317
1.8 × 109 y 3.217 h
β- /0.125 α/0.001 /5.525 sf/4.9 × 10-8 β- /1.780
Bk
251.08076
56. m
β- /1.09
Bk
252.0843
1.8 m
Cf Cf
237.062 238.0614
2.1 s 21 ms
Cf Cf
239.0624 240.0623
~ 0.7 m 1.1 m
Cf
241.0637
4. m
Cf
242.06370
3.5 m
Cf
243.0654
11. m
Cf
244.066001
20. m
244
245
246
247
248
249
250
251
252
Particle Energy/ Intensity (MeV/%) 6.5738(2)/0.04 6.7180(22)/0.02 6.7581(20)/0.02
6.625(4)/0.003 6.667(4)/0.003
5.8851(5)/0.03 6.1176(9)/0.01 6.1467(5)/0.02 6.3087(5)/0.014 6.3492(5)/0.018
5.465(5)/1.5 5.501(5)/7 5.532(5)/45 5.6535(20)/5.5 5.678(2)/13 5.712(2)/17 5.753(2)/4.3 5.794(2)/5.5 0.86/
0.125/100 5.390(1)/0.0002 5.4174(6)/0.001 0.74/
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
(4-)
3/2-
(2-)
Cm L x-ray Cm k x-ray 0.79881 1.08142 0.04175 0.0839 0.268
(3/2-)
(1-)
7/2+
2-
(3/2-)
γ-Energy / Intensity (MeV/%) 0.1874 0.755 0.840 0.946 0.1445 0.1876 0.2176 0.9815 0.9215/ Cm L x-ray Cm k x-ray 0.25299 0.3809 0.3851
2.0
Cm L x-ray Cf L x-ray Cm k x-ray Cf k x-ray 0.5507 0.327/10-5 0.308/10-6 Cf L x-ray Cf k x-ray 0.98912 1.03184 (0.04–1.6) 0.02481 0.1528 0.1776
Cf
98
237 238
239 240
241
242
243
244
487_S11.indb 195
α, sf/10 sf/~ 100 α/~ 0.2 α α/7.719 sf/ ~ 2.1 EC/3.3 α/7.60 α/7.509 sf/<0.014 EC/86 /2.2 α/14 /7.40 α/7.328
0+
7.590(10)/
7.335(5)/ 7.351(6)/20 7.385(4)/80 7.060(6)/20 7.170/4 7.168(5)/25
0+
0+ (1/2+) 0+
4/17/06 11:01:44 AM
Table of the Isotopes
11-196 Elem. or Isot. Cf
245.068049
44. m
α/36 /7.255 EC/64 /1.569
Cf
246.068805
1.49 d
α/6.869
1.8 × 103 y
sf/2.3 × 10-4
Particle Energy/ Intensity (MeV/%) 7.210(5)/75 7.14/91.7 6.983/0.31 7.09/7 7.065/0.68 6.6156(10)/0.18 6.7086(7)/21.8 6.7501(7)/78.0
6.301(5)/
245
246
Natural Abundance (Atom %)
Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Cf
247.07100
3.11 h
EC/99.96 /0.65 α/0.04 /6.55
Cf
248.07219
Cf
249.074854
334. d 3.2 × 104 y 351. y
α/6.369 sf/0.0029 α/6.295
8. × 1010 y
sf/4.4 × 10-7
13.1 y 1.7 × 104 y
α/6.129 sf/0.077
26.3 μs 9.0 × 102 y
α/6.172
247
248
249
Cf
250.076406
Cf Cf
251.079587
Cf
252.081626
2.65 y 86. y
α/96.9 /6.217 sf/3.1/
Cf
253.08513
17.8 d
Cf
254.08732
60.5 d
β- /99.7 /0.29 α/0.3 /6.126 sf/99.7/ α/0.3/5.930
Cf Cf
255.0911 256.0934
1.4 h 12. m
β- /0.7 sf
Es Es 243 Es
241.0685 242.0698 243.0696
~8s 16 s 21. s
Es
244.0709
37. s
Es
245.0713
1.3 m
Es
246.0729
7.7 m
Es
247.07366
4.8 m
α α α/>30 / EC/<70 /4.0 EC/76 /4.6 α/4 / α/40 /7.858 EC/60 /3.1 EC/90 /3.9 α/10 / EC/93 /2.48 α/7 /
250
251m 251
252
253
254
255 256
6.220(5)/17 6.262(5)/83 5.758/3.7 5.812/85.7 5.8488(2)/1.0 5.9029(2)/2.8 5.9451(2)/4.0 6.1401(2)/1.1 6.1940(2)/2.2 5.8913(4)/0.3 5.9889(4)/15 6.0310(4)/84.5 5.56448(7)/1.5 5.632(1)/4.5 5.648(1)/3.5 5.6773(6)/35 5.762(3)/3.8 5.7937(7)/2.0 5.8124(8)/4.2 5.8514(6)/27 6.0140(7)/11.6 6.0744(7)/2.7 5.7977(1)/0.23 6.0756(4)/15.2 6.1184(4)/81.6 0.27/100 5.921(5)/0.02 5.792(5)/0.05 5.834(5)/0.26
Spin (h/2 π)
0+
7/2+
0+
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%) Cm K x-ray 0.5709 0.6014 0.6163 Cm L x-ray 0.04221 0.0945 0.147 Bk k x-ray 0.2941 0.4778
9/2-
Cm L x-ray Cm k x-ray 0.25299/2.5 0.33351/13.6 0.38832/63.6 (0.0376–1.103)
0+
Cm L x-ray 0.04285
1/2+
0.109/19.8 0.1775/17.3 (0.0385-0.354)
0+
Cm L x-ray 0.04339 0.1002
(7/2+) 0+
0+
Es
99
241 242
244
245
246
247
487_S11.indb 196
8.11 7.92 7.89/>30
7.57/4 7.74
7.35 7.32
4/17/06 11:01:46 AM
Table of the Isotopes Elem. or Isot. Es
248
Es
249
Natural Abundance (Atom %)
11-197 Atomic Mass or Weight
248.0755 249.07641
Es
250m
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 26. m EC/99.7 /3.1 α/0.3 / 1.70 h EC/99.4 /1.45 α/0.6 / 2.2 h EC/ β+
Es
250.0786
8.6 h
EC/2.1
Es
251.07999
1.38 d
EC/99.5 /0.38 α/0.5 /
Es
252.08298
1.29 y
Es
253.084825
20.47 d 6.3 × 105 y
α/76 / EC/24 /1.26 α/ sf/8.9 × 10-6
250
251
252
253
Es
1.64 d
6.87 6.77
Spin (h/2 π)
(6+)
6.462/0.05 6.492/0.4 6.632/61.0 6.562/10.3 6.633/89.8 6.5916/6.6
(3/2-)
(5-) 7/2+
+4.10
7.
2.9
3.7
2+ 2+
6.429
(7+)
2.6 × 103 y 7.6 h
α/ sf/< 3 × 10-6 β- /92 /0.29 α/8 / sf/0.0042 β- /
256.0936 257.0960
25. m 7.7 d
β-/1.7 β-
Fm Fm
242.0734 243.0744
0.8 ms 0.2 s
Fm Fm
244.0741 245.0754
3.3 ms 4. s
Fm
246.07530
1.2 s
Fm Fm
247.0769
4.3 s 29. s
Fm
248.07720
33. s
Fm
249.0790
1.6 m
sf/> 96 α/ sf/< 0.4 sf/> 97 α/ sf/<0.1 α/85/ sf/15/ α/ α/8.20 EC/2.9 α/99.9 /8.001 sf/0.1/ EC/2.4 α/ IT/ sf/<8 × 10-5 α/ EC/0.8 sf/0.007 EC/98 /1.47 α/2 /
Es
254.088022
Es
255.09027
254
Es
256m
Es Es
256 257
276. d > 2.5 × 107 y 40. d
6.26 6.300
γ-Energy / Intensity (MeV/%)
0.3795 0.8132 Cf L x-ray Cf k x-ray 0.9891 1.0319 Cf L x-ray Cf k x-ray 0.30339 0.34948 0.82883
(1-)
0.475 6.382
> 10. y
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
(7/2+)
β- /99.6 / α/0.3 /6.67 sf/0.045
254m
255
Particle Energy/ Intensity (MeV/%)
0.04180/5.6 0.3892/2.7 (0.0309-1.106) Fm L x-ray Fm k x-ray 0.6488 0.6938 0.064
(7/2+)
(8+)
(1+)
0.218 0.232 0.862
Fm
100 242 243
244 245
246
247m 247
248
249
Fm
1.8 s
250m
250
Fm
250.07952
30. m
Fm
251.08158
5.3 h
251
487_S11.indb 197
8.55
8.15/ 8.24/ 8.17/ 7.87/70 7.93/30 7.83/20 7.87/80 7.57
7.43/
6.833
0+
0+
0+
0+ (7/2+)
0+
(9/2-)
4/17/06 11:01:47 AM
Table of the Isotopes
11-198 Elem. or Isot.
Fm
253.085185
Fm
254.086854
Fm
255.089962
Fm
256.09177
257
Fm
257.09511
Fm Fm 260 Fm
258.0971 259.1006 260.103
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 1.058 d α/7.154 sf/0.0023 3.0 d EC/88/0.333 α/12 / 3.240 h α/ sf/0.059 20.1 h α/ sf/2.3 × 10-5 1.0 × 104 y 2.63 h sf/91 α/19 100.5 d α/99.79 sf/0.21 0.37 ms sf/ 1.5 s sf/ ~ 4 ms sf/
Md Md 246 Md
245.0808 246.0819
~ 0.4 s 0.9 ms 1.0 s
α sf α
Md Md 248 Md
247.0816 248.0828
~ 0.2 s 3. s 7. s
Md
249.0830
24. s
Md
250.0844
50. s
Md
251.0848
4.0 m
252
Md
252.0866
2. m
Md 254m Md 254 Md 255 Md
253.0873 254.0897 255.09108
~6m 30. m 10. m 27. m
sf/ α EC/80 /5.3 α/20 / sf/<0.05 EC>/<80 /3.7 α/>20 /8.46 EC/94 /4.6 α/6 /8.25 EC/>94 /3.1 α/<6 / EC/>50 /3.9 α/<50 / EC/2.0 EC/ EC/2.7 EC/92 /1.04 α/8 / sf/< 0.15
Md
256.0941
1.30 h
EC/89 /2.13 α/11 / sf/< 2.6
Md
257.095541
5.5 h
Fm
252
253
254
255
256
258 259
Natural Abundance (Atom %)
Atomic Mass or Weight 252.08247
Particle Energy/ Intensity (MeV/%) 6.998/15 7.039/85 6.676/ 6.943/ 7.150 7.192 6.9635(5)/5.0 7.0225(5)/93.4
8.64, 8.68
6.92/ 6.519
Spin (h/2 π) 0+ ½+ 0+ 7/2+ 0+ (9/2+) 0+
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%)
Es k x-ray 0.2719
0.08148/1. (0.041-0.900)
0.1794 0.2410
0+
Md
101
245m 245
247m 247
249
250
251
253
256
Md
258.098431
51.5 d
Md
259.1005
1.64 h
Md
260.1037
~ 27.8 d
EC/85 /0.41 α/15, sf/< 1 EC/ sf/< 30 α/7.40 sf/< 0.003 sf/>98.7 α/<1.3 sf/ 73–100
248.0866
< 1.0 μs
sf
257
Md
57. m
258m
258
259
260
8.74 8.50–8.56 8.43 8.32/15 8.36/5
8.030(20)/ 7.75/4 7.83/2 7.55/ 7.73/
α/7.33/93 7.27/5 7.75/1 7.71/1 7.21/71 7.14/22 7.68/2.5 7.25/2.5 7.64/2.1
(7/2-)
7.074 7.014
(7/2-)
6.718(2)/ 6.763(4)/
(1-) (8-) 7/2+
0.121/100 0.115/65 0.136/35 0.141–0.453 Fm k x-ray 0.121/409 0.115/266 0.136/143 0.634/119 0.141–1.37 Fm k x-ray (0.181–0.389) Fm k x-ray 0.3678 0.057–0.448
No
102
No
248
487_S11.indb 198
0+
4/17/06 11:01:49 AM
Table of the Isotopes Elem. or Isot. No
249
Natural Abundance (Atom %)
11-199 Atomic Mass or Weight
249.0878
No
250.0875
No No
251.0890
No
252.08898
No
253.0907
250
251m 251
252
253
No
254m
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 0.05 ms sf α/ < 20 6. μs sf/ α/ < 10 0.9 s α 0.78 s α/91 sf/0.26 2.44 s α/75/8.551 sf/24/ EC, β+/<1.6 1.7 m α/ EC/3.2 0.28 s I.T./ sf/< .2 49. s α/ EC/1.1 sf/0.17 3.1 m α/62 / EC/38/2.01
No
254.09096
No
255.09324
No
256.09428
2.9 s
No
257.09688
24.5 s
No No
258.0982 259.1010
~ 1.2 ms 58. m
No No
260.1026 262.1073
0.11 s ~ 8. ms
251.0944 252.0954
39 m ~ 0.36 s
254
255
256
257
258 259
260 262
α/ sf/0.5 α/ sf/<1.5 sf/ α/78 /7.794 EC/22/0.5 sf/<9.7 sf/ sf/
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%)
0+ 8.67 8.62/96 8.58/4 8.42 8.37
0+
8.00
(9/2-)
0.222/100 (0.151-0.280)
8.09
0+
0.102 0.152
8.12/ 7.93 8.08 8.43
½+
0.187
8.222/83 8.27 8.323/17
(7/2+)
7.52 7.55
0+
0+ (9/2+)
0.0770 0.1018 0.1241
0+ 0+
Lr
103
Lr Lr
251 252
Lr
~ 0.57 s
253m
Lr
253.0952
1.5 s
Lr
254.0965
13. s
Lr
255.09669
22. s
Lr
256.0986
27. s
Lr
257.0996
0.65 s
Lr
258.1018
3.9 s
Lr
259.1029
6.1 s
Lr
260.1055
3. m
253
254
255
256
257
258
259
260
487_S11.indb 199
sf α sf/<1 α sf/1.3 α/ sf/8 α/ EC/5.2 sf/<0.1 α/ EC/3.2 sf/< 0.1 α/99.7 /8.554 EC/4.2 sf/< 0.03 α/ EC/2.5 sf/< 0.03 α/ EC/3.4 sf/< 5 α/80 sf/20 α/
9.02/73 8.97/27 8.79 8.72 8.45
8.37/60 8.43/40 8.43/ 8.39 8.80
7/2+
8.60/46 8.62/25 8.56/20 8.65/9 8.44(1) 8.03
4/17/06 11:01:50 AM
Table of the Isotopes
11-200 Elem. or Isot. Lr Lr
261 262
Natural Abundance (Atom %)
Atomic Mass or Weight 261.1069 262.1096
Half-life/ Decay Mode/ Resonance Energy (/MeV) Width (MeV) 40. m sf 3.6 h EC/2. sf/<10
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%)
Rf
104
Rf
253.1007
~ 48. μs
Rf
254.1002
23. μs
Rf
255.1013
1.6 s
Rf
256.10117
6.2 ms
Rf
257.1030
4.7 s
Rf
258.1035
12. ms
259
Rf
259.1056
3.4 s
Rf Rf 261 Rf 262 Rf 263 Rf 265 Rf 267 Rf
260.1064 261.10877 262.1099 263.1126 265.1167 267.122
20. ms 1.3 m 5. s 2.1 s 10. m ~ 13 h ~ 0.1 d
Db
255.1074
~ 1.5 s
Db
256.1081
1.6 s
253
254
255
256
257
258
260
261m
sf α/<10 sf/>98.5 α/<1.5 α sf/52
sf/99.68 α/0.32 α/9.22 EC/11 sf/<1.4 sf/87 α/13 α/9.09/93 sf/7 sf/ α α/60, sf/40 sf/>99.2 sf, α α sf
0+ 8.72/<0.05 8.77/94 8.67/<0.05 8.58/<0.05 8.92/<0.05 8.81 8.77 9.01 8.95 8.62
8.77(2)/ 8.86/ 8.28 8.52/
0.203 0.142
0+ 0.117
0+
0+
0+
Db
105 255
256
Db
0.8 s
257m
Db
257.1077
1.5 s
Db
258.1092
4.2 s
Db
259.1096
~ 0.51 s
Db 260 Db
260.1113
0.3 m 1.5 s
Db
261.1121
1.8 s
Db
262.1141
0.5 m
257
258
259
260m
261
262
487_S11.indb 200
α, sf/~ 20 α/64 EC/35 sf/0.05 α sf/<13 α/ sf/<6
α/ EC/5.3 sf/<33 sf/ α/ α/ sf/<9.6 α/ sf/<18 sf/<33
9.02/67 8.89/11 9.08/11 9.12/11 9.16 8.97/33 9.07/38 9.12/5.5 8.94/9 9.02/9 8.89/5.5 9.30/ 9.17/ 9.08/ 9.47/ 9.05/ 9.08/ 9.13/ 8.93/
4/17/06 11:01:51 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
11-201 Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV) α/
Db
263.1150
~ 0.45 m
Db Db
267.1224 268.125
1.2 h 1.2 d
Sg
258.1132
~ 2.9 ms
Sg
259.1145
0.5 s
Sg
260.11442
4. ms
α/50 sf/50
Sg Sg
261.1161 262.1164
0.3 s 0.007 s
Sg Sg
263.1183
0.3 s 0.8 s
Sg
265.1211
8. s
α, sf/<10 sf α/<22 α α sf/<30 α/>65 sf/<35
Sg
266.1221
~ 21. s
Sg
271.133
~ 0.04 h
260.122 261.1217
12. ms
263
267 268
sf/57 α/41 EC/3 sf sf, EC
Particle Energy/ Intensity (MeV/%) 8.45/ 8.53/ 8.67/ 8.36/ 8.41/
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%)
Sg
106 258
259
260
261 262
263m 263
265
266
271
sf α/<20 α/ sf/<20
α/ sf/<82 α/50 sf/50
0+ 9.62 9.35 9.03 9.76 9.72 9.81 9.56
9.2 9.06 9.25 8.84/46 8.76/23 8.94/23 8.69/8 8.77/66 8.52/33 8.53
0+
0+
0+
Bh
107
Bh Bh
260 261
Bh
8. ms
262m
α α/, sf <10
α/ sf/<12 α/ sf/<12
Bh
262.1229
0.10 s
264
Bh
264.1246
1.0 s
Bh Bh 267 Bh
265.1252 266.1269 267.1277
0.9 s ~2s ~ 17 s
α/ sf/ α α α
~ 0.08 ms ~ 0.75 ms
α/ α/, sf/~ 50 α
262
265 266
10.40 10.10 10.03 10.37 10.24 10.06 9.91 9.74 9.3 – 9.8 9.24 9.08 8.83
Hs
108
Hs Hs 265m Hs
263.1286 264.12839
Hs
265.1301
263 264
265
487_S11.indb 201
2.0 ms
α/ sf/<1
11.0 10.57/63 10.73 10.52 10.34 10.30/90 10.43 10.37
0+
4/17/06 11:01:53 AM
Table of the Isotopes
11-202 Elem. or Isot.
Natural Abundance (Atom %)
Atomic Mass or Weight
Hs Hs 267 Hs
266.1301
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%) 10.25 10.2
α
267.1318
~ 2.3 ms ~ 0.8 s 0.05 s
269
Hs
269.1341
~ 14 s
α
Hs Hs 277 Hs
270.1347 275.146 277.150
~ 3.6 s ~ 0.15 s ~ 11 m
α α sf
266.1373 267.137 268.1387 270.141 275.149 276.151
~ 1.2 ms ~ 0.7 ms 19 ms ~ 0.03 s 5 ms 0.01 s ~ 0.7 s
α α α α/>68 α α α
10.46–10.81 10.48–11.31
11.6 11.11 10.95 11.15 12.15 11.03 9.9 10.8 11.8 9.73
266
267m
270 275
α/>88
9.88 9.83 9.75 9.23 9.18 9.16 9.3
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%)
0+
0+
Mt
109
Mt Mt 267 Mt 268 Mt 270 Mt 275 Mt 276 Mt 266m 266
10.3 - 10.8 10.0 10.3 9.7
Ds
110
Ds Ds 270m Ds
267.1443 269.1451
~ 3 μs 0.17 ms ~ 6 ms
α/>32 α/>75 α
Ds Ds 271 Ds 273m Ds 273 Ds 279 Ds
270.1447
0.1 ms 0.07 s 1.6 ms 0.076 ms 118 ms 0.18 s
Ds 281 Ds 282 Ds
280.160 281.162
~ 7.6 s 10. s 0.5 ms
α α α α α/ sf/90 α/10 sf/ sf sf
272.1536 274.156 279.162 280.164
~ 2 ms ~ 65 ms ~ 0.17 s ~ 3.6 s
α/>68 α α α
10.82 11.2 10.4 ~ 9.75
112
277.1639
~ 0.24 ms
α
283
112
283.172
~ 4. s
112 285 112
284.172 285.174
0.10 s ~ 34. s
sf/< 10 α/~ 100 sf α
11.45 11.65
283.176 284.178
0.24 ms ~ 0.1 s ~ 0.5 s
α α α
267 269
270
271m
280
271.1461 273.1489 279.159
9.7
0+
0+
Rg
111
Rg Rg 279 Rg 280 Rg 272 274
112
112 277
284
9.5 9.16
113
113
113 113 284 113 278 283
487_S11.indb 202
11.7 10.1 10.0
4/17/06 11:01:54 AM
Table of the Isotopes Elem. or Isot.
Natural Abundance (Atom %)
11-203 Atomic Mass or Weight
Half-life/ Resonance Width (MeV)
Decay Mode/ Energy (/MeV)
Particle Energy/ Intensity (MeV/%)
Spin (h/2 π)
Nuclear Elect. Magnetic Quadr. Mom. (nm) Mom. (b)
γ-Energy / Intensity (MeV/%)
114
114 286
114
286.184
0.16 s
114 114 289 114
287.186 288.186 289.187
287 288
10.2
0.5 s 0.8 s ~ 2.7 s
α/40 sf/60 α α α
287.191 288.192
~ 0.03 s ~ 0.09 s
α α
10.6 10.5
290.199 291.200 292.200
~ 15 ms ~ 6. ms ~ 18. ms ~ 0.05 s
α α α α
10.9 ~ 10.74 ~ 10.66 10.5
~ 2.0 ms
α
11.7
10.0 9.95 9.82
115
115
115 115
287 288
116
116
116 116 292 116 293 116 290 291
118
118
118
294
487_S11.indb 203
4/17/06 11:01:55 AM
NEUTRON SCATTERING AND ABSORPTION PROPERTIES Norman E. Holden This table presents an evaluated set of values for experimental quantities that characterize the properties for scattering and absorption of neutrons. The neutron cross section is given for room temperature neutrons, 20.43°C, corresponding to a thermal neutron energy of 0.0253 electron volts (eV) or a neutron velocity of 2200 meters/second. The neutron resonance integral is defined over the energy range from 0.5 eV to 0.1×106 eV, or 0.1 MeV.
Bound neutron scattering lengths and neutron cross sections averaged over a Maxwellian spectrum at 30 keV for astrophysical applications are also presented. A list of the major references used is given below. The literature cutoff date is January 2003. Uncertainties are given in parentheses. Parentheses with two or more numbers indicate values to the excited state(s) and to the ground state of the product nucleus.
Table Layout Column Number Column Title 1 Isotope/Element 2 3
Isotopic Abundance Half-life
4
Thermal Neutron Cross Sections
5
Neutron Resonance Integrals
6
Neutron Scattering Lengths
7
Maxwellian Averaged Cross Section
Description For elements, atomic number and chemical symbol are listed. For nuclides, mass number and chemical symbol are listed. Isomers are indicated by the addition of m, m1, or m2. in atom percent Half-life in decimal notation. µs = microsecond; ms = millisecond; s = second; m = minute; h = hour; d = day; y = year. Cross sections for neutron capture reactions in units of barns (10-24 cm2) or millibarns (mb). Proton, alpha production and fission reactions are designated by σp, σα, σf , respectively. Separate values are listed for isomeric production. Resonance integrals for neutron capture reactions in barns (10 -24 cm2) or millibarns (mb). Proton, alpha production and fission reactions are designated by R.I.p, R.I.α, R.I.f, respectively. Separate values are listed for isomeric production. Bound coherent scattering lengths for neutron scattering reactions in units of femtometers (fm), which is equal to fermis (10-13 cm). Astrophysical Cross Sections, averaged over a stellar neutron maxwellian spectrum characterized by a thermal energy of 30 keV, expressed in barns (10-24 cm2), millibarns (mb) or microbarns (µb).
General Nuclear Data References The following references represent the major sources of the nuclear data presented: Mughabghab, S.F., Divadeenam, M., Holden, N.E.; Neutron Cross Sections, Vol. 1 Neutron Resonance Parameters and Thermal Cross Sections, Part A, Z = 1-60. Academic Press Inc., New York, New York (1981); Mughabghab, S.F.; Part B, Z = 61-100. Academic Press Inc., Orlando, Florida (1984). Holden, N.E.; Fifty Years with Nuclear Fission Conference, Wash., D.C., Gaithersburg, Md. April 26-29, 1989, p. 946. American Nuclear Society, LaGrange Park, Illinois (1989).
Elem. or Isot. 1H 1H 2H 3H 2He 3He 4
He Li Li
3 6
Natural Abundance (%) 99.9885(70) 0.0115(70)
Half-Life >2.8×1023 y 12.33 y
0.000134(3)
Tuli, J.K.; Nuclear Wallet Cards , Brookhaven National Laboratory (Jan. 2000). Holden, N.E.; Half-lives of Selected Nuclides , Pure & Applied Chemistry 62, 941 (1990). Holden, N.E., Hoffman, D.C.; Spontaneous Fission Half-lives for Ground State Nuclides, Pure & Applied Chemistry 72, 1525 (2000). Koester, L., Rauch, H., Seymann, E.; Neutron Scattering Lengths: A Survey of Experimental Data and Methods, Atomic Data Nuclear Data Tables 49, 65 (1991). Sears, V.F.; Neutron Scattering Lengths and Cross Sections, Neutron News 3, (3), 26 (1992). Bao, Z.Y., Beer, H., Käppeler, F., Voss, F., Wisshak, K., Raucher,T.; Neutron Cross Sections for Nucleo-synthesis Studies, Atomic Data Nuclear Data Tables 76, 70 (2000).
Thermal Neut. Cross-Section (barns) 0.332(2) 0.332(2) 0.51(1)mb < 6. µb < 0.05 σp = 5.33(1)×103 0.05(1) mb
Resonance Integral (barns) 0.149(1) 0.149(1) 0.23(2) mb
71.(2) σt = 9.4(1)×102
32.(1) RIt = 422.(4)
RIp = 2.39(1)×103
99.999867(3) 7.59(4)
Coh. Scat. σ (30 keV) Maxw. Length (fm) Avg. (barns) -3.739(1) - 3.741(1) 0.25(2) mb* 6.671(4) 2.1(4) µb 4.79(3) 3.26(3) 5.74(7) 8.(1) µb* 3.26(3) - 1.90(2) 2.0(1) σt ≈ 1.
*Extrapolated value.
11-185
11-186 Elem. or Isot. 7
Neutron Scattering and Absorption Properties Natural Abundance (%)
Li Li 4Be 7Be
92.41(4)
9
Be Be 5B 10B
100.
11
80.1(7)
8
15
53.28 d
1.52¥106 y 19.9(7)
98.93(8) 1.07(8) 5715. y 99.636(20)
N O 8 16O 17O
0.364(20)
18
0.205(14)
O 9F 19F 10Ne 20Ne 21Ne 22
99.757(16) 0.038(1)
100. 90.48(3) 0.27(1)
Ne 11Na 22Na
9.25(3)
23
100.
Na Mg 12 24Mg 25Mg 26Mg 27Mg 13Al 26Al 27
Al Si Si 29Si 30Si 31Si 32Si 15P 31P 16S 32S 14 28
Thermal Neut. Cross-Section (barns) 39.(5) mb 45.(5) mb
Resonance Integral (barns) 17.(2) mb 20.(2) mb
Coh. Scat. Length (fm)
8.8(4) mb sp = 3.9(1)¥104 sa ≈ 0.1 8.8(4) mb <1. mb 7.6(1)¥102 sa = 38.4(1)¥102 0.3(1) sp = 7.(1) mb st = 8.(2) mb 5.(3) mb 3.5(1) mb 3.5(1) mb 1.4(1) mb <1.4 mb 2.00(6) sp = 1.93(5) 0.080(1) 0.04(1) mb 0.29(1) mb 0.19(1) mb sa = 0.257(10) 0.54(7) mb 0.16(1) mb 9.5(1) mb 9.5(1) mb 42.(5) mb 39.(5) mb 0.7(1) sa = 0.18(9) mb 51.(5) mb 0.53(2) sp = 2.8(3)¥104 sa = 2.6(4)¥102 sm = 0.43(3) 66.(6) mb 0.053(6) 0.20(1) 0.038(1) 0.07(2) 0.230(2) sp = 1.97(10) sa = 0.34(1) 0.230(2) 0.166(9) 0.17(1) 0.12(1) 0.107(3) 73.(6) mb < 0.5 0.17(1) 0.17(1) 0.54(2) 0.55(5) sa < 0.5 mb
3.9(2) mb RIp = 1.75(5)¥104
7.79(1)
3.9(2) mb
7.79(1)
3.4(1)¥102 RIa = 17.3(1)¥102 0.13(4)
5.30(4) - 0.1(3)
2.(1) mb 1.6(1) mb 1.6(1) mb 1.7(2) mb
6.65(4) 6.646(1) 6.651(2) 6.19(9)
0.90(3) RIp = 0.87(3) 0.034(1) 0.11(3) mb 0.40(4) mb 0.36(4) mb 0.11(1) 0.39(5) mb 0.81(4) mb 21.(3) mb 21.(3) mb 19.(3) mb 18.(3) mb 0.31(5)
9.36(2) 9.37(2)
- 2.22(2)
0.84 s
10
B C 6 12C 13C 14C 7N 14N
Half-Life
2.605 y
78.99(4) 10.00(1) 11.01(3) 9.45 m 7.1¥105 y 100. 92.223(19) 4.685(8) 3.092(11) 2.62 h 1.6¥102 y 100. 94.93(31)
*Extrapolated value.
23.(3) mb 0.32(2) RIp< 2.¥105 RIa = 1.2(2) x 102 RIm = 0.30(6) 38.(5) mb 32.(4) mb 98.(15) mb 25.(2) mb 0.03(1) 0.17(1)
s (30 keV) Maxw. Avg. (barns) 0.06(1) mb* 42.(3) mb < ≈ 5.5 mb sp = 16(4)*
6.44(3) 5.805(4) 5.805(5) 5.8(2) 5.84(7) 5.65(1) 5.65(1) 4.566(6) 4.631(6) 6.7(2)
16.(1) mb* 0.021(4) mb 3.(1) mb* sp = 1.8(2) mb* 0.04(1) mb 6.(1) mb* 34.(4) mb sa = 3.9(5) mb* 9.(1) mb* 6.(1) mb 6.(1) mb 0.12(1) mb ≈ 1.5 mb
3.87(1) 3.63(2)
58.(4) mb* 2.1(2) mb
3.63(2) 5.375(4) 5.7(2) 3.6(2) 4.9(2)
2.1(2) mb 3.3(4) mb 6.4(4) mb 0.13(1) mb*
3.45(1) 0.14(2)
0.17(1) 0.12(2) 0.11(2) 0.08(2) 0.62(6) 33.(3) mb
3.45(1) 4.15(1) 4.11(1) 4.7(1) 4.61(1)
0.08(1) 0.08(1) 0.24(2) 0.25(2)
5.13(1) 5.13(1) 2.847(1) 2.804(2)
2.9(3) mb 2.9(3) mb 7.9(9) mb 3.2(3) mb*
1.7(1) mb 4.1(2) mb
Neutron Scattering and Absorption Properties Elem. or Isot. 33S
34
S S 17Cl 35Cl 36
36
Cl 18Ar 36Ar
37
Ar
38
Ar Ar
40
Ar Ar 19K 39K
75.78(4)
3.01¥105 y
24.22(4) 0.3365(30)
35.0 d 0.0632(5) 268. y 99.6003(30)
41
40
20 40
41
1.82 h 93.2581(44)
K
0.0117(1)
K Ca Ca
6.7302(44)
41
Ca Ca 44Ca 45Ca 46Ca 48Ca 21Sc 45Sc 46Sc 22Ti 44Ti 43
46
Ti Ti 48Ti 49Ti 50Ti 23V 50V 47
1.26¥109 y
96.941(156) 1.02¥105 y
Ca
42
Half-Life
4.29(28) 0.02(1)
Cl
37
39
Natural Abundance (%) 0.76(2)
0.647(23) 0.135(10) 2.086(110) 0.004(3) 0.187(21)
162.7 d >4¥1015 y 4.3¥1019 y
100. 83.81 d 60 y 8.25(3) 7.44(2) 73.72(3) 5.41(2) 5.18(2) 0.250(4)
*Extrapolated value.
1.4¥1017 y
Thermal Neut. Cross-Section (barns) 0.46(3) sa = 0.12(1) sp = 2. mb 0.25(1) 0.24(2) 33.6(3) 43.7(4) sp = 0.44(1) sa≈ 0.08 mb sp = 46.(2) mb <10. sa = 0.59(7) mb (0.05 + 0.38) 0.66(3) 5.(1) sa = 5.4(3) mb sp < 1.5 mb sa = 1.08(8)¥103 sp = 37.(4) 0.8(2) 6.(2)¥102 sa <0.29 0.64(3) 0.5(1) 2.1(1) 2.1(2) sa = 4.3(5) mb sp < 0.05 mb 30.(8) sp = 4.4(4) sa = 0.42(8) 1.46(3) 0.43(2) 0.41(3) sa = 0.13(4) mb ≈ 4. sa = 0.18(3) s p = 7.(2) mb 0.65(10) 6.(1) 0.8(2) ≈ 15. 0.70(3) 1.0(1) 27.2(2) (10.+17.) 8.(1) 6.1(1) 1.1(2) sp<0.2 0.6(2) 1.6(2) 7.9(9) 1.9(5) 0.179(3) 5.0(2) 21.(4) sp = 0.7(4) mb
11-187 Resonance Integral (barns) 0.21(2) RIa = 0.05(1) 0.13 0.26(3) 15.(2) 20.(2) RIp = 0.2
Coh. Scat. s (30 keV) Maxw. Length (fm) Avg. (barns) 4.7(2) 7.4(15) mb sa = 0.18(1) 3.48(3) 9.58(1) 11.7(1)
RIa = 900. RIp = 31. 0.4(1)
0.41(5) 0.2(1) 1.0(1) 0.9(1)
9.4(3) mb sp = 1.7(2) mb* sp = 91.(8) mb
RIp = 0.02
(0.04+0.26) 0.42(5) 2.(1)
0.23(1) mb 0.17(1) mb*
3.1(1) 1.91(1) 24.9(1)
sa = 0.9(2) mb 2.0(2) mb
sa ≈ 1.3 sp ≈ 0.04 3.5(35)
1.83(1)
2.5(3) mb
3.67(2) 3.74(2)
11.8(4) mb
sp = 7.(1) mb sa = 40.(6) mb
13.(4) 2.0(2) 1.4(2) 0.23(2) 0.22(4)
2.69(8) 4.70(2) 4.80(2)
22.(1) mb 6.7(7) mb
0.39(4) 3.9(2) 0.56(1)
3.4(1) - 1.56(9) 1.42(6)
16.(2) mb 51.(6) mb 9.(1) mb
0.9(1) 0.5(1) 12.(1) (5.6+6.4) 3.6(5) 2.8(2)
3.6(2) 0.39(9) 12.3(1) 12.3(1)
5.3(5) mb* 0.8(1) mb*
- 3.438(2)
0.4(1) 1.6(2) 3.6(2) 1.2(2) 0.12(2) 2.8(1) 50.(20)
4.93(6) 3.63(1) - 6.09(2) 1.04(5) 6.18(8) - 0.382(1) 7.6(6)
69.(5) mb
27.(3) mb 64.(8) mb 32.(5) mb 22.(2) mb 3.6(4) mb
11-188 Elem. or Isot. 51V 24Cr 50Cr 51Cr 52Cr 53Cr 54Cr 25Mn 53Mn 54Mn 55Mn 26Fe 54Fe 55
Natural Abundance (%) 99.750(4) 4.345(13)
Fe Fe 58Fe 59Fe 27Co 58mCo 58Co 59Co 60mCo 60Co 28Ni 58Ni 57
59
Ni
60
Ni Ni
62
Ni Ni 64Ni 65Ni 29Cu 63Cu 64Cu 65Cu 66Cu 30Zn 64Zn
Half-Life
>1.8¥1017 y 27.70 d
83.789(18) 9.501(17) 2.365(7) 3.7¥106 y 312.1 d 100. 5.845(35)
Fe
56
61
Neutron Scattering and Absorption Properties
2.73 y 91.754(36) 2.119(10) 0.282(4) 44.51 d 9.1 h 70.88 d 100. 10.47 m 5.271 y 68.0769(89)
>4¥1019 y ≈ 7.6¥104 y
26.2231(77) 1.1399(6) 3.6345(17)
63
100. y 0.9256(9) 2.517 h 69.15(15) 12.701 h 30.85(15) 5.09 m 48.27(32)
65
Zn
66
Zn
27.977(77)
67
Zn
4.102(21)
68
Zn
19.02(12)
70
Zn Ga
0.631(9)
>2.3¥1018 y
243.8 d
31
*Extrapolated value.
Thermal Neut. Cross-Section (barns) 4.9(1) 3.0(2) 15.(1) < 10. 0.8(1) 18.(2) 0.36(4) 13.3(1) 70.(10) < 10. 13.3(1) 2.7(1) 2.3(2) sa = 10. mb 13.(2) sa = 0.01 2.8(3) 1.4(2) 1.3(1) 13.(3) 37.19(8) 1.4(1)¥105 1.9(2)¥103 (20.7+16.5) 58.(3) 2.0(2) 4.5(2) 4.6(4) sa < 0.03 mb sabs = 92.(4) sa = 14.(2) sp = 2.(1) 2.9(3) 2.5(5) sa = 0.03 mb 15.(1) 20.(5) 1.6(1) 22.(2) 3.8(1) 4.5(2) ≈ 270. 2.17(3) 1.4(1)¥102 1.1(2) 0.74(5) sp < 12. mb sa = 11.(3) mb 66.(8) sa = 2.0(2) 0.9(3) sa < 0.02 mb 6.9(1.4) sa = 0.4 mb (0.072 + 0.8) sa <0.02 mb (8.1+83.) mb 2.9(1)
Resonance Integral (barns) 2.7(2) 1.7(1) 8.(1)
Coh. Scat. s (30 keV) Maxw. Length (fm) Avg. (barns) - 0.402(2) 38.(4) mb 3.635(7) - 4.5(1) 0.05(1)
0.6(2) 9.(1) 0.25(5) 14.0(3) 32.(5)
4.91(2) - 4.2(1) 4.6(1) - 3.75(2)
8.8(4) mb 0.06(1) 7.(2) mb
14.0(3) 1.4(2) 1.3(2) RIa = 1.1(1) mb 6.(1)
- 3.75(2) 9.45(2) 4.2(1)
40.(3) mb
1.4(2) 0.8(4) 1.3(2) 6.(1) 74.(2) 2.5(10)¥105 7.(1)¥103 (39.+35.) 230.(50) 4.3(10) 2.3(2) 2.3(2)
9.93(3) 2.3(1) 15.(7)
11.7(5) mb 40.(4) mb 12.(1) mb
29.(2) mb
2.49(2)
2.49(2)
10.3(1) 14.4(1)
38.(4) mb
41.(2) mb
RIabs = 1.4(1)¥102
1.5(2) 1.5(4)
2.8(1) 7.60(6)
25.(1) mb 82.(8) mb
6.8(3) 9.(2) 1.2(2) 10.(1) 4.1(4) 5.(1)
- 8.7(2)
13.(4) mb
- 0.37(7)
9.(1) mb
2.2(1) 60.(20) 2.8(4) 1.4(3)
10.61(19)
41.(5) mb
5.680(5) 5.23(4)
59.(5) mb
1.8(2)
5.98(5)
35.(3) mb
25.(5)
7.58(8)
0.15(2)
(0.2 + 2.9)
6.04(3)
0.9(2) 22.(3)
19.(2) mb sm = 3.(1) mb 0.02(1)
7.288(2)
7.718(4) 6.43(15)
0.09(1)
30.(4)
Neutron Scattering and Absorption Properties Elem. or Isot. 69Ga 71Ga Ge Ge 70Ge 72Ge 73Ge 74Ge 76Ge 33As 75As 34Se 74Se 75Se 76Se 77Se
Natural Abundance (%) 60.108(9) 39.892(9)
32 68
78
Se Se 82Se 35Br 76Br 79Br 80
81
Br Kr 36 78Kr 80Kr 82Kr 83Kr 84Kr Kr Kr 37Rb 84Rb 85Rb 86Rb 87Rb 88Rb 38Sr 84Sr 86Sr 87Sr 88Sr 89Sr 90Sr 39Y 89Y 90Y 91Y 40Zr 90
Zr Zr 92Zr 93Zr 91
>2.4¥1026 y
270.8 d 20.370(89) 27.380(60) 7.759(78) 36.656(80) 7.835(81)
>1.8¥1023 y 1.6¥1021 y
100. 0.89(4) 119.78 d 9.37(29) 7.63(16) 23.77(28) 49.61(41) 8.73(22)
≈ 1¥1020 y 16.0 h
50.69(7) 49.31(7) 0.353(3) 2.286(10) 11.593(3) 11.500(19) 56.987(15)
85 86
Half-Life
>2.3¥1020 y
10.73 y 17.279(41) 32.9 d 72.17(2) 27.83(2)
18.65 d 4.88¥1010 y 17.7 m
0.56(1) 9.86(1) 7.00(1) 82.58(1) 50.52 d 29.1 y 100. 2.67 d 58.5 d
51.45(40) 11.22(5) 17.15(8)
*Extrapolated value.
1.5¥106 y
Thermal Neut. Cross-Section (barns) 1.68(7) 4.7(2) sm = 0.15(5) 2.2(1) 1.0(5) (0.3 + 2.7) 0.9(2) 15.(1) (0.14 + 0.28) (0.09 + 0.06) 4.0(4) 4.0(4) 12.(1) 50.(2) 3.3(10)¥102 (22. + 63.) 42.(4) sa = 0.97(3) mb sm = 0.38(2) (0.05+0.54) (39.+ 5.2) mb 6.8(2) 224.(42) (2.5+8.3) (2.4+0.24) 24.(1) (0.17+6.) (4.6+7.) (14.+7.) 183.(30) (sm+ sg) = 0.11 sm = 0.09 1.7(2) 3.(2) mb 0.39(4) sp = 12.(2) (0.06+0.38) <20. 0.10(1) 1.2(3) 1.2(1) (0.6+0.2) sm = 0.81(4) 16.(3) 5.8(4) mb 0.42(4) 10.(1) mb 1.25(5) (0.001+1.25) <6.5 1.4(3) 0.19(1) sa <0.1 mb ≈ 0.014 1.2(3) 0.2(1) <4.
11-189 Resonance Integral (barns) 16.(2) 31.(3) 6.(2)
Coh. Scat. s (30 keV) Maxw. Length (fm) Avg. (barns) 7.88(4) 0.14(1) 6.40(3) 0.12(1) 8.19(2)
2.3(1) 0.8(3) 66.(20) (0.4+0.5) (1.3+0.6) 61.(5) 61.(5) 14.(3) 520(50)
10.0(1) 8.5(1) 5.02(4) 7.6(1) 8.2(15) 6.58(1) 6.58(1) 7.970(9) 0.8(3)
88.(5) mb 0.07(2) 0.3(1) 53.(7) mb 0.03(2)
(9.+31.) 30.(5)
12.2(1) 8.25(8)
0.16(1) 0.3(1)
0.57(4) 0.2(1)
RIm = 4.3(4) (0.15+0.85) 39.(4) mb 92.(8)
8.24(9) 7.48(3) 6.34(8) 6.79(2)
0.1 42.(3) mb 0.04(2)
(36.+96.)
6.79(7)
51.(5) 39.(6) 20.(1) 57.(6) 130.(13) 183.(20) 2.4(3)
6.78(7) 7.81(2)
0.63(4) sm = 0.08(1) 0.31(2) (0.11+0.19) (0.09+0.18) 90.(6) mb 0.24(2) (16.+33.) mb
1.8(10) ≈ 1. mb 6.(3)
8.1(3) 7.08(2)
(0.7+7.)
7.0(1)
0.24(1)
2.3(4) 0.5(1) 10.(1) (9.+1.) RIm = 4.(1) 118.(30) 0.07(3) 0.2 0.10(2) 1.0(1) (0.006+1.0)
7.3(1)
16.(1) mb
5.68(5) 7.41(7) 7.16(6)
0.4(1) (48.+22.) mb 97.(5) mb 6.0(2) mb
7.75(2) 7.75(2)
19.(1) mb
0.6(1) 0.95(9)
7.16(3)
0.2(1) 5.(2) 0.6(2) 16.(5)
0.07(2) 3.2(4) mb
7.02(2)
6.4(1) 8.8(1) 7.5(2)
21.(2) mb 60.(8) mb 33.(4) mb 0.10(1)
11-190 Elem. or Isot. 94Zr 96Zr 41Nb
Neutron Scattering and Absorption Properties Natural Abundance (%) 17.38(28) 2.80(9)
Half-Life >1017 y >1.7¥1018 y
93
Nb
94
Nb
2.4¥104 y
Nb Mo
34.97 d
100.
95 42
92
Mo
14.77(31)
94
Mo Mo
9.226(99) 15.900(85)
Mo Mo
16.674(12) 9.560(50)
Mo Mo 43Tc 98Tc 99Tc 44Ru 96Ru 98Ru 99Ru 100Ru 101Ru
24.20(25) 9.67(20)
95
96 97
98
100
102
Ru Ru 104Ru 105Ru 106Ru 45Rh 103Rh 104mRh 104Rh 105Rh 46Pd 102Pd 104Pd 105Pd Pd Pd 108Pd 110Pd 47Ag 107Ag 109Ag 110mAg 111Ag 48Cd 106Cd 108Cd
≈ 1¥1019 y ≈ 6.6¥106 y 2.13¥105 y
5.54(14) 1.87(3) 12.76(14) 12.60(7) 17.06(2)
>3.1¥1016 y
31.55(14)
103
106
>3¥1017 y
39.27 d 18.62(27) 4.44 h 1.020 y 100. 4.36 m 42.3 s 35.4 h 1.02(1) 11.14(8) 22.33(8) 27.33(3)
107
6.5¥106 y 26.46(9) 11.72(9) 51.839(8) 48.161(8) 249.8 d 7.47 d 1.25(6) 0.89(3)
*Extrapolated value.
>2.6¥1017 y >4.1¥1017 y
Thermal Neut. Cross-Section (barns) 0.049(6) 0.020(3) 1.11(1) sa <0.1 mb 1.1 sm = 0.86 (sm+ sg) = 15.(1) sm = 0.6(1) <7. 2.5(1) sa <0.1 mb 0.06 sm = 0.2 mb 0.02 13.4(3) sa = 30.(4) mb 0.5 2.5(2) sa = 0.4(2) mb 0.14(1) 0.19(1) sm = 0.9(2) 23.(2) 2.6 (1) 0.23(4) < 8. 4.(1) 5.8(6) 5.(1) sa <0.15 mb 1.2(1) <20. 0.49(2) 0.29(3) 0.15(4) 145.(2) (11.+ 134.) 800.(100) 40.(30) 1.1(3)¥104 7.(1) 3.2(10) 22.(2) sa = 0.5(2) mb (0.013+0.28) 1.8(2) (0.19+8.5) (0.033+0.7) 62.(1) (1.+35.) (4.1 + 87.) 82.(11) 3.(2) 2.52(5)¥103 0.20(3) 1.
Resonance Integral (barns) 0.25(3) 5.0(5) 8.5(6) (6.3+2.2)
Coh. Scat. s (30 keV) Maxw. Length (fm) Avg. (barns) 8.3(2) 26.(1) mb 5.5(1) 11.(1) mb 7.14(3) 7.14(3)
266.(5) mb
126.(13) <200. 26.(5)
6.72(2)
≈ 0.8
6.93(8)
0.07(1)
≈ 0.8 109.(5)
6.82(7) 6.93(6)
0.10(2) 0.29(1)
17.(3) 14.(3)
6.22(6) 7.26(8)
0.11(1) 0.34(1)
7.2(7) 3.6(3)
6.60(7) 6.75(7)
0.10(1) 0.11(1)
4.0(4)¥102 48.(5) 7.(2)
6.8(3) 7.03(3)
0.93(5) 0.21(1) 0.3(1) 1.2(3) 0.21(1) 1.00(4)
195.(20) 11.(2) 1.1(3)¥102 4.3(5) ≈ 30. 6.(2) 0.13(1) 2.0(6) 1.2(1)¥103 (0.08+1.1)¥103
1.7(4)¥104 82.(8) 10.(2) 16.(2) 60.(20) (0.2+5.5) 108.(4) (2.+240.) (0.7+8.) 767.(60) (3.+105.) (0.7+14.1)¥102 20.(4) 105.(20) 73.(8) 4.(1) 14.(3)
0.15(1) 0.15(1)
5.88(4) 5.88(4)
0.81(1)
5.91(6)
5.5(3) 6.4(4) 4.1(3) 5.922(7) 7.56(1) 4.17(1)
0.3(1) 0.29(3) 1.20(6) 0.25(3) 1.34(6) 0.20(2) 0.15(2) 0.80(3) 0.79(3)
4.87(5) 5.4(1)
0.30(2) 0.20(1)
Neutron Scattering and Absorption Properties Elem. or Isot. 109Cd 110
Natural Abundance (%)
Half-Life 462.0 d
Cd Cd 112Cd 113Cd
12.49(18) 12.80(12) 24.13(21) 12.22(12)
7.7¥1015 y
114
28.73(42) 7.49(18)
3.8¥1019 y
4.29(5) 95.71(5)
4.4¥1014 y
111
Cd Cd 49In 113In 115In 50Sn 112Sn 113Sn 114Sn 115Sn 116Sn 117Sn 118Sn 119Sn 120Sn 122Sn 124Sn 51Sb 121Sb 123Sb 124Sb 52Te 120Te 122Te 123Te
116
124
Te Te 126Te 128Te 130Te 53I 125I 127I 128I 129I 130I 131I 54Xe 124Xe 125Xe 126Xe 127Xe 128Xe 129Xe 130Xe 131Xe 132Xe 133Xe 134Xe 135Xe 125
0.97(1) 115.1 d 0.66(1) 0.34(1) 14.54(9) 7.68(7) 24.22(9) 8.59(4) 32.58(9) 4.63(3) 5.79(5)
>2.2¥1018 y
57.21(5) 42.79(5) 60.20 d 0.09(1) 2.55(12) 0.89(3) 4.74(14) 7.07(15) 18.84(25) 31.74(8) 34.08(62)
>5.3¥1016 y
2.2¥1024 y 8.¥1020 y 59.4 d
100. 25.00 m 1.7¥107 y 12.36 h 8.021 d 0.0953(27)
>1017 y 17.1 h
0.0890(14) 36.34 d 1.910(22) 26.40(18) 4.071(53) 21.233(62) 26.9087(680) 10.436(29)
*Extrapolated value.
5.243 d >1.1¥1016 y 9.10 h
Thermal Neut. Cross-Section (barns) ≈ 180. sa <0.05 (0.06+11.) 3.5(20) (0.012+2.2) 2.06(4)¥104 sa <1. mb (0.04+0.29) (26.+52.) mb 197.(4) (3.1+5.0+3.9) (88.+73.+44.) 0.61(3) (0.15+0.40) ≈ 9. ≈ 0.12 sa = 0.06 mb (0.006+0.14) 1.1(1) sm = 4. mb 2.(1) (0.001+0.13) (0.15+0.001) (0.13+0.004) 5.2(2) (0.4+5.8) (0.02+0.04+4.0) 17.(3) 4.2(1) (1.+5.) (0.4+3.) 370.(40) sa = 0.05 mb (1.+6.) 1.1(2) (0.12+0.8) (0.03+0.2) (0.01+0.19) 6.2(1) 900.(100) 6.2(1) 22.(4) (20.7+10.3) 18.(3) ≈ 0.7 25.(1) (28.+137.) sa < 0.03 (0.45+3.) sa ≤ 0.01 sm = 0.48 22.(5) sm = 0.45 90.(10) (0.05+0.4) 190.(90) (0.003 + 0.26) 2.65(11)¥106
11-191 Resonance Integral (barns) 6.7(12)¥103
Coh. Scat. Length (fm)
(6.+34.) 51.(6) 15. 390.(40)
5.9(1) 6.5(1) 6.4(1) - 8.0(2)
16.(7) 1.2 3.3(2)¥103 (220.+90.) (1.5+1.2+0.7)¥103 8.(2) (8.+19.) 210.(50) 5.(1) 29.(6) (0.5+11.) 16.(5) 4.7(5) 2.9(5) 1.2(3) 0.81(4) (8.0+0.08) 169.(20) (13.+192.) (1.+119.) ≈ 8. 47.(3) ≈ 1. (5.+75.) 4.5(3)¥103 (1.4+4.) 21.(4) (0.6+7.4) (0.2+1.6) (0.03+0.3) 1.5(1)¥102 1.4(2)¥104 1.5(1)¥102 ≈ 10. 36.(4) ≈ 8. 8.(4) 263.(50) (0.6+3.0)¥103
7.5(1) 6.3(1) 4.07(2) 5.39(6) 4.01(2) 6.225(2)
s (30 keV) Maxw. Avg. (barns)
(0.01+0.22) 0.75(1) 0.19(1) 0.67(1) (0.01+0.12) (12.+47.) mb (0.48+0.31) (0.69+0.02) 0.21(1)
6.2(3) 5.93(5) 6.48(5) 6.07(5) 6.12(5) 6.49(5) 5.74(5) 5.97(5) 5.57(3) 5.71(6) 5.38(7) 5.80(3) 5.3(5) 3.8(2) - 0.05
134.(3) mb 0.34(1) 91.(2) mb 319.(7) mb 62.(1) mb 0.18(1) (0.5+36.) mb (18.+4.) mb 12.(2) mb 0.53(2) 0.30(1)
0.4(1) 295.(3) mb 0.83(1)
8.0(1) 5.02(8) 5.56(7) 5.89(7) 6.02(7) 5.28(2)
155.(2) mb 431.(4) mb (28.+53.) mb (3.+41.) mb (4.+11.) mb
5.28(2)
0.64(3) 0.44(2)
4.92(3) (0.13+0.51)
(8.+52.)
(0.04+0.32)
RIm = 38.(10) 250.(50) RIm = 16.(4) 9.(1)¥102 (0.9+3.7)
0.26(1) 0.62(2) 0.132(3) 0.45(8) (5.+60.) mb
0.40(4) 7.6(5)¥103
20.(2) mb
11-192 Elem. or Isot. 136Xe 55Cs 132Cs 133Cs 134Cs 135Cs 137Cs 56Ba 130Ba 132Ba 133Ba 134Ba 135Ba 136Ba 137Ba 138Ba 139Ba 140Ba 57La 138La 139La 140La 58Ce 136Ce 138Ce 140Ce 141Ce 142Ce 143Ce 144Ce 59Pr 141Pr 142Pr 143Pr 60Nd 142Nd 143Nd 144 145
146
Nd Nd
Nd Nd 148Nd 150Nd 61Pm 146Pm 147Pm 148mPm 148Pm 149Pm 151Pm 62Sm 144Sm 145Sm 147Sm 148Sm 149Sm
Neutron Scattering and Absorption Properties Natural Abundance (%) 8.858(33)
Half-Life >8¥1020 y 6.48 d
100. 2.065 y 2.3¥106 y 30.2 y 0.106(1) 0.101(1)
2.2¥1021 y 1.3¥1021 y 10.53 y
2.417(18) 6.592(12) 7.854(24) 11.232(24) 71.698(42) 1.396 h 12.75 d 0.090(1) 99.910(1)
1.06¥1011 y 1.678 d
0.185(2) 0.251(2) 88.450(51) 11.114(51)
32.50 d >1.6¥1017 y 1.38 d 284.6 d
100. 19.12 h 13.57 d 27.2(5) 12.2(2) 23.8(3) 8.3(1)
2.1¥1015 y
17.2(3)
147
10.98 d 5.7(1) 5.6(2)
≈ 1¥1019 y 5.53 y 2.623 y 41.3 d 5.37 d 2.212 d 1.183 d
3.07(7) 14.99(18) 11.24(10) 13.82(7)
*Extrapolated value.
340. d 1.06¥1011 y 7¥1015 y 1016 y
Thermal Neut. Cross-Section (barns) 0.26(2) 30.4(8) sa < 0.15 (2.7+27.3) 140.(10) 8.3(3) (0.20+0.07) 1.3(2) (1.+8.) (0.84+9.7) 4.(1) (0.1+1.3) (0.014+5.8) (0.010+0.44) 5.(1) 0.41(2) 5.(1) 1.6(3) 9.2(2) 57.(6) 9.2(2) 2.7(3) 0.64(4) (1.0+6.5) (0.025+1.0) 0.58(4) 29.(3) 0.97(3) 6.1(7) 1.0(1) 11.5(4) (4.+7.5) 20.(3) 90.(10) 51.(2) 19.(1) 330.(10) sa = 17. mb 3.6(3) 47.(6) sa = 12. mb 1.5(2) 440.(150) 2.4(1) 1.0(1) 8.4(1.7)¥103 (84.+96.) 10600.(800) ≈ 103 1400.(200) ≈ 150. 5.6(1)¥103 1.6(1) 280.(20) 56.(4), sa = 0.6 mb 2.4(6) 4.01(6)¥104, sa = 31. mb
Resonance Integral (barns) 0.7(2) 422.(50) (32.+360.) 54.(9) 38.(3) 0.36(7) 10.(2) (25.+200.) (4.7+24.) 85.(30) (5.6+18.) (0.47+131.) (0.1+1.5) 4.(1) 0.4(1) 2.2(5) 14.(1) 12.(1) 4.1(9)¥102 12.(1) 69.(4) 0.71(6) 58.(12) (1.5+5.2) 0.50(5) 13.(2) 1.3(3) 2.7(3) 2.6(3) 14.(3) 14.(3) 9.(1) 190.(25) 49.(5) 34.(11) 128.(30)
Coh. Scat. Length (fm)
s (30 keV) Maxw. Avg. (barns) 0.9(1) mb
5.42(2) 5.42(2)
5.07(3) - 3.6(6) 7.8(3) 5.7(1) 4.7(1) 4.91(8) 6.8(1) 4.84(8)
(0.04+0.47)
0.76(11) 0.6(1) 0.18(1) 0.46(2) 61.(2) mb 76.(3) mb 4.0(2) mb
8.24(4) 8.24(4)
38.(3) mb
4.84(2) 5.80(9) 6.70(9) 4.84(9)
(0.028+0.3) 179.(5) mb 11.0(4) mb
4.75(9)
28.(1) mb
4.58(5) 4.58(5)
111.(2) mb
7.69(5) 7.7(3)
35.(1) mb 0.24(1)
3.9(5) 260.(40)
2.8(3)
81.(2) mb 0.42(1)
3.0(4) 200. 13.(2) 14.(2)
8.7(2)
91.(1) mb
5.7(3) 5.3(2)
147.(2) mb 0.16(1)
(1000.+1280.)
12.6(4)
2.(1)
2.6(2.4)¥103
1.4(2)¥103 2.4(3) 600.(90) 710.(50) 27.(14) 3.1(5)¥103
92.(6) mb 14.(3)
0.97(1) 241.(2) mb 1.82(2)
Neutron Scattering and Absorption Properties Elem. or Isot. 150Sm 151Sm 152Sm 153Sm 154Sm 63Eu 151Eu
Natural Abundance (%) 7.38(1)
90. y 26.75(16) 1.929 d 22.75(29) 47.81(6)
152m1
Eu Eu 153Eu 154Eu 155Eu 64Gd 148Gd 152Gd 153Gd 154Gd 155Gd 156Gd 157Gd 158Gd 160Gd 161Gd 65Tb 159Tb 160Tb 66Dy 156Dy 158Dy 159Dy 160Dy 161Dy 162Dy 163Dy 164Dy 165mDy 165Dy 67Ho 163Ho 165Ho 166mHo 68Er 162Er 164Er 166Er 167Er 168Er 170Er 171Er 69Tm 169Tm 170Tm 171Tm 70Yb 168Yb 169Yb 170Yb
Half-Life
9.30 h 13.5 y
152
52.19(6) 8.59 y 4.76 y
0.20(1) 2.18(3) 14.80(12) 20.47(9) 15.65(2) 24.84(7) 21.86(19)
75. y 1.1¥1014 y 240. d
>1.9¥1019 y 3.66 m
100. 72.3 d 0.056(3) 0.095(3) 144. d 2.39(18) 18.889(42) 25.475(36) 24.896(42) 28.260(54) 1.26 m 2.33 h
Thermal Neut. Cross-Section (barns) 102.(5) 1.52(3)¥104 206.(15) 420.(180) 7.5(3) 4570.(100) (4.+3150.+6000.) sa = 8.7(3) mb 6.8(15)¥104 1.1(2)¥104 300.(20), sa <1. mb 1.5(3)¥103 3.9(2)¥103 48.8(6)¥103 1.40(14)¥104 700.(200), sa <7. mb 2.(1)¥104, sa = 0.03 (0.035+60.) 61.(1)¥103, sa = .08 mb ≈ 2.0 2.54(3)¥105, sa <0.05 2.3(3) 1.5(7) 2.0(6)¥104 23.2(5) 23.2(5) 570.(110) 9.5(2)¥102 33.(3), sa < 9. mb 43.(6), sa < 6. mb 8.(2)¥103 60.(10), sa < 0.3 mb 600.(50), sa < 1. mb 170.(20) 120.(10), sa < 20. mb (1.7+1.0)¥103 2.0(6)¥103 3.5(3)¥103 61.(2)
11-193 Resonance Integral (barns) 290.(30) 3520.(60) 3.0(3)¥103 32.(6) 3.8(5)¥103 (2.+4.)¥103 < 105 1.6(2)¥103 1.8(4)¥103 1.6(2)¥103 1.6(2)¥104 400.(10)
Coh. Scat. s (30 keV) Maxw. Length (fm) Avg. (barns) 14.(3) 422.(4) mb 2.(1) - 5.0(6) 473.(4) mb 9.(1) 5.3(3)
(1.6+2.2)
8.2(1)
1.2¥103 y 0.139(5) 1.601(3) 33.503(36) 22.869(9) 26.978(18) 14.910(36) 7.52 h 100 128.6 d 1.92 y 0.13(1) 32.02 d 3.04(15)
*Extrapolated value.
(3.1+58.), sa < 20. mb 3.1(8)¥103 1.5(2)¥102 19.(3), sa < 11. mb 13.(3), sa < 1.2 mb (3.+14.), sa < 70. mb 6.5(8)¥102, sa = 3. mb 2.3(3), sa = 0.09 mb 8.(2) 370.(40) 108.(4) (8.+100.) 100.(20) ≈ 160. 52.(10) 2.4(2)¥103, sa < 0.1 mb 3.6(3)¥103 12.(2), sa < 10. mb
5.(2) 2.8(1) 4.4(7) 1.3(1)
9.5(2)
700.(200)
1.05(2)
230.(50) 1540.(100) 104.(15) 800.(100) 73.(7) 6.(1)
9.(2) 9.15(5)
1.03(1) 2.65(3) 615.(5) mb 1.37(2) 324.(3) mb 0.15(2)
7.34(2) 7.34(2)
1.6(2)
420.(50) 420.(50)
6.3(4)
1.5(2)¥103 1000.(100) 120.(10)
16.9(3)
1100.(200) 1100.(100) 2755.(300) 1600.(400) (4.+2.)¥102
6.7(4) 10.3(4) - 1.4(5) 5.0(4) 49.4(2)
2.2(3)¥104 670.(40)
6.1(5)
(?+670.) 10.(3)¥103 730.(10) 480.(50) 105.(10) 96.(12) 2970.(70) 37.(5) 26.(4) 170.(20) 1.5(2)¥103 1.5(2)¥103 460.(50) 118.(6) 1.7(2)¥102 2.0(5)¥104 5200.(500) 320.(30)
1.6(2) 0.8(2) 0.89(1) 1.96(2) 446.(4) mb 1.11(1) 212.(3) mb
8.01(8)
4.57¥103 y 100.
0.21(1)
8.01(8)
(0.4+1.7) (0.8+0.5)
7.79(2) 8.8(2) 8.2(2) 10.6(2) 3.0(3) 7.4(4) 9.6(5)
1.6(1) 1.08(5) 0.56(6) 1.4(2) 0.34(4) 0.17(1)
7.07(3) 7.07(3)
1.13(6)
12.43(3) -4.07(2)
0.7(4)
6.8(1)
0.77(1)
11-194 Elem. or Isot. 171Yb 172Yb 173Yb 174Yb 176Yb 71Lu 175Lu 176Lu 177mLu 177Lu 72Hf 174Hf 176Hf 177Hf 178m2Hf 178Hf 179Hf 180Hf 181Hf 73Ta 179Ta 180mTa 181Ta 182Ta 74W 180W 182W 183W 184W 185W 186W 187W 188W 75Re 185Re 187Re 76Os 184Os 186Os 187Os 188Os 189Os 190Os 191Os 192Os 193Os 77Ir 191Ir 192Ir 193Ir 194Ir 78Pt 190Pt 192Pt 194Pt 195Pt 196Pt 198Pt
Neutron Scattering and Absorption Properties Natural Abundance (%) 14.28(57) 21.83(67) 16.13(27) 31.83(92) 12.76(41) 97.41(2) 2.59(2)
0.16(1) 5.26(7) 18.60(9)
Half-Life
3.73¥1010 y 160.7 d 6.65 d 15
2.0¥10 y
31. y 27.28(7) 13.62(2) 35.08(16) 42.4 d
0.012(2) 99.988(2)
1.8 y > 1.2¥1015 y 114.43 d
0.12(1) 26.50(16) 14.31(4) 30.64(2) 28.43(19)
37.40(2) 62.60(2) 0.02(1) 1.59(3) 1.96(2) 13.24(8) 16.15(5) 26.26(2)
7.4¥1016 y 8.3¥1018 y 1.9¥1018 y 4.0¥1018 y 74.8 d 6.5¥1018 y 23.9 h 69.78 h
4.2¥1010 y >5.6¥1013 y 2.¥1015 y
15.4 d 40.78(19) 30.5 h 37.3(2) 73.83 d 62.7(2) 19.3 h 0.014(1) 0.782(7) 32.967(99) 33.832(10) 25.242(41) 7.163(55)
*Extrapolated value.
4.5¥1011 y
Thermal Neut. Cross-Section (barns) 53.(5), sa < 1.5 mb ≈ 1.3, sa < 1. mb 16.(2), sa < 1. mb (46.+17.), sa < 0.02 mb 3.1(2), sa < 1. mb 78.(7) (16.+8.) (2.+2100.) 3.2(3) 1000.(300) 106.(3) 600.(50) 23.(4) (1.+375.), sa < 20. mb sm2 = 45.(5) (54.+32.) (0.43+46.) 13.0(5), sa < 13. mb 30.(25) 20.(1) 9.3(6)¥102 ≈ 560. (0.012 + 20.), sa <1. mb 8200.(600) 18.(1) ≈ 4. 20.(1) 10.5(3) (0.002 + 2.0) ≈ 3.3 37.(2) 70.(10) 12.(1) 90.(4) (0.33+110.) (2.+72.) 17.(1) 3.3(3)¥103, sa <10. mb ≈ 80., sa < 0.1 mb 2.(1)¥102, sa < 0.1 mb ≈ 5., sa < 30. mb (0.00026+40.),sa<10. mb (9.+4.), sa < 20. mb 3.8(6)¥102 3.(1), sa < 10. mb 2.5(5)¥102 4.2(1)¥102 (0.14+660.+260.) 1.4(3)¥103 (0.04+6.+109.) 1.6(3)¥103 10.(1) 1.5(1)¥102, sa < 8. mb (2.0+6.), sa < 0.2 mb (0.1+1.1), sa < 5. mb 28.(1), sa < 5. mb (0.045+0.55) (0.3+3.1)
Resonance Integral (barns) 315.(30) 25.(3) 380.(30) (13.+16.) 8.(2) 8.3(7)¥102 (550.+270.) (3.+930.) 1.4(2) 19.7(5)¥102 400.(50) 700.(100) 7170.(200) RIm2 = 8(1)¥102 (0.9+1.0)¥103 (6.8+620.) 32.(1) 650(20.) 1.22(7)¥103 1350.(100) (0.4+650.) 900.(90) 3.6(3)¥102 210.(30) 600.(90) 340.(50) 15.(2) 300.(50) 510.(50) 2760.(550) 8.4(2)¥102 1700.(50) (9.+310.) 1.5(1)¥102 1.4(1)¥103 3.8(9)¥102 5.0(7)¥102 1.5(2)¥102 (0.013+670.) (22.+8.) 1.7(3)¥102 7.(1) 1.1(2)¥102 2.8(4)¥103 (1.0+4.2)¥103 4.8(7)¥103 1.4(2)¥103 7.(2)¥102 1.3(1)¥102 70.(10) 115.(20) (4.+?) 365.(50) 7.(2) (5.+53.)
Coh. Scat. Length (fm) 9.7(1) 9.4(1) 9.56(7) 19.3(1) 8.7(1) 7.21(3) 7.24(3) 6.1(2)
7.8(1) 11.(1) 6.6(2)
5.9(2) 7.5(2) 13.2(3)
s (30 keV) Maxw. Avg. (barns) 1.21(1) 0.34(1) 0.75(1) 151.(2) mb 116.(2) mb (1.04+0.11) 1.53(7)
0.8(2) 0.46(2) 1.5(1) 0.31(1) (0.01+0.95) 179.(5) mb
6.91(7)
6.91(7)
0.77(2)
4.86(2) 6.97(4) 6.53(4) 7.48(6)
0.54(6) 274.(8) mb 0.52(2) 0.22(1)
- 0.72(4)
176.(5) mb
9.2(3) 9.0(3) 9.3(3) 10.7(2)
1.54(6) 1.16(6)
7.6(3) 10.7(3) 11.0(3)
0.4(2) 0.42(2) 0.90(3) 0.40(2) 1.17(5) 0.30(5)
11.5(4)
0.31(5)
12(2)
10.6(3) 1.35(4) 0.99(7) 9.60(1) 9.(1) 9.9(5) 10.55(8) 8.8(1) 9.89(8) 7.8(1)
0.7(2) 0.6(1) (0.03+0.34) 0.9(2) (0.01+0.19) (3.+79.) mb
Neutron Scattering and Absorption Properties Elem. or Isot. 199Pt 79Au 197Au
Natural Abundance (%)
100.
198
Au Au Hg 80 196Hg 198Hg 199Hg 200Hg 201Hg 202Hg 204Hg 81Tl
2.695 d 3.14 d
199
203
Tl Tl 205Tl 82Pb 204Pb 205Pb 206Pb 207Pb 208Pb 210Pb 83Bi 209Bi 210mBi 84Po 210Po
Half-Life 30.8 m
0.15(1) 9.97(8) 16.87(10) 23.10(16) 13.18(8) 29.86(20) 6.87(4)
>2.5¥1018 y
29.524(14)
204
3.78 y 70.476(14) 1.4(1) 1.51¥107 y 24.1(1) 22.1(1) 52.4(1)
>2¥1019 y 22.6 y
100. 3.0¥106 y
At Rn Rn 222Rn 88Ra 223Ra 224Ra 226Ra 228Ra 89Ac 227Ac 90Th 227Th 228Th 229Th
Thermal Neut. Cross-Section (barns) ≈ 15. 98.7(1) sm+g = 98.7(1) sm = 8.(2) mb 26.5(15)¥103 ≈ 30. 3.7(1)¥102 (105.+3000.) (0.017+2.) 2.1(2)¥103 ≈ 1. ≈ 8. 4.9(5) 0.4(1) 3.3(1) 11.(1), sa < 0.3 mb 22.(2) 0.11(2) 0.172(2) 0.68(7) ≈ 5. 0.027(1) 0.61(3) 0.23(1) mb, sa < 8. mb < 0.5 0.034(1) (11.+23.) mb,sa<0.3 mb 54.(4) mb
138.4 d
sm<0.5 mb, sa < 2. mb sg<30. mb, sf< 0.1
55.6 s 3.823 d
<0.2 0.74(5)
11.43 d 3.66 d 1599. y 5.76 y
1.3(2)¥102, sf< 0.7 12.0(5) ≈ 13., sf< 7. mb 36.(5), sf< 2.
21.77 y
8.8(7)¥102, sf< 0.35 mb 7.4 sf = 2.0(2)¥102 1.2(2)¥102, sf<0.3 ≈ 60. sf = 30.(3) 23.4(5) sf < 0.5 mb 7.37(4) sf = 3.(1) mb sa < 1. mb 1.5(1)¥103 sf = 15.(2) 1.8(5) sf < 0.01
11-195 Resonance Integral (barns) ≈ 7. 1.55(3)¥103 RIm+g = 1.55(3)¥103 RIm = 0.06(2) ≈ 4.¥104
Coh. Scat. Length (fm) 7.63(6) 7.63(6)
87.(5) (53.+410.) (1.7+70.) 435(20) 2.1(5) 30.(3) 4.5(2) 0.8(2) 12.5(8)
12.69(2) 30.(1)
41.(2) 90.(20) 0.6(2) 0.14(4) 2.0(2) ≈ 2. 0.10(1) 0.38(1) 2.0(2) mb
7.0(2)
0.19(2) 0.19(2) 0.20(3)
16.9(4)
11.(1)
18.72 d 1.913 y 7.9¥103 y
230
Th
7.54¥104 y
232
Th
233
Th
22.3 m
234
Th
24.10 d
100.
*Extrapolated value.
1.40¥1010 y
9.52(7) 9.402(2) 10.9(1)
124.(8) mb 0.14(5) 54.(4) mb
9.23(5) 9.28(2) 9.50(3) 8.532(2) 8.532(2)
2.7(5) mb
10.(1)
1.5(4)¥103 85.(3)
10.31(3)
1014.(400) 1.0(2)¥103 RIf = 466.(75) 1.0(1)¥103
4.(1)¥102
0.4(2) 0.17(2) 0.37(2) 0.12(1) 0.26(1) 74.(6) mb 42.(4) mb
90.(6) mb 0.06(1) 16.(1) mb 10.(1) mb 0.36(4) mb
280.(50)
85.(3)
582.(9) mb
8.776(5)
85
86 220
s (30 keV) Maxw. Avg. (barns)
10.31(3)
11-196
Neutron Scattering and Absorption Properties
Elem. or Isot. 91Pa 230Pa 231Pa 232
Natural Abundance (%)
Half-Life 17.4 d 3.25¥104 y
Pa
1.31 d
233
Pa
27.0 d
U U 231U 232U
20.8 d 4.2 d 70. y
92 230
233
U
1.592¥105 y
234
U
0.0054(5)
2.455¥105 y
235
U
0.7204(6)
7.04¥108 y
236
U
2.342¥107 y
237
U
6.75 d
238
U
239
U
99.2742(10)
Np Np 235Np 236mNp 236Np 237Np 93 234
238
Np Np
239
Pu Pu 237Pu 238Pu 94 236
4.47¥109 y
23.5 m
4.4 d 1.085 y 22.5 h 1.55¥105 y 2.14¥106 y 2.117 d 2.355 d
2.87 y 45.7 d 87.7 y
239
Pu
2.410 x 104 y
240
Pu
6.56¥103 y
241
Pu
14.4 y
242
Pu
3.75 x 105 y
243
Pu
4.956 h
*Extrapolated value.
Thermal Neut. Cross-Section (barns) 1.5(3)¥103 2.0(1)¥102 sf = 20.(1) mb 4.6(10)¥102 sf = 1.5(5)¥103 39.(2) sm = 20.(4) sg = 19.(3) sf < 0.1 3.4(3); sf = 4.2(1) sf ≈ 25. sf ≈ 250. 73.(2) sf = 74.(8) 47.(2) sf = 5.3(1)¥102 sa < 0.2 mb 96.(2) sf = 0.07(2) 95.(5) sf = 586.(2) sa < 0.1 mb 5.1(3) sf < 1.3 mb ≈ 102 sf < 0.35 2.7(1) sf ≈ 3. mb sa = 1.4(5) mb 22.(2) sf = 15.(3) sf = 9.(3)¥102 1.6(1)¥102 sf = 2.7(2)¥103 sf = 3.0(2)¥103 1.7(1)¥102 sf = 20.(1) mb sf = 2.6(3)¥103 (32.+19.) sf < 1. sf = 1.6(3)¥102 sf = 2.3(3)¥103 5.1(2)¥102 sf = 17.(1) 2.7(1)¥102 sf = 752.(3) sa ≤ 0.3 mb 2.9(1)¥102 sf ≈ 59. mb 3.7(1)¥102, sa <0.2 mb sf = 1.01(1)¥103 19.(1) sf<0.2 <100. sf = 2.0(2)¥102
Resonance Integral (barns)
Coh. Scat. Length (fm)
750.(80) RIf = 0.05(1) 300.(70) RIf = 1.0(1)¥103 (460.+440.)
9.1(3)
280.(20),RIf = 2.0
8.417(5)
280.(15) RIf = 350.(30) 137.(6) RIf = 760.(17) 660.(70) RIf = 6.5 144.(6) RIf = 275(5)
10.1(2)
12.(4) 10.47(4)
360.(15) RIf = 4.38(50) 1200.(200) 277.(3) 1.54(15) mb
7.(4)¥102 1.35(30)¥103 6.5(3)¥102 RIf = 4.7 1.4(3)¥103
8.402(5)
10.6(1)
1000.(60) 1.6(2)¥102 RIf = 26.(2) 2.0(2)¥102 3.0(1)¥102
14.1(5)
8.4(3)¥103 RIf = 3.2 1.6(1)¥102 5.7(4)¥102 1.1(1)¥103 RIf = 0.23
3.5(1)
7.7(1)
8.1(1)
s (30 keV) Maxw. Avg. (barns)
Neutron Scattering and Absorption Properties Elem. or Isot. 244Pu 245Pu 95Am 241Am 242m
Natural Abundance (%)
Half-Life 8.00¥107 y 10.5 h 432.7 y
Am
141. y
242
Am
16.02 h
243
Am
7.37¥103 y
244m
Am Am 96Cm 242Cm
≈ 26. m 10.1 h
243
29.1 y
244
Cm
162.8 d
244
Cm
18.1 y
245
Cm
8.48¥103 y
246
Cm
4.76¥103 y
247
Cm
1.56¥107 y
248
Cm
3.48¥105 y
249
Cm Cm 97Bk 249Bk
64.15 m ≈ 9.7¥103 y
250
Bk Cf 98 249Cf
3.217 h
250
Cf
13.1 y
251
Cf
9.0¥102 y
250
320. d
351. y
252
2.65 y
253
Cf
17.8 d
254
Cf Es 99 253Es 254mEs 254Es
60.5 d
Cf
255 100 255
257
20.47 d 1.64 d 276. d
Es Fm Fm
20.1 h
Fm
100.5 d
*Extrapolated value.
40. d
11-197
Thermal Neut. Cross-Section (barns) 1.7(1) 1.5(3)¥102
Resonance Integral (barns) 41.(3) 220.(40)
(0.6+6.4)¥102 sf = 3.15(10) 1.7(4)¥103 sf = 5.9(3)¥103 sf = 2.1(2)¥103 3.3(5)¥102 (75.+5.) sf = 79.(2) mb sf = 1.6(3)¥103 sf = 2.2(3)¥103
(1.+14.)¥102 14.(1) ≈ 200. RIf = 1.8(1)¥103 RIf = < 300. ≈ 1.5¥102 (17.1+1.0)¥102 RIf = 0.056
≈ 20. sf ≈ 5. 1.3(1)¥102 sf = 6.2(2)¥102 15.(1) sf = 1.1(2) 3.5(2)¥102 sf = 2.1(1)¥103 1.2(2) sf = 0.16(7) 60.(30) sf = 82.(5) 2.6(3) sf = 0.36(7) ≈ 1.6 ≈ 80.
120.(50) 214.(20) RIf = 1.6(1)¥103 640.(50) RIf = 10.8(8) 110.(10) RIf = 8.(1)¥102 120.(10) 13.(2) 5.(1)¥102 7.3(7)¥102 270.(30) 13.(2)
7.(1)¥102 sf ≈ 0.1 sf = 1.0(2)¥103
9.(1)¥102
5.0(3)¥102 sf = 1.7(1)¥103 2.0(2)¥103 sf = 110.(90) 2.9(2)¥103 sf = 4.5(5)¥103 20.(2) sf = 32.(4) 18.(2) sf = 1.3(2)¥103 4.5(10)
7.7(4)¥102 RIf = 2.1(3)¥103 12.(2)¥103 RIf = 160.(40) 1.6(1)¥103 RIf = 5.5(3)¥103 43.(3) RIf = 1.1(3)¥102 8.(1) 2.
(180.+5.8) sf = 1.8(1)¥103 28.(3) sf = 1.8(2)¥103 ≈ 55.
(37.5+1.1)¥102
26.(3) sf = 3.3(2)¥103 sf = 3.0(2)¥103
14.(2)
18.(2) RIf = 1.2(3)¥103
Coh. Scat. Length (fm)
8.3(2)
9.5(3)
9.3(2)
7.7(2)
s (30 keV) Maxw. Avg. (barns)
$04.*$ 3"%*"5*0/ " ( (SFHPSZ BOE 3 8 $MBZ 5IF /BUVSF PG $PTNJD 3BZT 1SJNBSZ DPTNJD SBEJBUJPO JO UIF GPSN PG IJHI FOFSHZ OVDMFBS QBSUJDMFT FMFDUSPOT BOE QIPUPOT GSPN PVUTJEF UIF TPMBS TZTUFN BOE GSPN UIF 4VO DPOUJOVBMMZ CPNCBSET PVS BUNPTQIFSF 4FDPOEBSZ SBEJBUJPO SFTVMUJOH GSPN UIF JOUFSBDUJPO PG UIF QSJNBSZ DPTNJD SBZT XJUI BUNPTQIFSJD HBT JT QSFTFOU BU TFB MFWFM BOE UISPVHIPVU UIF BUNPTQIFSF 5IF TFDPOEBSZ SBEJBUJPO JT DPMMJNBUFE CZ BCTPSQUJPO BOE TDBU UFSJOH JO UIF BUNPTQIFSF BOE DPOTJTUT PG B OVNCFS PG DPNQPOFOUT BTTPDJBUFE XJUI EJGGFSFOU QBSUJDMF TQFDJFT )JHI FOFSHZ QSJNBSZ QBSUJDMFT DBO QSPEVDF MBSHF OVNCFST PG TFDPOEBSZ QBSUJDMFT GPSN JOH BO FYUFOTJWF BJS TIPXFS 5IVT B OVNCFS PG QBSUJDMFT NBZ UIFO CF EFUFDUFE TJNVMUBOFPVTMZ BU TFB MFWFM 1SJNBSZ QBSUJDMF FOFSHJFT BDDFTTJCMF JO UIF WJDJOJUZ PG UIF FBSUI SBOHF GSPN _ F7 UP _ F7 "U UIF MPXFS FOFSHJFT UIF MJNJU JT EFUFSNJOFE CZ UIF JOBCJMJUZ PG DIBSHFE QBSUJDMFT UP USBWFSTF UIF IFMJPTQIFSF UP VT UISPVHI UIF PVUXBSE NPWJOH TPMBS XJOE 5IF VQQFS FOFSHZ MJNJU JT TFU CZ UIF QSBDUJDBMJUZ PG CVJMEJOH EFUFDUPST UP SFDPSE QBSUJDMFT XJUI UIF FYUSFNFMZ MPX GMVYFT GPVOE BU UIPTF FOFSHJFT + ( 8JMTPO 0 $ "MMLPGFS B
1SJNBSZ $PTNJD 3BZT 1SJNBSZ 1BSUJDMF &OFSHZ 4QFDUSVN 'JHVSF TIPXT UIF TQFDUSVN PG QSJNBSZ QBSUJDMF FOFSHJFT 5IJT JODMVEFT BMM QBSUJDMF TQFDJFT *O EJGGFSFOUJBM GPSN JU JT SPVHIMZ B QPXFS MBX PG JOUFOTJUZ WFSTVT FOFSHZ XJUI BO JOEFY PG _ o 5IFSF BQQFBST UP CF B LOFF B TUFFQFOJOH BU B MJUUMF BCPWF F7 BOE BO BOLMF B GMBUUFOJOH BCPWF _ F7 'JHVSF FNQIBTJ[FT UIF GFB UVSFT JO UIF TQFDUSVN BU UIF IJHIFTU FOFSHJFT UISPVHI NVMUJQMZ JOH UIF GMVY XJUI B TUSPOHMZ SJTJOH QPXFS MBX PG FOFSHZ 5IJT GJHVSF TIPVME CF VTFE XJUI DBVUJPO BT FSSPST GPS UIF UXP BYFT BSF OPU OPX JOEFQFOEFOU %BUB PO UIF IJHI FOFSHZ DPTNJD SBZ TQFDUSVN BSF VODFSUBJO MBSHFMZ CFDBVTF PG MJNJUFE FWFOU TUBUJTUJDT EVF UP UIF WFSZ MPX GMVY XIJDI NJHIU CFTU CF NFBTVSFE JO QBSUJDMFT QFS TRVBSF LJMPNFUFS QFS DFOUVSZ 5IF IJHIFTU FOFSHZ FWFOU SFDPSEFE UP IBE BO FOFSHZ PG ¨ F7 % + #JSE FU BM *U JT FYQFDUFE UIBU UIF IJHIFTU FOFSHZ DPTNJD SBZT XJMM JOUFSBDU XJUI UIF , DPTNJD NJDSPXBWF CBDLHSPVOE UISPVHI QIPUPQSP EVDUJPO PS QIPUPEJTJOUFHSBUJPO 5IFTF JOUFSBDUJPOT XJMM BQQSFDJB CMZ SFEVDF UIF PCTFSWFE GMVY PG DPTNJD SBZT XJUI FOFSHJFT BCPWF ¨ F7 JG UIFZ USBWFM GVSUIFS UIBO _ NJMMJPO MJHIU ZFBST 5IJT QSPDFTT JT LOPXO BT UIF (SFJTFO ;BUTFQJO ,V[ NJO (;, DVU PGG 1 4PLPMTLZ "U FOFSHJFT CFMPX _ F7 TPMBS TZTUFN NBHOFUJD GJFMET BOE QMBTNB DBO NPEVMBUF UIF QSJNBSZ DPNQPOFOU BOE 'JHVSF TIPXT UIF FYUFOU PG UIJT NPEVMBUJPO CFUXFFO TPMBS NBYJNVN BOE NJOJ NVN & +VMJVTTPO + -JOTMFZ
1SJNBSZ 1BSUJDMF &OFSHZ %FOTJUZ *G UIF BCPWF TQFDUSVN JT DPSSFDUFE GPS TPMBS FGGFDUT UIF FOFSHZ EFOTJUZ BCPWF B QBSUJDMF FOFSHZ PG F7 PVUTJEF UIF TPMBS TZTUFN JT GPVOE UP CF _ ¨ F7 No "T UIF UISFTIPME FOFSHZ JT JODSFBTFE UIF FOFSHZ EFOTJUZ EFDSFBTFT SBQJEMZ CFJOH ¨ F7 No BCPWF F7 BOE F7 No BCPWF F7 5IF FOFSHZ EFOTJUZ BU MPXFS FOFSHJFT PVUTJEF UIF IFMJPTQIFSF JT VOLOPXO CVU NBZ CF TVCTUBO
UJBMMZ HSFBUFS JG UIF QBSUJDMF SFTU NBTT FOFSHZ JT JODMVEFE UPHFUIFS XJUI UIF LJOFUJD FOFSHZ " 8 8PMGFOEBMF
1SJNBSZ 1BSUJDMF *TPUSPQZ
5IJT JT NFBTVSFE BT BO BOJTPUSPQZ *NBY o *NJO *NBY *NJO ¨ XIFSF * UIF JOUFOTJUZ No To TS o JT VTVBMMZ NFBTVSFE XJUI BO BOHVMBS SFTPMVUJPO PG B GFX EFHSFFT 5IF NFBTVSFE BOJTPUSPQZ JT TNBMM BOE FOFSHZ EFQFOEFOU *U JT SPVHIMZ DPOTUBOU JO BNQMJUVEF BU CFUXFFO BOE XJUI B QIBTF PG UP IPVST JO SJHIU BTDFOTJPO GPS FOFSHJFT CFUXFFO F7 BOE F7 BOE BQQFBST UP JODSFBTF BU IJHIFS FOFSHJFT SPVHIMZ BT ¨ &OFSHZ F7 VQ UP _ F7 5IF MBUUFS SJTF NBZ XFMM CF BO BSUJGBDU PG UIF QSPHSFTTJWFMZ NPSF MJNJUFE TUBUJTUJDT BT UIF GMVY ESPQT SBQJEMZ XJUI FOFSHZ *U BQQFBST QPTTJCMF UIBU B SFBM BOJTPUSPQZ IBT CFFO PCTFSWFE BU UIF IJHIFTU FOFSHJFT BCPWF B GFX UJNFT F7 XJUI B EJSFDUJPOBM QSFGFSFODF GPS UIF TVQFSHBMBDUJD QMBOF UIJT QMBOF SFGMFDUT UIF EJSFDUJPOT PG HBMBYJFT XJUIJO BCPVU NJMMJPO MJHIU ZFBST " 8 8PMGFOEBMF 3 8 $MBZ 5 4UBOFW FU BM
1SJNBSZ 1BSUJDMF $PNQPTJUJPO 5IF DPNQPTJUJPO PG MPX FOFSHZ DPTNJD SBZT JT DMPTF UP VOJWFSTBM OVDMFBS BCVOEBODFT FYDFQU XIFSF QSPQBHBUJPO FGGFDUT BSF QSFTFOU 'PS FYBNQMF -J #F BOE # XIJDI BSF TQBMMBUJPO QSPEVDUT BSF PWFS BCVOEBOU CZ BCPVU TJY PSEFST PG NBHOJUVEF $PNQPTJUJPO BU F7 QFS OVDMFVT $IBSHF $PNQPTJUJPO VODFSUBJOUZ
o
o
o
o
o
ö
.FBTVSFNFOUT BU IJHIFS FOFSHJFT JOEJDBUF UIBU UIFSF JT BO JO DSFBTF JO UIF SFMBUJWF BCVOEBODFT PG OVDMFJ XJUI DIBSHF HSFBUFS UIBO BU FOFSHJFT BCPWF 5F7 OVDMFVT , "TBLJNPSJ FU BM 5F7 F7 $PTNJD SBZ DPNQPTJUJPO BU MPX FOFSHJFT JT PGUFO RVPUFE BU B GJYFE FOFSHZ QFS OVDMFPO 8IFO QSFTFOUFE JO UIJT XBZ QSPUPOT DPOTUJUVUF SPVHIMZ PG UIF GMVY IFMJVN OVDMFJ BCPVU BOE UIF SFNBJOEFS TVN UP B UPUBM PG BCPVU $FSUBJO SBEJPBDUJWF JTPUPQJD SBUJPT TIPX MJGFUJNF FGGFDUT 5IF SB UJP PG #F # BCVOEBODFT JT VTFE UP NFBTVSF BO iBHFw PG DPTNJD SBZT TJODF #F JT VOTUBCMF XJUI B IBMG MJGF PG BCPVU ¨ ZFBST " SBUJP PG JT FYQFDUFE JO UIF BCTFODF PG #F EFDBZ BOE B SBUJP PG BCPVU JT GPVOE FYQFSJNFOUBMMZ & +VMJVTTPO 1 .FZFS "U IJHIFS FOFSHJFT DPNQPTJUJPO EFUFSNJOBUJPOT BSF JOEJSFDU BOE BSF SBUIFS DPOUSBEJDUPSZ BOE DPOUSPWFSTJBM &YQFSJNFOUT BJN UP EJGGFSFOUJBUF CFUXFFO CSPBE DPNQPTJUJPO NPEFMT 5IF NFBTVSF NFOU UFDIOJRVF JT CBTFE PO TUVEJFT PG DPTNJD SBZ TIPXFS EFWFMPQ NFOU " SBUIFS EJSFDU UFDIOJRVF GPS TVDI TUVEJFT JT UP VTF GMVPSFT DFODF PCTFSWBUJPOT PG UIF TIPXFS EFWFMPQNFOU UP EFUFSNJOF UIF BUNPTQIFSJD EFQUI PG NBYJNVN EFWFMPQNFOU PG UIF TIPXFS 4VDI PCTFSWBUJPOT TVHHFTU B IFBWZ DPNQPTJUJPO MBSHF BUPNJD OVNCFS BU FOFSHJFT _ F7 XIJDI DIBOHFT XJUI JODSFBTJOH FOFSHZ UP B MJHIU DPNQPTJUJPO QFSIBQT QSPUPOJD BCPWF _ F7 5 , (BJTTFS FU BM
6 B LQGG
$0
$PTNJD 3BEJBUJPO
'*(63& 5IF FOFSHZ TQFDUSVN PG DPTNJD SBZ QBSUJDMFT 5IJT TQFD USVN JT PG B EJGGFSFOUJBM GPSN BOE DBO CF DPOWFSUFE UP BO JOUFHSBM TQFD USVN CZ JOUFHSBUJPO PWFS BMM FOFSHJFT BCPWF B SFRVJSFE UISFTIPME & *OTPGBS BT UIF TQFDUSVN BQQSPYJNBUFT B QPXFS MBX PG JOEFY o B TJNQMF DPOWFSTJPO UP UIF JOUFHSBM BU BO FOFSHZ & JT PCUBJOFE CZ NVMUJQMZJOH UIF EJGGFSFOUJBM GMVY CZ UIF FOFSHZ BOE EJWJEJOH CZ
'*(63& &OFSHZ TQFDUSVN BU UIF IJHIFTU FOFSHJFT 5IJT TQFDUSVN BGUFS :PTIJEB FU BM IBT UIF EJGGFSFOUJBM TQFDUSVN NVMUJQMJFE CZ FOFSHZ DVCFE *U JT GSPN B DPNQJMBUJPO PG B OVNCFS PG NFBTVSFNFOUT BOE JOEJDBUFT UIF HPPE HFOFSBM BHSFFNFOU BU UIF MPXFS FOFSHJFT BOE B TQSFBE EVF UP JOBEFRVBUF TUBUJTUJDT BU UIF IJHIFTU FOFSHJFT
'*(63& &OFSHZ TQFDUSVN PG QBSUJDMFT BU MPXFS FOFSHJFT B 4PMBS NJOJNVN QSPUPO FOFSHZ TQFDUSVN C 4PMBS NBYJNVN QSPUPO FOFSHZ TQFDUSVN D (BNNB SBZ FOFSHZ TQFDUSVN E -PDBM JOUFSTUFMMBS FMFDUSPO TQFDUSVN
!
6 B LQGG
" "
$0
$PTNJD 3BEJBUJPO
1SJNBSZ &MFDUSPOT 1SJNBSZ FMFDUSPOT DPOTUJUVUF BCPVU PG UIF DPTNJD SBZ CFBN 5IF QPTJUSPO UP OFHBUJWF FMFDUSPO SBUJP JT BCPVU + . $MFN FU BM
"CTPSQUJPO JO XBUFS QFS HÂ&#x2022;DNo "CTPSQUJPO GPS EFQUIT MFTT UIBO HÂ&#x2022;QE DNo JT HJWFO CZ , (SFJTFO
"MUJUVEF %FQFOEFODF
"OUJNBUUFS JO UIF 1SJNBSZ #FBN 5IF SBUJP PG BOUJQSPUPOT UP QSPUPOT JO UIF QSJNBSZ DPTNJD SBZ CFBN BU BCPVU .F7 JT BCPVU o "U BCPVU (F7 UIF SBUJP JT BCPVU o "U UIF IJHIFTU NFBTVSFE FOFSHJFT 5F7 UIF VQQFS MJNJU UP UIF SBUJP JT BCPVU 4 0SJUP FU BM . "NFOPNPSJ FU BM
5IF DPTNJD SBZ CBDLHSPVOE JO UIF BUNPTQIFSF IBT B NBYJNVN JOUFOTJUZ PG BCPVU UJNFT UIBU BU TFB MFWFM BU B EFQUI PG BCPVU HÂ&#x2022;DNo LN BMUJUVEF "U NBYJNVN JOUFOTJUZ UIF TPGU BOE IBSE DPNQPOFOUT DPOUSJCVUF SPVHIMZ FRVBMMZ CVU UIF IBSE DPNQPOFOU JT UIFO BUUFOVBUFE NPSF TMPXMZ 4 )BZBLBXB
1SJNBSZ (BNNB 3BZT
$PTNJD 3BZ 4IPXFST
5IF GMVY PG QSJNBSZ HBNNB SBZT JT MPX BU IJHI FOFSHJFT "U (F7 UIF SBUJP PG HBNNB SBZT UP QSPUPOT JT BCPVU o 5IF BSSJWBM EJSFDUJPOT PG UIFTF HBNNB SBZT BSF TUSPOHMZ DPODFOUSBUFE JO UIF QMBOF PG UIF .JMLZ 8BZ BMUIPVHI UIFSF JT B EJGGVTF OFBS JTPUSPQJD CBDLHSPVOE GMVY BOE TPNF QPJOU TPVSDFT IBWF CFFO EFUFDUFE 4JODF UIF BCTPSQUJPO DSPTT TFDUJPO GPS HBNNB SBZT BCPWF .F7 JT BQQSPYJNBUFMZ NCBSO FMFDUSPO MFTT UIBO PG HBN NB SBZT SFBDI NPVOUBJO BMUJUVEFT " 8 8PMGFOEBMF 1 ' .JDIFMTPO
4FB -FWFM $PTNJD 3BEJBUJPO 5IF TFB MFWFM DPTNJD SBZ EPTF JT NJMMJSBEÂ&#x2022;ZSo BOE UIF TFB MFWFM JPOJ[BUJPO JT ¨ JPO QBJST No To 5IF TFB MFWFM GMVY IBT B TPGU DPNQPOFOU XIJDI DBO CF BCTPSCFE JO BCPVU NN PG MFBE BCPVU HÂ&#x2022;DNo PG BCTPSCFS BOE B NPSF QFOFUSBUJOH MBSHFMZ NVPO IBSE DPNQPOFOU 5IF TFB MFWFM SBEJBUJPO JT MBSHFMZ QSPEVDFE JO UIF BUNPTQIFSF BOE JT B TFDPOEBSZ DPNQPOFOU GSPN JOUFSBDUJPOT PG UIF QSJNBSZ QBSUJDMFT 5IF TUFFQ QSJNBSZ FOFSHZ TQFDUSVN NFBOT UIBU NPTU TFDPOEBSJFT BU TFB MFWFM BSF GSPN SBUIFS MPX FOFSHZ QSJNBSJFT 5IVT UIF TFDPOEBSZ GMVY JT EFQFOEFOU PO UIF TPMBS DZDMF BOE UIF HFPNBHOFUJD MBUJUVEF PG UIF PCTFSWFS
"CTPMVUF 'MVY PG UIF )BSE $PNQPOFOU o o
o
7FSUJDBM *OUFHSBM *OUFOTJUZ * _ N T TS "OHVMBS EFQFOEFODF * ȧ _ * DPT ȧ
*OUFHSBUFE *OUFOTJUZ _ No To 0 $ "MMLPGFS C
'MVY PG UIF 4PGU $PNQPOFOU *O GSFF BJS UIF TPGU DPNQPOFOU DPNQSJTFT BCPVU POF UIJSE PG UIF UPUBM DPTNJD SBZ GMVY
-BUJUVEF &GGFDU 5IF HFPNBHOFUJD GJFME JOGMVFODFT UIF USBKFDUPSJFT PG MPXFS FOFS HZ DPTNJD SBZT BQQSPBDIJOH UIF &BSUI "T B SFTVMU UIF CBDLHSPVOE GMVY JT SFEVDFE CZ BCPVU BU UIF HFPNBHOFUJD FRVBUPS 5IF FG GFDU EFDSFBTFT UPXBSET UIF QPMFT BOE JT OFHMJHJCMF BU MBUJUVEFT BCPWF BCPVU ¡
'MVY PG 1SPUPOT 5IF QSPUPO DPNQPOFOU JT TUSPOHMZ BUUFOVBUFE CZ UIF BUNPTQIFSF XJUI BO BUUFOVBUJPO MFOHUI SFEVDUJPO CZ B GBDUPS PG F PG BCPVU HÂ&#x2022;DNo *U DPOTUJUVUFT BCPVU PG UIF UPUBM WFSUJDBM TFB MFWFM GMVY
"CTPSQUJPO 5IF TPGU DPNQPOFOU JT BCTPSCFE JO BCPVU HÂ&#x2022;DNo PG NBUUFS 5IF IBSE DPNQPOFOU JT BCTPSCFE NVDI NPSF TMPXMZ "CTPSQUJPO JO MFBE QFS HÂ&#x2022;DNo "CTPSQUJPO JO SPDL QFS HÂ&#x2022;DNo
6 B LQGG
)JHI FOFSHZ DPTNJD SBZT QSPEVDF QBSUJDMF DBTDBEFT JO UIF BU NPTQIFSF XIJDI DBO CF EFUFDUFE BU TFB MFWFM QSPWJEFE UIBU UIFJS FOFSHZ FYDFFET BCPVU (F7 TVDI MPX FOFSHZ DBTDBEFT NBZ CF EFUFDUFE CZ VTJOH UIF NPTU TFOTJUJWF BUNPTQIFSJD $FSFOLPW EF UFDUPST 5IF QSJNBSZ QBSUJDMF QSPHSFTTJWFMZ MPTFT FOFSHZ XIJDI JT USBOTGFSSFE UISPVHI UIF QSPEVDUJPO PG TVDDFTTJWF HFOFSBUJPOT PG TFDPOEBSZ QBSUJDMFT UP B DBTDBEF PG IBESPOT BO FMFDUSPNBHOFUJD TIPXFS DPNQPOFOU CPUI QPTJUJWFMZ BOE OFHBUJWFMZ DIBSHFE FMFD USPOT BOE HBNNB SBZT BOE NVPOT 5IF TFDPOEBSZ QBSUJDMFT BSF SFMBUJWJTUJD BOE BMM USBWFM FGGFDUJWFMZ BU UIF TQFFE PG MJHIU "T B SFTVMU UIFZ SFBDI TFB MFWFM BU BQQSPYJNBUFMZ UIF TBNF UJNF CVU EVF UP $PVMPNC TDBUUFSJOH GPS UIF FMFDUSPOT BOE QSPEVDUJPO BOHMFT GPS UIF QJPOT QSPEVDJOH UIF NVPOT BSF TQSFBE MBUFSBMMZ JOUP B EJTL MJLF TIPXFS GSPOU XJUI B DIBSBDUFSJTUJD MBUFSBM XJEUI PG TFWFSBM UFOT PG NFUFST BOE UIJDLOFTT OFBS UIF DFOUSBM TIPXFS DPSF PG UP N 5IF OVNCFS PG QBSUJDMFT BU TFB MFWFM JT SPVHIMZ QSPQPSUJPOBM UP UIF QSJNBSZ QBSUJDMF FOFSHZ /VNCFS PG QBSUJDMFT BU TFB MFWFM _ o ¨ FOFSHZ F7 "U BMUJUVEFT CFMPX B GFX LJMPNFUFST UIF OVNCFS PG QBSUJDMFT JO B TIPXFS BUUFOVBUFT XJUI BO BUUFOVBUJPO MFOHUI PG BCPVU HÂ&#x2022;DNo J F QBSUJDMF OVNCFS PSJHJOBM OVNCFS ¨ FYQ o EFQUI JODSFBTF
5IF BCPWF BQQMJFT UP BO JOEJWJEVBM TIPXFS 5IF SBUF PG PCTFSWB UJPO PG TIPXFST PG B HJWFO TJ[F QBSUJDMF OVNCFS BU UIF EFUFDUPS BU EJGGFSFOU EFQUIT PG BCTPSCFS BUUFOVBUFT XJUI BO BCTPSQUJPO MFOHUI PG BCPVU HÂ&#x2022;DNo + ( 8JMTPO
"UNPTQIFSJD #BDLHSPVOE -JHIU GSPN $PTNJD 3BZT $PTNJD SBZ QBSUJDMFT QSPEVDF $FSFOLPW MJHIU JO UIF BUNPTQIFSF BOE QSPEVDF GMVPSFTDFOU MJHIU UISPVHI UIF FYDJUBUJPO PG BUNP TQIFSJD NPMFDVMFT
$FSFOLPW -JHIU )JHI FOFSHZ DIBSHFE QBSUJDMFT XJMM DBVTF UIF FNJTTJPO PG $FSFOLPW MJHIU JO BJS JG UIFJS FOFSHJFT BSF BCPWF BCPVU .F7 FMFDUSPOT 5IJT UISFTIPME JT QSFTTVSF BOE IFODF BMUJUVEF EFQFO EFOU " UZQJDBM $FSFOLPW MJHIU QVMTF BU TFB MFWFM N GSPN UIF DFOUSBM TIPXFS DPSF IBT B UJNF TQSFBE PG B GFX OBOPTFDPOET 0WFS UIJT UJNF UIF QIPUPO GMVY CFUXFFO BOE ON XPVME CF _ No To GPS B QSJNBSZ QBSUJDMF FOFSHZ PG F7 'PS DPNQBSJTPO UIF OJHIU TLZ CBDLHSPVOE GMVY JT _ ¨ QIPUPOT No To TSo JO UIF TBNF XBWFMFOHUI CBOE + 7 +FMMFZ
'MVPSFTDFODF -JHIU $PTNJD SBZ QBSUJDMFT JO UIF BUNPTQIFSF FYDJUF BUNPTQIFSJD NPMFDVMFT XIJDI UIFO FNJU GMVPSFTDFODF MJHIU 5IJT JT XFBL DPN QBSFE UP UIF IJHIMZ DPMMJNBUFE $FSFOLPW DPNQPOFOU XIFO WJFXFE JO UIF EJSFDUJPO PG UIF JODJEFOU DPTNJD SBZ QBSUJDMF CVU JT FNJUUFE
$0
$PTNJD 3BEJBUJPO
JTPUSPQJDBMMZ 5ZQJDBM QVMTF XJEUIT BSF MPOHFS UIBO OT BOE NBZ CF VQ UP TFWFSBM NJDSPTFDPOET GPS UIF UPUBM QVMTF GSPN EJTUBOU MBSHF TIPXFST 3 . #BMUSVTBJUJT FU BM
&GGFDUT PG $PTNJD 3BZT $FSFOLPW &GGFDUT JO 5SBOTQBSFOU .FEJB #BDLHSPVOE DPTNJD SBZ QBSUJDMFT XJMM QSPEVDF $FSFOLPW MJHIU JO USBOTQBSFOU NBUFSJBM XJUI B QIPUPO ZJFME CFUXFFO XBWFMFOHUIT Ȫ BOE Ȫ P TJO Q D °
L L
EL L QIPUPOT VOJU MFOHHUI
XIFSF ȧD UIF $FSFOLPW BOHMF DPTo SFGSBDUJWF JOEFY 5IJT CBDLHSPVOE MJHIU JT LOPXO UP BGGFDU MJHIU EFUFDUPST F H QIPUPNVMUJQMJFST BOE DBO CF B NBKPS TPVSDF PG CBDLHSPVOE OPJTF 3 8 $MBZ BOE " ( (SFHPSZ
&GGFDUT PO &MFDUSPOJD $PNQPOFOUT *G CBDLHSPVOE DPTNJD SBZ QBSUJDMFT QBTT UISPVHI FMFDUSPOJD DPNQPOFOUT UIFZ NBZ EFQPTJU TVGGJDJFOU FOFSHZ UP BGGFDU UIF TUBUF PG F H B USBOTJTUPS GMJQ GMPQ 5IJT FGGFDU NBZ CF TJHOJGJDBOU XIFSF SFMJBCJMJUZ JT PG HSFBU JNQPSUBODF PS UIF CBDLHSPVOE GMVY JT IJHI 'PS JOTUBODF JU IBT CFFO FTUJNBUFE UIBU JO DPNNVOJDBUJPO TBUFM MJUF PQFSBUJPO BO FSSPS SBUF PG BCPVU ¨ o QFS USBOTJTUPS QFS ZFBS NBZ CF GPVOE 1FSNBOFOU EBNBHF NBZ BMTP SFTVMU " TJHOJGJ DBOU FSSPS SBUF NBZ CF GPVOE FWFO BU TFB MFWFM JO MBSHF FMFDUSPOJD NFNPSJFT 5IJT FSSPS SBUF JT EFQFOEFOU PO UIF TFOTJUJWJUZ PG UIF DPNQPOFOU EFWJDFT UP UIF EFQPTJUJPO PG FMFDUSPOT JO UIFJS TFOTJUJWF WPMVNFT + ' ;JFHMFS
#JPQIZTJDBM 4JHOJGJDBODF 8IFO DPTNJD SBZT JOUFSBDU XJUI MJWJOH UJTTVF UIFZ QSPEVDF SB EJBUJPO EBNBHF 5IF BNPVOU PG UIF EBNBHF EFQFOET PO UIF UPUBM EPTF PG SBEJBUJPO "U TFB MFWFM UIJT EPTF JT TNBMM DPNQBSFE XJUI EPTFT GSPN PUIFS TPVSDFT CVU CPUI UIF RVBOUJUZ BOE RVBMJUZ PG UIF SBEJBUJPO DIBOHF SBQJEMZ XJUI BMUJUVEF "QQSPYJNBUF EPTF SBUFT VO EFS WBSJPVT DPOEJUJPOT BSF
%PTF SBUFT NSFNÂ&#x2022;ZSo
4FB MFWFM DPTNJD SBZT $PTNJD SBZT BU LN TVCTPOJD KFUT $PTNJD SBZT BU LN TVQFSTPOJD USBOTQPSUT D G NFBO UPUBM TFB MFWFM EPTF
"TUSPOBVUT XPVME CF TVCKFDU UP SBEJBUJPO GSPN HBMBDUJD SBET QFS EBZ BOE TPMBS B GFX IVOESFE SBET QFS TPMBS GMBSF DPTNJD SBZT BT XFMM BT MBSHF GMVYFT PG MPX FOFSHZ SBEJBUJPO XIFO QBTTJOH UISPVHI UIF 7BO "MMFO CFMUT BCPVU SBET QFS USBWFSTF #PUI BTUSPOBVUT BOE 445 USBWFMMFST XPVME CF TVCKFDU UP B TNBMM GMVY PG MPX FOFSHZ IFBWZ OVDMFJ TUPQQJOH JO UIF CPEZ 4VDI QBS UJDMFT BSF DBQBCMF PG EFTUSPZJOH DFMM OVDMFJ BOE DPVME CF QBSUJDVMBSMZ IBSNGVM JO UIF FBSMZ TUBHFT PG UIF EFWFMPQNFOU PG BO FNCSZP 5IF SBUFT PG IFBWZ OVDMFJ TUPQQJOH JO UJTTVF JO TVQFSTPOJD USBOTQPSUT BOE TQBDFDSBGU BSF BQQSPYJNBUFMZ BT GPMMPXT
6 B LQGG
4UPQQJOH OVDMFJ DN UJTTVF o ISo
4VQFSTPOJD USBOTQPSU LN 4VQFSTPOJD USBOTQPSU LN 4QBDFDSBGU 0 $ "MMLPGFS B 0 $ "MMLPGFS FU BM
$BSCPO %BUJOH 3BEJPDBSCPO JT QSPEVDFE JO UIF BUNPTQIFSF EVF UP UIF BDUJPO PG DPTNJD SBZ TMPX OFVUSPOT 4PMBS DZDMF NPEVMBUJPO PG UIF WFSZ MPX FOFSHZ DPTNJD SBZT DBVTFT BO BOUJDPSSFMBUJPO PG UIF BUNPTQIFSJD $ BDUJWJUZ XJUI TVOTQPU OVNCFS XJUI B NFBO BNQMJUVEF PG BCPVU *O UIF MPOH UFSN NPEVMBUJPO PG DPTNJD SBZT CZ B WBSZJOH NBHOFUJD GJFME NBZ CF JNQPSUBOU " " #VSDIVMBE[F FU BM
1SBDUJDBM 6TFT PG $PTNJD 3BZT 5IFSF BSF GFX EJSFDU QSBDUJDBM VTFT PG DPTNJD SBZT 5IFJS BU UFOVBUJPO JO XBUFS BOE TOPX IBWF IPXFWFS FOBCMFE BVUPNBUJD NPOJUPST PG XBUFS BOE TOPX EFQUI UP CF DPOTUSVDUFE " TFBSDI GPS IJEEFO DBWJUJFT JO QZSBNJET IBT CFFO DBSSJFE PVU VTJOH B NVPO iUFMFTDPQFw
0UIFS &GGFDUT 4UFMMBS 9 SBZT IBWF CFFO PCTFSWFE UP BGGFDU UIF USBOTNJTTJPO UJNFT PG SBEJP TJHOBMT CFUXFFO EJTUBOU TUBUJPOT CZ BMUFSJOH UIF EFQUI PG UIF JPOPTQIFSJD SFGMFDUJOH MBZFS *U IBT BMTP CFFO TVHHFTUFE UIBU WBSJBUJPOT JO JPOJ[BUJPO PG UIF BUNPTQIFSF EVF UP TPMBS NPEVMBUJPO NBZ IBWF PCTFSWBCMF FGGFDUT PO DMJNBUJD DPOEJUJPOT
3FGFSFODFT 0 $ "MMLPGFS B *OUSPEVDUJPO UP $PTNJD 3BEJBUJPO 7FSMBH ,BSM 5IJFNJH .VODIFO (FSNBOZ 0 0 "MMLPGFS C + 1IZT ( /VDM 1IZT - 0 $ "MMLPGFS BOE 8 )FJOSJDI )FBMUI 1IZT . "NFOPNPSJ FU BM 1SPD UI *OU $PTNJD 3BZ $POG 3PNF 6OJWFSTJUB -B 4BQJFO[B 3PNB , "TBLJNPSJ FU BM 1SPD SE *OU $PTNJD 3BZ $POG $BMHBSZ 6OJWFSTJUZ PG $BMHBSZ $BOBEB 3 . #BMUSVTBJUJT FU BM /VDM *OTU .FUI " % + #JSE FU BM 1IZT 3FW -FUU " " #VSDIVMBE[F 4 7 1BHBWB 1 1PWJOFD ( * 5PHPOJE[F 4 6TBDFW 1SPD UI *OU $PTNJD 3BZ $POG ,ZPUP 6OJW PG 5PLZP +BQBO 3 8 $MBZ "VTU + 1IZT 3 8 $MBZ BOE " ( (SFHPSZ + 1IZT " .BUI (FO + . $MFN FU BM 1SPD UI *OU $PTNJD 3BZ $POG 3PNF 6OJWFSTJUB -B 4BQJFO[B 3PNB 5 , (BJTTFS FU BM 1IZT 3FW % , (SFJTFO 1IZT 3FW 4 )BZBLBXB $PTNJD 3BZ 1IZTJDT 8JMFZ *OUFSTDJFODF /FX :PSL + 7 +FMMFZ 1SPH JO &MFNFOUBSZ 1BSUJDMF BOE $PTNJD 3BZ 1IZTJDT & +VMJVTTPO 1SPD UI *OU $PTNJD 3BZ $POG .VOJDI .BY 1MBODL *OTUJUVUF GVS &YUSBUFSSFTUSJDIF 1IZTJL .VODIFO (FSNBOZ + -JOTMFZ 0SJHJO PG $PTNJD 3BZT * " 6 4ZNQPTJVN % 3FJEFM 1VCMJTIJOH $P %PSESFDIU )PMMBOE 1 .FZFS 0SJHJO PG $PTNJD 3BZT * " 6 4ZNQPTJVN % 3FJEFM 1VCMJTIJOH $P %PSESFDIU )PMMBOE 1 ' .JDIFMTPO JO 5PXBSET B .BKPS "UNPTQIFSJD $FSFOLPW %FUFDUPS *** &E 5 ,JGVOF 6OJWFSTBM "DBEFNZ 1SFTT *OD 5PLZP +BQBO 1 4PLPMTLZ *OUSPEVDUJPO UP 6MUSBIJHI &OFSHZ $PTNJD 3BZ 1IZTJDT "EEJTPO 8FTMFZ 1VCMJTIJOH $PNQBOZ 5 4UBOFW FU BM 1IZT 3FW -FUU 4 0SJUP FU BM 1SPD UI *OU $PTNJD 3BZ $POG 3PNF 6OJWFSTJUB -B 4BQJFO[B 3PNB + ( 8JMTPO $PTNJD 3BZT 8ZLFIBN 1VC -POEPO -U 6 , " 8 8PMGFOEBMF 1SBNBOB 4 :PTIJEB FU BM "TUSPQBSUJDMF 1IZT + ' ;JFHMFS *&&& 5SBOT &MFDUSPO %FWJDFT &%
$0
TECHNIQUES FOR MATERIALS CHARACTERIZATION Experimental Techniques Used to Determine the Composition, Structure, and Energy States of Solids and Liquids H.P.R. Frederikse The many experimental methods, originally designed to study the chemical and physical behavior of solids and liquids, have grown into a new field known as Materials Characterization (or Materials Analysis). During the past 30 years a host of techniques aimed at the study of surfaces and thin films has been added to the many tools for the analysis of bulk samples. The field has benefitted particularly from the development of computers and microprocessors, which have vastly increased the speed and accuracy of the measuring devices and the recording of their output. Materials characterization was and is a very important tool in the search for new physical and chemical phenomena. It plays an essential role in new applications of solids and liquids in industry, communications, and medicine. Many of its techniques are used in quality control, in safety regulations, and in the fight against pollution. In most Materials Characterization experiments the sample is subjected to some kind of radiation: electromagnetic, acoustic, thermal, or particles (electrons, ions, neutrons, etc.). The surface Technique
Sample
In
analysis techniques usually require a high vacuum. As a result of interactions between the solid (or liquid) and the incoming radiation a beam of a similar (or a different) nature will emerge from the sample. Measurement of the physical and/or chemical attributes of this emerging radiation will yield qualitative, and often quantitative, information about the composition and the properties of the material being probed. The modern tendency of describing practically everything in this world by a combination of a few letters (acronyms) has also penetrated the field of Materials Characterization. The table below gives the meaning of the acronym for every technique listed, the form and size of the required sample (bulk, surface, film, liquid, powder, etc.), the nature of the incoming and of the emerging radiation, the depth and the lateral spatial resolution that can be probed, and the information obtained from the experiment. The last column lists one or two major references to the technique described. Out
Lateral resolution
Depth
Information obtained
Ref.
Optical and Mass Spectroscopies for Chemical Analysis 1. 2.
3.
4.
5.
6.
7.
8. 9.
10.
AAS Atomic Absorption Spectroscopy ICP-AES Induct. Coupled Plasma – Atomic Emission Spectroscopy Dynamic SIMS Dynamic Secondary Ion Mass Spectroscopy Static SIMS Static Secondary Ion Mass Spectroscopy SNMS Sputtered Neutral Mass Spectroscopy SALI Surface Analysis by Laser Ionization LIMS Laser Ionization Mass Spectroscopy
Atomize (flame, electro, thermal, etc.) Atomize (flame, electro, thermal, ICP, etc.)
Light e.g., glow discharge –
Surface
Ion beam (1–20 keV)
Surface
Ion beam (0.5–20 keV)
Surface, bulk
Plasma discharge; noble gases: 0.5–20 keV e-beam, ion-beam, or laser for sputtering
Surface, bulk
u.v. laser (ns pulses)
SSMS Spark Source Mass Spectroscopy GDMS Glow Discharge Mass Spectroscopy
Sample in the form of two electrodes Sample forms the cathode for a D.C. glow discharge Liquid-dissolved sample carried by gas stream into R.F. induction coil
High voltage R.F. spark produces ions Sputtered atoms ionized in plasma
ICPMS Induct. Coupled Plasma Mass Spectroscopy
Surface
Ions produced in argon plasma
Absorption spectrum
–
–
Emission spectrum
–
–
Secondary ions; analysis with mass spectrometer Secondary ions, analysis with mass spectrometer Sputtered atoms ionized by atoms or electrons; then mass analyzed Sputtered atoms ionized by laser; then mass analyzed Ionized species; analyzed with mass spectrometer Ions – analyzed in mass spectrometer Ions – analyzed in mass spectrometer
2 nm–1 µm (or deeper: ion milling) 0.1–0.5 nm
0.50 nm
0.1–0.5 nm (or deeper: ion milling) 0.1–0.5 nm up to 3 µm in milling mode 50–150 nm
1 cm
60 nm
Surface analysis; depth profiling 7
5 µm–1 mm
Elemental (micro)analysis; detection limits: 1–100 ppm
8
1–5 µm
–
9
0.1–100 µm
3–4 mm
Survey of trace elements; detection limit: 0.01–0.05 ppm (Bulk) trace element analysis; detection limit: sub-ppb
Ions – analyzed in quadrupole mass spectrometer
–
–
High sensitivity analysis of trace 11 elements
Electronic transitions (mainly in semiconductors and superconductors); vibrational modes (in crystals and molecules) Spectra obtained at higher speed and resolution
10 µm
Concentration of atomic species 1,2 (quantitative, using standards) Concentration of atomic species 3 (quantitative, using standards) Elemental and isotopic analysis; depth profile (all elements); detection limits: ppb-ppm Elemental analysis of surface layers; molecular analysis; detection limits: ppb-ppm Elemental analysis Z ≥ 3; depth profile; detection limit: ppm
4
4
4,6
9,10
Photons — Absorption, Reflection and Electron Emission 11.
IRS Infrared Spectroscopy
Thin crystal, glass, liquid
I.R. light (W-filament, globar, Hg-arc)
I.R. spectrum
–
–
12.
FTIR Fourier Transform I.R. Spectroscopy
White light (all frequencies)
–
ATR Attenuated Total Reflection (µ)-RS (Micro-) Raman Spectroscopy
–
Fourier Transform of spectrum (interferometer) –
–
13.
Solid, liquid; transmission or reflection Surface or thin crystal
µm’s
–
Solid, liquid (1 µm–1 cm)
Laser beam, e.g., Arline, YAG-line
Raman spectra
0.5 µm
0.5 µm
14.
12,13,14
15
Atomic or molecular spectra of 16 surfaces and films Molecular and crystal vibrations 12,14,17
12-1
Section 12.indb 1
4/28/05 1:53:49 PM
Techniques for Materials Characterization
12-2 Technique 15.
16. 17.
18.
CARS Coherent Anti-Stokes Raman Spectroscopy Ellipsometry UPS Ultraviolet Photo-electron Spectroscopy PSD Photon Stimulated Desorption
Sample
In
Out
Lateral resolution
Depth
Information obtained
Ref.
Solid, liquid (50 µm–3 cm)
Pump beam (ω0)+ probe beam (ωs)
Anti-Stokes spectrum
–
–
High resolution Raman spectra
14
Transparent films, crystals, adsorbed layers Surfaces, adsorbed layers
Polarized light
Change in polarization
18,19
Electrons
25 µm (or sample thickness) 0.1–10 nm
Refractive index and absorption
u.v. light, 10–100 eV; 200 eV (synchrotron)
0.05 nm–5 µm 0.2–10 nm
Energies of electronic states of surfaces and free molecules
20,21
Surfaces with adsorbed species
Far u.v. light E > 10 eV
Ions – analyzed with mass spectrometer
0.1–2 nm
–
Structure and desorption kinetics of adsorbed atoms and molecules
22
Identification of crystallographic structures; all elements (low Z difficult) Elemental analysis; all elements except H, He, Li – (EDS also used in XRD, SEM, TEM and EPMA) Local atomic structure: order/ disorder in vicinity of absorbing atom (Quantitative) identification of all elements in surface layer or film
23,24
Energy levels of impurities and point defects Identification of surface species
30
X-Rays 19.
XRD X-Ray Diffraction
Single crystals, powders films
X-rays: λ = 0.05–0.2 nm (6–17 keV)
Diffracted X-ray beam
1–1000 µm
0.1–10 mm
20.
XRF/EDS X-Ray Fluorescence/Energy Dispersive Spectroscopy
Thin films, single layer
Prim. X-ray beam λ = 0.02–0.1 nm 12–80 keV
Fluorescent X-rays
1–100 µm
10 mm
21.
EXAFS Extended X-Ray Absorption Fine Structure XPS/ESCA X-Ray Photo-electron Spectroscopy/ Electron Spect. for Chemical Analysis
Films, foils
High intensity X-rays (synchrotron)
Spectrum near absorption edge
nm–µm
–
Surfaces, thin films (≈20 atomic layers)
Soft X-rays (1–20 keV)
Core electrons; valence electrons
0.5–10 nm
5 nm–50 µm
CL Cathode Luminescence APS Appearance Potential Spectroscopy
Insulators, semiconductors Surface (≈20 atomic layers)
Electrons 5–50 keV
Photons 0.1–5 eV
1 nm–2 µn
1 or 2 µm
Electrons (energy scan) 50–2000 eV
–
–
25.
AES Auger Electron Spectroscopy
Thin films, surfaces
Electrons 3–10 keV
X-rays to pinpoint electron energy threshold Auger electrons 20– 2000 eV
0.3–3 nm
≈30 nm
26.
EELS Electron Energy Loss Spectroscopy
Very thin samples (<200 nm)
Electrons (100–400 keV)
(Retarded) electrons; minus 1–1000 eV
<200 nm
1–100 nm
27.
EXELFS Extended Electron Energy Loss Fine Structure ESD Electron Stimulated Desorption
Thin films
Electrons (100–400 keV)
Electrons energies 0–30 eV above edge
<200 nm
1–100 nm
Adsorbed species
Electrons E > 10 eV
Ions – analyzed with mass spectrometer
–
–
ESDIAD ESD-Ion Angular Distribution EPMA Electron Probe (X-Ray) Micro Analysis LEED Low Energy Electron Diffraction
(See ESD)
(See ESD)
–
–
Solid conductors and insulators <1 cm thick
Electrons 5–30 keV
Directional dependence of emitted ions Characteristic X-ray 0.1–15 keV
100 nm–5 µm
1 µm
Surface
Mono-energetic electron beam 10– 1000 eV Electron beam at grazing angle 5–50 keV High energy electrons usually ~30 keV
Diffracted electrons
0.4–2 nm
<5 µm
Crystallographic structure of surface; resolution: 0.01 nm
35
Reflected electrons
0.2–10 nm
<5 µm
Surface symmetry
36,37
Secondary and backscattered electrons
1 nm–5 µm
1–20 nm
33,34
Transmitted and diffracted electrons
(Sample thickness)
2–20 nm
≈0.5 nm
10–100 nm
Surface image, defect structure; resolution 5–15 nm; magnification 300,000× (Defect) structure of cryst. solids; microchemistry; high resol.: 0.2 nm Surface image, crystallographic structure
1–5 nm
2–10 nm
1–100 nm
1–100 nm
0.5–5 nm
0.2–130 nm
22.
25,26
27
28,29
Electrons 23. 24.
28.
29. 30.
31.
32.
RHEED Reflection High Energy Electron Diffraction SEM Scanning Electron Microscopy
Surface
(S)TEM (Scanning) Transmission Electron Microscopy FEM Field Emission Microscopy
Thin specimen – <200 nm
High energy electrons typically 300 keV
Metals, alloys (sharp point)
–
36.
STM Scanning Tunneling Microscopy
Polished or cleaved surface (conducting)
37.
SPM Scanned Probe Microscopy
Very flat surface
38.
AFM Atomic Force Microscopy
Very flat surface
33.
34.
35.
Section 12.indb 2
Bulk, films (conducting)
Electron emission (with appl. electric field – 50 kV) Tunneling current controls distance between sample and very sharp tip Any field: e.g. mechan. vibration recorded with laser probe; same with magnetic, electric or thermal field Similar to STM; force measured with cantilever spring
Elemental composition of surface (except H, He); detection limit 0.1–1% Local elemental concentration; electronic structure, chem. bonding; interatomic distances Density of states of valence electrons (above Fermi level)
21, see also C 28,29
31
27,32
Structure and desorption 22 properties of adsorbed atoms and molecules Geometries of adsorbed species 22 (atoms or molecules) Elemental analysis, Z ≤ 4, major, 33,34 minor and trace amounts
33
34
Atomic-scale relief map of surface; resolution: vert. 0.002 nm, hor. 0.2 nm Surface-magnetic field, surfacethermal conductivity, etc.
39
Surface topography with atomic resolution; interatomic force
40
39a
4/28/05 1:53:51 PM
Techniques for Materials Characterization Technique
Sample
12-3 In
Out
Lateral resolution
Depth
Information obtained
Ref.
Ions and Neutrons 39.
ISS (or LEIS) Ion Scattering Spectroscopy (Low Energy Ion Scattering) FIM Field Ion Microscopy RBS Rutherford Back Scattering
Surface
Ion beam He+ or Ne+ <3 keV
Sputtered ions (energy analysis)
0.1–0.5 nm
1–100 µm
Surface: metals, alloys; very sharp tip Solids, thin films
He ions + high electric field produce image Backscattered ions
≈0.1 nm
0.1–2 nm
10 nm–1 µm
1 mm
Element identification (Li to U) detection limit: 0.01–1%
46
42.
NRA Nuclear Reaction Analysis
Solids, thin films
Protons, deuterons 3He, 0.1–5 µm α-particles, γ-rays
10 µm–10 mm
Element identification (all) detection limit: 10–12–10–2
47
43.
PIXE Particle Induced X-ray Emission
Thin films, surface layers
(He gas above sample) Mono-energetic ions (H+ or He++) 0.5–3 MeV Mono-energetic ions (Li, Be, B, etc.) 200 keV–6 MeV High energy ions (H+ or He++)
Characteristic X-rays
<10 µm
1 µm–2 mm
48
44.
INS Ion Neutralization Spectroscopy NAA Neutron Activation Analysis
Surface
He-ions (≈5 eV)
Electrons
–
–
Trace impurities: Z >3 detection limit: 0.1–100 ppm (depending on sample thickness) Energies of valence electrons
Bulk, >0.5 g
Thermal neutrons
Characteristic γ-rays, (≈1 MeV)
Bulk
–
43
N(P)D Neutron (Powder) Diffraction SANS Small Angle Neutron Scattering
Crystalline solids
Diffracted neutrons
Bulk
–
Scattered neutrons
1–25 mm
–
Trace concentrations (of isotopes) of elements: trans. metals, Pt-group; detection limit: 108–1014 atoms/cm3 Crystallographic structure; porosity, particle size Average size of inhomogeneities; range: 1 nm– 1 mm
Reflected acoustic wave
µm–cm
0.1–20 mm
Defect structure; thickness measurement
40. 41.
45.
46. 47.
Thermal neutrons E ≈0.0025 eV Inhomogeneous solids; Thermal neutrons 2 θ powders; porous samples = 10–2–10–4
Elemental analysis (better for low Z) detection limits: 0.01– 1% Atomic structure of surface
41
34,42
49
44 45
Acoustic 48.
SLAM Scanning Laser Acoustic Microscopy
Bulk, film
Acoustic wave produced by laser 1 MHz–1 GHz
50
Thermal 49. 50.
51.
DTA Differential Thermal Analysis DSC Differential Scanning Calorimetry
Specimen and reference Uniform heating sample Specimen and ref. sample Controlled heating
Temperature difference
Bulk
–
Phase transitions, crystallization 51
Measure heat required for equal temperature
Bulk
–
51
TGA Thermo Gravimetric Analysis
Bulk, 1–100 g
Controlled heating
Weight as function of temperature (and time)
Bulk
–
Phase transitions, crystallization; activation energies Decomposition, nonstoichiometry, kinetics of reaction
Local environment of paramagnetic ion; concentration of paramagnetic, species; detection limit: 1011 spins/cm3 Electronic energy bands, effective masses
53,54
52
Resonance 52.
EPR (ESR) Electron Paramagnetic (Spin) Resonance
Paramagnetic solids or liquids
Microwave radiation in magnetic field 3– 300 GHz; 1–100 kG
Microwave absorption (at resonance)
Bulk
–
53.
ECR Electron Cyclotron Resonance
Bulk
–
Mössbauer Effect
Microwave radiation in magnetic field 10– 30 GHz; 5–10 kG Mono-energetic γrays: 5–100 keV
Microwave absorption (at resonance)
54.
Semiconductors, metals; free electrons (low temperature) Source and absorber
Mössbauer spectrum (Doppler shifted (lines)
50 m
1 cm
55.
NMR (MRI) Nuclear Magnetic Resonance (Magnetic Resonance Imaging)
Solids, liquids
<1 cm
1 cm
56.
ENDOR Electron Nuclear Double Resonance
Solids, liquids
–
–
Hyperfine interaction → local atomic structure
54
57.
NQR Nuclear Quadrupole Resonance
Solids
R.F. absorption R.F. radiation + magnetic field; e.g. for protons: 60 MHz, 14 kG Microwave absorption R.F. + microwave radiation in magn. field. R.F. absorption R.F. radiation 0.5– 1000 MHz
–
–
Asymmetry of the charge distribution at the nucleus
55,59
–
–
Surface area measurement
60
55
Interaction between nucleus and 56 its environment (local electric, magnetic fields; bonds; valency; diffusion, etc.) Quant. analysis; local magnetic 58 environment; diffusion; imaging
Other 58.
Section 12.indb 3
BET Brunauer-Emmett-Teller
(Large) surface area 1–20 Adsorbed gas (e.g., N2 at low temp.) as function m2/g of pressure (monolayer coverage)
4/28/05 1:53:52 PM
Techniques for Materials Characterization
12-4
References General References A. Wachtman, J. B., Characterization of Materials, ButterworthHeinemann, Boston, 1993. B. Brundle, C. R., Evans, C. A., and Wilson, S., Eds., Encyclopedia of Materials, Butterworth-Heinemann, Boston, 1992. C. Woodruff, D. P. and Delchar, T. A., Modern Techniques of Surface Science, Cambridge University Press, Cambridge, 1986. D. Metals Handbook, 9th Edition, Vol. 10, Materials Characterization, Whan, R. E., Coordinator, American Society for Metals, Metals Park, OH, 1986. Specific References 1. Slavin, M., Atomic Absorption Spectroscopy, 2nd Edition, John Wiley & Sons, New York, 1978. 2. Schrenk, W. G., Analytical Atomic Spectroscopy, Plenum Press, New York, 1975. 3. Dean, J. A. and Rains, T. E., Flame Emission and Atomic Absorption Spectroscopy, Vols. 1–3, Marcel Dekker, New York, 1969. 4. Benninghoven, A., Rudenauer, F. G., and Werner, H. W., Secondary Ion Mass Spectroscopy, John Wiley & Sons, New York, 1987. 5. Bird, J. R. and Williams, J. S., Eds., in Ion Beams for Materials Analysis, Academic Press, New York, 1989, pp. 515–537. 6. Smith, G. C., Quantitative Surface Analysis for Materials Science, The Institute of Metals, London, 1991. 7. Becker, E. H., in Ion Spectroscopies for Surface Analysis, Czanderna, A. W. and Hercules, D. M., Eds., Plenum Press, New York, 1991, p. 273. 8. Simons, D. S., Int. J. Mass Spectrometry and Ion Processes, 55, 15, 1983. 9. White, F. A. and Wood, G. M., Mass Spectrometry: Applications in Science and Engineering, John Wiley & Sons, New York, 1986. 10. Harrison, W. W. and Bentz, B. L., Prog. Anal. Spectrometry, 11, 53, 1988. 11. Bowmans, P. W. J. M., Inductively Coupled Plasma Emission Spectroscopy, Parts I and II, John Wiley & Sons, New York, 1987. 12. Brame, Jr., E. G. and Grasselli, J., Infrared and Raman Spectroscopy, Practical Spectroscopy Series, Vol. I, Marcel Dekker, New York, 1976. 13. Hollas, J. M., Modern Spectroscopy, John Wiley & Sons, New York, 1987. 14. Turrell, G., Infrared and Raman Spectroscopy of Crystals, Academic Press, New York and London, 1972. 15. Griffith, P. R. and Haseth, J. A., Fourier Transform Infrared Spectroscopy, John Wiley & Sons, New York, 1986. 16. Barnowski, M. K., Fundamentals of Optical Fiber Communications, Academic Press, New York, 1976. 17. Long, D. A., Raman Spectroscopy, McGraw-Hill, New York, 1977. 18. Azzam, R. M. A., Ellipsometry and Polarized Light, Elsevier-North Holland, Amsterdam, 1977. 19. Hecht, E., Optics, 2nd Edition, Addison-Wesley, Reading MA, 1987. 20. Brundle, C. R., in Molecular Spectroscopy, West, A. R., Ed., Heyden, London, 1976. 21. Park, R. L., in Experimental Methods in Catalytic Research, Vol. III, Anderson, R. B. and Dawson, P. T., Academic Press, New York, 1976, pp. 1–39. 22. Madey, T. E. and Stockbauer, R., in Solid State Physics: Surfaces, Vol. 22 of Methods of Experimental Physics, Park, R.L. and Lagally, M. G., Eds., Academic Press, New York, 1985. 23. Cullity, B. D., Elements of X-Ray Diffraction, 2nd Edition, AddisonWesley, Reading, MA, 1978. 24. Schwartz, L. H. and Cohen, J. B., Diffraction from Materials, Springer Verlag, Berlin, 1987. 25. deBoer, D. K. G., in Advances in X-Ray Analysis, Vol. 34, Barrett, C. S. et. al., Eds., Plenum Press, New York, 1991. 26. Birks, L. S., X-Ray Spectrochemical Analysis, 2nd Edition, John Wiley & Sons, New York, 1969. 27. Bonnelle, C. and Mande, C., Advances in X-Ray Spectroscopy, Pergamon Press, Oxford, 1982.
Section 12.indb 4
28. Practical Surface Analysis by Auger and X-Ray Photo-Electric Spectroscopy, Briggs, D. and Seah, M. P., Eds., John Wiley & Sons, New York, 1983. 29. Powell, C. J. and Seah, M. P., J. Vac. Sci. Technol. A, Vol. 8, 735, 1990. 30. Yacobi, G. G. and Holt, D. B., Cathodeluminescence Microscopy of Inorganic Solids, Plenum Press, New York, 1990. 31. Egerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope, Plenum Press, New York, 1986. 32. Disko, M. M., Krivanek, O. L., and Rez, P., Phys. Rev., B25, 4252, 1982. 33. Goldstein, J. I., et. al., Scanning Electron Microscopy and X-Ray Microanalysis, 2nd Edition, Plenum Press, New York, 1986. 34. Murr, L. E., Electron and Ion Microscopy and Microanalysis, Marcel Dekker, New York, 1982. 35. Armstrong, R. A., in Experimental Methods in Catalytic Research, Vol. III, Anderson, R. B., and Dawson, P. T., Eds., Academic Press, New York, 1976. 36. Dobson, P. J. et. al., Vacuum, 33, 593, 1983. 37. Rymer, T. B., Electron Diffraction, Methuen, London, 1970. 38. Reimer, L., Transmission Election Microscopy, Springer-Verlag, Berlin, 1984. 39. Scanning Tunneling Microscopy and Related Methods, Behm, R. J., Garcia, N., and Rohrer, H., Eds., Kluwer Academic Publishers, Norwell, MA, 1990. 39a. Wikramasinghe, H.K., Scientific American, Vol. 261, No. 4, pp. 98– 105, Oct. 1989. 40. Rugar, D. and Hansma, P., Physics Today, 43(10), pp. 23–30, 1990. 41. Feldman, C. C. and Mayer, J. W., Fundamentals of Surface and Thin Film Analysis, North-Holland, Amsterdam, 1986. 42. Muller, E. W. and Tsong, T. T., Field Ion Microscopy, Elsevier, Amsterdam, 1969. 43. Amiel, S., Nondestructive Activation Analysis, Elsevier, Amsterdam, 1981. 44. Bacon, G. E., Neutron Diffraction, 3rd Edition, Clarendon Press, Oxford, 1975. 45. Neutron Scattering, Part A., in Methods of Experimental Physics, Vol. 23, Skold, K. and Price, D. L., Eds., Academic Press, New York, 1986. 46. Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectroscopy, Academic Press, New York, 1987. 47. Rickey, F. A., in High Energy and Heavy Ion Beams in Materials Analysis, Tesmer, J. R., et. al., Eds., MRS, 1990, pp. 3–26. 48. Johansson, S. A. E. and Campbell, J. L., PIXE: A Novel Technique for Elemental Analysis, John Wiley & Sons, New York, 1988. 49. Hagstrum, H. D., in Inelastic Ion-Surface Collisions, Tolk, N. H. et. al., Eds., Academic Press, New York, 1977, pp. 1–46. 50. Nikoonahad, M., in Research Techniques in Nondestructive Testing, Vol. VI, Sharpe, R.S., Ed., Academic Press, New York, 1984, pp. 217– 257. 51. Gallagher, P. K., Characterization of Materials by Thermoanalytical Techniques, MRS - Bulletin, Vol. 13, No. 7, pp. 23–27, 1988. 52. Earnest, C. M., Compositional Analysis by Thermogravimetry, ASTM Special Technical Publication 997, 1988. 53. Poole, C. P., Electron Spin Resonance – A Comprehensive Treatise on Experimental Techniques, 2nd Edition, John Wiley & Sons, New York, 1983. 54. Atherton, N. M., Principles of Electron Spin Resonance, Ellis Horwood Ltd., Chichester, U.K., 1993. 55. Kittel, C., Introduction to Solid State Physics, 6th Edition, John Wiley & Sons, New York, 1986, p. 196. 56. Gibb, T. C., Principles of Mössbauer Spectroscopy, Chapman & Hall, London, 1976. 57. Slichter, C. P., Principles of Magnetic Resonance, 3rd Edition, SpringerVerlag, Berlin, 1990. 58. NMR Spectroscopy Techniques, Dybrowski, C. and Lichter, R. L., Eds., Marcel Dekker, New York, 1987. 59. Das, T. P. and Hahn, E. L., Nuclear Quadrupole Resonance Spectroscopy, Academic Press, New York, 1958. 60. Somorjai, G. A., Principles of Surface Chemistry, Prentice-Hall, Englewood Cliffs, NJ, 1972, p. 216
4/28/05 1:53:54 PM
SYMMETRY OF CRYSTALS L. I. Berger The ability of a body to coincide with itself in its different positions regarding a coordinate system is called its symmetry. This property reveals itself in iteration of the parts of the body in space. The iteration may be done by reflection in mirror planes, rotation about certain axes, inversions and translations. These actions are called the symmetry operations. The planes, axes, points, etc., are known as symmetry elements. Essentially, mirror reflection is the only truly primitive symmetry operation. All other operations may be done by a sequence of reflections in certain mirror planes. Hence, the mirror plane is the only true basic symmetry element. But for clarity, it is convenient to use the other symmetry operations, and accordingly, the other aforementioned symmetry elements. The symmetry elements and operations are presented in Table 1. The entire set of symmetry elements of a body is called its symmetry class. There are thirty-two symmetry classes that describe all crystals which have ever been noted in mineralogy or been synthesized (more than 150,000). The denominations and symbols of the symmetry classes are presented in Table 2. There are several known approaches to classification of individual crystals in accordance with their symmetry and crystallochemistry. The particles which form a crystal are distributed in certain points in space. These points are separated by certain distances (translations) equal to each other in any chosen direction in the crystal. Crystal lattice is a diagram that describes the location of particles (individual or groups) in a crystal. The lattice parameters
are three non-coplanar translations that form the crystal lattice. Three basic translations form the unit cell of a crystal. August Bravais (1848) has shown that all possible crystal lattice structures belong to one or another of fourteen lattice types (Bravais lattices). The Bravais lattices, both primitive and non-primitive, are the contents of Table 3. Among the three-dimensional figures, there is a group of polyhedrons that are called regular, which have all faces of the same shape and all edges of the same size (regular polygons). It has been shown that there are only five regular polyhedrons. Because of their importance in crystallography and solid state physics, a brief description of these polyhedrons is included in Table 4. The systematic description of crystal structures is presented primarily in the well known Structurbericht. The classification of crystals by the Structurbericht does not reflect their crystal class, the Bravais lattice, but is based on the crystallochemical type. This makes it inconvenient to use the Structurbericht categories for comparison of some individual crystals. Thus, there have been several attempts to provide a more convenient classification of crystals. Table 5 presents a compilation of different classifications which allows the reader to correlate the Structurbericht type with the international and Schoenflies point and space groups and with Pearson’s symbols, based on the Bravais lattice and chemical composition of the class prototype. The information included in Table 5 has been chosen as an introduction to a more detailed crystallophysical and crystallochemical description of solids.
TABLE 1. Symmetry Operations and Elements Symmetry element Symbol Presentation on the stereographic projection International Schoenflies Parallel Perpendicular (Hermann-Mauguin)
Symmetry operation
Name
Reflection in a plane
Plane
m
Cs
Rotation by angle α = 360°/n about an axis
Axis
n = 1, 2, 3, 4 or 6
Cn
n=2
C2
n=3
C3
n=4
C4
n=6
C6
n = 3, 4, 6
Cni
n = 3
C3i
n = 4
C4i
Rotation about an axis and inversion in a symmetry center lying on the axis
Inversion (improper) axis
12-5
Section 12.indb 5
4/28/05 1:54:10 PM
Symmetry of Crystals
12-6
Symmetry operation
Name
Inversion in a point Parallel translation Reflection in a plane and translation parallel to the plane Rotation about an axis and translation parallel to the axis Rotation about an axis and reflection in a plane perpendicular to the axis
Crystal symbol Triclinic Monoclinic Orthorhombic Trigonal Tetragonal Hexagonal Cubic a
TABLE 1. Symmetry Operations and Elements Symmetry element Symbol Presentation on the stereographic projection International Schoenflies Parallel Perpendicular (Hermann-Mauguin)
Primitive
n = 6
C6i
Center
1
Ci
Translation vector a, b, c Glide–plane
a, b, c, n, d
Screw axis
nm (m = 1, 2, .., n – 1) ñ ñ = 1, 2, 3, 4, 6
Rotatoryreflection axis
TABLE 2. The Thirty-Two Symmetry Classes Class namea Planal Axial Plane-axial Inversion primitive and its symbol – International (Int) and Schoenflies (Sch) Int Sch Int Sch Int Sch Int Sch
Central
Int 1
Sch C1
Int 1
Sch Ci
3 4 6 23
C3 C4 C6 T
3 4/m 6/m m3
C3i C4h C6h Th
Sn
m mm2
Cs C2v
2 222
C2 D2
2/m mmm
C2h D2h
3m 4mm 6mm 43m
C3v C4v C6v Td
32 422 622 432
D3 D4 D6 O
3m
C3d D4h D6h Oh
Per Fedorov Institute of Crystallography, USSR Academy of Sciences, nomenclature.
4/mmm 6/mmm m3m
4 6
S4 C3h
Inversion-planal Int
Sch
42m 6m2
D2d D3h
TABLE 3. The Fourteen Possible Space Lattices (Bravais Lattices)
Crystal system
Metric category of the system
No. of different lattices in the system
C
+ +
Triclinic Monoclinic Orthorhombic Trigonal
Trimetric Trimetric Trimetric Dimetric
1 2 4 1
+ + +
(rhombohedral) Tetragonal Hexagonal Isometric (cubic)
Dimetric Dimetric Monometric
2 1 3
+ + +
a
Section 12.indb 6
R
a
b
c
α
β
γ
α≡(b,c), β≡(a,c), γ≡(a,b)
+ + + +
+ + +
+ + +
+
+ +
+
+
1 1 or 2 1, 2 or 4 1
a ≠ b ≠ c, α ≠ β ≠ γ a ≠ b ≠ c, α = γ = 90° ≠ β a ≠ b ≠ c, α = β = γ = 90° a = b = c, 120° > α = β = γ ≠ 90°
1 2/m mmm 3m
C C2h D2h D3d
1 or 2 1 1, 2 or 4
+ + +
a = b ≠ c, α = β = γ = 90° a = b ≠ c, α = β = 90°, γ = 120° a = b = c, α = β = γ = 90°
4/mmm 6/mmm m3m
D4h D6h Oh
Lattice typea (marked by +) P
I
+
F
+
+ +
+
Description of characteristic parameters a⊂X, b⊂Y, c⊂Z
No. of identipoints per unit cell
Characteristic parameters (marked by +)
+ + +
Symmetry of the lattice Int
Sch
Designations of the space-lattice types: P – primitive, C – side-centered (base-centered), I – body-centered, F – face-centered, R – rhombohedral.
4/28/05 1:54:20 PM
Symmetry of Crystals
12-7 TABLE 4. The Five Possible Regular Polyhedrons
Polyhedron Tetrahedron
Symmetry (Schoenflies) Class Elements T 4C33C2
Cube (hexahedron) Octahedron
O O
3C44C36C2 3C44C36C2
Pentagonal dodecahedron Icosahedron
J J
6C510C315C2 6C510C315C2
a
Per formula by Leonhard Euler: F + V – E = 2
Form of faces Equilateral triangle Square Equilateral triangle Regular pentagon Equilateral triangle
Faces (F) 4
Number ofa Edges (E) 6
Vertices (V) 4
6 8
12 12
8 6
12 20
30 30
20 12
TABLE 5. Classification of Crystals Strukturbericht symbol 1 A1 A2 A3 A4 A5 A6 A7 A8 A10 A11 A12 A13 A15 A20 B1 B2 B3 B4 B81 B82 B9 B10 B11 B13 B16 B17 B18 B19 B20 B27 B31 B32 B34 B35 B37 Be Bf (B33) Bg Bh Bi C1 C1b C2
Section 12.indb 7
Structure name 2 Cu W Mg C Sn In As Se Hg Ga α-Mn β-Mn OW3 α-U ClNa ClCs SZn SZn AsNi InNi2 HgS OPb γ-CuTi NiS GeS PtS CuS AuCd FeSi BFe MnP NaTl Pds CoSn SeTl CdSb ξ-BCr BMo CW γ´CMo (AsTi) CaF2 AgAsMg FeS2
Symmetry group International Schoenflies 3 4 Fm3m O4h Im3m O9h P63/mmc D46h O7h Fd3m D194h If1/amd I4/mmm D174h R3m D53d P3121 or P3221 D43 (D63) D53d R3m Cmca D182h I43m T3d O7 P4132 Pm3n O3h Cmcm D172h Fm3m O5h Pm3m O1h F43m T2d P63mc C46v P63/mmc D46h P63/mmc D46h D43 or D63 P3121 or P3221 P4/nmm D74h P4/nmm D74h D53d R3m Pnma D162h D94h P42/mmc P63/mmc D46h Pmma D52h P213 T4 Pnma D162h Pnma D162h Fd3m O7h P42/m C24h P6/mmm D16h I4/mcm D184h Pbca D152h Cmcm D172h I41/amd D194h P6m2 D13h P63/mmc D46h Fm3m F43m Pa3
O5h T2d T6h
Pearson symbola 5 cF4 cI2 hP2 cF8 tI4 tI2 hR2 hP3 hR1 oC8 cI58 cP20 cP8 oC4 cF8 cP2 cF8 hP4 hP4 hP6 hP6 tP4 tP4 hR6 oP8 tP4 hP12 oP4 cP8 oP8 oP8 cF16 tP16 hP6 tI16 oP16 oC8 tI4 hP2 hP8
Standard ASTM E157-82a symbolb 6 F B H F U U R H R Q B C C Q F C F H H H H T T R O T H O C O O F T H U O Q U H H
cF12 cF12 cP12
F F C
4/28/05 1:54:22 PM
Symmetry of Crystals
12-8 TABLE 5. Classification of Crystals Strukturbericht symbol 1 C3 C4 C6 C7 C11a C11b C12 C14 C15 C15b C16 C18 C19 C22 C23 C32 C33 C34 C36 C38 C40 C42 C44 C46 C49 C54 Cc Ce DO2 DO3 DO9 DO11 DO18 DO19 DO20 DO21 DO22 DO23 DO24 DOc DOe D13 D1a D1b D1c D1e D1f D21 D23 D2b D2c D2d D2f D2h D51 D52 D53
Section 12.indb 8
Structure name 2 Cu2O O2Ti CdI2 MoS2 C2Ca MoSi2 CaSi2 MgZn2 Cu2Mg AuBe5 Al2Cu FeS2 CdCl2 Fe2P Cl2Pb AlB2 Bi2STe2 AuTe2 MgNi2 Cu2Sb CrSi2 SiS2 GeS2 AuTe2 Si2Zr Si2Ti Si2Th CoGe2 As3Co BiF3 O3Re CFe3 AsNa3 Ni3Sn Al3Ni Cu3P Cu3P Al3Zr Ni3Ti SiU3 Ni3P Al4Ba MoNi4 Al4U PtSn4 B4Th BMn4 B6Ca NaZn13 Mn12Th MnU6 CaCu5 B12U Al6Mn α-Al2O3 La2O3 Mn2O3
Symmetry group International Schoenflies 3 4 Pn3m O4h P42/mnm D144h P3m1 D33d P63/mmc D46h I4/mmm D174h I4/mmm D174h R3m D53d P63/mmc D46h Fd3m O7h F43m or F23 T2d or T2 I4/mcm D184h Pnnm D122h R3m D53d P26m D13h Pnma D162h P6/mmm D16h R3m D53d C2/m (P2/m) C32h (C12h) P63/mmc D46h P4/nmm D74h P6222 D46 Ibam D262h Fdd2 C192v Pma2 C42v Cmcm D172h Fddd D242h I41/amd D194h Aba2 C172v Im3 T5h Fm3m O5h Pm3m O1h Pnma D162h P63/mmc D46h P63/mmc D46h Pnma D162h P3c1 D43d I4/mmm D174h I4/mmm D174h P63/mmc D46h I4/mcm D184h I4 S24 I4/mmm D174h I4/m C54h Imma D282h Aba2 C172v P4/mbm D54h Fddd D242h Pm3m O1h Fm3m O5h I4/mmm D174h I4/mcm D184h P6/mmm D16h Fm3m O5h Cmcm D172h R3c D63d P3m1 D33d Ia3 T7h
Pearson symbola 5 cP6 tP6 hP3 hP6 tI6 tI6 hR6 hP12 cF24 cF24 tI12 oP6 hR3 hP9 oP12 hP3 hR5 mC6 hP24 tP6 hP9 oI12 oF72 oP24 oC12 oF24 tI12 oC23 cI32 cF16 cP4 oP16 hP8 hP8 oP16 hP24 tI8 tI16 hP16 tI16 tI32 tI10 tI10 oI20 oC20 tP20 oF40 cP7 cF112 tI26 tI28 hP6 cF52 oC28 hR10 hP5 cI80
Standard ASTM E157-82a symbolb 6 C T H H U U R H F F U O R H O H R N H T H P S O Q S U Q B F C O H H O H U U H U U U U P Q T S C F U U H F Q R H B
4/28/05 1:54:24 PM
Symmetry of Crystals
12-9 TABLE 5. Classification of Crystals
Strukturbericht symbol 1 D58 D59 D510 D513 D5a D5c D71 D73 D7b D81 D82 D83 D84 D85 D86 D88 D89 D810 D811 D8a D8b D8e D8f D8h D8i D8l D8m D101 D102 E01 E11 E21 E24 E3 E93 E9a E9b F01 F51 F56 H11 H24 H25 L10 L12 L21 L22 L′2b L′3 L60
Section 12.indb 9
Structure name 2 S3Sb2 P2Zn3 C2C3 Al3Ni2 Si2U3 C3Pu2 Al4C3 P4Th3 B4Ta3 Fe3Zn10 Cu5Zn8 Al4Cu9 C6Cr23 Fe7W6 Cu15Si4 Mn5Si3 Co9S8 Al8Cr5 Al5Co2 Mn23Th6 σ-phase of Cr-Fe (Al,Zn)49Mg32 Ge7Ir3 B5W2 B5Mo2 B3Cr5 Si3W5 C3Cr7 Fe3Th7 ClFPb CuFeS2 CaO3Ti S3Sn2 Al2CdS4 SiFe3W3 Al7Cu2Fe AlLi3N2 NiSSb CrNaS2 CuS2Sb Al2MgO4 Cu3S4V AsCu3S4 AuCu AlCu3 AlCu2Mn Sb2Tl7 H2Th Fe2N CuTi3
Symmetry group International Schoenflies 3 4 Pnma D162h P42/mmc D94h Pnma D162h P3m1 D33d P4/mbm D54h I43d T6d R3m D53d I43d T6d Immm D252h Im3m O9h I43m T3d P43m T1d Fm3m O5h R3m D53d I43m T3d P63/mcm D36h Fm3m O5h R3m C53v P63/mcm D36h Fm3m O5h p42/mnm D144h Im3 Im3m P63/mmc R3m I4/mcm I4/mcm P31c P63mc P4/nmm I42d Pm3m Pnma I4 Fd3m P4/mnc Ia3 P213 R3m or R32 Pnma Fd3m P43m Pmn21 P4/mmm Pm3m Fm3m Im3m I4/mmm P63/mmc P4/mmm
T5h O9h D46h D53d D184h D184h C43v C46v D74h D122d O1h D162h S24 O7h D64h T7h T4 D53d or D73 D162h O7h T1d C72v D14h O1h O5h O9h D174h D46h D14h
Pearson symbola 5 oP20 tP40 oP20 hP5 tP10 cI40 hR7 cI28 oI14 cI52 cI52 cP52 cF116 hR13 cI76 hP16 cF68 hR26 hP28 cF116 tP30
Standard ASTM E157-82a symbolb 6 O T O H T B R B P B B C F R B H F R H F T
cI162 cI40 hP14 hR7 tI32 tI32 hP80 hP20 tP6 tI16 cP5 oP20 tI14 cF112 tP40 cI96 cP12 hR4 oP16 cF56 cP8 oP16 tP4 cP4 cF16 cI54 tI6 hP3 tP4
B B H R U U H H T U C O U F T B C R O F C O T C F B U H T
a
The first letter denotes the crystal system: triclinic (a), monoclinic (m), orthorhombic (o), tetragonal (t), hexagonal (h) and cubic (c). Trigonal (rhombohedral) system is denoted by combination hR. The second letter of Pearson’s symbol denotes lattice type: primitive (P), edge-(base-) centered (C), body-centered (I) or face-centered (F). The following number denotes number of atoms in the crystal unit cell.
b
Standard ASTM E157-82a has the Bravais lattices designations as following: C – primitive cubic; B – body-centered cubic; F – face-centered cubic; T – primitive tetragonal; U – body-centered tetragonal; R – rhombohedral; H – hexagonal; O – primitive orthorhombic; P – body-centered orthorhombic; Q – base-centered orthorhombic; S – face-centered orthorhombic; M – primitive monoclinic; N – centered monoclinic; A – triclinic.
4/28/05 1:54:26 PM
Symmetry of Crystals
12-10
References 1. A. Schoenflies, Kristallsysteme und Kristallstructur, Leipzig, 1891. 2. E. S. Fedorow, Zusammenstellung der kristallographischen Resultate, Zs. Krist., 20, 1892. 3. P. Groth, Elemente der physikalischen und chemischen Krystallographie, R. Oldenbourg, München/Berlin, 1921. 4. N. V. Belov, Class Method of Deriving Space Groups of Symmetry, Trudy Instituta Kristallodraffi imeni Fedorova (Transactions of the Fedorov Inst. of Crystallography), 5, 25, 1951, in Russian. 5. W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 1, Pergamon Press, 1958; Vol. 2, 1967. 6. Ch. Kittel, Introduction to Solid State Physics, John Wiley & Sons, 1956. 7. G. S. Zhdanov, Fizika Tverdogo Tela (Solid State Physics), Moscow University Press, 1962, in Russian. 8. M. J. Buerger, Elementary Crystallography, John Wiley & Sons, 1963. 9. F. D. Bloss, Crystallography & Crystal Chemistry, Holt, Rinehart & Winston, 1971. 10. T. Janssen, Crystallographic Groups, North-Holland/American Elsevier, 1973. 11. M. P. Shaskolskaya, Kristallografiya (Crystallography), Vysshaya Shkola, Moscow, 1976, in Russian. 12. T. Hahn, Ed., Internat. Tables for Crystallography, Vol. A, D. Reidel Publishing, Boston, 1983. 13. Crystal Data. Determinative Tables, Volumes 1–6, 1966–1983, JCPDSIntern Centre for Diffraction Data and U.S. Dept. of Commerce. 14. R. W. G. Wyckoff, Crystal Structures, 2nd ed., Volumes 1–6, Interscience, New York, 1963. 15. C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids, Clarendon Press, Oxford, 1972.
Section 12.indb 10
16. International Tables for Crystallography. Volume A, Space–Group Symmetry, T. Hahn, Ed., 1989; Volume B, Reciprocal Space, U. Schmueli, Ed.; Volume C, Mathematical, Physical and Chemical Tables, A. J. C. Wilson, Ed., Kluwer Academic Publishers, Dordrecht, 1989. 17. G. R. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier, Amsterdam, 1989. 18. M. Senechal, Crystalline Symmetries: An Informal Mathematical Introduction, Adam Hilger Publ., Bristol, 1990. 19. C. Hammond, Introduction to Crystallography, Oxford University Press, 1990. 20. N.W. Alcock, Bonding and Structure: Structural Principles in Inorganic and Organic Chemistry, Ellis Norwood Publ., 1990. 21. T. C. W. Mak and G. D. Zhou. Crystallography in Modern Chemistry: A Resource Book of Crystal Structures, Wiley–Interscience, New York, 1992. 22. S. C. Abrahams, K. Mirsky, and R. M. Nielson, Acta Cryst, B52, 806 (1996); B52, 1057 (1996). 23. C. Marcos, A. Panalague, D. B. Morciras, S. Garcia-Granda and M. R. Dias. Acta Cryst, B52, 899 (1996). Crystallographic Computing 24. A. C. Larson, Crystallographic Computing, Manksgaard, Copenhagen, 1970. 25. G. M. Sheldrick, SHELXS86. Crystallographic Computing 3, Clarendon Press, Oxford, 1986; SHELXL93. Program for the Refinement of Crystal Structures, University of Göttingen Press, 1993. 26. Inorganic Crystal Structure Database, CD–ROM. Sci. Inf. Service. E-mail: SISI@Delphi.com.
4/28/05 1:54:27 PM
IONIC RADII IN CRYSTALS Ionic radii are a useful tool for predicting and visualizing crystal structures. This table lists a set of ionic radii Ri in Å units for the most common coordination numbers CN of positive and negative ions. The values are based on experimental crystal structure determinations, supplemented by empirical relationships, and theoretical calculations. The notation sq after the coordination number indicates a square configuration, while py indicates pyramidal. Ion
Anions F-1 Cl-1 Br-l I-l OH-1 O
-2
S Se-2 Te-2 Cations Ac+3 Ag+1 -2
Ag+2 Al+3
Am+3 Am+4 As+3 As+5 Au+1 Au+3 Ba+2
Be+2 Bi+3
Bi+5 Bk+3 Bk+4 Br+5 Br+7 C+4 Ca+2
CN
Ri/Å
6 6 6 6 4 6 2 6 8 6 6 6
1.33 1.81 1.96 2.20 1.35 1.37 1.21 1.40 1.42 1.84 1.98 2.21
6 4 6 8 4sq 6 4 5 6 6 8 6 8 6 4 6 6 4sq 6 6 8 12 4 6 5 6 8 6 6 6 8 3py 4 6 4 6 6
1.12 1.00 1.15 1.28 0.79 0.94 0.39 0.48 0.54 0.98 1.09 0.85 0.95 0.58 0.34 0.46 1.37 0.64 0.85 1.35 1.42 1.61 0.27 0.45 0.96 1.03 1.17 0.76 0.96 0.83 0.93 0.31 0.25 0.39 0.15 0.16 1.00
Ion
Cd+2
Ce
+3
Ce+4
Cf+3 Cf+4 Cl+5 Cl+7 Cm+3 Cm+4 Co+2
Co+3 Cr+2 Cr+3 Cr+4 Cr+6 Cs+1
Cu+1
Cu+2 Dy+2 Dy+3 Er
+3
Eu+2
The advice of Howard T. Evans and Marvin J. Weber in preparing this table is appreciated.
References
1. Shannon, R. D., Acta Crystallogr. A32, 751, 1976. 2. Jia, Y. Q., J. Solid State Chem. 95, 184, 1991.
CN 8 10 12 4 6 8 12 6 8 10 12 6 8 10 12 6 6 8 3py 4 6 6 8 4 6 8 6 6 6 4 6 4 6 6 8 10 12 2 4 6 4sq 6 6 8 6 8 6 8 6 8 10
Ri/Å 1.12 1.23 1.34 0.78 0.95 1.10 1.31 1.01 1.14 1.25 1.34 0.87 0.97 1.07 1.14 0.95 0.82 0.92 0.12 0.08 0.97 0.85 0.95 0.56 0.65 0.90 0.55 0.73 0.62 0.41 0.55 0.26 0.44 1.67 1.74 1.81 1.88 0.46 0.60 0.77 0.57 0.73 1.07 1.19 0.91 1.03 0.89 1.00 1.17 1.25 1.35
Ion Eu+3 F+7 Fe+2
Fe+3
Fr+1 Ga+3 Gd+3 Ge+2 Ge+4 Hf+4
Hg+1 Hg+2
I+5 I+7 In+3 Ir+3 Ir+4 Ir+5 K+1
La+3
Li+1
Lu+3 Mg+2
Mn+2
CN 6 8 6 4 6 8 4 6 8 6 4 6 6 8 6 4 6 4 6 8 6 2 4 6 8 3py 6 4 6 4 6 6 6 6 4 6 8 12 6 8 10 12 4 6 8 6 8 4 6 8 4
Ri/Å 0.95 1.07 0.08 0.63 0.61 0.92 0.49 0.55 0.78 1.80 0.47 0.62 0.94 1.05 0.73 0.39 0.53 0.58 0.71 0.83 1.19 0.69 0.96 1.02 1.14 0.44 0.95 0.42 0.53 0.62 0.80 0.68 0.63 0.57 1.37 1.38 1.51 1.64 1.03 1.16 1.27 1.36 0.59 0.76 0.92 0.86 0.97 0.57 0.72 0.89 0.66
12-11
Section 12.indb 11
4/28/05 1:54:30 PM
Ionic Radii in Crystals
12-12 Ion
Mn+3 Mn+4 Mn+5 Mn+6 Mn+7 Mo+3 Mo+4 Mo+5 Mo+6
N+3 N+5 Na+1
Nb+3 Nb+4 Nb+5
Nd+3
Ni+2 Ni+3 Np+3 Np+4 Np+5 Np+6 Os+4 Os+5 Os+6 Os+8 P+5 Pa+3 Pa+4 Pa+5 Pb+2
Pb+4
Pd+2 Pd Pd+4 Pm+3 +3
Po+4
Section 12.indb 12
CN 6 8 6 4 6 4 4 4 6 6 4 6 4 6 7 6 6 4 6 8 9 12 6 8 6 4 6 8 6 8 9 12 4sq 6 6 6 6 6 6 6 6 6 4 4 6 6 6 6 6 8 10 12 4 6 8 4sq 6 6 6 6 8 6
Ri/Å 0.83 0.96 0.58 0.39 0.53 0.33 0.26 0.25 0.69 0.65 0.46 0.61 0.41 0.59 0.73 0.16 0.13 0.99 1.02 1.18 1.24 1.39 0.72 0.79 0.68 0.48 0.64 0.74 0.98 1.12 1.16 1.27 0.49 0.69 0.56 1.01 0.87 0.75 0.72 0.63 0.58 0.55 0.39 0.17 0.38 1.04 0.90 0.78 1.19 1.29 1.40 1.49 0.65 0.78 0.94 0.64 0.86 0.76 0.62 0.97 1.09 0.97
Ion Pr+3 Pr+4 Pt+2 Pt+4 Pu+3 Pu+4 Pu+5 Pu+6 Ra+2 Rb+1
Re+4 Re+5 Re+6 Re+7 Rh+3 Rh+4 Rh+5 Ru+3 Ru+4 Ru+5 Ru+7 Ru+8 S+4 S+6 Sb+3 Sb+5 Sc+3 Se+4 Se+6 Si+4 Sm+2 Sm+3
Sn+4
Sr+2
Ta+3 Ta+4 Ta+5 Tb+3 Tb+4
CN 6 8 6 8 4sq 6 6 6 6 6 6 8 12 6 8 10 12 6 6 6 4 6 6 6 6 6 6 6 4 4 6 4 6 4py 6 6 6 8 6 4 6 4 6 6 8 6 8 12 4 6 8 6 8 10 12 6 6 6 6 8 6 8
Ri/Å 0.99 1.13 0.85 0.96 0.60 0.80 0.63 1.00 0.86 0.74 0.71 1.48 1.70 1.52 1.61 1.66 1.72 0.63 0.58 0.55 0.38 0.53 0.67 0.60 0.55 0.68 0.62 0.57 0.38 0.36 0.37 0.12 0.29 0.76 0.76 0.60 0.75 0.87 0.50 0.28 0.42 0.26 0.40 1.19 1.27 0.96 1.08 1.24 0.55 0.69 0.81 1.18 1.26 1.36 1.44 0.72 0.68 0.64 0.92 1.04 0.76 0.88
Ion Tc+4 Te+4 Te+6 Th+4
Ti+2 Ti+3 Ti+4
Tl+1
Tl+3
Tm+2 Tm+3 U+3 U+4
U+5 U+6
V+2 V+3 V+4
V+5
W+4 W+5 W+6
Y+3
Yb+2 Yb+3 Zn+2
Zr+4
CN 6 4 6 4 6 6 8 10 12 6 6 4 6 8 6 8 12 4 6 8 6 7 6 8 6 6 8 12 6 2 4 6 8 6 6 5 6 8 4 5 6 6 6 4 5 6 6 8 9 6 8 8 9 4 6 8 4 6 8 9
Ri/Å 0.65 0.66 0.97 0.43 0.56 0.94 1.05 1.13 1.21 0.86 0.67 0.42 0.61 0.74 1.50 1.59 1.70 0.75 0.89 0.98 1.01 1.09 0.88 0.99 1.03 0.89 1.00 1.17 0.76 0.45 0.52 0.73 0.86 0.79 0.64 0.53 0.58 0.72 0.36 0.46 0.54 0.66 0.62 0.42 0.51 0.60 0.90 1.02 1.08 1.02 1.14 0.99 1.04 0.60 0.74 0.90 0.59 0.72 0.84 0.89
4/28/05 1:54:33 PM
POLARIZABILITIES OF ATOMS AND IONS IN SOLIDS H. P. R. Frederikse The polarization of a solid dielectric medium, P, is defined as the dipole moment per unit volume averaged over the volume of a crystal cell. A component of P can be expanded as a function of the electric field E: Pi = ∑ a j E j + ∑ bjk E j Ek j
jk
For relatively small electric fields in isotropic substances P = χeE, where χe is the electric susceptibility. If the medium is made up of N atoms (or ions) per unit volume, the polarization is P = N pm where pm is the average dipole moment per atom. The polarizability α can be defined as pm = αE0 , where E0 is the local field at the position of the atom. Using the Lorentz method to calculate the local field one finds: P = N α ( E + 4 πP ) = χ e E
Together with the definition of the dielectric constant (relative permittivity), ε = 1+ 4πχe, this leads to: α=
3 ε − 1 4 πN ε + 2
2. Ionic polarization occurs in ionic materials because the electric field displaces cations and anions in opposite directions: Pi = NαiE0, where αi is the ionic polarizability. 3. Orientational polarization can occur in substances composed of molecules that have permanent electric dipoles. The alignment of these dipoles depends on temperature and leads to an orientational polarizability per molecule: αor = p2/3kT, where p is the permanent dipole moment per molecule, k is the Boltzmann constant, and T is the temperature. Because of the different nature of these three polarization processes the response of a dielectric solid to an applied electric field will strongly depend on the frequency of the field. The resonance of the electronic excitation in insulators (dielectrics) takes place in the ultraviolet part of the spectrum; the characteristic frequency of the lattice vibrations is located in the infrared, while the orientation of dipoles requires fields of much lower frequencies (below 1010 Hz). This response to electric fields of different frequencies is shown in Figure 1. Values of the electronic polarizabilities for selected atoms and ions are given in Table 1.
References
This expression is known as the Clausius-Mossotti equation. The total polarization associated with atoms, ions, or molecules is due to three different sources: 1. Electronic polarization arises because the center of the local electronic charge cloud around the nucleus is displaced under the action of the field: Pe = NαeE0 where αe is the electronic polarizability.
1. Kittel, C., Introduction to Solid State Physics, Fourth Edition, John Wiley & Sons, New York, 1971. 2. Lerner, R.G., and Trigg, G.L., Eds., Encyclopedia of Physics, Second Edition, VCH Publishers, New York, 1990. 3. Ralls, K.M., Courtney, T.H., and Wulff, J., An Introduction to Materials Science and Engineering, John Wiley & Sons, New York, 1976.
Real part of polarizability
Orientation
Ionic
Electronic
Frequency 1MHz
1GHz
1THz
1PHz
FIGURE 1. Schematic graph of the frequency dependence of the different contributions to polarizability.
12-13
Section 12.indb 13
4/28/05 1:54:38 PM
Polarizabilities of Atoms and Ions in Solids
12-14
TABLE 1. Electronic Polarizabilities in Units of 10–24 cm3 He 0.201 Li+ 0.029
Be2+ 0.008
B3+ 0.003
C4+ 0.0013
O2– 3.88
F– 1.04
Ne 0.39
Na+ 0.179
Mg2+ 0.094
Al3+ 0.052
Si4+ 0.0165
S2– 10.2
Cl– 3.66
Ar 1.62
K+ 0.83
Ca2+ 0.47
Sc3+ 0.286
Ti4+ 0.185
Se2– 10.5
Br– 4.77
Kr 2.46
Rb+ 1.40
Sr2+ 0.86
Y3+ 0.55
Zr4+ 0.37
Te2– 14.0
I– 7.1
Xe 3.99
Cs+ 2.42
Ba2+ 1.55
La3+ 1.04
Ce4+ 0.73
Data from Pauling, L., Proc. R. Soc. London, A114, 181, 1927. See also Jaswal, S.S. and Sharma, T.P., J. Phys. Chem. Solids, 34, 509, 1973. Values are appropriate for cgs units. To convert to SI, use the relation α(SI)/C m2V–1 = 1.11265.10–16 α(cgs)/cm3
Section 12.indb 14
4/28/05 1:54:39 PM
CRYSTAL STRUCTURES AND LATTICE PARAMETERS OF ALLOTROPES OF THE ELEMENTS H. W. King The crystal structures of the allotropic forms of the elements are presented in terms of the Pearson symbol, the Strukturbericht designation, and the prototype of the structure. The temperatures of the phase transformations are listed in degrees Celsius and the pressures are in the Gpa. A consistent nomenclature is used, whereby all allotropes are labeled by Greek letters. The lattice parameters of the units cells are given in nanometers (nm) and are considered to be accurate to ±2 in the last reported digit. This compilation is restricted to changes in crystal structures that occur as a result of a change in temperature or pressure. Low-
Element Ac Ag αAl βAl α´Am αAm βAm γAm αAr (βAr) αAs єAs Au βΒ αΒa βΒa γΒa αΒe βΒe γΒe αΒi βΒi γΒi σΒi єΒi ζΒi αΒk βΒk Βr C (graphite) C (diamond) C (hd) αCa βCa γCa Cd αCe βCe γCe δ-Ce α´Ce
temperature structures are included for the diatomic and rare gases, which show many similarities with respect to the metallic elements. The elements identified with an asterisk (*) have polymorphic structures based on different molecular configurations. The crystal data given for these elements refer to the most stable structure at room temperature. Reprinted with the permission of ASM International from T.Β. Massalski, Ed., Βinary Alloy Phase Diagrams, ASM International, Metals Park, Ohio, 1986; certain data on rare earth elements were provided by K.A. Gschneidner.
Temperature, °C 25 25 25 25 25 >769 >1074 25 <-189.35 <-189.40 25 >448 25 25 25 25 25 25 >1270 25 25 25 25 25 25 25 25 >977 <7.25 25
Pressure, GPa atm atm atm >20.5 atm atm atm >15 atm atm atm atm atm atm atm >5.33 >23 atm atm >9.3 atm >2.6 >3.0 >4.3 >6.5 >9.0 atm atm atm atm
Pearson symbol cF4 cF4 cF4 hP2 hP4 cF4 cI2 oC4 cF4 hP2 hR2 oC8 cF4 hR105 cI2 hP2 ? hP2 cI2 ? hR2 mC4 mP3 ? ? cI2 hP4 cF4 oC8 hP4
Space group Fm3m Fm3m Fm3m P63 /mmc P63/mmc Fm3m Im3m Cmcm Fm3m P63 /mmc R3m Cmca Fm3m R3m Im3m P63 /mmc ? P63 /mmc Im3m … r3m C2/m ? ? ? Im3m P63 /mmc Fm3m Cmca P63 /mmc
Strukturbericht designation Al A1 A1 A3 A3´ A1 A2 A20 A1 A3 A7 … A1 … A2 A3 … A3 A2 … A7 … … … … A2 A3´ A1 … A9
Prototype Cu Cu Cu Mg αLa Cu W αU Cu Mg αAs P(black) Cu βΒ W Mg … Mg W … αAs βBi … … … W αLa Cu Cl C (graphite)
0.5311 0.40857 0.40496 0.2693 0.34681 0.4894 ? 0.3063 0.5316 0.3760 0.41319 0.362 0.40782 1.017 0.50227 0.3901 … 0.22859 0.25515 … 0.47460 0.6674 0.605 … … 0.3800 0.3416 0.4997 0.668 0.24612
25
>60
cF8
Fd3m
A4
C (diamond)
0.35669
25 25 >443 25 25 <-177 25 25 >726 25
HP atm atm >1.5 atm atm atm atm atm >5.4
hP4 cF4 cI2 ? hP2 cF4 hP4 cF4 cI2 oC4
P63 /mmc Fm3m Im3m … P63 /mmc Fm3m P63 /mmc Fm3m Im3m Cmcm
… A1 A2 … A3 A1 A3´ A1 A2 A20
C (hd) Cu W … Mg Cu αLa Cu W αU
0.2522 0.55884 0.4480 … 0.29793 0.485 0.36810 0.51610 0.412 0.3049
Lattice parameters, nm a
b … … … … … … … 0.5968 … … … 1.085 … … … … … … … … … 0.6117 0.42 … … … … … 0.449 … … … … … … … … … … … 0.5998
c … … … 0.4398 1.1241 … … 0.5169 … 0.6141 …… 0.448 … … … 0.6154 … 0.35845 … … … 0.3304 0.465 … … … 1.1069 … 0.874 0.6709 … 0.4119 … … … 0.56196 … 1.1857 … … 0.5215
Comment, c/a or α or β … … … 1.6331 2*1.621 … … … … 1.633 α = 54.12o … … α = 65.12o … 1.5775 … 1.5681 … … α = 57.23o β = 110.33o β = 85.33o … … … 2*1.620 … … 2.7258 … 1.633 … … … 1.8862 … 2*1.611 … … …
12-15
Section 12.indb 15
4/28/05 1:54:41 PM
Crystal Structures and Lattice Parameters of Allotropes of the Elements
12-16
Element αCf βCf Cl αCm βCm єCo αCo αCr α´Cr aCs βCs β´Cs γCs Cu α´Dy αDy βDy γDy Er αEs βEs Eu αF βF αFe γFe σFe єFe αGa βGa γGa αGd βGd γGd αGe βGe γGe σGe αH βH αHe βHe γHe αHf βHf αHg βHg γHg αHo βHo I In Ir K Kr αLa βLa γLa β´La αLi
Section 12.indb 16
Temperature, °C 25 >590 <-102 25 >1277 25 >422 25 25 25 25 25 25 25 <-187 25 >1381 25 25 25 ? 25 <-227.6 <-219.67 25 >912 >1394 25 25 25 -53 25 >1235 25 25 25 25 LT <-271.9 <-259.34 <-268.94 >-258 <-271.47 25 >1995 <-38.84 <-194 <-194 25 25 25 25 25 25 <-157.39 25 >310 >865 25 <-193
Pressure, GPa atm atm atm atm atm atm atm atm HP atm >2.37 >4.22 >4.27 atm atm atm atm >7.5 atm atm atm atm atm atm atm atm atm >13 atm >1.2 >3.0 atm atm >3.0 atm >12 >12→atm >12 atm atm atm 0.125 0.03 atm atm atm HP c.w. atm >7.5 atm atm atm atm atm atm atm atm >2.0 atm
Pearson symbol hP4 cF4 oC8 hP4 cF4 hP2 cF4 cI2 tI2 cI2 cF4 cF4 ? cF4 oC4 hP2 cI2 hR3 hP2 hP4 cF4 cI2 mC8 cP16 cI2 cF4 cI2 hP2 oC8 tI2 oC40 hP2 cI2 hR3 cF8 tI4 tP12 cI16 cF4 hP2 hP2 cF4 cI2 hP2 cl2 hR1 tI2 hR1 hP2 hR3 oC8 tI2 cF4 cI2 cF4 hP4 cF4 cI2 cF4 hP2
Space group P63 /mmc Fm3m Cmca P63 /mmc Fm3m P63 /mmc Fm3m Im3m I4/mmm Im3m Fm3m Fm3m … Fm3m Cmcm P63 /mmc Im3m R3m P63 /mmc P63 /mmc Fm3m Im3m C2/c Pm3n Im3m Fm3m Im3m P63 /mmc Cmca I4/mmm Cmcm P63 /mmc Im3m R3m Fd3m I41/amd P41212 Im3m Fm3m P63 /mmc P63 /mmc Fm3m Im3m P63 /mmc Im3m R3m I4/mmm ? P63 /mmc R3m Cmca I4/mmm Fm3m Im3m Fm3m P63 /mmc Fm3m Im3m Fm3m P63 /mmc
Strukturbericht designation A3´ A1 … A3´ A1 A3 A1 A2 … A2 A1 A1 … A1 … A3 A2 … A3 A3´ A1 A2 … … A2 A1 A2 A3 A11 A6 … A3 A2 … A4 A5 … … A1 A3 A3 A1 A2 A3 A2 A10 … … A3 … … A6 A1 A2 A1 A3´ A1 A2 A1 A3
Lattice parameters, nm Prototype αLa Cu Cl αLa Cu Mg Cu W α´Cr W Cu Cu … Cu α´Dy Mg W αSm Mg αLa Cu W αF γO W Cu W Mg αGa In γGa Mg W αSm C (diamond) βSn σGe γSi Cu Mg Mg Cu W Mg W αHg βHg … Mg αSm Cl In Cu W Cu αLa Cu W Cu Mg
a 0.339 ? 0.624 0.3496 0.4382 0.25071 0.35447 0.28848 0.2882 0.6141 0.6465 0.5800 … 0.36146 0.3595 0.35915 0.403 0.3436 0.35592 ? ? 0.45827 0.550 0.667 0.28665 0.36467 0.29315 0.2468 0.45186 0.2808 1.0593 0.36336 0.406 0.361 0.56574 0.4884 0.593 0.692 0.5338 0.3776 0.3555 0.4240 0.4110 0.31946 0.3610 0.3005 0.3995 … 0.35778 0.334 0.72697 0.3253 0.38392 0.5321 0.5810 0.37740 0.5303 0.426 0.517 0.3111
b … … 0.448 … … … … … … … … … … … 0.6184 … … … … … … … 0.338 … … … … … 0.76570 … 1.3523 … … … … … … … … … … … … … … … … … … … 0.47903 … … … … … … … … …
c 1.1015 … 0.826 1.1331 … 0.40686 … … 0.2887 … … … … … 0.5678 0.56501 … 2.483 0.55850 … … … 0.728 … … … … 0.396 0.45258 0.4458 0.5203 0.57810 … 2.603 … 0.2692 0.698 … … 0.6162 0.5798 … … 0.50510 … … 0.2825 … 0.56178 2.45 0.97942 0.49470 … … … 1.2171 … … … 0.5093
Comment, c/a or α or β 2*1.625 … … 2*1.621 … 1.6228 … … 1.002 … … … … … … 1.5732 … 4.5*1.606 1.5692 … … … β = 102.17o … … … … 1.603 … 1.588 … 0.5910 … 4*1.60 … 0.551 1.18 … … 1.632 1.631 … … 1.5811 … α = 70.53o 0.707 … 1.5702 4.5*1.63 … 1.5210 … … … 2*1.6125 … … … 1.637
4/28/05 1:54:45 PM
Crystal Structures and Lattice Parameters of Allotropes of the Elements
Element βLi γLi Lu Mg αMn βMn γMn σMn Mo αN βN γN αNa βNa Nb αNd βNd γNd Ne Ni αNp βNp γNp αO βO γO Os P (black) αPa βPa αPb βPb Pd αPm βPm αPo βPo αPr βPr γPr Pt αPu βPu γPu σPu σ´Pu єPu Ra αRb βRb γRb Re Rh Ru αS αSb βSb γSb σSb αSc
Section 12.indb 17
Temperature, °C 25 <-201 25 25 25 >710 >1079 >1143 25 <-237.6 <-210.00 <-253 <-233 25 25 25 >863 25 <-243.59 25 25 >280 >576 <-243.3 <-229.6 <-218.79 25 25 25 >1170 25 25 25 25 >890 25 >54 25 >795 25 25 25 >125 >215 >320 >463 >483 25 25 25 25 25 25 25 25 25 25 25 25 25
Pressure, GPa atm c.w. atm atm atm atm atm atm atm atm atm >3.3 atm atm atm atm atm >5.0 atm atm atm atm atm atm atm atm atm atm atm atm atm >10.3 atm atm atm atm atm atm atm >4.0 atm atm atm atm atm atm atm atm atm >1.08 >2.05 atm atm atm atm atm >5.0 >7.5 >14.0 atm
Pearson symbol cI2 cF4 hP2 hP2 cl58 cP20 cF4 cI2 cI2 cP8 hP4 tP4 hP2 cI2 cI2 hP4 cI2 cF4 cF4 cF4 oP8 tP4 cI2 mC4 hR2 cP16 hP2 oC8 tI2 cI2 cF4 hP2 cF4 hP4 cI2 cP1 hR1 hP4 cI2 cF4 cF4 mP16 mI34 oF8 cF4 tI2 cI2 cI2 cI2 ? ? hP2 cF4 hP2 oF128 hR2 cP1 hP2 mP3 hP2
Space group Im3m Fm3m P63 /mmc P63 /mmc I43m P4132 Fm3m Im3m Im3m Pa3 P63 /mmc P42 /mnm P63 /mmc Im3m Im3m P63 /mmc Im3m Fm3m Fm3m Fm3m Pnma P4212 Im3m C2m R3m Pm3n P63 /mmc Cmca I4/mmm Im3m Fm3m P63 /mmc Fm3m P63 /mmc Im3m Pm3m R3m P63 /mmc Im3m Fm3m Fm3m P21/m I2/m Fddd Fm3m I4/mmm Im3m Im3m lm3m … … P63 /mmc Fm3m P63/mmc Fddd R3m Pm3m P63 /mmc ? P63 /mm
Strukturbericht designation A2 A1 A3 A3 A12 A13 A1 A2 A2 … … … A3 A2 A2 A3´ A2 A1 A1 A1 Ac Ad A2 … … … A3 … Aa A2 A1 A3 A1 A3´ A2 Ah … A3´ A2 A1 A1 … … … A1 A6 A2 A2 A2 … … A3 A1 A3 A16 A7 Ah A3 … A3
12-17 Lattice parameters, nm
Prototype W Cu Mg Mg αMn βMn Cu W W αN βN γN Mg W W αLa W Cu Cu Cu αNp βNp W αO βO γO Mg P (black) αPa W Cu Mg Cu αLa W αPo βPo αLa W Cu Cu αPu βPu γPu Cu In W W W … … Mg Cu Mg αS αAs αPo Mg … Mg
a 0.35093 0.4388 0.35052 0.32094 0.89126 0.63152 0.3860 0.3080 0.31470 0.5661 0.4050 0.3957 0.3767 0.42906 0.33004 0.36582 0.413 0.480 0.4462 0.35240 0.6663 0.4883 0.352 0.5403 0.4210 0.683 0.27341 0.33136 0.3921 0.381 0.49502 0.3265 0.38903 0.365 (0.410) 0.3366 0.3373 0.36721 0.413 0.488 0.39236 0.6183 0.9284 0.31587 0.46371 0.33261 0.36343 0.5148 0.5705 … … 0.27609 0.38032 0.27058 1.0464 0.45067 0.2992 0.3376 0.556 0.33088
b … … … … … … … … … … … … … … … … … … … … 0.4723 … … 0.3429 … … … 1.0478 … … … … … … … … … … … … … 0.4822 1.0463 0.57682 … … … … … … … … … … 1.28660 … … … 0.404 …
c … … 0.55494 0.52107 … … … … … … 0.6604 0.5109 0.6154 … … 1.17966 … … … … 0.4887 0.3389 … 0.5086 … … 0.43918 0.43763 0.3235 … … 0.5387 … 1.165 … … … 1.18326 … … … 1.0963 0.7859 1.0162 … 0.44630 … … … … … 0.4458 … 0.42816 2.44860 … … 0.5341 0.422 0.52680
Comment, c/a or α or β … … 1.5832 1.6236 … … … … … … 1.631 1.291 1.634 … … 2*1.6124 … … … … … 0.694 … β = 132.53o α = 46.27o … 1.6063 … 0.825 … … 1.650 … 2*1.60 … … α = 98.08o 2*1.6111 … … … β = 101.97o β = 92.13o … … 1.3418 … … … … … 1.6145 … 1.5824 … α = 57.11o … 1.582 β = 86.0o 1.5921
4/28/05 1:54:47 PM
Crystal Structures and Lattice Parameters of Allotropes of the Elements
12-18
Element βSc γSe αSi βSi γSi σSi αSm βSm γ´Sm σSm αSn βSn γSn αSr βSr β´Sr Ta α´Tb aTb βTb γTb Tc αTe βTe γTe αTh βTh αTi βTi ωTi αTl βTl γTl Tm αU βU γU V W Xe αY βY αYb βYb γYb Zn αZr βZr ωZr
Section 12.indb 18
Temperature, °C >1337 25 25 25 25 25 25 >734 >922 25 <13 25 25 25 >547 25 25 <-53 25 >1289 25 25 25 25 25 25 >1360 25 >882 25 25 >230 25 25 25 >668 >776 25 25 <-111.76 25 >1478 <-3 25 >795 25 25 >863 25
Pressure, GPa atm atm atm >9.5 >16.0 >16→atm atm atm atm >4.0 atm atm >9.0 atm atm >3.5 atm atm atm atm >6.0 atm atm >2.0 >7.0 atm atm atm atm HP→atm atm atm HP atm atm atm atm atm atm atm atm atm atm atm atm atm atm atm HP→atm
Pearson symbol cI2 hP3 cF8 tI4 cI16 hP4 hR3 hP2 cI2 hP4 cF8 tI4 tI2 cF4 cI2 cI2 cI2 oC4 hP2 cI2 hR3 hP2 hP3 hR2 hR1 cF4 cl2 hP2 cl2 hP3 hP2 cI2 cF4 hP2 oC4 tP30 cI2 cI2 cI2 cF4 hP2 cI2 hP2 cF4 cI2 hP2 hP2 cI2 hP2
Space group Im3m P3121 Fd3m I41/amd Im3m P63 /mmc R3m P63 /mmc Im3m P63 /mmc Fd3m I41/amd ? Fm3m Im3m Im3m Im3m Cmcm P63 /mmc Im3m R3m P63 /mmc P3121 R3m R3m Fm3m Im3m P63 /mmc Im3m P6/mmm P63 /mmc Im3m Fm3m P63 /mmc Cmcm P42 /mnm Im3m Im3m Im3m Fm3m P63/mmc Im3m P63 /mmc Fm3m Im3m P63 /mmc P63 /mmc Im3m P6/mmm
Strukturbericht designation A2 A8 A4 A5 … A3´ … A3 A2 A3´ A4 A5 … A1 A2 A2 A2 … A3 A2 … A3 A8 A7 … A1 A2 A3 A2 … A3 A2 A1 A3 A20 Ab A2 A2 A2 A1 A3 A2 A3 A1 A2 A3 A3 A2 …
Lattice parameters, nm Prototype W γSe C (diamond) βSn γSi αLa αSm Mg W αLa C (diamond) βSn γSn Cu W W W α´Dy Mg W αSm Mg γSe αAs βPo Cu W Mg W ωTi Mg W Cu Mg αU βU W W W Cu Mg W Mg Cu W Mg Mg W ωTi
a (0.373) 0.43659 0.54306 0.4686 0.6636 0.380 0.36290 0.36630 (0.410) 0.3618 0.64892 0.58318 0.370 0.6084 0.487 0.4437 0.33030 0.3605 0.36055 (0.407) 0.341 0.2738 0.44566 0.469 0.3002 0.50842 0.411 0.29506 0.33065 0.4625 0.34566 0.3879 ? 0.35375 0.28537 1.0759 0.3524 0.30240 0.31652 0.6350 0.36482 (0.410) 0.38799 0.54848 0.444 0.26650 0.32316 0.36090 0.5036
b … … … … … … … … … … … … … … … … … 0.6244 … … … … … … … … … … … … … … … … 0.58695 … … … … … … … … … … … … … …
c … 0.49537 … 0.2585 … 0.628 2.6207 0.58448 … 1.166 … 0.31818 0.337 … … … … 0.5706 0.56966 … 2.45 0.4393 0.59264 … … … … 0.46835 … 0.2813 0.55248 … … 0.55540 0.49548 0.5656 … … … … 0.57318 … 0.63859 … … 0.49470 0.51475 … 0.3109
Comment, c/a or α or β … 1.1346 … 0.552 … 1.653 4*1.6048 1.5956 … 2*1.611 … 0.5456 0.91 … … … … … 1.5800 … 4*1.60 1.604 1.3298 α = 53.30o α = 103.3o … … 1.59873 … 0.6082 1.5983 … … 1.5700 … 0.526 … … … … 1.5711 … 1.6459 … … 1.8563 1.5929 … 0.617
4/28/05 1:54:49 PM
LATTICE ENERGIES H. D. B. Jenkins and H. K. Roobottom THERMOCHEMICAL CYCLE AND CALCULATED VALUES
METHOD OF ESTIMATION OF VALUES NOT TABULATED
Table 1 contains calculated values of the lattice energies (total lattice potential energies), UPOT , of crystalline salts, MaXb. UPOT is expressed in units of kilojoules per mole, kJ mol–1. M and X can be either simple or complex ions. Substances are arranged by chemical class. Also listed in the table is the lattice energy, UPOTBFHC, obtained from the application of the Born - Fajans - Haber cycle (BHFC) described below, using the “Standard Thermochemical Properties of Chemical Substances” table in Section 5 of this Handbook, References 1 through 4, and certain other data which are given in Table 3 below. The lattice enthalpy, ∆HL, is given by the cycle:
In cases where the lattice energy is not tabulated and we want to furnish an estimate, then the Kapustinskii equation5 can be used to obtain a value (in kJ mol–1): U POT =
121.4 z a z b v 0.0345 1 − (ra + rb ) (ra + rb )
where za and zb are the moduli of the charges on the v ions in the lattice and ra and rb (in nm) are the thermochemical radii given in Table 2. The ra for metal ions is taken to be the Goldschmidt6 radius. To cite an example, if we wish to estimate the lattice energy of the salt [NH+4][HF–2] using the above procedure, we see that Table 2 gives the thermochemical radius (ra ) for NH+4 to be 0.136 nm and that for HF–2 (rb ) to be 0.172 nm. The lattice potential energy is then estimated to be 700 kJ mol–1 compared with the calculated value of 705 kJ mol–1 and the Born - Fajans - Haber cycle value of 658 kJ mol–1.
References
where (ss) is the standard state of the element concerned. The lattice enthalpy, ∆HL, is obtained using the equation: ∆H L = a∆f H o (M b+ , g ) + b∆f H o (X a− , g ) − ∆f H o (M a X b , c)
and is futher related to the total lattice potential energy, UPOT, by the relationship: n n ∆H L = U POT + a M − 2 + b X − 2 RT 2 2
where nM and nX equal 3 for monatomic ions, 5 for linear polyatomic ions and 6 for polyatomic non-linear ions.
1. Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 2, 1982. 2. Chase, M. W., Davies, C. A., Downey, J. R., Frurip, D. J., McDonald, R. A., and Syverud, A. N., JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data, Vol. 14, Suppl. 1, 1985. 3. Lias, S. G., Bartmess, J. E., Liebman, J. F., Holmes, J. L., Levin, R. D., and Mallard, W. G., Gas-Phase Ion and Neutral Thermochemistry, J. Phys. Chem. Ref. Data, Vol. 17, Suppl. 1, 1988. 4. Jenkins, H. D. B., and Pratt, K. F., Adv. Inorg. Chem. Radiochem., 22, 1, 1978. 5. Kapustinskii, A. F., Quart. Rev., 10, 283-294, 1956. 6. Goldschmidt, V. M., Skrifter Norske Videnskaps-Akad. Oslo, I, Mat.Naturn. Kl, 1926. See also Dasent, W. E., Inorganic Energetics, 2nd ed., Cambridge University Press, 1982. 7. Jenkins, H. D. B., Roobottom, H. K., Passmore, J., and Glasser, L., J. Chem. Education, in press.
12-19
Section 12.indb 19
4/28/05 1:54:53 PM
Lattice Energies
12-20 Table 1. Lattice Energies (kJ mol –1) Substance Acetates Li(CH3COO) Na(CH3COO) K(CH3COO) Rb(CH3COO) Cs(CH3COO)
Calc. UPOT
UPOTBHFC
– 828 749 715 682
843 807 726 – –
Acetylides CaC2 SrC2 BaC2
2911 2788 2647
2902 2782 2652
Azides LiN3 NaN3 KN3 RbN3 CsN3 AgN3 TlN3 Ca(N3)2 Sr(N3)2 Ba(N3)2 Mn(N3)2 Cu(N3)2 Zn(N3)2 Cd(N3)2 Pb(N3)2
861 770 697 674 665 854 689 2186 2056 2021 2408 2730 2840 2446 –
875 784 – 691 674 910 742 2316 2187 – 2348 2738 2970 2576 2300
Bihalide Salts LiHF2 NaHF2 KHF2 RbHF2 CsHF2 NH4HF2 CsHCl2 Me4NHCl2 Et4NHCl2 Bu4NHCl2
821 755 657 627 607 705 601 427 346 290
847 748 660 631 – 658 – – – –
Bicarbonates NaHCO3 KHCO3 RbHCO3 CsHCO3 NH4HCO3
820 741 707 678 –
656 573 522 520 577
5146 5104 5021 7447 7406 10083 7447 7447 7406 7447 5104 7489 7489 7489
– – – – – – – – – – – – – –
Borides CaB6 SrB6 BaB6 YB6 LaB6 CeB6 PrB6 NdB6 PmB6 SmB6 EuB6 GdB6 TbB6 DyB6
Section 12.indb 20
Substance HoB6 ErB6 TmB6 YbB6 LuB6 ThB6
Calc. UPOT 7489 7489 7489 5146 7489 10167
UPOTBHFC – – – – – –
Borohydrides LiBH4 NaBH4 KBH4 RbBH4 CsBH4
778 703 655 648 628
– 694 638 – –
Borohalides LiBF4 NaBF4 KBF4 RbBF4 CsBF4 NH4BF4 KBCl4 RbBCl4 CsBCl4
699 657 611 577 556 582 506 489 473
749 674 616 590 565 – 497 486 –
Carbonates Li2CO3 Na2CO3 K2CO3 Rb2CO3 Cs2CO3 MgCO3 CaCO3 SrCO3 BaCO3 MnCO3 FeCO3 CoCO3 CuCO3 ZnCO3 CdCO3 SnCO3 PbCO3
2523 2301 2084 2000 1920 3138 2804 2720 2615 3046 3121 3443 3494 3121 2929 2904 2728
2254 2016 1846 1783 1722 3122 2811 2688 2554 3092 3169 3235 – 3273 3052 – 2750
Cyanates LiNCO NaNCO KNCO RbNCO CsNCO NH4NCO
849 807 726 692 661 724
– 816 734 – – –
Cyanides LiCN NaCN KCN RbCN CsCN Ca(CN)2 Sr(CN)2 Ba(CN)2 NH4CN AgCN
874 766 692 638 601 2268 2138 2001 617 (741)
759 686 – – 2240 – 2009 691 935
4/28/05 1:54:56 PM
Lattice Energies Substance Zn(CN)2 Cd(CN)2 Formates Li(HCO2) Na(HCO2) K(HCO2) Rb(HCO2) Cs(HCO2) NH4(HCO2)
12-21 Calc. UPOT 2809 2583
UPOTBHFC 2817 2591
865 791 713 685 651 715
– 804 722 – – –
7991 7301 6987 6653
– 7306 – 6643
Halates LiBrO3 NaBrO3 KBrO3 RbBrO3 CsBrO3 NaClO3 KClO3 RbClO3 CsClO3 LiIO3 NaIO3 KIO3 RbIO3 CsIO3
883 803 740 720 694 770 711 690 – 975 883 820 791 761
880 791 722 705 681 785 721 703 679 974 876 780 – –
Halides LiF LiCl LiBr LiI NaF NaCl NaBr NaI KF KCl KBr KI RbF RbCl RbBr RbI CsF CsCl CsBr CsI FrF FrCl FrBr FrI CuCl CuBr CuI AgF AgCl AgBr
1030 834 788 730 910 769 732 682 808 701 671 632 774 680 651 617 744 657 632 600 715 632 611 582 992 969 948 953 910 897
1049 864 820 764 930 790 754 705 829 720 691 650 795 695 668 632 759 670 647 613 – – – – 996 978 966 974 918 905
Germanates Mg2GeO4 Ca2GeO4 Sr2GeO4 Ba2GeO4
Section 12.indb 21
Substance AgI AuCl AuBr AuI InCl InBr InI TlF TlCl TlBr TlI Me4NCl Me4NBr Me4NI PH4Br PH4I BeF2 BeCl2 BeBr2 BeI2 MgF2 MgCl2 MgBr2 MgI2 CaF2 CaCl2 CaBr2 CaI2 SrF2 SrCl2 SrI2 BaF2 BaCl2 BaBr2 BaI2 RaF2 RaCl2 RaBr2 RaI2 ScCl2 ScBr2 ScI2 TiF2 TiCl2 TiBr2 TiI2 VCl2 VBr2 VI2 CrF2 CrCl2 CrBr2 CrI2 MoCl2 MoBr2 MoI2 MnF2 MnCl2 MnBr2 MnI2 FeF2
Calc. UPOT 881 1013 1029 1027 – – – – 738 720 692 566 553 544 616 590 3464 3004 2950 2780 2926 2477 2406 2293 2640 2268 2132 1971 2476 2142 1984 2347 2046 1971 1862 2284 2004 1929 1803 2380 2291 2201 2724 2439 2360 2259 2607 – – 2778 2540 2377 2269 2737 2742 2630 2644 2510 2448 2212 2849
UPOTBHFC 892 1066 1059 1070 764 767 733 850 751 734 710 – – – – – 3526 3033 2914 2813 2978 2540 2451 2340 2651 2271 – 2087 2513 2170 1976 2373 2069 1995 1890 – – – – – – – – 2514 2430 2342 2593 2534 2470 2939 2601 2536 2440 2746 2753 – – 2551 2482 – 2967
4/28/05 1:54:58 PM
Lattice Energies
12-22 Substance FeCl2 FeBr2 FeI2 CoF2 CoCl2 CoBr2 CoI2 NiF2 NiCl2 NiBr2 NiI2 PdCl2 PdBr2 PdI2 CuF2 CuCl2 CuBr2 CuI2 AgF2 ZnF2 ZnCl2 ZnBr2 ZnI2 CdF2 CdCl2 CdBr2 CdI2 HgF2 HgCl2 HgBr2 HgI2 SnF2 SnCl2 SnBr2 SnI2 PbF2 PbCl2 PbBr2 PbI2 ScF3 ScCl3 ScBr3 ScI3 YF3 YCl3 YI3 TiF3 TiCl3 TiBr3 TiI3 ZrCl3 ZrBr3 ZrI3 VF3 VCl3 VBr3 VI3 NbCl3 NbBr3 NbI3 CrF3
Section 12.indb 22
Calc. UPOT 2569 2515 2439 3004 2707 2640 2569 3098 2753 2729 2607 2778 2741 2748 3046 2774 2715 2640 2942 3021 2703 2648 2581 2809 2552 2507 2441 2757 2657 2628 2628 2551 2297 2251 2193 2535 2270 2219 2163 5492 4874 4729 4640 4983 4506 4240 5644 5134 5012 4845 – – – 5895 5322 5214 5121 5062 4980 4860 6033
UPOTBHFC 2641 2577 2491 3042 2706 2643 2561 3089 2786 2721 2637 2818 2751 2760 3102 2824 2774 – 2967 3053 2748 2689 2619 2830 2565 2517 2455 – 2664 2639 2624 – 2310 2256 2206 2543 2282 2230 2177 5540 4901 4761 – – 4524 4258 – 5153 5023 – 4791 4758 4591 – 5329 5224 5136 – – – 6065
Substance CrCl3 CrBr3 CrI3 MoF3 MoCl3 MoBr3 MoI3 MnF3 MnCl3 MnBr3 MnI3 TcCl3 TcBr3 TcI3 FeF3 FeCl3 FeBr3 FeI3 RuCl3 RuBr3 RuI3 CoF3 RhCl3 IrF3 IrBr3 NiF3 AuF3 AuCl3 ZnCl3 ZnBr3 ZnI3 AlF3 AlCl3 AlBr3 AlI3 GaF3 GaCl3 GaBr3 GaI3 InCl3 InBr3 InI3 TlF3 TlCl3 TlBr3 TlI3 AsBr3 AsI3 SbF3 SbCl3 SbBr3 SbI3 BiCl3 BiI3 LaF3 LaCl3 LaBr3 LaI3 CeCl3 CeI3 PrCl3
Calc. UPOT 5518 5355 5275 6459 5246 5156 5073 6017 5544 5448 5330 5270 5215 5188 5870 5364 5333 5117 5245 5223 5222 5991 5641 (6112) (4794) (6111) (5777) (4605) 5832 5732 5636 5924 5376 5247 5070 5829 5217 4966 4611 4736 4535 4234 5493 5258 5171 5088 5497 4824 5295 5032 4954 4867 4689 3774 4682 4263 4209 3916 4394 – 4322
UPOTBHFC 5529 – 5294 – 5253 – – – – – – – – – – 5436 5347 – 5257 5232 5235 – 5665 – – – – – – – – 6252 5513 5360 5227 6238 5665 5569 5496 5183 5117 5001 – 5278 – – 5365 5295 5324 4857 4776 4692 4707 – – 4242 – 3986 4348 4061 4387
4/28/05 1:55:01 PM
Lattice Energies Substance PrI3 NdCl3 SmCl3 EuCl3 GdCl3 DyCl3 HoCl3 ErCl3 TmCl3 TmI3 YbCl3 AcCl3 UCl3 NpCl3 PuCl3 PuBr3 AmCl3 TiF4 TiCl4 TiBr4 TiI4 ZrF4 ZrCl4 ZrBr4 ZrI4 MoF4 MoCl4 MoBr4 MoI4 SnCl4 SnBr4 PbF4 CrF2Cl CrF2Br CrF2I CrCl2Br CrCl2I CrBr2I CuFCl CuFBr CuFI CuClBr CuClI CuBrI FeF2Cl FeF2Br FeF2I FeCl2Br FeCl2I FeBr2I LiIO2F2 NaIO2F2 KIO2F2 RbIO2F2 CsIO2F2 NH4IO2F2 AgIO2F2 Hydrides LiH NaH KH
Section 12.indb 23
12-23 Calc. UPOT – 4343 4376 4393 4406 4481 4501 4527 4548 – – 4096 4243 4268 4289 (3959) 4293 10012 9431 9288 9108 8853 8021 7661 7155 8795 8556 8510 8427 8355 7970 9519 5795 5753 5669 5448 5381 5330 2891 2853 2803 2753 2694 2669 5711 5653 5569 5339 5272 5209 845 766 699 674 636 678 736 916 807 711
UPOTBHFC 4101 4415 4450 4490 4495 4529 4572 4591 4608 4340 4651 – – – – – – 9908 – 9059 8918 8971 8144 7984 7801 – 9603 9500 – 8930 8852 – – – – – 5429 5370 – – – – – – – – – – – – – 756 689 – – – 685 918 807 713
Substance RbH CsH VH NbH PdH CuH TiH ZrH HfH LaH TaH CrH NiH PtH AgH AuH TlH GeH PbH BeH2 MgH2 CaH2 SrH2 BaH2 ScH2 YH2 LaH2 CeH2 PrH2 NdH2 PmH2 SmH2 GdH2 AcH2 ThH2 PuH2 AmH2 TiH2 ZrH2 CuH2 ZnH2 HgH2 AlH3 FeH3 ScH3 YH3 LaH3 FeH3 GaH3 InH3 TlH3
Calc. UPOT 686 648 1184 1163 979 828 996 916 904 828 1021 1050 929 937 941 1033 745 950 778 3205 2791 2410 2250 2121 2711 (2598) 2380 2414 2448 2464 2519 2510 2494 2372 2711 2519 2544 2866 2711 2941 2870 2707 5924 5724 5439 5063 4895 5724 5690 5092 5092
UPOTBHFC 684 653 (1344) (1633) 1368 1254 1407 1590 – – – – – – – 1108 – – – 3306 2718 2406 2265 2133 2744 2733 2522 2509 2405 2394 – 2389 2651 – 2738 – – 2864 2999 – – – 5969 – – 4910 4493 – – – –
Hydroselenides NaHSe KHSe RbHSe CsHse
703 644 623 598
732 712 689 669
Hydrosulphides LiHS NaHS RbHS
768 723 655
862 771 682
4/28/05 1:55:03 PM
Lattice Energies
12-24 Substance CsHS NH4HS Ca(HS)2 Sr(HS)2 Ba(HS)2
Calc. UPOT 628 661 2184 2063 1979
Hydroxides LiOH NaOH KOH RbOH CsOH Be(OH)2 Mg(OH)2 Ca(OH)2 Sr(OH)2 Ba(OH)2 Ti(OH)2 Mn(OH)2 Fe(OH)2 Co(OH)2 Ni(OH)2 Pd(OH)2 Cu(OH)2 CuOH AgOH AuOH TlOH Zn(OH)2 Cd(OH)2 Hg(OH)2 Sn(OH)2 Pb(OH)2 Sc(OH)3 Y(OH)3 La(OH)3 Cr(OH)3 Mn(OH)3 Al(OH)3 Ga(OH)3 In(OH)3 Tl(OH)3 Ti(OH)4 Zr(OH)4 Mn(OH)4 Sn(OH)4
1021 887 789 766 721 3477 2870 2506 2330 2142 – 2909 2653 2786 2832 – 2870 1006 918 1033 705 2795 2607 2669 2489 2376 5063 4707 4443 5556 6213 5627 5732 5280 5314 9456 8619 10933 9188
1028 892 796 765 732 3620 2998 2637 2474 2330 2953 3008 3044 3109 3186 3189 3229 – 845 – 874 3151 2909 – 2721 – 5602 – – 6299 – – 6368 – – – – – 9879
Imides CaNH SrNH BaNH
3293 3146 2975
– – –
Metavanadates Li3VO4 Na3VO4 K3VO4 Rb3VO4 Cs3VO4
3945 3766 3376 3243 3137
– – – – –
848 755 685 662
854 763 694 671
Nitrates LiNO3 NaNO3 KNO3 RbNO3
Section 12.indb 24
UPOTBHFC 657 718 (2171) – (1956)
Substance CsNO3 AgNO3 TlNO3 Mg(NO3)2 Ca(NO3)2 Sr(NO3)2 Ba(NO3)2 Mn(NO3)2 Fe(NO3)2 Co(NO3)2 Ni(NO3)2 Cu(NO3)2 Zn(NO3)2 Cd(NO3)2 Sn(NO3)2 Pb(NO3)2
Calc. UPOT 648 820 690 2481 2268 2176 2062 2318 – 2560 – – 2376 2238 2155 2067
UPOTBHFC 650 832 707 2521 2247 2151 2035 2478 (2580) 2647 2729 2739 2649 2462 2254 2208
Nitrides ScN LaN TiN ZrN VN NbN CrN
7547 6876 8130 7633 8283 7939 8269
7506 6793 8033 7723 8233 8022 8358
Nitrites NaNO2 KNO2 RbNO2 CsNO2
774 699 724 690
772 687 765 –
Oxides Li2O Na2O K2O Rb2O Cs2O Cu2O Ag2O Tl2O LiO2 NaO2 KO2 RbO2 CsO2 Li2O2 Na2O2 K2O2 Rb2O2 Cs2O2 MgO2 CaO2 SrO2 KO3 BeO MgO CaO SrO BaO TiO VO MnO
2799 2481 2238 2163 2131 3273 3002 2659 (878) 799 741 706 679 2592 2309 2114 2025 1948 3356 3144 3037 697 4514 3795 3414 3217 3029 3832 3932 3724
2814 2478 2232 2161 2063 3189 2910 2575 (872) 821 751 721 696 2557 22717 2064 1994 1512 3526 3132 2977 707 4443 3791 3401 3223 3054 3811 3863 3745
4/28/05 1:55:06 PM
Lattice Energies Substance FeO CoO NiO PdO CuO ZnO CdO HgO GeO SnO PbO Sc2O3 Y2O3 La2O3 Ce2O3 Pr2O3 Nd2O3 Pm2O3 Sm2O3 Eu2O3 Gd2O3 Tb2O3 Dy2O3 Ho2O3 Er2O3 Tm2O3 Yb2O3 Lu2O3 Ac2O3 Ti2O3 V2O3 Cr2O3 Mn2O3 Fe2O3 Al2O3 Ga2O3 In2O3 Pb2O3 CeO2 ThO2 PaO2 VO2(g) NpO2 PuO2 AmO2 CmO2 TiO2 ZrO2 MoO2 MnO2 SiO2 GeO2 SnO2 PbO2 Perchlorates LiClO4 NaClO4 KClO4 RbClO4 CsClO4 NH4ClO4
Section 12.indb 25
12-25 Calc. UPOT 3795 3837 3908 3736 4135 4142 3806 3907 3919 3652 3520 13557 12705 12452 12661 12703 12736 12811 12878 12945 12996 13071 13138 13180 13263 13322 13380 13665 12573 – 15096 15276 15146 14309 15916 15590 13928 (14841) 9627 10397 10573 10644 10707 10786 10799 10832 12150 11188 11648 12970 13125 12828 11807 11217
UPOTBHFC 3865 3910 4010 – 4050 3971 – – – – – 13708 – – – – – – – – – – – – – – – – – 14149 14520 14957 15035 14774 – 15220 – – – – – – – – – – – – – – – – – –
709 643 599 564 636 583
715 641 595 576 550 580
Substance Ca(ClO4)2 Sr(ClO4)2 Ba(ClO4)2 Permanganates NaMnO4 KMnO4 RbMnO4 CsMnO4 Ca(MnO4)2 Sr(MnO4)2 Ba(MnO4)2
Calc. UPOT 1958 1862 1795
UPOTBHFC 1971 1862 1769
661 607 586 565 1937 1845 1778
– – – – – – –
11632 10602 10125 9652 7397 7251 8201 7427 7381
11407 10479 10075 9654 – 7300 – 7507 –
Selenides Li2Se Na2Se K2Se Rb2Se Cs2Se Ag2Se Tl2Se BeSe MgSe CaSe SrSe BaSe MnSe
2364 2130 1933 1837 1745 2686 2209 3431 3071 2858 2736 2611 3176
– – – – – – – – – 2862 – – –
Selenites Li2SeO3 Na2SeO3 K2SeO3 Rb2SeO3 Cs2SeO3 Tl2SeO3 Ag2SeO3 BeSeO3 MgSeO3 CaSeO3 SrSeO3 BaSeO3
2171 1950 1774 1715 1640 1879 2113 3322 3012 2732 2586 2460
– 1916 1749 1675 – – 2148 – 2998 – 2588 2451
Selenates Li2SeO4 Na2SeO4 K2SeO4 Rb2SeO4 Cs2SeO4 Cu2SeO4 Ag2SeO4 Tl2SeO4 Hg2SeO4 BeSeO4
2054 1879 1732 1686 1615 2201 2033 1766 2163 3448
– – – – – – – – – –
Phosphates Mg3(PO4)2 Ca3(PO4)2 Sr3(PO4)2 Ba3(PO4)2 MnPO4 FePO4 BPO4 AlPO4 GaPO4
4/28/05 1:55:08 PM
Lattice Energies
12-26 Substance MgSeO4 CaSeO4 SrSeO4
Calc. UPOT 2895 2632 2489
UPOTBHFC – – –
Sulphides Li2S Na2S K2S Rb2S Cs2S (NH4)2S Cu2S Ag2S Au2S Tl2S
2464 2192 1979 1929 1892 2008 2786 2606 2908 2298
2472 2203 (2052) 1949 1850 (2026) 2865 2677 – 2258
Sulphates Li2SO4 Na2SO4 K2SO4 Rb2SO4 Cs2SO4 (NH4)2SO4 Cu2SO4 Ag2SO4 Tl2SO4 Hg2SO4 CaSO4 SrSO4 BaSO4 MnSO4
2229 1827 1700 1636 1596 1766 2276 2104 1828 – 2489 2577 2469 2920
2142 1938 1796 1748 1658 1777 2166 1989 1722 2127 2480 2484 2374 2825
Ternary Salts Cs2CuCl4 Rb2ZnCl4 Cs2ZnCl4 Rb2ZnBr4 Cs2ZnBr4 Cs2ZnI4 CsGaCl4 NaAlCl4 CsAlCl4 NaFeCl4 Rb2CoCl4 Cs2CoCl4 K2PtCl4 Cs2GeF6 (NH4)2GeF6 Cs2GeCl6 K2HfCl6 K2IrCl6 Na2MoCl6 K2MoCl6 Rb2MoCl6 Cs2MoCl6 K2NbCl6 Rb2NbCl6 Cs2NbCl6 K2OsCl6 Cs2OsCl6 K2OsBr6 K2PdCl6 Rb2PdCl6
1393 1529 1492 1498 1454 1386 494 556 486 492 1447 1391 1574 1573 1657 1404 1345 1442 1526 1418 1399 1347 1375 1371 1381 1447 1409 1396 1481 1449
– – – – – – – – – – – – 1550 – – 1419 1461 1440 1504 1412 1399 1347 1398 1385 1344 1447 – – 1493 –
Section 12.indb 26
Substance Cs2PdCl6 Rb2PbCl6 Cs2PbCl6 (NH4)2PbCl6 K2PtCl6 Rb2PtCl6 Cs2PtCl6 (NH4)2PtCl6 Tl2PtCl6 Ag2PtCl6 BaPtCl6 K2PtBr6 Ag2PtBr6 K2PtI6 K2ReCl6 Rb2ReCl6 Cs2ReCl6 K2ReBr6 K2SiF6 Rb2SiF6 Cs2SiF6 Tl2SiF6 K2SnCl6 Rb2SnCl6 Cs2SnCl6 Tl2SnCl6 (NH4)2SnCl6 Rb2SnBr6 Cs2SnBr6 Rb2SnI6 Cs2SnBr6 K2TeCl6 Rb2TeCl6 Cs2TeCl6 Tl2TeCl6 (NH4)2TeCl6 K2RuCl6 Rb2CoF6 Cs2CoF6 K2NiF6 Rb2NiF6 Rb2SbCl6 Rb2SeCl6 Cs2SeCl6 (NH4)2SeCl6 (NH4)2PoCl6 Cs2PoBr6 Cs2CrF6 Rb2MnF6 Cs2MnF6 K2MnCl6 Rb2MnCl6 (NH4)2MnCl6 Cs2TeBr6 Cs2TeI6 K2TiCl6 Rb2TiCl6 Cs2TiCl6 Tl2TiCl6 K2TiBr6 Rb2TiBr6
Calc. UPOT 1426 1343 1344 1355 1468 1464 1444 1468 1546 1773 2047 1423 1791 1421 1416 1414 1398 1375 1670 1639 1604 1675 1363 1361 1358 1437 1370 1309 1306 1226 1243 1318 1321 1323 1392 1318 1451 1688 1632 1721 1688 1357 1409 1397 1420 1338 1286 1603 1688 1620 1462 1451 1464 1306 1246 1412 1415 1402 1560 1379 1341
UPOTBHFC – 1343 – – 1471 – – – – 1881 2070 1392 2276 – 1442 – – 1375 1765 1673 1498 – 1390 1363 – – 1344 – – – – 1320 – – – – – – – – – – – – – – – – – – – – – – – 1447 1416 1384 1553 1379 1331
4/28/05 1:55:11 PM
Lattice Energies Substance Cs2TiBr6 Na2UBr6 K2UBr6 Rb2UBr6 Cs2UBr6 K2WCl6 Rb2WCl6 Cs2WCl6 K2WBr6 Rb2WBr6 Cs2WBr6 K2ZrCl6 Rb2ZrCl6 Cs2ZrCl6
12-27 Calc. UPOT 1339 1504 1484 1473 1459 1398 1397 1392 1408 1361 1362 1339 1341 1339
Tellurides Li2Te Na2Te K2Te Rb2Te Cs2Te Cu2Te Ag2Te Tl2Te BeTe MgTe CaTe
UPOTBHFC 1306 – – – – 1423 1434 1366 1408 1391 1332 1371 – 1307
2212 1997 1830 1837 1745 2706 2607 2084 3319 2878 2721
– 2095 – – – 2683 2600 2172 – 3081 –
Calc. UPOT
Substance Thiocyanates LiCNS NaCNS KCNS RbCNS CsCNS NH4CNS Ca(CNS)2 Sr(CNS)2 Ba(CNS)2 Mn(CNS)2 Zn(CNS)2 Cd(CNS)2 Hg(CNS)2 Sn(CNS)2 Pb(CNS)2 Vanadates LiVO3 NaVO3 KVO3 RbVO3 CsVO3
UPOTBHFC
764 682 623 623 623 605 2184 2063 1979 2280 2335 2201 2146 2117 2058
(765) 682 616 619 568 611 2118 1957 1852 2351 2560 2374 2492 2142 –
810 761 686 657 628
– – – – –
TABLE 2. Thermochemical Radii (nm) Ion Singly Charged Anions AgF4AlBr4AlCl4AlF4AlH4AlI4AsF6AsO2Au(CN)2AuCl4AuF4AuF6B(OH)4BF4BH4BrBrF4BrO3CF3SO3CH3CO2ClClO2ClO3ClO4ClS2O6CNCr3O8CuBr4FFeCl4-
Section 12.indb 27
Radius 0.231 0.321 0.317 0.214 0.226 0.374 0.243 0.211 0.266 0.288 0.240 0.235 0.229 0.205 0.205 0.190 0.231 0.214 0.230 0.194 0.168 0.195 0.208 0.225 0.260 0.187 0.276 0.315 0.126 0.317
± 0.019 ± 0.023 ± 0.019 ± 0.023 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.038 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.049 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.049 ± 0.023 ± 0.019 ± 0.019 ± 0.019 ± 0.019
GaCl4HH2AsO4H2PO4HCO2HCO3HF2HSO4II2BrI3I4IBr2ICl2ICl4IO2F2IO3IO4IrF6MnO4MoF6MoOF5N3NCONbCl6NbF6Nb2F11NbO3NH2NH2CH2COONO2-
Ion
0.328 0.148 0.227 0.213 0.200 0.207 0.172 0.221 0.211 0.261 0.272 0.300 0.251 0.235 0.307 0.233 0.218 0.231 0.242 0.220 0.241 0.241 0.180 0.193 0.338 0.254 0.311 0.194 0.168 0.252 0.187
Radius ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.049 ± 0.019 ± 0.038 ± 0.019 ± 0.019 ± 0.019 ± 0.019
4/28/05 1:55:13 PM
Lattice Energies
12-28 NO3O2O3OHOsF6PaF6PdF6PF6PO3PtF6PuF5ReF6ReO4RuF6S6SCNSbCl6SbF6Sb2F11Sb3F14SeCl5SeCNSeHSHSO3FS3N3S3N3O4TaCl6TaF6TaO3UF6VF6VO3WCl6WF6WOF5-
Ion
Doubly Charged Anions AmF62Bi2Br82Bi6Cl202CdCl42CeCl62CeF62CO32CoCl42CoF42CoF62Cr2O72CrF62CrO42CuCl42CuF42GeCl62GeF62HfF62HgI42IrCl62MnCl62MnF42MnF62MoBr62-
Section 12.indb 28
0.200 0.165 0.199 0.152 0.252 0.249 0.252 0.242 0.204 0.247 0.239 0.240 0.227 0.242 0.305 0.209 0.320 0.252 0.312 0.374 0.258 0.230 0.195 0.191 0.214 0.231 0.252 0.352 0.250 0.192 0.301 0.235 0.201 0.337 0.246 0.241
Radius ± 0.019 ± 0.019 ± 0.034 ± 0.019 ± 0.020 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.038 ± 0.038 ± 0.038 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.038 ± 0.038 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019
0.255 0.392 0.501 0.307 0.352 0.249 0.189 0.306 0.209 0.256 0.292 0.253 0.229 0.304 0.213 0.335 0.244 0.248 0.377 0.332 0.314 0.219 0.241 0.364
± 0.019 ± 0.055 ± 0.073 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.031 ± 0.019 ± 0.019 ± 0.019
MoCl62MoF62MoO42NbCl62NH2Ni(CN)42NiF42NiF62O2O22OsBr62OsCl62OsF62PbCl42PbCl62PbF62PdBr62PdCl42PdCl62PdF62PoBr62PoI62Pt(NO2)3Cl32Pt(NO2)4Cl22Pt(OH)22Pt(SCN)62PtBr42PtBr62PtCl42PtCl62PtF62PuCl62ReBr62ReCl62ReF62ReF82ReH92ReI62RhF62RuCl62RuF62S2S2O32S2O42S2O52S2O62S2O72S2O82S3O62S4O62S6O62ScF62Se2SeBr62SeCl62SeO42SiF62SiO32SmF42Sn(OH)62SnBr62-
Ion
0.338 0.274 0.231 0.343 0.128 0.322 0.211 0.249 0.141 0.167 0.365 0.336 0.276 0.279 0.347 0.268 0.354 0.313 0.333 0.252 0.380 0.428 0.364 0.383 0.333 0.451 0.324 0.363 0.307 0.333 0.245 0.349 0.371 0.337 0.256 0.276 0.257 0.421 0.240 0.336 0.248 0.189 0.251 0.262 0.270 0.283 0.275 0.291 0.302 0.325 0.382 0.276 0.181 0.363 0.336 0.229 0.248 0.195 0.218 0.279 0.374
Radius ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.026 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.020 ± 0.019
4/28/05 1:55:16 PM
Lattice Energies SnCl62SnF62SnI62SO32SO42TcBr62TcCl62TcF62TcH92TcI62Te2TeBr62TeCl62TeI62TeO42Th(NO3)62ThCl62ThF62TiBr62TiCl62TiF62UCl62UF62VO32WBr62WCl62WO42WOCl52ZnBr42ZnCl42ZnF42ZnI42ZrBr42ZrCl42ZrCl62ZrF62-
Ion
Multi-Charged Anions AlH63AsO43CdBr64CdCl64CeF63CeF73Co(CN)63Co(NO2)63CoCl53CoF63Cr(CN)63CrF63Cu(CN)43Fe(CN)63FeF63HfF73InF63Ir(CN)63Ir(NO2)63Mn(CN)63Mn(CN)65MnCl64N3Ni(NO2)63-
Section 12.indb 29
12-29 0.345 0.265 0.427 0.204 0.218 0.363 0.337 0.244 0.260 0.419 0.220 0.383 0.353 0.430 0.238 0.424 0.360 0.263 0.356 0.335 0.252 0.354 0.256 0.204 0.363 0.339 0.237 0.334 0.335 0.306 0.219 0.384 0.334 0.306 0.348 0.258
Radius ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019
0.256 0.237 0.374 0.352 0.278 0.282 0.349 0.343 0.320 0.258 0.351 0.254 0.312 0.347 0.298 0.277 0.268 0.347 0.338 0.350 0.401 0.349 0.180 0.342
± 0.042 ± 0.042 ± 0.038 ± 0.038 ± 0.038 ± 0.038 ± 0.038 ± 0.038 ± 0.038 ± 0.042 ± 0.038 ± 0.042 ± 0.038 ± 0.038 ± 0.042 ± 0.042 ± 0.038 ± 0.038 ± 0.038 ± 0.038 ± 0.042 ± 0.038 ± 0.042 ± 0.038
Ni(NO2)64NiF63O3P3PaF83PO43PrF63Rh(NO2)63Rh(SCN)63TaF83TbF73Tc(CN)65ThF73TiBr63TlF63UF73YF63ZrF73-
Ion
Singly Charged Cations N(CH3)4+ N2H5+ N2H62+ NH(C2H5)3+ NH3C2H5+ NH3C3H7+ NH3CH3+ NH3OH+ NH4+ NH3C2H4OH+ As3S4+ As3Se4+ AsCl4+ Br2+ Br3+ Br3Br5+ BrClCNH2+ BrF2+ BrF4+ C10F8+ C6F6+ Cl(SNSCN)2+ Cl2C=NH2+ Cl2F+ Cl3+ ClF2+ ClO2+ GaBr4I2+ I3+ I5+ IBr2+ ICl2+ IF6+ N(S3N2)2+ N(SCl)2+ N(SeCl)2+ N(SF2)2+ N2F+ NO+ NO2+
0.383 0.250 0.288 0.224 0.299 0.230 0.281 0.345 0.428 0.284 0.290 0.410 0.282 0.315 0.271 0.285 0.275 0.273
Radius ± 0.038 ± 0.042 ± 0.038 ± 0.042 ± 0.042 ± 0.042 ± 0.038 ± 0.038 ± 0.042 ± 0.042 ± 0.038 ± 0.042 ± 0.042 ± 0.038 ± 0.038 ± 0.042 ± 0.038 ± 0.038
0.234 0.158 0.158 0.274 0.193 0.225 0.177 0.147 0.136 0.203 0.244 0.253 0.221 0.155 0.204 0.238 0.229 0.175 0.183 0.172 0.265 0.228 0.347 0.173 0.165 0.182 0.147 0.118 0.317 0.185 0.225 0.263 0.196 0.175 0.209 0.258 0.186 0.246 0.214 0.156 0.145 0.153
± 0.019 ± 0.019 ± 0.029 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.019 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.038 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.036 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027
4/28/05 1:55:18 PM
Lattice Energies
12-30 Ion O2+ O2(SCCF3Cl)2+ ONCH3CF3+ OsOF5P(CH3)3Cl+ P(CH3)3D+ PCl4+ ReOF5S(CH3)2Cl+ S(N(C2H5)3)3+ S2(CH3)2Cl+ S2(CH3)2CN+ S2(CH3)3+ S2Br5+ S2N+ S2N2C2H3+ S2NC2(PhCH3)2+ S2NC3H4+ S2NC4H8+ S3(CH3)3+ S3Br3+ S3C3H7+ S3C4F6+ S3CF3CN+ S3Cl3+ S3N2+ S3N2Cl+ S4N3+ S4N3(Ph)2+ S4N4H+ S5N5+ S7I+ Sb(NPPh3)4+ SBr3+ SCH3O2+ SCH3P(CH3)3+ SCH3PCH3Cl2+ SCl(C2H5)2+ SCl2CF3+ SCl2CH3+ SCl3+ Se3Br3+ Se3Cl3+ Se3N2+ Se3NCl2+ Se6I+ SeBr3+ SeCl3+ SeF3+ SeI3+ SeN2Cl+ SeNCl2+ (SeNMe3)3+ SeS2N2+ SF(C6F5)2+ SF2CF3+ SF2N(CH3)2+ SF3+ SFS(C(CF3)2)2+ SH2C3H7+ SN+ SNCl5(CH3CN)-
0.140 0.275 0.200 0.246 0.197 0.196 0.235 0.245 0.207 0.439 0.265 0.223 0.233 0.267 0.159 0.211 0.310 0.218 0.225 0.239 0.245 0.199 0.261 0.263 0.233 0.201 0.232 0.231 0.316 0.178 0.257 0.262 0.518 0.220 0.183 0.248 0.205 0.207 0.207 0.204 0.185 0.253 0.245 0.288 0.163 0.260 0.182 0.192 0.179 0.238 0.196 0.157 0.406 0.282 0.294 0.198 0.210 0.172 0.275 0.210 0.158 0.290
Radius ± 0.027 ± 0.027 ± 0.027 ± 0.038 ± 0.027 ± 0.027 ± 0.027 ± 0.038 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.034 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.042 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.042 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.038
Ion (SNPMe3)3+ SNSC(CH3)N+ SNSC(CN)CH+ SNSC(Ph)N+ SNSC(Ph)NS3N2+ SNSC(PhCH3)N+ (Te(N(SiMe3)2)2+ Te(N3)3+ Te4Nb3OTe2I6+ TeBr3+ TeCl3+ TeCl3(15-crown-5)+ TeI3+ Xe2F11+ Xe2F3+ XeF+ XeF3+ XeF5+ XeOF3+
0.308 0.225 0.209 0.251 0.327 0.264 0.371 0.226 0.407 0.235 0.216 0.282 0.243 0.266 0.221 0.174 0.183 0.186 0.186
Radius ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027 ± 0.027
Doubly Charged Cations Co2S2(CO)62+ FeW(Se)2(CO)2+ I42+ Mo(Te3)(CO)42+ S192+ S2(S(CH3)2)22+ S2I42+ S3N22+ S3NCCNS32+ S3Se2+ S4N42+ S6N42+ S82+ Se102+ Se172+ Se192+ Se2I42+ Se3N22+ Se42+ Se4S2N42+ Se82+ SeN2S22+ (SNP(C2H5)3)22+ TaBr6Te(trtu)42+ Te(tu)42+ Te2(esu)4Br22+ Te2(esu)4Cl22+ Te2(esu)4I22+ Te2Se22+ Te2Se42+ Te2Se82+ Te3S32+ Te3Se2+ Te42+ Te82+ W(CO)4(h3-Te)2+ W2(CO)10Se42+
0.263 0.260 0.207 0.234 0.292 0.230 0.231 0.184 0.220 0.326 0.186 0.232 0.182 0.253 0.236 0.296 0.218 0.182 0.152 0.224 0.186 0.182 0.312 0.351 0.328 0.296 0.356 0.361 0.342 0.192 0.222 0.252 0.217 0.193 0.169 0.187 0.234 0.290
± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.049 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035 ± 0.035
Multi-Charged Cations I153+ Te2(su)64+
0.442 0.453
± 0.051 ± 0.034
Ligand abbreviations: su = selenourea; esu = ethyleneselenourea; tu = thiourea; ph = phenyl.
Section 12.indb 30
4/28/05 1:55:20 PM
Lattice Energies
12-31 TABLE 3. Ancillary Thermochemical Data (kJ mol–1) Species AsO43– BrO3– ClO4– CNCO32– Fe(NO3)2 HF2– HfCl62– IO2F2– IO3– IrCl62– LiCH3O2 NbCl62– NH2CH2CO2– O22– PdCl62– PO43– PtCl62– ReBr62– ReCl62– Ti(OH)2
Section 12.indb 31
State g g g g g c g g g g g c g g g g g g g g c
∆fHo (289) –145 –344 66 –321 (–448) –774 –1640 –693 –208 –785 (–745) –1224 –564 553 –749 291 –774 –689 –919 –778
4/28/05 1:55:20 PM
THE MADELUNG CONSTANT AND CRYSTAL LATTICE ENERGY If U is the crystal lattice energy and M is the Madelung constant, thena U=
Substance
NMzi z j e2 r
(1 − 1/n)
Ion type
Crystal formb
Sodium chloride, NaCl
–
M ,X
FCC
1.74756
Cesium chloride, CsCl
M+, X–
BCC
1.76267
Calcium chloride, CaCl2
M++, 2X–
Cubic
2.365
Calcium fluoride (fluorite), CaF2
M++, 2X–
Cubic
2.51939
Cadmium chloride, CdCl2
–
M , 2X
Hexagonal
2.244c
Cadmium iodide (α), CdI2
M++, 2X–
Hexagonal
2.355c
Magnesium fluoride, MgF2
M , 2X
Tetragonal
2.381c
Cuprous oxide (cuprite), Cu2O
2M+, X– –
Cubic
2.22124
Zinc oxide, ZnO
M ,X
Hexagonal
1.4985c
Sphalerite (zinc blende), ZnS
M++, X– –
FCC
1.63806
Wurtzite, ZnS
M ,X
Hexagonal
1.64132c
Titanium dioxide (anatase), TiO2
M4+, 2X– –
Tetragonal
2.400c
Titanium dioxide (rutile), TiO2
M , 2X
Tetragonal
2.408c
β-Quartz, SiO2
M , 2X
Hexagonal
2.2197c
Corundum, Al2O3
2M3+, 3X– –
Rhombohedral
4.1719
a b c
+
++
++
++
++
4+ 4+
–
––
––
–– ––
M
N is Avogadro’s number, zi and zj are the integral charges on the ions (in units of e), and e is the charge on the electron in electrostatic units (e = 4.803 × 10–10 esu). r is the shortest distance between cation-anion pairs in centimeters. Then U is in ergs (1 erg = 10–7 J). FCC = face centered cubic; BCC = body centered cubic. For tetragonal and hexagonal crystals the value of M depends on the details of the lattice parameters.
The Born Exponent, n is: Ion type
n 5
He, Li
+
Ne, Na+, F–
7
Ar, K , Cu , Cl +
+
–
9
Kr, Rb+, Ag+, Br–
10
Xe, Cs+, Au+, I–
12
For a crystal with a mixed-ion type, an average of the values of n in this table is to be used (6 for LiF, for example).
12-32
S12_07.indd 32
5/2/05 12:54:08 PM
ELASTIC CONSTANTS OF SINGLE CRYSTALS H. P. R. Frederikse This table gives selected values of elastic constants for single crystals. The values believed most reliable were selected from the original literature. The substances are arranged by crystal system and, within each system, alphabetically by name. A reference to the original literature is given for each value; a useful compilation of published values from many sources may be found in Reference 1 below. Data are given for the single-crystal density and for the elastic constants cij, in units of 1011 N/m2, which is equivalent to 1012 dyn/cm2.
General References 1. Simmons, G., and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, Second Edition, The MIT Press, Cambridge, MA, 1971. 2. Gray, D. E., Ed., American Institute of Physics Handbook, Third Edition, McGraw-Hill, New York, 1972.
CUBIC CRYSTALS Name
Formula
Ď /g cmâ&#x20AC;&#x201C;3
T/K
Ref.
Aluminum Aluminum antimonide Ammonium bromide Ammonium chloride Argon Barium fluoride Barium nitrate Calcium fluoride Calcium telluride Cesium Cesium bromide Cesium chloride Cesium iodide Chromite Chromium Cobalt oxide Cobalt zinc ferrite Copper Gallium antimonide Gallium arsenide Gallium phosphide Garnet (yttrium-iron) Germanium Gold Indium antimonide Indium arsenide Indium phosphide Iridium Iron Lead Lead fluoride Lead nitrate Lead telluride Lithium Lithium bromide Lithium chloride Lithium fluoride Lithium iodide Magnesium oxide Magnetite Manganese oxide Mercury telluride Molybdenum Nickel
Al AlSb NH4Br NH4Cl Ar BaF2 Ba(NO3)2 CaF2 CaTe Cs CsBr CsCl CsI FeCr2O4 Cr CoO CoZnFeO2 Cu GaSb GaAs GaP Y3Fe2(FeO4)3 Ge Au InSb InAs InP Ir Fe Pb PbF2 Pb(NO3)2 PbTe Li LiBr LiCl LiF LiI MgO Fe3O4 MnO HgTe Mo Ni
2.6970 4.3600 2.4314 1.5279 1.7710 4.8860 3.2560 3.810 5.8544 1.9800 4.4560 3.9880 4.5250 4.4500 7.20 6.44 5.43 8.932 5.6137 5.3169 4.1297 5.17 5.313 19.283 5.7890 5.6720 4.78 22.52 7.8672 11.34 7.79 4.547 8.2379 0.5326 3.47 2.068 2.638 4.061 3.579 5.18 5.39 8.079 10.2284 8.91
298 300 300 290 4.2 298 293 298 298 78 298 298 298 RT 298 298 303 298 298 298 300 298 298 296.5 298 293 RT 300 298 296 300 293 303.2 298 RT 295 RT RT 298 RT 298 290 273 298
1 2 3 4 5 6 7 8 9 10 11 11 11 12 13 14 12 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 32 20 32 35 36 37 15
C11
1.0675 0.8939 0.3414 0.3814 0.0529 0.9199 0.2925 1.6420 0.5351 0.0247 0.3063 0.3644 0.2446 3.2250 3.398 2.6123 2.660 1.683 0.8839 1.1877 1.4120 2.680 1.2835 1.9244 0.6720 0.8329 1.0220 5.80 2.26 0.4966 0.8880 0.3729 1.0795 0.1350 0.3940 0.4927 1.1397 0.2850 2.9708 2.730 2.23 0.548 4.637 2.481
C12
0.6041 0.4427 0.0782 0.0866 0.0135 0.4157 0.2065 0.4398 0.3681 0.0206 0.0807 0.0882 0.0661 1.4370 0.586 1.4699 1.530 1.221 0.4033 0.5372 0.6253 1.106 0.4823 1.6298 0.3670 0.4526 0.5760 2.42 1.40 0.4231 0.4720 0.2765 0.0764 0.1144 0.1880 0.2310 0.4767 0.1400 0.9536 1.060 1.20 0.381 1.578 1.549
C44
0.2834 0.4155 0.0722 0.0903 0.0159 0.2568 0.1277 0.8406 0.1994 0.0148 0.0750 0.0804 0.0629 1.1670 0.990 0.8300 0.780 0.757 0.4316 0.5944 0.7047 0.766 0.6666 0.4200 0.3020 0.3959 0.4600 2.56 1.16 0.1498 0.2454 0.1347 0.1343 0.0878 0.1910 0.2495 0.6364 0.1350 1.5613 0.971 0.79 0.204 1.092 1.242
12-33
Section 12.indb 33
4/28/05 1:55:28 PM
Elastic Constants of Single Crystals
12-34 CUBIC CRYSTALS Name
Formula
ρ/g cm
T/K
Ref.
Niobium Palladium Platinum Potassium Potassium bromide Potassium chloride Potassium cyanide Potassium fluoride Potassium iodide Pyrite Rubidium Rubidium bromide Rubidium chloride Rubidium iodide Silicon Silver Silver bromide Sodium Sodium bromate Sodium bromide Sodium chlorate Sodium chloride Sodium fluoride Sodium iodide Spinel Strontium fluoride Strontium nitrate Strontium oxide Strontium titanate Tantalum Tantalum carbide Thallium bromide Thorium Thorium oxide Tin telluride Titanium carbide Tungsten Uranium carbide Uranium dioxide Vanadium Zinc selenide Zinc sulfide Zinc telluride Zirconium carbide
Nb Pd Pt K KBr KCl KCN KF KI FeS2 Rb RbBr RbCl RbI Si Ag AgBr Na NaBrO3 NaBr NaClO3 NaCl NaF NaI MgAl2O4 SrF2 Sr(NO3)2 SrO SrTiO3 Ta TaC TlBr Th ThO2 SnTe TiC W UC UO2 V ZnSe ZnS ZnTe ZrC
8.578 12.038 21.50 0.851 2.740 1.984 1.553 2.480 3.128 5.016 1.58 3.350 2.797 3.551 2.331 10.50 5.585 0.971 3.339 3.202 2.485 2.163 2.804 3.6689 3.6193 4.277 2.989 4.99 5.123 16.626 14.65 7.4529 11.694 9.991 6.445 4.940 19.257 13.63 10.97 6.022 5.262 4.088 5.636 6.606
300 300 300 295 298 298 RT 295 300 RT 170 300 300 300 298 300 300 299 RT 300 RT 298 300 300 298 300 293 300 RT 298 RT 298 300 298 300 RT 297 300 298 300 298 298 298 298
38 39 40 41 11 11 32 33 42 43 44 45 45 45 46 47 48 49 32 33 50 11 51 52 53 54 29 55 56 57 58 59 60 61 62 107 64 65 66 67 68 68 68 63
Section 12.indb 34
–3
C11
2.4650 2.2710 3.4670 0.0370 0.3468 0.4069 0.1940 0.6490 0.2710 3.818 0.0296 0.3152 0.3624 0.2556 1.6578 1.2399 0.5920 0.0739 0.5450 0.3970 0.4920 0.4947 0.9700 0.3007 2.9857 1.2350 0.4255 1.601 3.4817 2.6023 5.05 0.3760 0.7530 3.670 1.1250 5.00 5.2239 3.200 3.960 2.287 0.8096 1.0462 0.7134 4.720
C12
1.3450 1.7604 2.5070 0.0314 0.0580 0.0711 0.1180 0.1520 0.0450 0.310 0.0250 0.0500 0.0612 0.0382 0.6394 0.9367 0.3640 0.0622 0.1910 0.1001 0.1420 0.1288 0.2380 0.0912 1.5372 0.4305 0.2921 0.435 1.0064 1.5446 0.73 0.1458 0.4890 1.060 0.0750 1.13 2.0437 0.850 1.210 1.190 0.4881 0.6534 0.4078 0.987
C44
0.2873 0.7173 0.7650 0.0188 0.0507 0.0631 0.0150 0.1232 0.0364 1.094 0.0171 0.0380 0.0468 0.0278 0.7962 0.4612 0.0616 0.0419 0.1500 0.0998 0.1160 0.1287 0.2822 0.0733 1.5758 0.3128 0.1590 0.590 4.5455 0.8255 0.79 0.0757 0.4780 0.797 0.1172 1.75 1.6083 0.647 0.641 0.432 0.4405 0.4613 0.3115 1.593
4/28/05 1:55:30 PM
Elastic Constants of Single Crystals
12-35 TETRAGONAL CRYSTALS
Name
Formula
ρ/g cm
T/K
Ref.
Ammonium dihydrogen arsenate (ADA) Ammonium dihydrogen phosphate (ADP) Barium titanate Calcium molybdate Indium Magnesium fluoride Nickel sulfate hexahydrate Potassium dihydrogen arsenate (KDA) Potassium dihydrogen phosphate (KDP) Rubidium dihydrogen phosphate (RDP) Rutile Tellurium oxide Tin (white) Zircon
NH4H2AsO4
2.3110
298
69
0.6747
–0.106
0.1652
NH4H2PO4
1.8030
293
69
0.6200
–0.050
0.1400
BaTiO3 CaMoO4 In MgF2 NiSO4·6H2O KH2AsO4
5.9988 4.255 7.300 3.177 2.070 2.867
298 298 RT RT RT RT
70 79 71 72 73 12
2.7512 1.447 0.4450 1.237 0.3209 0.530
1.7897 0.664 0.3950 0.732 0.2315 –0.060
1.5156 0.466 0.4050 0.536 0.0209 –0.020
KH2PO4
2.388
RT
71
0.7140
–0.049
RbH2PO4
2.800
298
74
0.5562
TiO2 TeO2 Sn ZrSiO4
4.260 5.99 7.29 4.70
298 RT 288 RT
75 76 77 78
2.7143 0.5320 0.7529 2.585
–3
C11
C12
C13
C16
C33
C44
C66
0.3022
0.0685
0.0639
0.3000
0.0910
0.0610
1.6486 1.265 0.4440 1.770 0.2931 0.370
0.5435 0.369 0.0655 0.552 0.1156 0.120
1.1312 0.451 0.1220 0.978 0.1779 0.070
0.1290
0.5620
0.1270
0.0628
–0.064
0.0279
0.4398
0.1142
0.0350
1.7796 0.4860 0.6156 1.791
1.4957 0.2120 0.4400 1.542
4.8395 1.0850 0.9552 3.805
1.2443 0.2440 0.2193 0.733
1.9477 0.5520 0.2336 1.113
0.134
ORTHORHOMBIC CRYSTALS Name
Formula
ρ/g cm
T/K
Ref.
Acenaphthene Ammonium sulfate Aragonite Barite Benzene Benzophenone Bronzite Calcium sulfate Celestite Cesium sulfate Fosterite Iodic acid Lithium ammonium tartrate Magnesium sulfate heptahydrate Natrolite Nickel sulfate heptahydrate Olivine Potassium pentaborate Potassium sulfate Rochelle salt Rubidium sulfate Sodium ammonium tartrate Sodium tartrate Strontium formate dihydrate Sulfur Thallium sulfate Topaz Uranium (alpha) Zinc sulfate heptahydrate
C12H10 (NH4)2SO4 CaCO3 BaSO4 C6H6 (C6H5)2CO (MgFe)SiO3 CaSO4 SrSO3 Cs2SO4 Mg2SiO4 HIO3 LiNH4C4H4O6·4H2O MgSO4·7H2O
1.220 1.774 2.93 4.40 1.061 1.219 3.38 2.962 3.96 4.243 3.224 4.630 1.71 1.68
293 293 RT RT 250 RT RT RT RT 293 298 RT RT RT
80 81 82 82 83 32 78 84 12 81 85 73 12 86
0.1380 0.3607 1.5958 0.8941 0.0614 0.1070 1.876 0.9382 1.044 0.4490 3.2848 0.3030 0.3864 0.325
0.0210 0.1651 0.3663 0.4614 0.0352 0.0550 0.686 0.1650 0.773 0.1958 0.6390 0.1194 0.1655 0.174
0.0410 0.1580 0.0197 0.2691 0.0401 0.0169 0.605 0.1520 0.605 0.1815 0.6880 0.1169 0.0875 0.182
0.1262 0.2981 0.8697 0.7842 0.0656 0.1000 1.578 1.845 1.061 0.4283 1.9980 0.5448 0.5393 0.288
0.0460 0.1456 0.1597 0.2676 0.0390 0.0321 0.561 0.3173 0.619 0.1800 0.7380 0.0548 0.2007 0.182
0.1117 0.3534 0.8503 1.0548 0.0583 0.0710 2.085 1.1180 1.286 0.3785 2.3530 0.4359 0.3624 0.315
0.0265 0.1025 0.4132 0.1190 0.0197 0.0203 0.700 0.3247 0.135 0.1326 0.6515 0.1835 0.1190 0.078
0.0290 0.0717 0.2564 0.2874 0.0378 0.0155 0.592 0.2653 0.279 0.1319 0.8120 0.2193 0.0667 0.156
0.0185 0.0974 0.4274 0.2778 0.0153 0.0353 0.544 0.0926 0.266 0.1323 0.8088 0.1736 0.2326 0.090
(Na,Al)SiO3 NiSO4·7H2O (MgFe)SiO4 KB5O8·4H2O K2SO4 NaK(C4H4O6)·4H2O Rb2SO4 NaNH4C4H4O6·4H2O Na2C4H4O6·2H2O Sr(CHO2)2·2H2O S TlSO4 Al2SiO3(OH,F)2 U ZnSO4·7H2O
2.25 1.948 3.324 1.74 2.665 1.79 3.621 1.587 1.794 2.25 2.07 6.776 3.52 19.0453 1.970
RT RT RT RT 293 RT 293 RT RT RT RT 293 RT 293 RT
78 86 87 71 81 71 81 12 12 12 12 81 82 88 86
0.716 0.353 3.240 0.582 0.5357 0.255 0.5029 0.3685 0.461 0.4391 0.240 0.4106 2.8136 2.1486 0.3320
0.261 0.198 0.590 0.229 0.1999 0.141 0.1965 0.2725 0.286 0.1037 0.133 0.2573 1.2582 0.4622 0.1720
0.297 0.201 0.790 0.174 0.2095 0.116 0.1999 0.3083 0.320 –0.149 0.171 0.2288 0.8464 0.2176 0.2000
0.632 0.311 1.980 0.359 0.5653 0.381 0.5098 0.5092 0.547 0.3484 0.205 0.3885 3.8495 1.9983 0.2930
0.297 0.201 0.780 0.231 0.1990 0.146 0.1925 0.3472 0.352 –0.014 0.159 0.2174 0.8815 1.0764 0.1980
1.378 0.335 2.490 0.255 0.5523 0.371 0.4761 0.5541 0.665 0.3746 0.483 0.4268 2.9452 2.6763 0.3200
0.196 0.091 0.667 0.164 0.195 0.134 0.1626 0.1058 0.124 0.1538 0.043 0.1125 1.0811 1.2479 0.0780
0.248 0.172 0.810 0.046 0.1879 0.032 0.1589 0.0303 0.031 0.1075 0.087 0.1068 1.3298 0.7379 0.1530
0.423 0.099 0.793 0.057 0.1424 0.098 0.1407 0.0870 0.098 0.1724 0.076 0.0751 1.3089 0.7454 0.0830
Section 12.indb 35
–3
C11
C12
C13
C22
C23
C33
C44
C55
C66
4/28/05 1:55:31 PM
Elastic Constants of Single Crystals
12-36 MONOCLINIC CRYSTALS Name
Formula
ρ/g cm
T/K
Ref.
Aegirine Anthracene Cobalt sulfate heptahydrate Diopside Dipotassium tartrate Feldspar (microceine) Ferrous sulfate heptahydrate Lithium sulfate monohydrate Naphthalene Potassium tartrate Sodium thiosulfate Stilbene Triglycine sulfate (TGS)
(NaFe)Si2O6 C14H10
3.50 1.258
RT RT
89 90
1.858 0.0852
0.685 0.0672
0.707 0.0590
0.098 –0.0192
1.813 0.1170
CoSO4·7H2O (CaMg)Si2O6 KHC4H4O6 KAlSi3O8
1.948 3.31 1.97 2.56
RT RT RT RT
86 91 12 92
0.335 2.040 0.4294 0.664
0.205 0.884 0.1399 0.438
0.158 0.0883 0.3129 0.259
0.016 –0.193 –0.0105 –0.033
0.378 1.750 0.3460 1.710
FeSO4·7H2O
1.898
RT
86
0.349
0.208
0.174
–0.020
0.376
Li2SO4·H2O C10H8 K2C4H4O6 Na2S2O3 (C6H5CH)2 (NH2CH2COOH)3· H2SO4
2.221 1.127 1.987 1.7499 1.60 1.68
RT RT RT RT RT RT
32 93 32 12 94 32
0.5250 0.0780 0.3110 0.3323 0.0930 0.4550
0.1715 0.0445 0.1720 0.1814 0.0570 0.1720
0.1730 0.0340 0.1690 0.1875 0.0670 0.1980
–0.0196 –0.006 0.0287 0.0225 –0.003 –0.030
0.5060 0.0990 0.3900 0.2953 0.0920 0.3210
Name Aegirine Anthracene Cobalt sulfate heptahydrate Diopside Dipotassium tartrate Feldspar (microceine) Ferrous sulfate heptahydrate Lithium sulfate monohydrate Naphthalene Potassium tartrate Sodium thiosulfate Stilbene Triglycine sulfate (TGS)
Section 12.indb 36
–3
C11
C12
C13
C15
C22
C23 0.626 0.0375 0.158
C25 0.094 –0.0170 –0.018
C33 2.344 0.1522 0.371
C35 0.214 –0.0187 –0.047
C44 0.692 0.0272 0.060
C46 0.077 0.0138 0.016
C55 0.510 0.0242 0.058
C66 0.474 0.0399 0.101
0.482 0.1173
–0.196 0.0176
2.380 0.6816
–0.336 0.0294
0.675 0.0961
–0.113 –0.0044
0.588 0.1270
0.705 0.0841
0.192 0.172
–0.148 –0.019
1.215 0.360
–0.131 –0.014
0.143 0.064
–0.015 0.001
0.238 0.056
0.361 0.096
0.0368
0.0571
0.5400
–0.0254
0.1400
–0.0054
0.1565
0.2770
0.0230 0.1330 0.1713 0.0485 0.2080
–0.0270 0.0182 0.0983 –0.005 –0.0036
0.1190 0.5540 0.4590 0.0790 0.2630
0.0290 0.0710 –0.0678 –0.005 –0.0500
0.0330 0.0870 0.0569 0.0325 0.0950
–0.0050 0.0072 –0.0268 0.0050 –0.0026
0.0210 0.1040 0.1070 0.0640 0.1110
0.0415 0.0826 0.0598 0.0245 0.0620
4/28/05 1:55:33 PM
Elastic Constants of Single Crystals
12-37 HEXAGONAL CRYSTALS T/K
Ref.
C11
C12
C13
C33
C55
Name
Formula
ρ/g cm
Apatite Beryl Beryllium Beryllium oxide Cadmium Cadmium selenide Cadmium sulfide Cobalt Dysprosium Erbium Gadolinium Hafnium Ice Indium Magnesium Rhenium Ruthenium Thallium Titanium Titanium diboride Yttrium Zinc Zinc oxide Zinc sulfide Zirconium
Ca5(PO4)3(OH,F,Cl) Be3Al2Si6O18 Be BeO Cd CdSe
3.218 2.68 1.8477 3.01 8.652 5.655
RT RT 300 RT 300 298
12 12 95 96 97 68
1.667 2.800 2.923 4.70 1.1450 0.7046
0.131 0.990 0.267 1.68 0.3950 0.4516
0.655 0.670 0.140 1.19 0.3990 0.3930
1.396 2.480 3.364 4.94 0.5085 0.8355
0.663 0.658 1.625 1.53 0.1985 0.1317
CdS Co Dy Er Gd Hf H2O(solid) In Mg Re Ru Tl Ti TiB2
4.824 8.836 8.560 9.064 7.888 12.727 0.920 7.2788 1.7364 21.024 12.3615 11.560 4.5063 4.95
298 298 298 298 298 298 250 300 298 298 298 300 298 RT
98 99 100 100 101 102 103 104 105 100 100 106 102 107
0.8431 3.071 0.7466 0.8634 0.6667 1.881 0.1410 0.4535 0.5950 6.1820 5.6260 0.4080 1.6240 6.90
0.5208 1.650 0.2616 0.3050 0.2499 0.772 0.0660 0.4006 0.2612 2.7530 1.8780 0.3540 0.9200 4.10
0.4567 1.027 0.2233 0.2270 0.2132 0.661 0.0624 0.4151 0.2180 2.0780 1.6820 0.2900 0.6900 3.20
0.9183 3.581 0.7871 0.8554 0.7191 1.969 0.1515 0.4515 0.6155 6.8350 6.2420 0.5280 1.8070 4.40
0.1458 0.755 0.2427 0.2809 0.2089 0.557 0.0288 0.0651 0.1635 1.6060 1.8060 0.0726 0.4670 2.50
Y Zn ZnO ZnS Zr
4.472 7.134 5.6760 4.089 6.505
300 295 298 298 298
108 109 110 96 102
0.7790 1.6368 2.0970 1.2420 1.434
0.2850 0.3640 1.2110 0.6015 0.728
0.2100 0.5300 1.0510 0.4554 0.653
0.7690 0.6347 2.1090 1.4000 1.648
0.2431 0.3879 0.4247 0.2864 0.320
Name
Formula
ρ/g cm
T/K
Ref.
Aluminum oxide Aluminum phosphate Antimony Bismuth Calcite Hematite Lithium niobate Lithium tantalate Quartz Selenium Sodium nitrate Tourmaline
Al2O3 AlPO4
3.986 2.556
300 RT
111 73
4.9735 1.0503
1.6397 0.2934
1.1220 0.6927
–0.2358 –0.1271
4.9911 1.3353
1.4739 0.2314
Sb Bi CaCO3 Fe2O3 LiNbO3 LiTaO3 SiO2 Se NaNO3
6.70 9.80 2.712 5.240 4.70 7.45 2.6485 4.838 2.27 3.05
295 295 300 RT RT RT 298 300 RT RT
112 112 113 82 114 114 115 116 12 82
1.0130 0.6370 1.4806 2.4243 2.030 2.330 0.8680 0.1870 0.8670 2.7066
0.3450 0.2490 0.5578 0.5464 0.530 0.470 0.0704 0.0710 0.1630 0.6927
0.2920 0.2470 0.5464 0.1542 0.750 0.800 0.1191 0.2620 0.1600 0.0872
0.2090 0.0717 –0.2058 –0.1247 0.090 –0.110 –0.1804 0.0620 0.0820 –0.0774
0.4500 0.3820 0.8557 2.2734 2.450 2.750 1.0575 0.7410 0.3740 1.6070
0.3930 0.1123 0.3269 0.8569 0.600 0.940 0.5820 0.1490 0.2130 0.6682
–3
TRIGONAL CRYSTALS
Section 12.indb 37
–3
C11
C12
C13
C14
C33
C44
4/28/05 1:55:34 PM
Elastic Constants of Single Crystals
12-38
References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60.
Section 12.indb 38
Thomas, J. F., Phys. Rev., 175, 955–962, 1968. Bolef, D. I. and M. Menes, J. Appl. Phys., 31, 1426–1427, 1960. Garland, C. W. and C. F. Yarnell, J. Chem. Phys., 44, 1112–1120, 1966. Garland, C. W. and R. Renard, J. Chem. Phys., 44, 1130–1139, 1966. Gsänger, M., H. Egger and E. Lüscher, Phys. Letters, 27A, 695–696, 1968. Wong, C. and D. E. Schuele, J. Phys. Chem. Solids, 29, 1309–1330, 1968. Haussühl, S., Phys. Stat. Sol., 3, 1072–1076, 1963. Wong, C. and D. E. Schuele, J. Phys. Chem. Solids, 28, 1225–1231, 1967. McSkimin, H. J. and D. G. Thomas, J. Appl. Phys., 33, 56–59, 1962. Kollarits, F. J. and J. Trivisonno, J. Phys. Chem. Solids, 29, 2133–2139, 1968. Slagle, D. D. and H. A. McKinstry, J. Appl. Phys., 38, 446–458, 1967. Hearmon, R. F. S., Adv. Phys., 5, 323–382, 1956. Sumer, A. and J. F. Smith, J. Appl. Phys., 34, 2691–2694, 1963. Alexandrov, K. S. et. al., Sov. Phys. Sol. State, 10, 1316–1321, 1968. Epstein, S. G. and O. N. Carlson, Acta Metal., 13, 487–491, 1965. McSkimin, H. J., et. al., J. Appl. Phys., 39, 4127–4128, 1968. McSkimin, H. J., et. al., J. Appl. Phys., 38, 2362–2364, 1967. Weil, R. and W. O. Groves, J. Appl. Phys., 39, 4049–4051, 1968. Bateman, T. B., J. Appl. Phys., 37, 2194–2195, 1966. Bogardus, E. H., J. Appl. Phys., 36, 2504–2513, 1965. Golding, B., S. C. Moss and B. L. Averbach, Phys. Rev., 158, 637–645, 1967. Bateman, T. B., H. J. McSkimin and J. M. Whelan, J. Appl. Phys., 30, 544–545, 1959. Gerlich, D., J. Appl. Phys., 35, 3062, 1964. Hickernell, F. S. and W. R. Gayton, J. Appl. Phys., 37, 462, 1966. MacFarlane, R. E., et. al., Phys. Letters, 20, 234–235, 1966. Leese, J. and A. E. Lord Jr., J. Appl. Phys., 39, 3986–3988, 1968. Miller, R. A. and D. E. Schuele, J. Phys. Chem. Solids, 30, 589–600, 1969. Wasilik, J. H. and M. L. Wheat, J. Appl. Phys., 36, 791–793, 1965. Haussühl, S., Phys. Stat. Sol., 3, 1072–1076, 1963. Houston, B., et. al., J. Appl. Phys., 39, 3913–3916, 1968. Trivisonno, J. and C. S. Smith, Acta Metal., 9, 1064–1071, 1961. Alexandrov, K. S. and T. V. Ryzhova, Sov. Phys. Cryst., 6, 228–252, 1961. Lewis, J. T., A. Lehoczky and C. V. Briscoe, Phys. Rev., 161, 877–887, 1967. Drabble, J. R. and R. E. B. Strathen, Proc. Phys. Soc., 92, 1090–1995, 1967. Oliver, D. W., J. Appl. Phys., 40, 893, 1969. Alper, T., and G. A. Saunders, J. Phys. Chem. Solids, 28, 1637–1642, 1967. Dickinson, J. M. and P. E. Armstrong, J. Appl. Phys., 38, 602–606, 1967. Bolef, D. I., J. Appl. Phys., 32, 100–105, 1961. Rayne, J. A., Phys. Rev., 112, 1125–1130, 1958. MacFarlane, R. E., et. al., Phys. Letters, 18, 91–92, 1965. Smith, P. A. and C. S. Smith, J. Phys. Chem. Solids, 26, 279–289, 1965. Norwood, M. H. and C. V. Briscoe, Phys. Rev., 112, 45–48, 1958. Simmons, G. and F. Birch, J. Appl. Phys., 34, 2736–2738, 1963. Gutman, E. J. and J. Trivisonno, J. Phys. Chem. Sol., 28, 805–809, 1967. Ghafelehbashi, M., et. al., J. Appl. Phys., 41, 652–666, 1970. McSkimin, H. J. and P. Andreatch, Jr., J. Appl. Phys., 35, 2161–2165, 1964. Neighbours, J. R. and G. A. Alers, Phys. Rev., 111, 707–712, 1958. Hidshaw, W., J. T. Lewis, and C. V. Briscoe, Phys. Rev., 163, 876–881, 1967. Daniels, W. B., Phys. Rev., 119, 1246–1252, 1960. Viswanathan, R., J. Appl. Phys., 37, 884–886, 1966. Miller, R. A. and C. S. Smith, J. Phys. Chem. Sol., 25, 1279–1292, 1964. Claytor, R. N. and B. J. Marshall, Phys. Rev., 120, 332–334, 1960. Schreiber, E., J. Appl. Phys., 38, 2508–2511, 1967. Gerlich, D., Phys. Rev., 136, A1366–A1368, 1964. Johnston, D. L., P. H. Thrasher and R. J. Kearney, J. Appl. Phys., 41, 427–428, 1970. Poindexter, E. and A. A. Giardini, Phys. Rev., 110, 1069, 1958. Soga, N., J. Appl. Phys., 37, 3416–3420, 1966. Bartlett, R. W. and C. W. Smith, J. Appl. Phys., 38, 5428–5429, 1967. Morse, G. E. and A. W. Lawson, J. Phys. Chem. Sol., 28, 939–950, 1967. Armstrong, P. E., O. N. Carlson and J. F. Smith, J. Appl. Phys., 30, 36– 41, 1959.
61. 62. 63. 64. 65.
Macedo, P. M., W. Capps and J. B. Wachtman, J. Am. Cer. Soc., 47, 651, 1964. Beattie, A. G., J. Appl. Phys., 40, 4818–4821, 1969. Chang, R. and L. J. Graham, J. Appl Phys., 37, 3778–3783, 1966. Lowrie, R. and A. M. Gonas, J. Appl. Phys., 38, 4505–4509, 1967. Graham, L. J., H. Nadler and R. Chang, J. Appl. Phys., 34, 1572–1573, 1963. 66. Wachtman, J. B., Jr., et. al., J. Nucl. Mat., 16, 39–41, 1965. 67. Bolef, D. I., J. Appl. Phys., 32, 100–105, 1961. 68. Berlincourt, D., H. Jaffe and L. R. Shiozawa, Phys. Rev., 129, 1009– 1017, 1963. 69. Adhav. R. S. J. Acoust. Soc. Am., 43, 835–838, 1968. 70. Berlincourt, D. and H. Jaffe, Phys. Rev., 111, 143–148, 1958. 71. Huntington, H. B., in Solid State Pysics, Vol. 7, Seitz, F., and Turnbull, D., Ed., pp. 213–285, Academic Press, New York 1958. 72. Cutler, H. R., J. J. Gibson and K. A. McCarthy, Sol. State Comm., 6, 431–433, 1968. 73. Mason, W. P., Piezoelectric Crystals and Their Application to Ultrasonics, D. Van Nostrand Co., Inc., New York, 1950. 74. Adhav, R. S., J. Appl. Phys., 40, 2725–2727, 1969. 75. Manghnani, M. H., J. Geophys. Res., 74, 4317–4328, 1969. 76. Uchida, N. and Y. Ohmachi, J. Appl Phys., 40, 4692–4695, 1969. 77. House, D. G. and E. Y. Vernon, Br. J. Appl. Phys., 11, 254–259, 1960. 78. Ryzhova, T. V., et. al., Bull. Acad. Sci. USSR, Earth Phys. Ser., English Transl., no. 2, 111–113, 1966. 79. Alton, W. J. and A. J. Barlow, J. Appl. Phys., 38, 3817–3820, 1967. 80. Michard, F., et. al., C. R. Acad. Sci., Paris, 265, 565–567, 1967. 81. Haussühl, S., Acta Cryst., 18, 839–842, 1965. 82. Hearmon, R. F. S., Rev. Mod. Phys., 18, 409–440, 1946. 83. Heseltine, J. C. W., D. W. Elliott and O. B. Wilson, J. Chem. Phys., 40, 2584–2587, 1964. 84. Schwerdtner, W. M., et. al., Canad. J. Earth Sci., 2, 673–683, 1965. 85. Kumazawa, M. and O. L. Anderson, J. Geophys. Res., 74, 5961–5972, 1969 . 86. Alexandrov, K. S., et. al., Sov. Phys. Cryst., 7, 753–755, 1963. 87. Verma, R. K., J. Geophys. Soc., 65, 757–766, 1960. 88. McSkimin, H. J. and E. S. Fisher, J. Appl. Phys., 31, 1627–1639, 1960. 89. Alexandrov, K. S. and T.V. Ryzhova, Bull. Acad. Sci. USSR, Geophys. Ser., English Transl., no.8, 871–875, 1961. 90. Afanaseva, G. K., et. al, Phys. Stat. Sol., 24, K61–K63, 1967. 91. Alexandrov, K. S., et. al., Sov. Phys. Cryst., 8, 589–591, 1964. 92. Alexandrov, K. S. and T. V Ryzhova, Bull Acad. Sci. USSR, Geophys. Ser., English Transl., no.2, 129–131, 1962. 93. Alexandrov, K. S., et. al., Sov. Phys. Cryst., 8, 164–166, 1963. 94. Teslenko, V. F., et. al., Sov. Phys. Cryst., 10, 744–747, 1966. 95. Smith, J. F. and C. L. Arbogast, J. Appl. Phys., 31, 99–102, 1960. 96. Cline, C. F., H. L. Dunegan and G. M. Henderson, J. Appl. Phys., 38, 1944–1948, 1967. 97. Chang, Y. A. and L. Himmel, J. Appl. Phys., 37, 3787–3790, 1966. 98. Gerlich, D., J. Phys. Chem. Solids, 28, 2575–2579, 1967. 99. McSkimin, H. J., J. Appl. Phys., 26, 406–409, 1955. 100. Fisher, E. S. and D. Dever, Trans. Met. Soc. AIME, 239, 48–57, 1967. 101. Fisher, E. S. and D. Dever, Proc. Conf. Rare Earth Res., 6th, Gatlinburg, Tenn., 522–533, 1967. 102. Fisher, E. S. and C. J. Renken, Phys. Rev., 135, A482–A494, 1964. 103. Proctor, T. M., Jr., J. Acoust. Soc. Am., 39, 972–977, 1966. 104. Chandrasekhar, B. S. and J. A. Rayne, Phys. Rev., 124, 1011– 1041, 1961. 105. Wazzan, A. R. and L. B. Robinson, Phys. Rev., 155, 586–594, 1967. 106. Ferris, R. W., et. al., J. Appl. Phys., 34, 768–770, 1963. 107. Gilman, J. J. and B. W. Roberts, J. Appl. Phys., 32, 1405, 1961. 108. Smith, J. F. and J. A. Gjevre, J. Appl. Phys., 31, 645–647, 1960. 109. Alers, G. A. and J. R. Neighbours, J. Phys. Chem. Solids, 7, 58–64, 1908. 110. Bateman, T. B., J. Appl. Phys., 33, 3309–3312, 1962. 111. Tefft, W. E., J. Res. Natl. Bur. Stand., 70A, 277–280, 1966. 112. DeBretteville, Jr., A. et. al., Phys. Rev., 148, 575–579, 1966. 113. Dandekar, D. P. and A. L. Ruoff, J. Appl. Phys., 39, 6004–6009, 1968. 114. Warner, A. W., M. Onoe and G. A. Coquin, J. Acoust. Soc. Am., 42, 1223–1231, 1967. 115. McSkimin, H. J., P. Andreatch and R. N. Thurston, J. Appl. Phys., 36, 1624–1632, 1965. 116. Mort, J., J. Appl. Phys., 38, 3414–3415, 1967.
4/28/05 1:55:35 PM
ELECTRICAL RESISTIVITY OF PURE METALS The first part of this table gives the electrical resistivity, in units of 10–8 Ω m, for 28 common metallic elements as a function of temperature. The data refer to polycrystalline samples. The number of significant figures indicates the accuracy of the values. However, at low temperatures (especially below 50 K) the electrical resistivity is extremely sensitive to sample purity. Thus the low-temperature values refer to samples of specified purity and treatment. The references should be consulted for further information on this point, as well as for values at additional temperatures. The second part of the table gives resistivity values in the neighborhood of room temperature for other metallic elements that have not been studied over an extended temperature range.
T/K
1 10 20 40 60 80 100 150 200 273 293 298 300 400 500 600 700 800 900
T/K
1 10 20 40 60 80 100 150 200 273 293 298 300 400 500 600 700 800 900
Aluminum 0.000100 0.000193 0.000755 0.0181 0.0959 0.245 0.442 1.006 1.587 2.417 2.650 2.709 2.733 3.87 4.99 6.13 7.35 8.70 10.18 Gold 0.0220 0.0226 0.035 0.141 0.308 0.481 0.650 1.061 1.462 2.051 2.214 2.255 2.271 3.107 3.97 4.87 5.82 6.81 7.86
References 1. C. Y. Ho, et al., J. Phys. Chem. Ref. Data, 12, 183–322, 1983; 13, 1069– 1096, 1984; 13, 1097–1130, 1984, 13, 1131–1172, 1984. 2. R. A. Matula, J. Phys Chem. Ref. Data, 8, 1147–1298, 1979. 3. T. C. Chi, J. Phys. Chem. Ref. Data, 8, 339–438, 1979; 8, 439–498, 1979. 4. K. H. Hellwege, Ed., Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Group III, Vol. 15, Subvolume a, Springer-Verlag, Heidelberg, 1982. 5. L. A. Hall, Survey of Electrical Resistivity Measurements on 16 Pure Metals in the Temperature Range 0 to 273 K, NBS Technical Note 365, U.S. Superintendent of Documents, 1968.
Electrical Resistivity in 10–8 Ω m
Barium 0.081 0.189 0.94 2.91 4.86 6.83 8.85 14.3 20.2 30.2 33.2 34.0 34.3 51.4 72.4 98.2 130 168 216
Hafnium 1.00 1.00 1.11 2.52 4.53 6.75 9.12 15.0 21.0 30.4 33.1 33.7 34.0 48.1 63.1 78.5
Beryllium 0.0332 0.0332 0.0336 0.0367 0.067 0.075 0.133 0.510 1.29 3.02 3.56 3.70 3.76 6.76 9.9 13.2 16.5 20.0 23.7
Iron 0.0225 0.0238 0.0287 0.0758 0.271 0.693 1.28 3.15 5.20 8.57 9.61 9.87 9.98 16.1 23.7 32.9 44.0 57.1
Calcium 0.045 0.047 0.060 0.175 0.40 0.65 0.91 1.56 2.19 3.11 3.36 3.42 3.45 4.7 6.0 7.3 8.7 10.0 11.4 Lead
4.9 6.4 9.9 13.6 19.2 20.8 21.1 21.3 29.6 38.3
Cesium 0.0026 0.243 0.86 1.99 3.07 4.16 5.28 8.43 12.2 18.7 20.5 20.8 21.0
Lithium 0.007 0.008 0.012 0.074 0.345 1.00 1.73 3.72 5.71 8.53 9.28 9.47 9.55 13.4
Chromium
1.6 4.5 7.7 11.8 12.5 12.6 12.7 15.8 20.1 24.7 29.5 34.6 39.9 Magnesium 0.0062 0.0069 0.0123 0.074 0.261 0.557 0.91 1.84 2.75 4.05 4.39 4.48 4.51 6.19 7.86 9.52 11.2 12.8 14.4
Copper 0.00200 0.00202 0.00280 0.0239 0.0971 0.215 0.348 0.699 1.046 1.543 1.678 1.712 1.725 2.402 3.090 3.792 4.514 5.262 6.041 Manganese 7.02 18.9 54 116 131 132 132 136 139 143 144 144 144 147 149 151 152
12-39
Section 12.indb 39
4/28/05 1:55:38 PM
Electrical Resistivity of Pure Metals
12-40 T/K
Molybdenum 0.00070 0.00089 0.00261 0.0457 0.206 0.482 0.858 1.99 3.13 4.85 5.34 5.47 5.52 8.02 10.6 13.1 15.8 18.4 21.2
T/K
Sodium 0.0009 0.0015 0.016 0.172 0.447 0.80 1.16 2.03 2.89 4.33 4.77 4.88 4.93
1 10 20 40 60 80 100 150 200 273 293 298 300 400 500 600 700 800 900 1 10 20 40 60 80 100 150 200 273 293 298 300 400 500 600 700 800 900
Element Antimony Bismuth Cadmium Cerium (β, hex) Cerium (γ, cub) Cobalt Dysprosium Erbium Europium Gadolinium Gallium Holmium Indium Iridium Lanthanum Lutetium Mercury Neodymium Niobium
Section 12.indb 40
T/K
273 273 273 290–300 298 273 290–300 290–300 290–300 290–300 273 290–300 273 273 290–300 290–300 298 290–300 273
Nickel 0.0032 0.0057 0.0140 0.068 0.242 0.545 0.96 2.21 3.67 6.16 6.93 7.12 7.20 11.8 17.7 25.5 32.1 35.5 38.6
Palladium 0.0200 0.0242 0.0563 0.334 0.938 1.75 2.62 4.80 6.88 9.78 10.54 10.73 10.80 14.48 17.94 21.2 24.2 27.1 29.4
Platinum 0.002 0.0154 0.0484 0.409 1.107 1.922 2.755 4.76 6.77 9.6 10.5 10.7 10.8 14.6 18.3 21.9 25.4 28.7 32.0
Potassium 0.0008 0.0160 0.117 0.480 0.90 1.34 1.79 2.99 4.26 6.49 7.20 7.39 7.47
Rubidium 0.0131 0.109 0.444 1.21 1.94 2.65 3.36 5.27 7.49 11.5 12.8 13.1 13.3
Strontium 0.80 0.80 0.92 1.70 2.68 3.64 4.58 6.84 9.04 12.3 13.2 13.4 13.5 17.8 22.2 26.7 31.2 35.6
Tantalum 0.10 0.102 0.146 0.751 1.65 2.62 3.64 6.19 8.66 12.2 13.1 13.4 13.5 18.2 22.9 27.4 31.8 35.9 40.1
Tungsten 0.000016 0.000137 0.00196 0.0544 0.266 0.606 1.02 2.09 3.18 4.82 5.28 5.39 5.44 7.83 10.3 13.0 15.7 18.6 21.5
Vanadium
Zinc 0.0100 0.0112 0.0387 0.306 0.715 1.15 1.60 2.71 3.83 5.46 5.90 6.01 6.06 8.37 10.82 13.49
Electrical resistivity 10–8 Ω m 39 107 6.8 82.8 74.4 5.6 92.6 86.0 90.0 131 13.6 81.4 8.0 4.7 61.5 58.2 96.1 64.3 15.2
0.0145 0.039 0.304 1.11 2.41 4.01 8.2 12.4 18.1 19.7 20.1 20.2 28.0 34.8 41.1 47.2 53.1 58.7
Element Osmium Polonium Praseodymium Promethium Protactinium Rhenium Rhodium Ruthenium Samarium Scandium Terbium Thallium Thorium Thulium Tin Titanium Uranium Ytterbium Yttrium
T/K
273 273 290–300 290–300 273 273 273 273 290–300 290–300 290–300 273 273 290–300 273 273 273 290–300 290–300
Silver 0.00100 0.00115 0.0042 0.0539 0.162 0.289 0.418 0.726 1.029 1.467 1.587 1.617 1.629 2.241 2.87 3.53 4.21 4.91 5.64 Zirconium 0.250 0.253 0.357 1.44 3.75 6.64 9.79 17.8 26.3 38.8 42.1 42.9 43.3 60.3 76.5 91.5 104.2 114.9 123.1
Electrical resistivity 10–8 Ω m 8.1 40 70.0 75 est. 17.7 17.2 4.3 7.1 94.0 56.2 115 15 14.7 67.6 11.5 39 28 25.0 59.6
4/28/05 1:55:40 PM
ELECTRICAL RESISTIVITY OF SELECTED ALLOYS These values were obtained by fitting all available measurements to a theoretical formulation describing the temperature and composition dependence of the electrical resistivity of metals. Some of the values listed here fall in regions of temperature and composition where no actual measurements exist. Details of the procedure may be found in the reference.
Wt % Al 99a 95a 90b 85b 80b 70b 60b 50b 40c 30c 25f 15h 10g 5c 1b
Wt % Al 99c 95c 90c 10b 5b 1a
Wt % Cu 99c 95c 90c 85c 80c 70c 60c 50c 40c 30c 25c 15c 10c 5c 1c
Values of the resistivity are given in units of 10–8 Ω m. General comments in the preceding table for pure metals also apply here
Reference C. Y. Ho, et al., J. Phys. Chem. Ref. Data, 12, 183–322, 1983.
Aluminum-Copper 293 K 300 K
100 K
273 K
0.531 0.895 1.38 1.88 2.34 3.02 3.49 4.00
2.51 2.88 3.36 3.87 4.33 5.03 5.56 6.22 7.57 11.2 16.3
8.71 7.92 3.22
10.8 9.43 4.46
100 K
273 K
0.958 3.01 5.42 14.0 9.93 2.78
2.96 5.05 7.52 17.1 13.1 5.92
3.18 5.28 7.76 17.4 13.4 6.25
100 K
273 K
Copper-Gold 293 K
0.520 1.21 2.11 3.01 3.95 5.91 8.04 9.88 11.44 12.43 12.59 11.38 9.33 5.91 2.00
1.73 2.41 3.29 4.20 5.15 7.12 9.18 11.07 12.70 13.77 13.93 12.75 10.70 7.25 3.40
1.86 2.54 4.42 4.33 5.28 7.25 9.13 11.20 12.85 13.93 14.09 12.91 10.86 7.41 3.57
2.74 3.10 3.59 4.10 4.58 5.31 5.88 6.55 7.96 11.8 17.2 12.3 11.0 9.61 4.60
350 K
400 K
2.82 3.18 3.67 4.19 4.67 5.41 5.99 6.67 8.10 12.0 17.6
3.38 3.75 4.25 4.79 5.31 6.16 6.77 7.55 9.12 13.5 19.8
3.95 4.33 4.86 5.42 5.99 6.94 7.63 8.52 10.2 15.2 22.2
11.1 9.68 4.65
11.7 10.2 5.00
12.3 10.7 5.37
Aluminum-Magnesium 293 K 300 K 3.26 5.36 7.85 17.6 13.5 6.37 300 K 1.91 2.59 3.46 4.38 5.32 7.30 9.36 11.25 12.90 13.99 14.14 12.96 10.91 7.46 3.62
350 K 3.82 5.93 8.43 18.4 14.3 7.20 350 K 2.24 2.92 3.79 4.71 5.65 7.64 9.70 11.60 13.27 14.38 14.54 13.36 11.31 7.87 4.03
400 K 4.39 6.51 9.02 19.2 15.2 8.03 400 K 2.58 3.26 4.12 5.05 5.99 7.99 10.05 11.94 13.65 14.78 14.94 13.77 11.72 8.28 4.45
12-41
Section 12.indb 41
4/28/05 1:55:42 PM
Electrical Resistivity of Selected Alloys
12-42
Wt % Cu 99c 95c 90c 85c 80c 70i 60i 50i 40c 30i 25c 15c 10c 5c 1c
Wt % Cu 99c 95c 90c 85c 80c 70c 60c 50c 40c 30c 25c 15c 10c 5c 1c
Wt % Cu 99b 95b 90b 85b 80b 70b
Wt % Au 99c 95c 90i 85b 80b 70c 60b 50a 40a 30b 25b 15a 10a 5a 1a
Section 12.indb 42
100 K 1.45 6.19 12.08 18.01 23.89 35.73 45.76 50.22 36.77 26.73 22.22 13.49 9.28 5.20 1.81 100 K 0.91 2.99 5.69 8.30 10.74 15.67 20.45 26.07 33.53 45.03 44.12 31.79 23.00 13.09 8.97
273 K 2.71 7.60 13.69 19.63 25.46 36.67 45.43 50.19 47.42 40.19 33.46 22.00 16.65 11.49 7.23 273 K
Copper-Nickel 293 K 2.85 7.71 13.89 19.83 25.66 36.72 45.38 50.05 47.73 41.79 35.11 23.35 17.82 12.50 8.08
2.23 4.35 7.03 9.61 12.12 17.01 21.87 27.79 35.51 46.66 46.45 36.99 29.51 20.75 12.67
100 K
273 K
Copper-Zinc 293 K
0.671 1.54 2.33 2.93 3.44 4.08
1.84 2.78 3.66 4.37 5.01 5.87
100 K
273 K 2.69 5.21 8.01 10.50 12.75 18.23 26.70 27.23 24.65 20.82 18.86 15.08 13.25 11.49 10.07
2.91 7.82 13.96 19.90 25.72 36.76 43.35 50.01 47.82 42.34 35.69 23.85 18.26 12.90 8.37
Copper-Palladium 293 K 300 K
2.10 4.21 6.89 9.48 11.99 16.87 21.73 27.62 35.31 46.50 46.25 36.52 28.90 20.00 11.90
1.31 3.88 6.70 9.14 11.23 16.44 24.64 23.09 19.40 14.94 12.72 8.54 6.54 4.58 3.01
300 K
1.97 2.92 3.81 4.54 5.19 6.08 Gold-Palladium 293 K 2.86 5.35 8.17 10.66 12.93 18.46 26.94 27.63 25.23 21.49 19.53 15.77 13.95 12.21 10.85
2.27 4.40 7.08 9.66 12.16 17.06 21.92 27.86 35.57 46.71 46.52 37.16 29.73 21.02 12.93 300 K 2.02 2.97 3.86 4.60 5.26 6.15 300 K 2.91 5.41 8.22 10.72 12.99 18.54 27.02 27.76 25.42 21.72 19.77 16.01 14.20 12.46 11.12
350 K 3.27 8.22 14.40 20.32 26.12 36.85 45.20 49.73 48.28 44.51 39.67 27.60 21.51 15.69 10.63 350 K 2.59 4.74 7.41 10.01 12.51 17.41 22.30 28.25 36.03 47.11 46.99 38.28 31.19 22.84 14.82 350 K 2.36 3.33 4.25 5.02 5.71 6.67 350 K 3.32 5.79 8.56 11.10 13.45 19.10 27.63 28.64 26.74 23.35 21.51 17.80 16.00 14.26 12.99
400 K 3.62 8.62 14.81 20.70 26.44 36.89 45.01 49.50 48.49 45.40 42.81 31.38 25.19 18.78 13.18 400 K 2.92 5.08 7.74 10.36 12.87 17.78 22.69 28.64 36.47 47.47 47.43 39.35 32.56 24.54 16.68 400 K 2.71 3.69 4.63 5.44 6.17 7.19 400 K 3.73 6.17 8.93 11.48 13.93 19.67 28.23 29.42 27.95 24.92 23.19 19.61 17.81 16.07 14.80
4/28/05 1:55:44 PM
Electrical Resistivity of Selected Alloys
Wt % Au 99b 95a 90j 85j 80j 70j 60j 50j 40j 30a 25a 15a 10a 5i 1b
Wt % Fe 99a 95c 90c 85c 80c 70b 60c 50d 40d 30c 25b 15c 10c 5c 1b
Wt % Ag 99b 95b 90b 85k 80k 70k 60i 50k 40m 30b 25k 15i 10i 5b 1a
a
b c d e f g h i j k m
Section 12.indb 43
12-43
100 K
273 K
Gold-Silver 293 K
1.20 3.16 5.16 6.75 7.96 9.36 9.61 8.96 7.69 6.15 5.29 3.42 2.44 1.44 0.627
2.58 4.58 6.57 8.14 9.34 10.70 10.92 10.23 8.92 7.34 6.46 4.55 3.54 2.52 1.69
2.75 4.74 6.73 8.30 9.50 10.86 11.07 10.37 9.06 7.47 6.59 4.67 3.66 2.64 1.80
100 K
273 K
Iron-Nickel 293 K
10.9 18.7 24.2 27.8 30.1 32.3 53.8 28.4 19.6 15.3 14.3 12.6 11.4 9.66 7.17
12.0 19.9 25.5 29.2 31.6 33.9 57.1 30.6 21.6 17.1 15.9 13.8 12.5 10.6 7.94
3.32 10.0 14.5 17.5 19.3 20.9 28.6 12.3 7.73 5.97 5.62 4.97 4.20 3.34 1.66 100 K 0.839 2.528 4.72 6.82 8.91 13.43 19.4 29.3 40.8 37.1 32.4 21.0 14.95 8.91 3.97
273 K 1.891 3.58 5.82 7.92 10.01 14.53 20.9 31.2 42.2 40.4 36.67 27.08 21.69 15.98 11.06
300 K 2.80 4.79 6.78 8.36 9.55 10.91 11.12 10.42 9.11 7.52 6.63 4.72 3.71 2.68 1.84 300 K 12.4 20.2 25.9 29.7 32.2 34.4 58.2 31.4 22.5 17.7 16.4 14.2 12.9 10.9 8.12
Silver-Palladium 293 K 300 K 2.007 3.70 5.94 8.04 10.13 14.65 21.1 31.4 42.2 40.6 37.06 26.68 22.39 16.72 11.82
Uncertainty in resistivity is ± 2%. Uncertainty in resistivity is ± 3%. Uncertainty in resistivity is ± 5%. Uncertainty in resistivity is ± 7% below 300 K and ± 5% at 300 and 400 K. Uncertainty in resistivity is ± 7%. Uncertainty in resistivity is ± 8%. Uncertainty in resistivity is ± 10%. Uncertainty in resistivity is ± 12%. Uncertainty in resistivity is ± 4%. Uncertainty in resistivity is ± 1%. Uncertainty in resistivity is ± 3% up to 300 K and ± 4% above 300 K. Uncertainty in resistivity is ± 2% up to 300 K and ± 4% above 300 K.
2.049 3.74 5.98 8.08 10.17 14.69 21.2 31.5 42.2 40.7 37.19 27.89 22.63 16.98 12.08
350 K 3.22 5.19 7.19 8.75 9.94 11.29 11.50 10.78 9.46 7.85 6.96 5.03 4.00 2.96 2.12
400 K 3.63 5.59 7.58 9.15 10.33 11.68 11.87 11.14 9.81 8.19 7.30 5.34 4.31 3.25 2.42
400 K 18.7 26.8 33.2 37.3 40.0 42.4 73.9 43.7 34.0 27.4 25.1 21.1 18.9 16.1 12.8 350 K 2.35 4.04 6.28 8.38 10.47 14.99 21.6 32.0 42.3 41.3 38.1 29.3 24.3 18.8 13.92
400 K 2.66 4.34 6.59 8.68 10.78 15.30 22.0 32.4 42.3 41.7 38.8 30.6 25.9 20.5 15.70
4/28/05 1:55:46 PM
PERMITTIVITY (DIELECTRIC CONSTANT) OF INORGANIC SOLIDS H. P. R. Frederikse frequency of the measurement is given in the last column (i.r. indicates a measurement in the infrared). Substances are listed in alphabetical order by chemical formula.
This table lists the permittivity ε, frequently called the dielectric constant, of a number of inorganic solids. When the material is not isotropic, the individual components of the permittivity are given. A superscript S indicates a measurement made under constant strain (“clamped” dielectric constant). If the constraint is removed, the measurement yields εT, the “unclamped” or free dielectric constant. The temperature of the measurement is given when available; the symbol r.t. indicates a value at nominal room temperature. The Formula Ag3AsS3
Name Silver thioarsenate (Proustite)
Reference
Young, K. F. and Frederikse, H. P. R., J. Phys. Chem. Ref. Data, 2, 313, 1973.
T/K
εijk T 11
S 11
T 33
S 11
ε = 16.5, ε = 14.5 ε = 20.0 , ε = 18.0
AgBr AgCN AgCl AgNO3 AgNa(NO2)2 Ag2O (AlF)2SiO4
Silver bromide Silver cyanide Silver chloride Silver nitrate Silver sodium nitrite Silver oxide Aluminum fluosilicate (topaz)
Al2O3
Aluminum oxide (alumina)
AlPO4 AlSb AsF3 BN BaCO3 Ba(COOH)2
Aluminum phosphate Aluminum antimonide Arsenic trifluoride Boron nitride Barium carbonate Barium formate
BaCl2 BaCl2 ⋅ 2H2O BaF2 Ba(NO3)2
Barium chloride Barium chloride dihydrate Barium fluoride Barium nitrate
Ba2NaNb5O15
Barium sodium niobate (“Bananas”)
12.50 5.6 11.15 9.0 4.5 ± 0.5 8.8 ε 11 = 6.62 ε 22 = 6.58 ε 33 = 6.95 ε 11 = ε 22 = 9.34 ε33 = 11.54 T ε11 = 6.05
11.21 5.7 7.1 8.53 ε 11 = 7.9 ε22 = 5.9 ε33 = 7.5 9.81 9.00 7.32 4.95 S T ε11 = 222, ε11 = 235 S 22
T 22
ε = 227, ε = 247 S 33
T 33
ε = 32, ε = 51 BaO BaO2 BaS BaSO4 BaSnO3 BaTiO3
Barium oxide (baria) Barium peroxide Barium sulfide Barium sulfate Barium stannate Barium titanate
34 ± 1 10.7 19.23 11.4 18 T ε11 = 3600
Barium tungstate
r.t. r.t. r.t. r.t. 293 r.t. r.t. 297 297 297 298 298
2 × 107
r.t. 300 r.t. r.t. 291 r.t. r.t. r.t. r.t. r.t. 292 292
103 i.r.
296
104
106 5 × 105 9.4 ×109 7 × 103 7 × 103 7 × 103 102 – 8 × 109 102 – 8 × 109
i.r. 2 × 105 103 103 103 103 5 × 102 – 1011 2 × 105
296 296 248, 333 r.t. r.t. 288 298
60 × 107 2 × 106 7.25 × 106 108 25 × 105 105
298
2.5 × 108
T 33
298
105
S 33
298
2.5 × 108
298 298 297.5 297.5
1.6 × 103 1.6 × 103
ε = 80
BaWO4
2 × 107
298
ε = 150
Barium titanium niobate
r.t.
S 11
ε = 2300
Ba6Ti2Nb8O30
ν/Hz
ε11 = ε22 ≈ 190 ε33 ≈ 220 ε 11 = ε22 = 35.5 ± 0.2 ε33 = 37.2 ± 0.2
12-44
Section 12.indb 44
4/28/05 1:55:53 PM
Permittivity (Dielectric Constant) of Inorganic Solids Formula BaZrO3 Be3Al2Si6O18
Name Barium zirconate Beryllium aluminum silicate (Beryl)
BeCO3 BeO BiFeO3
Beryllium carbonate Beryllium oxide (beryllia) Bismuth iron oxide
Bi12GeO20 Bi(GeO4)3 Bi2O3 Bi4Ti3O12 C
C4H4O6
Bismuth germanite Bismuth germanate Bismuth sesquioxide Bismuth titanate Diamond Type I Type IIa Tartaric acid
C6H14N2O6
Ethylene diamine tartrate (EDT)
12-45 εijk 43 ε33 = 5.95 ε11 = ε22 = 6.86 9.7 7.35 ± 0.2 40 ± 3 S ε11 = 38
r.t. 293 r.t. r.t.
16 18.2 112 5.87 ± 0.19 5.66 ± 0.04 ε11 = ε22 = 4.3 ε33 = 4.5 ε13 = 0.55 T ε11 = 5.0
300 300 298 298 298
ε T22 = 8.3
293 293
T 13
ε = 0.7
293
T ε11 = 4.0
r.t.
C6H12O6NaBr
Dextrose sodium bromide
(CH3NH3)Al(SO4)2 ⋅ 2H2O Ca2B6O11 ⋅ 5H2O
Methyl ammonium alum (MASD)
19
Colemanite
CaCO3
Calcium carbonate
CaCeO3 CaF2 CaMoO4
Calcium cerate Calcium fluoride Calcium molybdate
Ca(NO3)2 CaNb2O6 Ca2Nb2O7 CaO CaS CaSO4 ⋅ 2H2O
Calcium nitrate Calcium niobate Calcium pyroniobate Calcium oxide Calcium sulfide Calcium sulfate dihydrate
CaTiO3 CaWO4
Calcium titanate Calcium tungstate
Cd3As2 CdBr2 CdF2 CdS
Cadmium arsenide Cadmium bromide Cadmium fluoride Cadmium sulfide
ε11 = 20 ε33 = 25 ε11 = 8.67 ε22 = 8.69 ε33 = 8.31 21 6.81 ε11 = ε22 = 24.0 ± 0.2 ε33 = 20.0 ± 0.2 6.54 ε11 = 22.8 ± 1.9 ~45 11.8 ± 0.3 6.699 ε11 = 5.10 ε22 = 5.24 ε33 = 10.30 165 ε11 = ε22 = 11.7 ± 0.1 ε33 = 9.5 ± 0.2 ε33 = 18.5 8.6 8.33 ± 0.08 ε11 = ε22 = 8.7 ε33 = 9.25 ε11 = ε22 = 8.37 ε33 = 9.00 εT11 = 8.48
2 × 106 103 103 103
103
293 293 r.t. r.t. r.t. r.t. 300 297.5 297.5 292 r.t. r.t. 283 r.t. r.t. r.t. r.t. r.t. 297.5 297.5 4 293 300 300 300 8 8
103 103 9.4 × 1010 9.4 × 1010 9.4 × 1010 5 × 102–1011 <10 <10 2 × 105 (5–500) × 103 5 × 107 2 × 106 7.25 × 106
1.59 × 103 1.59 × 103 5 × 105 105–107 i.r. i.r. i.r. i.r.
77
104
77
104
S 11
T 11
298
104
S 33
T 33
298
104
S 11
T 11
298
104
ε = 9.02, ε = 9.35 ε = 9.53, ε = 10.33
Section 12.indb 45
7 × 103 7 × 103 2 × 105 2 × 106 9.4 × 109
197
ε T33 = 9.48
Cadmium selenide
ν/Hz
293
T 33
ε = 6.0
CdSe
T/K r.t. 297 297 291 293 300
ε = 9.53, ε = 9.70
4/28/05 1:56:00 PM
Permittivity (Dielectric Constant) of Inorganic Solids
12-46 Formula
Name
CdTe
Cadmium telluride
Cd2Nb2O7 CeO2 CoNb2O6
Cadmium pyroniobate Cerium oxide Cobalt niobate
CoO Cr2O3
Cobalt oxide Chromic sesquioxide
CsAl(SO4)2 ⋅ 12H2O CsBr Cs2CO3 CsCl CsH2AsO4 CsH2PO4 CsH3(SeO3)2
Cesium alum Cesium bromide Cesium carbonate Cesium chloride Cesium dihydrogen arsenate (CDA) Cesium dihydrogen phosphate (CDP) Cesium trihydrogen selenite
CsI CsNO3
Cesium iodide Cesium nitrate
CsPbCl3 CuBr CuCl CuO Cu2O CuSO4 ⋅ 5H2O EuF2 Eu2(MoO4)3 EuS FeO Fe2O3 Fe2O3-α Fe3O4 GaAs
Cesium lead chloride Cuprous bromide Cuprous chloride Cupric oxide Cuprous oxide (Cuprite) Cupric sulfate pentahydrate Europium fluoride Europium molybdate Europium sulfide Ferrous oxide Ferric sesquioxide Ferric sesquioxide (hematite) Ferrosoferric oxide (magnetite) Gallium arsenide
GaP
Gallium phosphide
GaSb
Gallium antimonide
Gd2(MoO4)3
Gadolinium molybdate
Ge
Germanium
GeO2 HIO3
Germanium dioxide Iodic acid
HNH4(ClCH2COO)2 H2O
Hydrogen ammonium dichloroacetate Ice I (P = 0 kbar) Ice III (P = 3 kbar) Ice V (P = 5 kbar) Ice VI (P = 8 kbar) Mercurous chloride (Calumel) Mercuric chloride Mercurous sulfide (Cinnabar)
HgCl HgCl2 HgS
Section 12.indb 46
εijk ε S33 = 10.2, ε T33 = 10.65
T/K
ν/Hz
298
104
ε11 = ε22 = 10.60 ± 0.15 ε33 = 7.05 ± 0.05 500–580 7.0 ε11 = 18.4 ± 1.1 ε22 = 21.4 ± 1.1 ε33 = 33.0 ± 0.7 12.9 ε11 = ε22 = 13.3 ε33 = 11.9 8 5.0 6.38 6.53 7.2 4.8 6.15 ε11 = 80 ε22 = 63 ε33 = 12 6.31 ε11 = ε22 = 9.4 ε33 = 8.3 14.37 8.0 9.8 ± 0.5 18.1 7.60 ± 0.06 6.60 7.7 ± 0.2 9.5 13.10 ± 0.04 14.2 4.5 12 20 13.13 12.90 11.1 10.75 ± 0.1 15.69 15.7 εT = 10 ε S = 9.5 16.0 ± 0.3 15.8 ± 0.2 ε11 = ε22 = 7.44 ε11 = 7.5 ε22 = 12.4 ε33 = 8.1 ε[102] = 5.9 99 117 114 193 ε11 = ε22 = 14.0 6.5 ε11 = ε22 = 18.0 ε33 = 32.5
297 297 293 r.t. r.t. r.t. r.t. 298 298.5 298.5 315 (TN) r.t. 298 291 298 273 285 273 273 273 298 r.t. r.t. 300 293 r.t. r.t. r.t. r.t. 298 298 80 r.t. r.t. r.t. 300 4 r.t. 1.6 r.t. 4 298 298 4 r.t. r.t. r.t. r.t. r.t. r.t. 243 243 243 243 r.t. r.t. r.t. r.t.
i.r. i.r. 103 2 × 106 (5–500) × 103 (5–500) × 103 (5–500) × 103 102– 1010 103 103 6 × 1010 20–20 × 103 1.6 × 103 2 × 105 9.5 ×109 9.5 × 109 105 105 105 1.6 × 103 5 × 105 5 × 105 105–106 5 × 105 103 2 × 106 105 (1–300) × 103 5 × 102–105 2 × 106 105–107 6 × 1010 105–107 i.r. i.r. i.r. 103 9.2 × 109 500–3 × 1010 i.r. 103 103 103 105
1012 1012 i.r. i.r.
4/28/05 1:56:04 PM
Permittivity (Dielectric Constant) of Inorganic Solids Formula HgSe I2
Name Mercurous selenide Iodine
InAs
Indium arsenide
InP InSb KAl(SO4)2 ⋅ 12H2O KBr
Indium phosphide Indium antimonide Potassium alum Potassium bromide
KBrO3 KCN K2CO3 K2C4H4O6 ⋅ 1/2 H2O
Potassium bromate Potassium cyanide Potassium carbonate Dipotassium tartrate (DKT)
KCl
Potassium chloride
KClO3 KClO4 K2CrO4 KCr(SO4)2 ⋅ 12H2O KD2AsO4
Potassium chlorate Potassium perchlorate Potassium chromate Potassium chrome alum Potassium dideuterium arsenate (KDDA)
KD2PO4 KF KH2AsO4
Potassium dideuterium phosphate (KDDP) Potassium fluoride Potassium dihydrogen arsenate (KDA)
KH2PO4
Potassium dihydrogen phosphate (KDP)
K2HPO4 KI KIO3
Dipotassium monohydrogen orthophosphate Potassium iodide Potassium iodate
(K,H)Al3(SiO4)3 (K,H)Mg3Al(SiO4)3
Mica (muscovite) Mica (Canadian)
KNO2 KNO3 KNbO3 K3PO4 KSCN K2SO4 K2S3O6 K2S4O6 K2S5O6 ⋅ H2O K2S6O6 K2SeO4
Potassium nitrite Potassium nitrate Potassium niobate Potassium orthophosphate Potassium thiocyanate Potassium sulfate Potassium trithionate Potassium tetrathionate Potassium pentathionate Potassium hexathionate Potassium selenate
KSr2Nb5O15
Potassium strontium niobate
KTaNbO3
Potassium tantalate niobate (KTN)
KTaO3 LaScO3
Potassium tantalate Lanthanum scandate
Section 12.indb 47
12-47 εijk 25.6 ε11 = 6 ε22 = 3 ε33 = 40 14.55 ± 0.3 15.15 12.61 17.88 6.5 4.88 4.53 7.3 6.15 4.96 ε11 = 6.44 ε22 = 5.80 ε33 = 6.49 ε13 = 0.005 4.86 ± 0.02 4.50 5.1 5.9 7.3 6.5 ε11 = 70 ε33 = 31 50 ± 2 6.05 ε11 = 60 ε33 = 24 46 ε11 = 42 ε33 = 21 9.05 5.00 170 10 ε[101] ≈ 40,70 16.85 5.4 ε11 = ε22 = 6.9 ε33 = 7.3 25 4.37 700 7.75 7.9 6.4 5.7 5.5 7.8 7.8 ε11 = 5.9 ε22 = 7.7 ε11 = ε11 ≈ 1200 ε33 ≈ 800 34,000 6,000 242 30
T/K r.t. r.t. r.t. r.t. r.t. 4 r.t. 4 r.t. 300 4.2 r.t. r.t. 291 r.t. r.t. r.t. r.t. r.t. 4.2 r.t. r.t. r.t. 100–240 298 298 297 298 298 298 r.t. r.t. r.t. r.t. 255 293 r.t. r.t. 299 298 298 305 293 r.t. r.t. r.t. r.t. 293 293 293 293 r.t. r.t. 298 298 273 293 298 r.t.
ν/Hz 104–106 5 × 104–107 5 × 104–107 5 × 104–107 i.r. i.r. i.r. i.r. 20–20 × 103
2 × 106 2 × 106 2 × 105
5 × 103 2 × 106 2 × 106 6 × 107 175 × 103
103 2 × 106
103
2 × 106 9.4 × 1010 105 105 105 2 × 106 102–3 × 109 102–104 104 2 × 105 2 × 106 2 × 106 2 × 106 1.8 × 106 1.8 × 106 1.8 × 106 1.8 × 106 103 103
104 104 2 × 105
4/28/05 1:56:06 PM
Permittivity (Dielectric Constant) of Inorganic Solids
12-48 Formula LiBr Li2CO3 LiCl LiD LiF
Name Lithium bromide Lithium carbonate Lithium chloride Lithium deuteride Lithium fluoride
LiGaO2
Lithium metagallate
εijk 12.1 4.9 11.05 14.0 ± 0.5 9.00 9.11 T T ε11 = 7.0, ε 22 = 6.0 ε T33 = 9.5 S 11
Lithium-6 hydride Lithium-7 hydride Lithium trihydrogen selenite
LiI LiIO3
Lithium iodide Lithium iodate
LiNH4C4O6 ⋅ H2O
Lithium ammonium tartrate (LAT)
LiNa3CrO4 ⋅ 6H2O LiNa3MoO4 ⋅ 6H2O
Lithium trisodium chromate Lithium trisodium molybdate
LiNbO3
Lithium niobate
Li2SO4 ⋅ H2O
Lithium sulfate monohydrate
LiTaO3
Lithium tantalate
13.2 ± 0.5 12.9 ± 0.5 29 ε11 = 13.0 ε22 = 12.9 ε33 = 46 11.03 ε11 = ε22 = 65 ε33 = 554 T ε11 = 7.2
MgCO3 MgNb2O6
Lithium thallium tartrate (LTT) Magnesium borate monochloride (boracite) Magnesium carbonate Magnesium niobate
MgO (MgO)xAl2O3 MgSO4 MgSO4 ⋅ 7H2O MgTiO3 MgWO4
Magnesium oxide (Periclase) Spinel Magnesium sulfate Magnesium sulfate septahydrate Magnesium titanate Magnesium tungstate
MnNb2O6
Manganese niobate
MnO MnO2 Mn2O3 MnWO4
Manganese oxide (Pyrolusite) Manganese dioxide Manganese sesquioxide Manganese tungstate
Section 12.indb 48
r.t. r.t. r.t. r.t. 298 r.t. r.t. r.t. r.t. 294.5 298
104
2 × 106 103
298
ε T22 = 8.0
298
ε T33 = 6.9
298
8.0 ε11 = 6.7 ε33 = 5.3 ε11 = ε22 = 82 ε33= 30 ε11 = 5.6 ε22 = 10.3 ε33 = 6.5 ε13 = 0.07 ε11 = ε22 = 53 ε33 = 46 S S ε11 = ε 22 = 41
r.t. r.t. r.t. 298 298 298 298 298 298 r.t. r.t.
S 33
LiTIC4O6 ⋅ H2O Mg3B7O13Cl
ν/Hz 2 × 106 2 × 105 2 × 106 i.r. 102–107 102–107
r.t. S 22
ε = 6.8, ε = 5.8 Li6H Li7H LiH3(SeO3)2
T/K r.t. 291 r.t. r.t. 298 353
103 103 103 105 105
105 105
r.t.
ε = 43
r.t.
T T ε11 = ε 22 = 51
r.t.
ε T33 = 45
r.t.
ε11 ≈ 20 ε11 = 14.1
80 r.t.
8.1 ε11 = 16.4 ± 0.5 ε22 = 20.9 ± 0.5 ε33 = 32.4 ± 0.5 9.65 8.6 8.2 5.46 13.5 ε11 = 18.0 ± 1 ε22 = 18.0 ± 1 ε11 = 17.4 ± 2 ε22 = 16.1 ± 0.5 ε33 = 30.7 ± 1 12.8 ~104 8 ε11 = 19.3 ± 1.3
291 r.t. r.t. r.t. 298 r.t. r.t. r.t. r.t. r.t. r.t. r.t. r.t. r.t. r.t. 298 r.t. r.t.
5 × 105 2 × 105 (5–500) × 103 (5–500) × 103 (5–500) × 103 102–108
(5–500) × 103 (5–500) × 103 (5–500) × 103 (5–500) × 103 (5–500) × 103 6 × 1010 104 6 × 1010 (5–500) × 103
4/28/05 1:56:13 PM
Permittivity (Dielectric Constant) of Inorganic Solids Formula
Name
N(CH3)4HgBr3
N4(CH2)6 (ND4)2BeF4
Tetramethylammonium tribromomercurate (TTM) Tetramethylammonium triiodo mercurate (TTM) Hexamethylene tetramine (HMTA) Deuteroammonium fluoberyllate
(ND4)2SO4
Deuteroammonium sulfate
(NH2 ⋅ CH2COOH)3 ⋅ H2SO4
N(CH3)4HgI3
12-49 εijk ε22 = 14.3 ± 0.5 ε33 = 16.5 ± 1.1 ~10
T/K r.t. r.t. 233–373
~10
233–373
2.6 ± 0.2 ε11 = 10 ε22 = 9 ε33 = 9 ε11 = 9 ε22 = 10 ε33 = 9
r.t. r.t. r.t. r.t. r.t. r.t. r.t.
109–1010
Triglycine sulfate (TGS)
ε11 = 9 ε22 = 30 ε33 = 6.5
273 273 273
104 104 104
293
1.6 × 103
(NH2 ⋅ CH2COOH)3 ⋅ H2SeO4 (NH2 ⋅ CH2COOH)3 ⋅ H2BeF4 NH4Al(SO4)2 ⋅ 12H2O (NH4)2BeF4
Triglycine selenate (TGSe)
200
Triglycine fluorberyllate (TGFB) Ammonium alum Ammonium fluorberyllate
NH4Br NH4I (NH4)2C2H6O6
Ammonium bromide Ammonium iodide Ammonium tartrate
(NH4)2Cd2(SO4)3 NH4Cl NH4(ClCH2COO) NH4Cr(SO4)2 ⋅ 12H2O NH4HSO4 NH4H2AsO4
Ammonium cadmium sulfate Ammonium chloride Ammonium monochloroacetate Ammonium chrome alum Ammonium bisulfate Ammonium dihydrogen arsenate (ADA)
NH4H2PO4
Ammonium dihydrogen phosphate (ADP)
ND4D2PO4
Ammonium dideuterium phosphate (ADDP) Ammonium nitrate Ammonium sulfate
ε22 = 12 6 ε11 = ε22 = 7.8 ε33 = 7.1 ε11 = ε22 = 8.8 ε33 = 9.2 7.1 9.8 ε11 = 6.45 ε22 = 6.8 ε33 = 6.0 10.0 6.9 5 6.5 165 5.1 ε11 = ε22 = 85 ε33 = 22 ε11 = ε22 = 57.1 ± 0.6 ε33 = 14.0 ± 0.3 ε11 = ε22 = 74, ε33 = 24
NH4NO3 (NH4)2SO4
(NH4)2UO2(C2O4)2 (NH4)2UO2(C2O4)2 ⋅ 3H2O NaBr
Ammonium uranyl oxalate Ammonium uranyl oxalate trihydrate
NaBrO3
Sodium bromate
NaCN NaCO3 NaCO3 ⋅ 10H2O NaCl
Sodium cyanide Sodium carbonate Sodium carbonate decahydrate Sodium chloride
NaClO3
Sodium chlorate
Section 12.indb 49
ν/Hz (5–500) × 103 (5–500) × 103
Sodium bromide
273 r.t. 123 123 293 293 r.t. r.t. r.t. r.t. r.t. r.t. r.t. r.t. r.t. 273 265 298 298 294.5 294 300
104 1012 105 105 105 105 7 × 105 103 103 103 104 7 × 105 2 × 106 175 × 103 5 × 104 9.5 × 109 103 105–35 × 109 105–36 × 109 (5–50) × 103 105 105 105 105 104–3.3 × 109 104–3.3 × 109
10.7 ε11 = ε22 = 8.0 ε33 = 6.3 ε11 = ε22 = 10.0 ε33 = 9.3 8.03 6.06
322 123 123 293 293 r.t. r.t.
6.44 T ε11 = 5.70
298
1.6 × 103
298
103
7.55 8.75 5.3 5.9 5.45 T ε11 = 5.76
293 291 r.t. 298 4.2 301
105 2 × 105 6 × 107 102–107
5.28
r.t.
103
103
4/28/05 1:56:16 PM
Permittivity (Dielectric Constant) of Inorganic Solids
12-50 Formula NaClO4 NaF NaH3(SeO3)2 NaD3(SeO3)2 NaI NaK(C4H2D2O6) ⋅ 4D2O NaK(C4H4O6) ⋅ 4H2O NaNH4(C4H4O6) ⋅ 4H2O
Name Sodium perchlorate Sodium fluoride Sodium trihydrogen selenite Sodium trideuterium selenite Sodium iodide Sodium potassium tartrate tetradeutrate (double deuterated Rochelle salt) Sodium potassium tartrate tetrahydrate (Rochelle salt) Sodium ammonium tartrate (Ammonium Rochelle salt)
NaNbO3
Sodium niobate
NaNO2
Sodium nitrite
NaNO3 NaSO4 NaSO4 ⋅ 10H2O Na2SO4 ⋅ 5H2O Na2UO2(C2O4)2 NdAlO3 NdScO3 Ni3B7O13I NiNb2O6
Sodium nitrate Sodium sulfate Sodium sulfate decahydrate Sodium sulfate pentahydrate Sodium uranyl oxalate Neodymium aluminate Neodymium scandate Nickel iodine boracite Nickel niobate
NiO NiSO4 ⋅ 6H2O
Nickel oxide Nickel sulfate hexahydrate
NiWO4
Nickel tungstate
P
PbBr2 PbCO3 Pb(C2H3O2)2 PbCl2 Pb2CoWO6 PbF2 PbHfO3
Phosphorous (red) Phosphorous (yellow) Tetramethylphosphonium tribromomercurate (TTM) Lead bromide Lead carbonate Lead acetate Lead chloride Lead cobalt tungstate Lead fluoride Lead hafnate
PbI2 Pb3MgNb2O9 PbMoO4
Lead iodide Lead magnesium niobate Lead molybdate
Pb(NO3)2
Lead nitrate
PbNb2O6
Lead niobate
PbO PbS
Lead oxide Lead sulfide (Galena)
PbSO4 PbSe PbTa2O6
Lead sulfate Lead selenide Lead metatantalate
PbTe
Lead telluride
[P(CH3)4]HgBr3
Section 12.indb 50
εijk 5.76 5.08 ± 0.02 ε11 ≈ 75 ε11 ≈ 220 7.28 ± 0.03 ε11 = 70 ε22 = 8.9 ε11 = 170 ε22 = 9.1 ε11 = 8.4 ε22 = 9.2 ε33 = 9.5 ε33 = 670 ±13 ε11 = ε22 = 76 ± 2 ε11 = 7.4 ε22 = 5.5 ε33 = 5.0 6.85 7.90 5.0 7 5.18 17.5 27 ε11 = 14 ε11 = 16.0 ± 0.5 ε22 = 23.8 ± 1.8 ε33 = 31.3 ± 2.5 11.9 ε11 = 6.2 ε33 = 6.8 ε11 = 17.4 ± 2.4 ε22 = 13.6 ± 1.0 ε33 = 19.7 ± 0.6 4.1 3.6 ~10
T/K r.t. r.t. 273 273 r.t. 273 273 273 273 298 298 298 r.t. r.t. r.t. r.t. r.t. 292 r.t. r.t. 250–290 r.t. r.t. r.t. 260 r.t. r.t. r.t. 298 r.t. r.t. r.t. r.t. r.t. r.t. r.t. 233–373
>30 18.6 2.6 33.5 ~250 26.3 390 185 20.8 10,000 ε11 = 34.0 ± 0.4 ε33 = 40.6 ± 0.2 16.8 ε T33 = 180
293 288 290–295 273 r.t. r.t. 300 400 293 297 297.5 297.5 r.t.
25.9 190 200 ± 35 14.3 280 ε11 = ε22 ≈ 300 ε33 = 150 450
r.t. 77 r.t. 290— 295 r.t. r.t. r.t. r.t.
ν/Hz 103 5 × 103 2 × 105 2 × 105 103 103 103 103
5 × 105 5 × 105 5 × 105 2 × 105
300–104
(5–500) ×103 (5–500) × 103 (5–500) × 103 105
(5–500) × 103 (5–500) × 103 (5–500) × 103 108 108 (0.5–3) × 106 10.8 106 (0.5–3) × 106
105 (0.5–3) × 106 1.6 ± 103 1.6 ± 103 (0.5–3) × 106
298 2 × 106 i.r. i.r. 106 i.r. 104 104 i.r.
4/28/05 1:56:19 PM
Permittivity (Dielectric Constant) of Inorganic Solids Formula
Name
PbTiO3 PbWO4
Lead titanate Lead tungstate
Pb(Zn1/3Nb2/3)O3 PbZrO3 RbAl(SO4)2 ⋅ 12H2O RbBr Rb2CO3 RbCl RbCr(SO4)2 ⋅ 12H2O RbF RbHSO4
Lead zinc niobate Lead zirconate Rubidium alum Rubidium bromide Rubidium carbonate Rubidium chloride Rubidium chrome alum Rubidium fluoride Rubidium bisulfate
RbH2AsO4 RbH2PO4 RbI RbInSO4 RbNO3
Rubidium dihydrogen arsenate (RDA) Rubidium dihydrogen phosphate (RDP) Rubidium iodide Rubidium indium sulfate Rubidium nitrate
S
Sulfur
SC(NH2)2
sublimed Thiourea
Sb2O3 Sb2S3
Antimonous sesquioxide Antimonous sulfide (stibnite)
Sb2Se3 SbSI
Antimonous selenide Antimonous sulfide iodide
Se
Selenium (monocrystal)
Si SiC
(amorphous) Silicon Silicon carbide cubic 6H
Si3N4 SiO SiO2
Silicon nitride Silicon monoxide Silicon dioxide
Sm2(MoO4)3 SnO2
Samarium molybdate Stannic dioxide
SnSb SnTe Sr(COOH)2 ⋅ 2H2O SrCO3 SrCl2 SrCl2 ⋅ 6H2O SrF2 SrMoO4
Tin antimonide Tin telluride Strontium formate dihydrate Strontium carbonate Strontium chloride Strontium chloride hexahydrate Strontium fluoride Strontium molybdate
Section 12.indb 51
12-51 εijk 40 430 ~200 ε11 = ε22 = 23.6 ± 0.3 ε33 = 31.0 ± 0.4 7 200 5.1 4.83 4.87 ± 0.02 4.91 ± 0.02 5.0 5.91 ε11 = 7 ε22 = 8 ε33 = 10 3.90 6.15 4.94 ± 0.02 6.85 20—380 30 ε11 = 3.75 ε22 = 3.95 ε33 = 4.44 3.69 ε11 = ε22 ≈ 3 ε22 = 35 12.8 ε11 = ε33 = 15 ε33 = 180 ~110 2000 ε11 = ε22 ≈ 25 ε33 ≈ 5 × 104 ε11 = ε22 = 11 ε33 = 21 6.0 12.1
T/K 77 4.2 r.t. 297.5 297.5 300 400 r.t. 300 r.t. r.t. r.t. r.t. r.t. r.t. r.t. 273 285 r.t. r.t. 433–488 488–538 298 298 298 298 77–300 300 r.t. r.t. r.t. r.t. 273 r.t. 295 300 300 298 4.2
9.72 ε11 = ε22 = 9.66 ε33 = 10.03 9.7 ± 0.1 4.2 (film) 5.8 ε11 = 4.42 ε22 = 4.41 ε33 = 4.60 12 ε11 = ε22 = 14 ± 2 ε33 = 9.0 ± 0.5 147 1770 ± 300 6.1 8.85 9.19 8.52 6.50 ε11 = ε22 = 31.7 ± 0.2
r.t. r.t. r.t. 1.8 r.t. r.t. r.t. r.t. r.t. 298 r.t. r.t. r.t. r.t. r.t. 298 r.t. r.t. 300 297.5
ν/Hz 104–15 × 104 104–15 × 104 103 1.59 × 103 1.59 × 103 103, 300 × 103 1012 5 × 103 5 × 103 1012 2 × 106 105 105 105 9.5 × 109 9.5 × 109 5 × 103 106 106 102–103 102–103 102–103 102–103 103 103 (1.5–2) × 103 103 103 (10–16.5) × 109 105 103–105 103–105 24 × 109 24 × 109 102—1010 107—109 i.r. i.r. i.r. i.r. 103 103 9.4 × 1010 9.4 × 1010 9.4 × 1010 104–1010 104–1010 104–106 i.r. 103 2 × 105
5 × 102–1011 1.59 × 103
4/28/05 1:56:21 PM
Permittivity (Dielectric Constant) of Inorganic Solids
12-52 Formula
Name
Sr(NO3)2 Sr2Nb2O7
Strontium nitrate Strontium niobate
SrO SrS SrSO4 SrTiO3
Strontium oxide Strontium sulfide Strontium sulfate Strontium titanate
SrWO4
Strontium tungstate
Ta2O5
Tantalum pentoxide (tantala) α phase
Tb(MoO4)3
β phase Terbium molybdate
Te
Tellurium
ThO2 TiO2
polycrystalline monocrystalline Thorium dioxide Titanium dioxide (rutile)
Ti2O3 TlBr TlCl TlI
Titanium sesquioxide Thallium bromide Thallous chloride Thallous iodide (orthorhombic)
TlNO3 TlSO4 UO2 WO3 YMnO3 Y2O3 YbMnO3 Yb2O3
Thallous nitrate Thallous sulfate Uranium dioxide Tungsten trioxide Yttrium manganate Yttrium sesquioxide Ytterbium manganate Ytterbium sesquioxide
ZnO
Zinc monoxide
εijk ε33 = 41.7 ± 0.2 5.33 ε11 = 75 ε22 = 46 ε33 = 43 13.3 ± 0.3 11.3 11.5 332 2080 ε11 = ε22 = 25.7 ± 0.2 ε33 = 34.1 ± 0.2 ε11 = ε22 = 30 ε33 = 65 24 11 ε11 = ε22 = 33 ε33 = 53 ε11 = ε22 = 33 ε33 = 54 27.5 28.0 18.9 ± 0.4 ε11 = ε22 = 86 ε33 = 170 30 30 32.2 ± 0.2 20.7 ± 0.2 37.3 16.5 25.5 24 300 20 10 20 5.0 (film) S ε11 = 8.33 S 33
ZnS
Zinc sulfide
Zinc selenide
77 77 292 298 100–200 100–200 r.t. r.t. r.t. r.t. r.t. 300 300 77 293 293 293 193 293 293 r.t. r.t. r.t. r.t. r.t.
103 103 1.6 × 103 1.6 × 103 103 103 103 9.4 × 109 9.4 × 109
i.r. i.r. 3 × 105 104–106 104–106 6 × 1010 103–107 103–105 104 107 5 × 105 5 × 105 3 × 105 2 × 107 106 2 × 107 103
r.t. r.t.
T ε11 = 9.26
r.t.
ε T33 = 11.0
r.t.
ε11 = 9.26 ε33 = 8.2 8.15 S ε11 = 8.08 ± 2%
r.t. r.t. r.t.
i.r.
77
104
S 11
298
104
T 11
ε = 8.14 ± 2%
77
104
T ε11 = 8.37 ± 2%
298
104
298
104
T 11
s
T 11
s
ε = ε11 = 9.12 ± 2%
ZnTe
Zinc telluride
ε = ε11 = 10.10 ± 2%
r.t.
ZnWO4 ZrO2
Zinc tungstate Zirconium dioxide (zirconia)
ε22 = 16.1 ± 0.5 12.5
r.t. r.t.
Section 12.indb 52
ν/Hz 1.59 × 103 2 × 105 103 103 103 2 × 106 7.25 × 106
ε = 8.84
ε = 8.32 ± 2%
ZnSe
T/K 297.5 292 r.t. r.t. r.t. 273 r.t. r.t. 298 78 297.5 297.5
(5–500) × 103 2 × 106
4/28/05 1:56:28 PM
CURIE TEMPERATURE OF SELECTED FERROELECTRIC CRYSTALS H. P. R. Frederikse The following table lists the major ferroelectric crystals and their Curie temperatures, TC.
Reference Young, K. F. and Frederikse, H. P. R., J. Phys. Chem. Ref. Data, 2, 313, 1973.
Formula
TC/K
Potassium dihydrogen phosphate group KDP KDA KDDP KDDA RDP RDA RDDP RDDA CDP CDA CDDA
KH2PO4 KH2AsO4 KD2 PO4 KD2AsO4 RbH2PO4 RbH2AsO4 RbD2PO4 RbD2AsO4 CsH2PO4 CsH2AsO4 CsD2AsO4
123 97 213 162 146 111 218 178 159 143 212
Rochelle salt group Rochelle salt Deuterated Rochelle salt Ammonium Rochelle salt LAT
NaKC4H4O6·4H2O NaKC4H2D2O6·4H2O NaNH4C4H4O6·4H2O LiNH4C4H4O6·H2O
255–297 251–308 109 106
Triglycine sulfate group TGS TGSe TGFB AFB HADA
(NH2CH2COOH)3·H2SO4 (NH2CH2COOH)3·H2SeO4 (NH2CH2COOH)3·H2BeF4 (NH4)2BeF4 HNH4(ClCH2COO)2
322 295 346 176 128
Perovskites and related compounds Barium titanate Lead titanate Potassium niobate Potassium tantalate niobate Lithium niobate Lithium tantalate Barium titanium niobate Ba-Na niobate (“Bananas”) Potassium iodate Lithium iodate Potassium nitrate Sodium nitrate Rubidium nitrate
BaTiO3 PbTiO3 KNbO3 KTa2/3Nb1/3O3 LiNBO3 LiTaO3 Ba6Ti2Nb8O30 Ba2NaNb5O15 KIO3 LiIO3 KNO3 NaNO3 RbNO3
406, 278, 193 765 712 241, 220, 170 1483 891 521 833 485, 343, 257–263, 83 529 397 548 437–487
Miscellaneous compounds Cesium trihydrogen selenite Lithium trihydrogen selenite Potassium selenate Methyl ammonium alum (MASD) Ammonium cadmium sulfate Ammonium bisulfate Ammonium sulfate Ammonium nitrate Colemanite Cadmium pyroniobite Gadolinium molybdate
CsH3(SeO3)2 LiH3(SeO3)2 K2SeO4 CH3NH3Al(SO4)2∙12H2O (NH4)2Cd2(SO4)3 (NH4)HSO4 (NH4)2SO4 NH4NO3 CaB3O4(OH)3∙H2O Cd2Nb2O7 Gd2(MoO4)3
143 TC > Tmp 93 177 95 271 224 398, 357, 305, 255 266 185 432
Name or acronym
12-53
Section 12.indb 53
4/28/05 1:56:30 PM
PROPERTIES OF ANTIFERROELECTRIC CRYSTALS H. P. R. Frederikse Some important antiferroelectric crystals are listed here with their Curie Temperatures TC. The last column gives the constant T0 which appears in the Curie-Weiss law describing the dielectric constant of these materials above the Curie Temperature: ε=const./(T–T0) Name or acronym ADP ADA ADDP ADDA AdDDP AdDDA Sodium niobate Lead hafnate Lead zirconate Lead metaniobate Lead metatantalate Tungsten trioxide Potassium strontium niobate Sodium nitrite Sodium trihydrogen selenite Sodium trideuterium selenite Ammonium trihydrogen periodate
Formula NH4H2PO4 NH4H2AsO4 NH4D2PO4 NH4D2AsO4 ND4D2PO4 ND4D2AsO4 NaNbO3 PbHfO3 PbZrO3 PbNb2O6 PbTa2O6 WO3 KSr2Nb5O15 NaNO2 NaH3(SeO3)2 NaD3(SeO3)2 (NH4)2H3IO6
TC/K 148 216 242, 245 299 243 304 911, 793 476 503 843 543 1010 427 437 193 271 245
T0/K
378 475 530 533 413 437 192 245
12-54
S12_13.indd 54
5/4/05 11:07:23 AM
Dielectric Constants of Glasses
Type Corning 0010 Corning 0080 Corning 0120 Pyrex 1710 Pyrex 3320 Pyrex 7040 Pyrex 7050 Pyrex 7052 Pyrex 7060 Pyrex 7070 Vycor 7230 Pyrex 7720 Pyrex 7740 Pyrex 7750 Pyrex 7760 Vycor 7900 Vycor 7910 Vycor 7911 Corning 8870 G. E. Clear (silica glass) Quartz (fused) a
487_S12.indb 55
Dielectric constant at 100 MHz (20°C) 6.32 6.75 6.65 6.00 4.71 4.65 4.77 5.07 4.70 4.00 3.83 4.50 5.00 4.28 4.50 3.9 3.8 3.8 9.5 3.81 3.75 (4.1 at 1 MHz)
Volume resistivity (In MΩ cm at 350°C ) 10 0.13 100 2,500 – 80 16 25 13 1,300 – 16 4 50 50 130 1,600 4,000 5,000 4,000–30,000 –
Loss factora 0.015 0.058 0.012 0.025 0.019 0.013 0.017 0.019 0.018 0.0048 0.0061 0.014 0.040 0.011 0.0081 0.0023 0.00091 0.00072 0.0085 0.00038 0.0002 (1 MHz)
Power factor × dielectric constant equals loss factor.
12-55
3/24/06 10:11:48 AM
PROPERTIES OF SUPERCONDUCTORS L. I. Berger and B. W. Roberts The following tables include superconductive properties of selected elements, compounds, and alloys. Individual tables are given for thin films, elements at high pressures, superconductors with high critical magnetic fields, and high critical temperature superconductors. The historically first observed and most distinctive property of a superconductive body is the near total loss of resistance at a critical temperature (Tc) that is characteristic of each material. Figure 1(a) below illustrates schematically two types of possible transitions The sharp vertical discontinuity in resistance is indicaHo ρ
tive of that found for a single crystal of a very pure element or one of a few well annealed alloy compositions. The broad transition, illustrated by broken lines, suggests the transition shape seen for materials that are not homogeneous and contain unusual strain distributions. Careful testing of the resistivity limit for superconductors shows that it is less than 4 × 10–23 ohm cm, while the lowest resistivity observed in metals is of the order of 10–13 ohm cm. If one compares the resistivity of a superconductive body to that of copper at room temperature, the superconductive body is at least 1017 times less resistive. –4πM
Normal
Hc Superconducting
0 (a)
Tc
0
(b)
Tc
0
Hcl Hc Mixed state (c)
Hc2
Hc3
FIGURE 1. Physical properties of superconductors. (a) Resistivity vs. temperature for a pure and perfect lattice (solid line); impure and/or imperfect lattice (broken line). (b) Magnetic-field temperature dependence for Type-I or “soft” superconductors. (c) Schematic magnetization curve for “hard” or Type-II superconductors.
The temperature interval ∆Tc, over which the transition between the normal and superconductive states takes place, may be of the order of as little as 2 × 10–5 K or several K in width, depending on the material state. The narrow transition width was attained in 99.9999% pure gallium single crystals. A Type-I superconductor below Tc, as exemplified by a pure metal, exhibits perfect diamagnetism and excludes a magnetic field up to some critical field Hc, whereupon it reverts to the normal state as shown in the H-T diagram of Figure 1(b). The magnetization of a typical high-field superconductor is shown in Figure 1(c). The discovery of the large current-carrying capability of Nb3Sn and other similar alloys has led to an extensive study of the physical properties of these alloys. In brief, a highfield superconductor, or Type-II superconductor, passes from the perfect diamagnetic state at low magnetic fields to a mixed state and finally to a sheathed state before attaining the normal resistive state of the metal. The magnetic field values separating the four stages are given as Hc1, Hc2, and Hc3. The superconductive state below Hc1 is perfectly diamagnetic, identical to the state of most pure metals of the “soft” or Type-I superconductor. Between Hc1 and Hc2 a “mixed superconductive state” is found in which fluxons (a minimal unit of magnetic flux) create lines of normal flux in a superconductive matrix. The volume of the normal state is proportional to –4πM in the “mixed state” region. Thus at Hc2 the fluxon density has become so great as to drive the interior volume of the superconductive body completely normal. Between Hc2 and Hc3 the superconductor has a sheath of current-carrying superconductive material at the body surface, and above Hc3 the normal state exists. With several types of careful measurement, it is possible to determine Hc1, Hc2, and Hc3. Table 6 contains some of the available data on high-field superconductive materials.
High-field superconductive phenomena are also related to specimen dimension and configuration. For example, the Type-I superconductor, Hg, has entirely different magnetization behavior in high magnetic fields when contained in the very fine sets of filamentary tunnels found in an unprocessed Vycor glass. The great majority of superconductive materials are Type-II. The elements in very pure form and a very few precisely stoichiometric and well annealed compounds are Type I with the possible exceptions of vanadium and niobium. Metallurgical Aspects. The sensitivity of superconductive properties to the material state is most pronounced and has been used in a reverse sense to study and specify the detailed state of alloys. The mechanical state, the homogeneity, and the presence of impurity atoms and other electron-scattering centers are all capable of controlling the critical temperature and the current-carrying capabilities in high-magnetic fields. Well annealed specimens tend to show sharper transitions than those that are strained or inhomogeneous. This sensitivity to mechanical state underlines a general problem in the tabulation of properties for superconductive materials. The occasional divergent values of the critical temperature and of the critical fields quoted for a Type-II superconductor may lie in the variation in sample preparation. Critical temperatures of materials studied early in the history of superconductivity must be evaluated in light of the probable metallurgical state of the material, as well as the availability of less pure starting elements. It has been noted that recent work has given extended consideration to the metallurgical aspects of sample preparation. Symbols in tables: Tc: Critical temperature; Ho: Critical magnetic field in the T = 0 limit; θD: Debye temperature; and γ: Electronic specific heat.
12-56
Section 12.indb 56
4/28/05 1:56:35 PM
Properties of Superconductors
Element Al Am* (α,?) Am* (β,?) Be Cd Ga Ga (β) Ga (γ) Ga (∆) Hf Hg (α) Hg (β) In Ir La (α) La (β) Lu Mo Nb Os Pa Pb Re Ru Sn Ta Tc Th Ti Tl U V W Zn Zr Zr (ω)
12-57
TABLE 1. Selective Properties of Superconductive Elements Tc(K) Ho(oersted) θD(K) 1.175 ± 0.002 104.9 ± 0.3 420 0.6 1.0 0.026 0.517 ± 0.002 28 ± 1 209 1.083 ± 0.001 58.3 ± 0.2 325 5.9, 6.2 560 7 950, HFa 7.85 815, HF 0.128 12.7 4.154 ± 0.001 411 ± 2 87, 71.9 3.949 339 93 3.408 ± 0.001 281.5 ± 2 109 0.1125 ± 0.001 16 ± 0.05 425 4.88 ± 0.02 800 ± 10 151 6.00 ± 0.1 1096, 1600 139 0.1 ± 0.03 350 ± 50 0.915 ± 0.005 96 ± 3 460 276 9.25 ± 0.02 2060 ± 50, HF 0.66 ± 0.03 70 500 1.4 7.196 ± 0.006 803 ± 1 96 1.697 ± 0.006 200 ± 5 4.5 0.49 ± 0.015 69 ± 2 580 3.722 ± 0.001 305 ± 2 195 4.47 ± 0.04 829 ± 6 258 411 7.8 ± 0.1 1410, HF 1.38 ± 0.02 1.60 ± 3 165 0.40 ± 0.04 56 415 2.38 ± 0.02 178 ± 2 78.5 0.2 5.40 ± 0.05 1408 383 0.0154 ± 0.0005 1.15 ± 0.03 383 0.85 ± 0.01 54 ± 0.3 310 0.61 ± 0.15 47 290 0.65, 0.95
γ(mJ mol–1K–1) 1.35
0.21 0.69 0.60
2.21 1.81 1.37 1.672 3.19 9.8 11.3 1.83 7.80 2.35 3.1 2.35 2.8 1.78 6.15 6.28 4.32 3.3 1.47 9.82 0.90 0.66 2.77
TABLE 2. Range of Critical Temperatures Observed for Superconductive Elements in Thin Films Condensed Element Al Be Bi Cd (Disordered) (Ordered) Ga Hg In La Mo a
Section 12.indb 57
Tc Range (K) 1.15–5.7 5–9.75 6.17–6.6 0.79–0.91 0.53–0.59 2.5–8.5 3.87–4.5 2.2–5.6 3.55–6.74 3.3–8.0
Usually at Low Temperatures
Comments HFa HF
HF HF
HF denotes high magnetic field superconductive properties.
Element Nb Pb Re Sn Ta Tc Ti Tl V W Zn
Tc Range (K) 2.0–10.1 1.8–7.5 1.7–7 3.5–6 <1.7–4.51 4.6–7.7 1.3 Max 2.33–2.96 1.8–6.02 <1.0–4.1 0.77–1.9
Comments
HFa
4/28/05 1:56:36 PM
Properties of Superconductors
12-58
Element Al As Ba II III IV Bi II III IV V VI VII(?) Ce (α) Ce (α′) Cs V Ga II II′ Ge Lu P
TABLE 3. Elements Exhibiting Superconductivity Under or After Application of High Pressure Tc Range (K) Pressure (kbar) Element Tc Range (K) Pressure (kbar) 3.55 160 1.98–0.075 0–62 Pb II 2.3 Max. “Plastic” 0.31–0.5 220–140 Re II 0.2–0.25 140–100 compression 2.6–2.7 1–1.8 55–85 Sb (prepared 120 1.8–5 85–144 kbar, held below 4.5–5.4 144–190 77K) 3.55–3.40 85–150 3.9 25–27 Sb II 6.75, 6.95 130 6.55–7.25 28–38 Se II 7.0, 8.7–6.0 43, 43–62 Si 6.7–7.1 120–130 5.2–4.85 125–160 6.7, 8.3 48–80 Sn II 5.30 113 8.55 90, 92–101 III 2.4–5.1 38–55 8.2 30 Te II 0.020–0.045 20–35 4.1–4.2 53–62 4.72–4 63–80 1.9–1.3 45–125 IV 1.5 >125 () 3.3–2.8 100–260 1.45 35 6.38 ≥35 Tl (cubic form) (hexagonal form) 1.95 35 7.5 ≥35 then P removed U 2.4–0.4 10–85 5.35 115 Y 1.7–2.5 110–160 60–130 0.022–1.0 45–190 Zr (omega form, metastable) 1–1.7 5.8 170
TABLE 4. Superconductive Compounds and Alloys
All compositions are denoted on an atomic basis, i.e., AB, AB2, or AB3 for compounds, unless noted. Solid solutions or odd compositions may be denoted as AzB1–z or AzB. A series of three or more alloys is indicated as AxB1–x or by actual indication of the atomic fraction range, such as A0–0.6B1–0.4. The critical temperature of such a series of alloys is denoted by a range of values or possibly the maximum value. The selection of the critical temperature from a transition in the effective permeability, or the change in resistance, or possibly the incremental changes in frequency observed by certain techniques is not often obvious from the literature. Most authors choose the
mid-point of such curves as the probable critical temperature of the idealized material, while others will choose the highest temperature at which a deviation from the normal state property is observed. In view of the previous discussion concerning the variability of the superconductive properties as a function of purity and other metallurgical aspects, it is recommended that appropriate literature be checked to determine the most probable critical temperature or critical field of a given alloy. A very limited amount of data on critical fields, Ho, is available for these compounds and alloys; these values are given at the end of the table.
A. Superconductors with Tc< 10 K Substance Ag3.3Al AgxAlyZn1-x-y AgBi2 Ag7F0.25N0.75O10.25 Ag2F Ag7FO8 Ag0.8–0.3Ga0.2–0.7 Ag4Ge Ag0.438Hg0.562 AgIn2 Ag0.1In0.9Te (n = 1.4 × 1022)* Ag0.2In0.8Te (n = 1.07 × 1022) AgLa AgLa (9.5 kbar) AgLu AgMo4S5 Ag1.2Mo6Se8
Section 12.indb 58
Tc, K
0.34 0.15 2.87–3.0 0.85–0.90 0.0.066 0.3 6.5–8 0.85 0.64 ~2.4 1.2–1.89 0.77–1.00 0.94 1.2 0.33 9.1 5.9
Crystal structure type
Substance
A12-cI58 (Mn) Cubic
Ag7NO11 AgxPb1-x Ag4Sn AgxSn1-x AgxSn1–x (film) AgTe3 AgTh AgTh2 Ag0.03Tl0.97 Ag0.94Tl0.06 AgY AgxZn1-x AlAu4 Al2Au Al2CMo3 Al2CaSi Al0.131Cr0.088V0.781 AlGe2
Cubic Hex., c.p. D82 C16 B1 B1 B2-cP2 (CsCl) B2 B2-cP2 hR15 (Mo6PbS8) Same
Tc, K
1.04 7.2 max. 0.1 1.5–3.7 2.0–3.8 2.6 2.2 2.26 2.67 2.32 0.33 0.5–0.845 0.4–0.7 0.1 9.8–10.2 5.8 1.46 1.75
Crystal structure type Cubic h**
Cubic C16-tI12 (Al2Cu) C16
B2-cP2 (CsCl) Like A13 C1-cF12 (CaF2) A13+trace 2nd. phase Cubic
4/28/05 1:56:38 PM
Properties of Superconductors Substance Al2Ge2U AlLa3 Al2La Al2Lu Al3Mg2 AlMo3 AlMo6Pd AlN Al2NNb3 Al3Nb AlOs Al3Os AlPb (film) Al2Pt Al5Re24 AlSb Al2Sc Al2Si2U AlTh2 Al3Th AlxTiyV1-x-y Al0.108V0.892 Al2Y Al3Yb AlxZn1-x AlZr3 AsBiPb AsBiPbSb AsHfOs AsHfRu As0.33InTe0.67 (n = 1.24 ×1022) As0.5InTe0.5 (n = 0.97 × 1022) As4La3 AsNb3 As0.50Ni0.06Pd0.44 AsNi0.25Pd0.75 AsOsZr AsPb AsPd2 (low-temp. phase) AsPd2 (high-temp. phase) AsPd5 As3Pd5 AsRh AsRh1.4–1.6 AsSn AsSn (n = 2.14 × 1022) As~2Sn~3 As3Sn4 (n = 0.56 × 1022) AsV3 Au5Ba AuBe Au2Bi Au5Ca AuGa2 AuGa Au0.40–0.92Ge0.60–0.08 AuIn2 AuIn AuLu AuNb3
Section 12.indb 59
Tc, K
1.6 5.57 3.23 1.02 0.84 0.58 2.1 1.55 1.3 0.64 0.39 5.90 1.2–7 0.48–0.55 3.35 2.8 1.02 1.34 0.1 0.75 2.05–3.62 1.82 0.35 0.94 0.5–0.845 0.73 9.0 9.0 3.2 4.9 0.85–1.15 0.44–0.62 0.6 0.3 1.39 1.6 8.0 8.4 0.60 1.70 0.46 1.9 0.58 < 0.03–0.56 4.10 3.41–3.65 3.5–3.6; 1.21–1.17 1.16–1.19 0.20 0.4–0.7 2.64 1.80 0.34–0.38 1.6 1.2 <0.32–1.63 0.2 0.4–0.6 <0.35 1.2
12-59 Crystal structure type
Substance
LI2-cP4 (Cu3Au) DO19 C15 C15-cF24 (Cu2Mg) F.C.C. A15
AuPb2 AuPb2 (film) AuPb3 AuPb3 (film) Au2Pb AuSb2 AuSn AuxSn1-x (film) Au5Sn AuTa4.3 Au3Te5 AuTh2 AuTl AuV3 AuxZn1-x AuZn3 AuxZr y AuZr3 B2Ba0.67Pt3 BCMo2 BCMo2 B2Ca0.67Pt3 B4ErIr4 B4ErRh4 B4ErRh4 BHf B4HoIr4 B4HoRh4 B2Ir3La B2Ir3Th B4Ir4Tm B6La B2LaRh3 B12Lu B2LuOs B2LuOs3 B4LuRh4 B2LuRu B4LuRu4 BMo
B4 A13 tI8 (Al3Ti) B2
C1 A12 B4-tI4 (Sn) C15-cF24 (Cu2Mg) LI2-cP4 (Cu3Au) C16-tI12 (Al2Cu) DO19 Cubic Cubic C15-cF24 (Cu2Mg) LI2-cP4 (Cu3Au) LI2 C22-hP9 (Fe2P) same B1 B1 cI28 (Th3P4) L12-tP32 C2 B81-hP4 (NiAs) C22-hP9 (Fe2P) Hexagonal C22 Complex B31 Hexagonal B1
Rhombohedral A15-cP8 (Cr3Si) D2d B20 C15 C15b C1-cF12 (CaF2) B31 Complex C1-cF12 Complex B2 A2
BMo2 BNb B4NdRh4 B2OsSc B2OsY B2Pt3Sr0.67 BRe2 B4Rh3.4Ru0.6 B4Rh4Sm B4Rh4Th B4Rh4Tm B4Rh4Tm B0.3Ru0.7 B4Ru4Sc B2Ru3Th B2Ru3Y B2Ru Y B4Ru4Y B12Sc BTa
Tc, K
3.15 4.3 4.40 4.25 1.18; 6–7 0.58 1.25 2.0–3.8 0.7–1.1 0.55 1.62 3.08 1.92 0.74 0.50–0.845 1.21 1.7–2.8 0.92 5.60 5.4 5.3–7.0 1.57 2.1 4.3 8.7 3.1 2.0 1.4 1.65 2.09 1.6 5.7 2.82 0.48 2.66 4.62 6.2 9.86 2.0 0.5 (extrapol.) 4.74 8.25 5.3 1.34 2.22 2.78 2.80; 4.6 8.38 2.7 4.3 9.8 5.4 2.58 7.2 1.79 2.85 7.80 1.4 0.39 4.0
Crystal structure type
C15 C2 B81 A3 A15-cP8 (Cr3Si) Cubic C16 A15 Cubic A3 A15 hP12 (B2BaPt3) Orthorhombic Same hP12 tP18 (B4CeCo4) oC108 (B4LuRh4) tP18 (B4CeCo4) Cubic tP18 oC108 hP6 (CaCu5) Same tP18 hP6 oP16 (B2LuRu) hP6 oC108 oP16 tI72 (B4LuRu4) C16 Bf tP18 oP16 oP16 hP12 (B2BaPt3) tI72 tP18 Same Same oC108 D102 tI72 hP6 Same oP16 tI72 Bf
4/28/05 1:56:40 PM
Properties of Superconductors
12-60 Substance BTa2 B6Th BW2 B 6Y B12Y BZr B12Zr BaBi3 Ba2Mo15Se19 BaxO3Sr1-xTi (n = 4.2 ×1019) Ba0.13O3W Ba0.14O3W BaRh2 Be22Mo Be8Nb5Zr2 Be0.98–0.92Re0.02–0.08 (quenched) Be0.957Re0.043 BeTc Be22W Be13W Bi3Ca Bi0.5Cd0.13Pb0.25Sn0.12 (weight fractions) BiCo Bi2Cs BixCu1-x (electrodeposited) BiCu Bi3Fe Bi0.019In0.981 Bi0.05In0.95 Bi0.10In0.90 Bi0.15–0.30In0.85–0.70 Bi0.34–0.48In0.66–0.52 Bi3In5 BiIn2 Bi2Ir Bi2Ir (quenched) BiK Bi2K BiLi Bi4–9Mg Bi3Mo BiNa BiNb3 BiNb3 (high pressure and temperature) BiNi Bi3Ni BiNi0.5Rh0.5 Bi0.5NiSb0.5 Bi1-0Pb0-1 Bi1-0Pb0-1 (film) Bi0.05–0.40Pb0.95–0.60 Bi2Pb BiPbSb Bi0.5Pb0.31Sn0.19 (weight fractions) Bi0.5Pb0.25Sn0.25 BiPd2 Bi0.4Pd0.6 BiPd
Section 12.indb 60
Tc, K
3.12 0.74 3.1 6.5–7.1 4.7 3.4 5.82 5.69 2.75 <0.1–0.55 1.9 <1.25–2.2 6.0 2.51 5.2 9.5–9.75 9.62 5.21 4.12 4.1 2.0 8.2 0.42–0.49 4.75 2.2 1.33–1.40 1.0 3.86 4.65 5.05 5.3–5.4 4.0–4.1 4.1 5.65 1.7–2.3 3.0–3.96 3.6 3.58 2.47 0.7–~1.0 3–3.7 2.25 4.5 3.05 4.25 4.06 3.0 2.0 7.26–9.14 7.25–8.67 7.35–8.4 4.25 8.9 8.5 8.5 4.0 3.7–4 3.7
Crystal structure type
Substance
C16-tI12 (Al2Cu)
Bi2Pd Bi2Pd BiPd0.45Pt0.55 BiPdSe BiPdTe BiPt Bi0.1PtSb0.9 BiPtSe BiPtTe Bi2Pt Bi2Rb BiRe2 BiRh Bi3Rh Bi4Rh BiRu Bi3Sn BiSn BixSny Bi3Sr Bi3Te Bi5Tl3 Bi0.26Tl0.74 Bi0.26Tl0.74 Bi2Y3 Bi3Zn Bi0.3Zr0.7 BiZr3 BrMo6Se7 Br3Mo6Se5 CCsx CFe3 CGaMo2 CHf0.5Mo0.5 CHf0.3Mo0.7 CHf0.25Mo0.75 CHf0.7Nb0.3 CHf0.6Nb0.4 CHf0.5Nb0.5 CHf0.4Nb0.6 CHf0.25Nb0.75 CHf0.2Nb0.8 CHf0.9–0.1Ta0.1–0.9 CK (excess K) C8K C2La C2Lu C0.40–0.44Mo0.60–0.56 C3MoRe C0.6Mo4.8Si3 CMo0.2Ta0.8 CMo0.5Ta0.5 CMo0.75Ta0.25 CMo0.8Ta0.2 CMo0.85Ta0.15 CMoxV1-x CMoxZr1-x C0.984Nb CNb2 CNbxTi1-x CNb0.1–0.9Zr0.9–0.1
C16
Cubic Tetragonal hP15 (Mo6PbS8) Tetragonal Hexagonal C15 Cubic (Be22Re) Cubic Cubic (Be22Re) Cubic Cubic (Be22Re) Tetragonal
C15
m** α-phase Same α- and β-phases
β-phase
C15 L1o, α-phase L1o A15-cP8 (Cr3Si) A15 B81 Orthorhombic B81-hP4 (AsNi) Same
H.C.P. to ε-phase t**
Hexagonal, ordered Orthorhombic
Tc, K
1.70 4.25 3.7 1.0 1.2 1.21 2.05; 1.5 1.45 1.15 0.155 4.25 1.9–2.2 2.06 3.2 2.7 5.7 3.6–3.8 3.8 3.85–4.18 5.62 0.75–1.0 6.4 4.4 4.15 2.25 0.8–0.9 1.51 2.4–2.8 7.1 7.1 0.020–0.135 1.30 3.7–4.1 3.4 5.5 6.6 6.1 4.5 4.8 5.6 7.0 7.8 5.0–9.0 0.55 0.39 1.66 3.33 9–13 3.8 7.6 7.5 7.7 8.5 8.7 8.9 2.9–9.3 9.8 9.8 9.1 <4.2–8.8 4.2–8.4
Crystal structure type Monoclinic, α-phase Tetragonal, β-phase B81-hP4 (NiAs) C2 C2 B81 B81-hP4 (NiAs) C2 C2 Hexagonal C15 B81 Orthorhombic (NiB3) Hexagonal m**
L12 Cubic, disordered L12, ordered (?)
hP15 (Mo6PbS8) Same Hexagonal DO11-oP16 (Fe3C) Hexagonal B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 Hexagonal Hexagonal tI6 (CaC2) Same B1-cF8 D88 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1
4/28/05 1:56:42 PM
Properties of Superconductors Substance CRbx (Au) CRe0.06W CRu C0.987Ta C0.848–0.987 CTa (film) CTa2 CTa0.4Ti0.6 Cta1–0.4W0–0.6 CTa0.2–0.9Zr0.8–0.1 CTc (excess C) CTi0.5–0.7W0.5–0.3 CW CW2 CW2 C2Y Ca3Co4Sn13 Ca3Ge13Rh4 CaHg CaHg3 CaIr2 Ca3Ir4Sn13 CaxO3Sr1-xTi (n = 3.7–11 × 1019) Ca0.1O3W CaPb CaRh2 CaRh1.2Sn4.5 CaTl3 Cd0.3–0.5Hg0.7–0.5 CdHg Cd0.0075–0.05In0.9925–0.95 Cd0.97Pb0.03 CdSn Cd0.17Tl0.83 Cd0.18Tl0.82 CeCo2 CeCo1.67Ni0.33 CeCo1.67Rh0.33 CexGd1-xRu2 CeIr3 CeIr5 Ce0.005La0.995 CexLa1-x CexPr1-xRu2 CexPt1-x CeRu2 Ce3Mo6Se5 Ce2Mo6Te6 CoxFe1-xSi2 CoHf2 CoLa3 Co4La3Sn13 CoLu3 CoxLuSny Co0–0.01Mo0.8Re0.2 Co0.02–0.10Nb3Rh0.98–0.90 CoxNi1-xSi2 Co0.5Rh0.5Si2 CoxRh1-xSi2 Co~0.3So~0.7
Section 12.indb 61
Tc, K
0.023–0.151 5.0 2.00 9.7 2.04–9.7 5.09 3.26 4.8 8.5–10.5 4.6–8.3 3.85 6.7–2.1 1.0 2.74 5.2 3.88 5.9 2.1 1.6 1.6 6.15 7.1 < 0.1–0.55 1.4–3.4 7.0 6.40 8.7 2.0 1.70–1.92 1.77; 2.15 3.24–3.36 4.2 3.65 2.3 2.54 0.84 0.46 0.47 3.2–5.2 3.34 1.82 4.6 1.3–6.3 1.4–5.3 0.7–1.55 6.0 5.7 1.7 1.4 (max.) 0.56 4.28 2.8 ~0.35 1.5 2–10 2.28–1.90 1.4 (max.) 2.5 3.65 (max.) ~0.35
12-61 Crystal structure type
Substance
Hexagonal
Co4Sc5Si10 CoSi2 CoxSnyYb Co3Th7 CoxTi1-x CoxTi1-x CoTi2 CoTi CoU CoU6 Co0.28Y0.72 CoY3 CoZr2 Co0.1Zr0.9 Cr0.6Ir0.4 Cr0.65Ir0.35 Cr0.7Ir0.3 Cr0.72Ir0.28 Cr3Ir Cr0–0.1Nb1–0.9 Cr0.80Os0.20 Cr3Os CrxRe1-x Cr0.4Re0.6 Cr0.8–0.6Rh0.2–0.4 Cr3Rh Cr3Ru (annealed) Cr2Ru Cr3Ru2 Cr0.1–0.5Ru0.9–0.5 CrxTi1-x CrxTi1-x Cr0.1Ti0.3V0.6 Cr0.0175U0.9825 Cs0.32O3W Cu0.15In0.85 (film) Cu0.04–0.08In0.94–0.92 CuLa Cu2Mo6O2S6 Cu2Mo6Se8 CuxPb1-x CuS CuS2 CuSSe CuSe2 CuSeTe CuxSn1-x CuxSn1-x (film, made at 10K) CuxSn1-x (film, made at 300K) CuTe2 CuTh2 Cu0–0.027V CuY CuxZn1-x DyMo6S8 ErxLa1-x ErMo6S8 ErMo6Se8 Fe3Lu2Si5 Fe0–0.04Mo0.8Re0.2 Fe0.05Ni0.05Zr0.90
hP2 (CW)
B1 L΄3 B1 B1 B1 Cubic B1 L΄3 F.C.C. tI6 (CaC2) cP40 (Pr3Rh2Sn13) Same B2-cP2 (CsCl) hP8 (Ni3Sn) C15 cP40
Hexagonal C15 cP40 B2-cP2 Tetragonal Tetragonal
C15 C15 C15 C15
C15 C15 hR15 (Mo6PbS8) Same C1 E93 cP40 cP40 A15 C1
Tc, K
5.0 1.40; 1.22 2.5 1.83 2.8 (max.) 3.8 (max.) 3.44 0.71 1.7 2.29 0.34 <0.34 6.3 3.9 0.4 0.59 0.76 0.83 0.45 4.6–9.2 2.5 4.68 1.2–5.2 2.15 0.5–1.10 0.3 3.3 2.02 2.10 0.34–1.65 3.6 (max.) 4.2 (max.) 5.6 0.75 1.12 3.75 4.4 5.85 9 5.9 5.7–7.7 1.62 1.48–1.53 1.5–2.0 2.3–2.43 1.6–2.0 3.2–3.7 3.6–7 2.8–3.7 <1.25–1.3 3.49 3.9–5.3 0.33 0.5–0.845 2.1 1.4–6.3 2.2 6.2 6.1 1–10 ~3.9
Crystal structure type tP38 (Co4Sc5Si10) C1 cP40 D102 Co in α-Ti Co in β-Ti E93 A2 B2, distorted D2c C16 A3 H.C.P. H.C.P. H.C.P. A15 A2 Cubic A15-cP8 (Cr3Si) D8b A3 A15-cP8 A15 D8b D8b-tP30 (CrFe) A3 Cr in α-Ti Cr in β-Ti β-phase Hexagonal
hR15 (Mo6PbS8) Same B18 C18 C18 C18 C18
C18 C16 A2 B2-cP2 (CsCl) hR15 hR15 hR15 tP40 (Fe3Sc2Si5)
4/28/05 1:56:44 PM
Properties of Superconductors
12-62 Substance
Tc, K
Fe3Re2 Fe3Sc2Si5 Fe3Si5Tm Fe3Si5Y2 Fe3Th7 FexTi1-x FexTi1-x FexTi0.6V1-x FeU6 Fe0.1Zr0.9 Ga0.5Ge0.5Nb3 Ga2Ge2U GaHf2 GaLa3 Ga3Lu Ga2Mo GaMo3 GaN (black) Ga0.7Pt0.3 GaPt GaSb (120kbar, 77K, annealed) GaSb (unannealed) Ga0–1Sn1–0 (quenched) Ga0–1Sn1–0 (annealed) GaTe Ga5V2 GaV4.5 Ga3Zr Ga3Zr5 GdxLa1-x GdMo6S8 GdMo6Se8 GdxOs2Y1-x GdxRu2Th1-x Ge10As4Y5 GeIr GeIrLa Ge10Ir4Lu5 Ge10Ir4Y5 Ge2La
~5.9 3.47–4.18 2.6–3.85 0.17 3.55 9.15 1.38 3.8 < 1.0–5.5 3.5 5.6 1.4–4.7 3.6 (max.) 9.06 4.7 1.64 2.60 2.62 1.49; 2.2
GeLaPt Ge13Lu3Os4 Ge10Lu5Rh4 Ge13Lu3Ru4 GeMo3 GeNb2 Ge0.29Nb0.71 GePt Ge3Rh5
3.53 3.6 2.79 2.3 1.43 1.9 6 0.40 2.12
GeRh Ge13Rh4Sc3 Ge10Rh4Y5 Ge13Ru4Y3 Ge2So GeTa3 Ge3Te4 (n = 1.06 × 1022) GexTe1-x (n = 8.5–64 × 1020)
0.96 1.9 1.35 1.7 1.3 8.0 1.55–1.80 0.07–0.41
Section 12.indb 62
6.55 4.52 1.3 2.4 1.86 3.2 (max.) 3.7 (max.) 6.8 (max.) 3.86 1.0 7.3 0.87 0.21 5.84 2.3 9.5 0.76 5.85 2.9 1.74 4.24
Crystal structure type
Substance
D8b-tP30 (FeCr) tP40 Same Same D10 Fe in α-Ti Fe in β-Ti
GeV3 Ge2Y Ge1.62Y Ge2Zr GeZr3 H0.33Nb0.67 H0.1Nb0.9 H0.05Nb0.95 H0.12Ta0.88 H0.08Ta0.92 H0.04Ta0.96 HfIrSi HfMo2 HfN0.989 Hf0–0.5Nb1–0.5 Hf0.75Nb0.25 HfOs2 HfOsP HfPRu HfRe2 Hf0.14Re0.86 Hf0.99–0.96Rh0.01–0.04 Hf0–0.55Ta1–0.45 HfV2 HgxIn1-x HgIn Hg2K Hg3K Hg4K Hg8K Hg3Li HgMg3 Hg2Mg Hg3Mg5 Hg2Na Hg4Na HgxPb1-x HgSn HgxTl1-x Hg5Tl2 HoxLa1-x Ho1.2Mo6Se8 In1–0.86Mg0–0.14 In2Mo6Te6 InNb3 (high pressure and temp.) In0.5Nb3Zr0.5 In0.11O3W In0.95–0.85Pb0.05–0.15 In0.98–0.91Pb0.02–0.09 InPb InPd InSb (quenched from 170 kbar into liquid N2) InSb (InSb)0.95–0.10Sn0.05–0.90 (various heat treatments) (InSb)0–0.07Sn1–0.93 In3Sn InxSn1-x
D2c A3 A15 B2-cP2 C16-tI12 (Al2Cu) B2-cP2 A15 B4 C1 B20 A5
mC24 (GaTe) Tetragonal (Mn2Hg5) D8b-hP16 (Mn5Si3) hR15 hR15 C15 tP38 (C04Sc5Si10) B31 tI12 (LaPtSi) tP38 tP38 Orthorhombic, distorted (Mn2Hg5) tI12 cP40 (Pr3Rh2Sn13) tP38 cP40 A15 A15 B31 Orthorhombic, related to InNi2 B31-oP8 (MnP) c P40 tP38 cP40 A15-cP8 (Cr3Si) Rhombohedral R1
Tc, K
6.01 3.80 2.4 0.30 0.4 7.28 7.38 7.83 2.81 3.26 3.62 3.50 0.05 6.6 8.3–9.5 > 4.2 2.69 6.1 9.9 4.80 5.86 0.85–1.51 4.4–6.5 8.9–9.6 3.14–4.55 3.81 1.20 3.18 3.27 3.42 1.7 0.17 4.0 0.48 1.62 3.05 4.14–7.26 4.2 2.30–4.19 3.86 1.3–6.3 6.1 3.395–3.363 2.6 4–8; 9.2 6.4 < 1.25–2.8 3.6–5.05 3.45–4.2 6.65 0.7 4.8 2.1 3.8–5.1
Crystal structure type A15 Cc oC12 (ZrSi2) L12-tP32 (Ti3P) B.C.C. Same Same B.C.C. Same Same C37-cP12 (Co2Si) hP24 (Ni2Mn) B1 A2 C14 C22-hP9 (Fe2P) Same C14 A12 A2 C15
Orthorhombic
Hexagonal hP8 (Na3As) tI6 (MoSi2) D8b-hP16 (Mn5Si3) Hexagonal
D102-hR12 (Be3Nb) hR15 (Mo6PbS8) A15 Hexagonal
B2 Like A5 B4
3.67–3.74 ~5.5 3.4–7.3
4/28/05 1:56:46 PM
Properties of Superconductors Substance In0.82–1Te (n = 0.83–1.71 × 1022) In1.000Te1.002 In3Te4 (n = 4.7 × 1021) InxTl1-x In0.8Tl0.2 In0.62Tl0.38 In0.78–0.69Tl0.22–0.31 In0.69–0.62Tl0.31–0.38 Ir2La Ir3La Ir3La7 Ir5La IrLaSi2 IrLaSi3 Ir2Lu Ir3Lu Ir4Lu5Si10 IrMo IrMo3 IrMo3 IrNb3 Ir0.4Nb0.6 Ir0.37Nb0.63 IrNb Ir1.15Nb0.85 Ir0.02Nb3Rh0.98 Ir0.05Nb3Rh0.95 Ir0.287O0.14Ti0.573 Ir0.265O0.035Ti0.65 IrxOs1-x Ir1.5Os0.5 IrOsY IrSiY IrSiZr Ir2Sc Ir2.5Sc Ir4Sc5Si10 Ir2Si2Th IrSi3Th IrSiTh Ir2Si2Y Ir4Si10Y5 Ir3Si5Y2 IrSn2 Ir2Sr Ir7Ta13 Ir0.5Te0.5 IrTe3 IrTh Ir2Th Ir3Th Ir3Th7 Ir5Th IrTi3 IrV2 IrW3 Ir0.28W0.72 Ir2Y Ir0.69Y0.31 Ir0.70Y0.30
Section 12.indb 63
12-63 Crystal structure type
Substance
1.02–3.45
B1
3.5–3.7 1.15–1.25 2.7–3.374 3.223 2.760 3.18–3.32 2.98–3.3 0.48 2.32 2.24 2.13 2.03 2.7 2.47 2.89 3.9 < 1.0 9.6 6.8 1.9 9.8 2.32 7.9 4.6 2.43 2.38 5.5 2.30 0.3–0.98 2.4 2.6 2.70 2.04 2.07 2.46 8.46 2.14 1.75 6.50 2.60 3.10 2.83 0.65–0.78 5.70 1.2 ~3 1.18 < 0.37 6.50 4.71 1.52 3.93 5.40 1.39 3.82 4.49 2.18; 1.38 1.98; 1.44 2.16
B1 Rhombohedral
Ir2Y3 Ir3Y IrxY1-x Ir2Zr Ir0.1Zr0.9 K2Mo15S19 K0.27–0.31O3W K0.40–0.57O3W La0.55Lu0.45 La0.8Lu0.2 LaMg2 LaMo6S8 LaN LaOs2 LaPt2 La0.28Pt0.72 LaPtSi LaRh3 LaRh5 La7Rh3 LaRhSi2 La2Rh3Si5 LaRhSi3 LaRh2Si2 LaRu2 La3S4 La3Se4 LaSi2 LaxY1-x LaZn Li2Mo6S8 LiPb LuOs2 Lu0.275Rh0.725 LuRh5 Lu5Rh4Si10 LuRu2 Mg1.14Mo6.6S8 Mg2Nb Mg~0.47Tl~0.53 MgZn MnxTi1-x MnxTi1-x MnU6 Mo2N Mo6Na2S8 MoxNb1-x Mo5.25Nb0.75Se8 Mo6NdSa8 Mo3Os Mo0.62Cs0.38 Mo3P Mo6Pb1.2Se8 Mo0.5Pd0.5 Mo6PrSe8 MoRe MoRe3 MoxRe1-x Mo0.42Re0.58 MoRh MoxRh1-x
Tc, K
Tetragonal F.C.C. C15 D102 D102 oC16 (CeNiSi2) tI10 (BaNiSn3) C15 C15 tP38 (Co4Sc5Si10) A3 A15 D8b A15 D8b D8b D8b oP12 (IrTa) A15 A15 E93 E93 C14 C15 C37-oP12 (Co2Si) Same C15 C15 tP38 tI10 tI10 tI12 (LaPtSi) tI10 (Al4Ba) tP38 oI40 C1 C15 D8b-tP30 (FeCr) C2 Bf C15 D102 D2d A15 A15
C15 C15 C15
Tc, K
1.61 3.50 0.3–3.7 4.10 5.5 3.32 0.50 1.5 2.2 3.4 1.05 7.1 1.35 6.5 0.46 0.54 3.48 2.60 1.62 2.58 3.42 4.45 2.7 3.90 1.63 6.5 8.6 2.3 1.7–5.4 1.04 4.2 7.2 3.49 1.27 0.49 3.95 0.86 3.5 5.6 2.75 0.9 2.3 (max.) 1.1–3.0 2.32 5.0 8.6 0.016–9.2 6.2 8.2 7.2 5.65 5.31 6.75 3.52 9.2 7.8 9.25; 9.89 1.2–12.2 6.35 1.97 1.5–8.2
Crystal structure type D102-hR13 (Be3Nb) C15 A3 hR15 Hexagonal Tetragonal Hexagonal, La type Same C15 hR15 C15 C15 C15 tI12
D102 oC16 (CeNiSi2) oI40 (Co3Si5U2) tl10 (BaNiSn3) tl10 (Al4Ba) C15 D73 D73 Cc B2 hR15 C14 C15 tP38 (Co4So5Si10) C14 hR15 B2 A3-oP4 (AuCd) Mn in -Ti Mn in -Ti D2c F.C.C. hR15 hR15 hR15 A15 D8b DOe hR15 A3 hR15 D8b-tP30 A12 D8b A3 B.C.C.
4/28/05 1:56:48 PM
Properties of Superconductors
12-64 Substance MoRu Mo0.61Ru0.39 Mo0.2Ru0.8 Mo3Ru2 Mo4Ru2Te8 Mo6S8 Mo6S8Sc Mo6S8Sm1.2 Mo6S8Tb Mo6S8Tl Mo6S8Tm1.2 Mo6S8Y1.2 Mo6S8Yb Mo6.6S8Zn11 Mo3Sb4 Mo6Se8 Mo6Se8Sm1.2 Mo6Se8Sn1.2 Mo6Se8Tb Mo3Se3Tl Mo6Se8Tm1.2 Mo6Se8Yb Mo3Si MoSi0.7 MoxSiV3-x Mo5.25Ta0.75Te8 Mo6Te8 Mo0.16Ti0.84 Mo0.913Ti0.087 Mo0.04Ti0.96 Mo0.025Ti0.975 MoxU1-x MoxV1-x Mo2Zr NNb (film) NxOyTiz NxOyVz N0.34Re NTa (film) N0.6–0.987Ti N0.82–0.99V NZr N0.906–0.984Zr Na0.28–0.35O3W Na0.28Pb0.72 NbO NbOs2 Nb3Os Nb0.6Os0.4 Nb3Os0.02–0.10Rh0.98–0.90 Nb3P NbPRh Nb0.6Pd0.4 Nb3Pd0.02–0.10Rh0.92–0.90 Nb0.62Pt0.38 Nb5Pt3 Nb3Pt0.02–0.98Rh0.98–0.02 NbRe3 Nb0.38–0.18Re0.62–0.82 NbRe NbReSi
Section 12.indb 64
Tc, K
9.5–10.5 7.18 1.66 7.0 1.7 1.85 3.6 2.9 2.0 8.7 2.1 3.0 9.2 3.6 2.1 6.3 6.8 6.8 5.7 4.0 6.3 6.2 1.30 1.34 4.54–16.0 1.7 1.7 4.18; 4.25 2.95 2.0 1.8 0.7–2.1 0–~5.3 4.25–4.75 6–9 2.9–5.6 5.8–8.2 4–5 4.84 < 1.17–5.8 2.9–7.9 9.8 3.0–9.5 0.56 7.2 1.25 2.52 1.05 1.89; 1.78 2.42–2.30 1.8 4.08 1.60 2.49–2.55 4.21 3.73 2.52–9.6 5.27 2.43–9.70 3.8 5.1
Crystal structure type
Substance
A3 D8b A3 D8b-tP30 hR15 hR15 hR15 hR15 hR15 hR15 hR15 hR15 hR15 hR15
Nb3Rh Nb0.6Rh0.40 Nb0.9Rh1.1 Nb3Rh0.98–0.90Ru0.02–0.10 NbxRu1-x NbRuSi NbS2 NbS2
2.64 4.21 3.07 2.42–2.44 1.2–4.8 2.65 6.1–6.3 5.0–5.5
Nb3Sb Nb3Sb0–0.7Sn1–0.3 NbSe2 Nb1–1.05Se2 Nb3Se4 Nb3Si Nb3SiSnV3 NbSn2 Nb6Sn5 NbSnTaV NbSnV2 Nb2SnV NbxTa1-x Nb3Te4 NbxTi1-x Nb0.6Ti0.4 NbxU1-x Nb0.88V0.12 Nb0.5V1.5Zr Ni0.3Th0.7 NiZr2 Ni0.1Zr0.9 O3Rb0.27–0.29W OSn O3SrTi (n = 1.7–12.0 × 1019) O3SrTi (n = 1018–1021) O3SrTi (n = 1020) O3Sr0.08W OTi O3Tl0.30W OV3Zr3 OW3 (film) OsPti OsPZr OsReY Os2Sc OsTa Os3Th7 OsxW1-x OsW3 Os2Y Os2Zr OsxZr1-x PPb OsW2 PPd3.0–3.2 P3Pd7 (high temperature) P3Pd7 (low temperature) PRh PRh2 P4Rh5 PRhTa
0.2 6.8–18 5.15–5.62 2.2–7.0 2.0 1.5 4.0 2.60 2.8 6.2 5.5 9.8 4.4–9.2 1.8 0.6–9.8 9.8 1.95 (max.) 5.7 4.3 1.98 1.52 1.5 1.98 3.81 0.12–0.37 0.05–0.47 0.47 2–4 0.58 2.0–2.14 7.5 3.35; 1.1 1.2 7.4 2.0 4.6 1.95 1.51 0.9–4.1 ~3 4.7 3.0 1.5–5.6 7.8 3.81 <0.35–0.7 1.0 0.70 1.22 1.3 1.22 4.41
hR15 hR15 hR15 hR15 hP14 hR15 hR15 A15 A15 hR15 hR15
Cubic
C15 B1 Cubic Cubic F.C.C. B1 B1 B1 B1 B1 Tetragonal
A12 A15 D8b A15 L12tP32 (Ti3P) C37-oP12 (Co2Si) D8f plus cubic A15 D8b D8b A15 D8b-tP30 (FeCr) A15 D8b-tP30 oI36 (FeTiSi)
Tc, K
Crystal structure type A15 D8b plus other A3-oP4 (AuCd) A15 oI36 Hexagonal, NbSe2 type Hexagonal, three-layer type L12-tP32 (Ti3P) A15 Hexagonal Same hP14 L12 Orthorhombic oI44 (Sn5Ti6) A15 A15 A15 A2 hP14
A2 C15-hP12 (MgZn2) D102 A3 Hexagonal tP4 (PbO)
Hexagonal Hexagonal E93 A15 C22-hP9 (Fe2P) Same C14 C14 A12 D102 C14 C14
D8b-tP30 (FeCr) DO11 Rhombohedral Complex C1 oP28 (CaFe2O4) C37-oP12 (Co2Si)
4/28/05 1:56:49 PM
Properties of Superconductors Substance PRhZr PRuTi PRuZr PW3 Pb2Pd Pb4Pt Pb2Rh PbSb PbTe (plus 0.1 w/o Pb) PbTe (plus 0.1 w/o Te) PbTl0.27 PbTl0.17 PbTl0.12 PbTl0.075 PbTl0.04 Pb1–0.26Tl0–0.74 PbTl2 Pb3Zr5 PbZr3 Pd0.9Pt0.1Te2 Pd0.05Ru0.05Zr0.9 Pd2.2S (quenched) PdSb2 PdSb PdSbSe PdSbTe Pd4Se Pd6–7Se Pd2.8Se PdxSe1-x PdSi PdSn PdSn2 Pd2Sn Pd3Sn Pd2SnTm Pd2SnY Pd2SnYb PdTe PdTe1.02–1.08 PdTe2 PdTe2.1 PdTe2.3 Pd1.1Te Pd3Te PdTh2 Pd0.1Zr0.9 PtSb PtSi PtSn PtSn4 Pt3Ta7 PtTa3 PtTe PtTh Pt3Th7 Pt5Th PtTi3 Pt0.02U0.98 PtV2.5 PtV3
Section 12.indb 65
Tc, K
1.55 1.3 3.46 2.26 2.95 2.80 2.66 6.6 5.19 5.24–5.27 6.43 6.73 6.88 6.98 7.06 7.20–3.68 3.75–4.1 4.60 0.76 1.65 ~9 1.63 1.25 1.5 1.0 1.2 0.42 0.66 2.3 2.5 (max.) 0.93 0.41 3.34 0.41 0.47–0.64 1.77 4.92 1.79 2.3; 3.85 2.56–1.88 1.69 1.89 1.85 4.07 0.76 0.85 7.5 2.1 0.88 0.37 2.38 1.5 0.4 0.59 0.44 0.98 3.13 0.58 0.87 1.36 2.87–3.20
12-65 Crystal structure type
Substance
Same C22-hP9 (Fe2P) C37-oP12 DOe C16 Related to C16 C16
PtV3.5 Pt0.5W0.5 PtxW1-x Pt2Y3 Pt2Y Pt3Y7 PtZr Re2Sc Re24Sc5 ReSiTa Re3Si5Y2 Re3Ta2 Re0.64Ta0.36 Re3Ta Re24Ti5 RexTi1-x Re0.76V0.24 Re3V Re0.92V0.08 Re0.6W0.4 Re0.5W0.5 Re13W12 Re3W Re2Y Re2Zr Re3Zr Re6Zr Rh17S15 Rh~0.24Sc~0.76 Rh4Sc5Si10 Rh4Sc3Sn13 RhxSe1-x RhSi3Th Rh0.86Sc1.04Th Rh2Si2Y Rh3Si5Y2 Rh4Sn13Sr3 RhxSnyTh RhxSnyTm Rh4Sn13Y3 Rh2Sr Rh0.4Ta0.6 RhTe2 Rh0.67Te0.33 RhxTe1-x RhTh Rh3Th7 Rh5Th RhxTi1-x Rh0.02U0.98 RhV3 RhW RhY3 Rh2Y3 Rh3Y Rh5Y Rh3Y7 Rh0.005Zr (annealed) Rh0–0.45Zr1–0.55 Rh0.1Zr0.9 Ru2Sc RuSiTa
D88 A15 C6 Cubic C2 B81 C2 C2 Tetragonal Like Pd4Te B31 B31 C37 B82 DO3-cF16 (BiF3) Same Same B81 B81 C6 C6 C6 B81 cI2 (W) C16 A3 B81 B31 B81 C16-oC20 (PdSn4) D8b-tP30 A15-cP8 (Cr3Si) Orthorhombic Bf D102 A15 β-phase A15 A15
Tc, K
1.26 1.45 0.4–2.7 0.90 1.57; 1.70 0.82 3.0 4.2 2.2 4.4 1.76 1.4 1.46 6.78 6.60 6.6 (max.) 4.52 6.26 6.8 6.0 5.12 5.2 9.0 1.83 5.9 7.40 7.40 5.8 0.88; 0.92 8.54 4.5 6.0 (max.) 1.76 6.45 3.11 2.70 4.3 1.9 2.3 3.2 6.2 2.35 1.51 0.49 1.51 (max.) 0.36 2.15 1.07 2.25–3.95 0.96 0.38 ~3.4 0.65 1.48 1.07 0.56 0.32 5.8 2.1–10.8 9.0 1.67 3.15
Crystal structure type A15 A1
C15 D102 A3 C15-hP12 (MgZn2) A12-cI58 (Mg) oI36 (FeTiSi) tP40 (Fe3Sc2Si5) D8b-tP30 (FeCr) A12 A12-cI58 (Mn) A12 D8b D8b-tP30 A3 D8b D8b-tP30 A12-cI58 C14 C14 A12-cI58 Same Cubic tP38 cP40 tI10 tI12 tI10 oI40 cP40 cI2 (W) cP40 cP40 C15 D8b C2
Bf D102
A15 A3
C15 hP20 (Fe3Th7) H.C.P. C14 oI36
4/28/05 1:56:51 PM
Properties of Superconductors
12-66 Substance Ru3Si2Th Ru3Si2Y Ru1.1Sn3.1Y Ru2Th RuTi Ru0.05Ti0.95 Ru0.1Ti0.9 RuxTi0.6Vy Ru3U Ru0.45V0.55 RuW Ru2Y Ru2Zr Ru0.1Zr0.9 STh SbSn SbTa3 SbTi3 Sb2Ti7 Sb0.01–0.03V0.99–0.97 SbV3 SeTh SiMo3 Si2Th Si2Th SiV2.7Ru0.3 Si2W3 SiZr3 Sn0.174–0.104Ta0.826–0.896 SnTa3 SnTa3 SnTaV2 SnTa2V SnxTe1-x (n = 10.5–20 × 1020) Sn3Th SnTi3 SnxTl1-x SnV3 Sn0.02–0.057V0.98–0.943 SnZr3 Ta0.025Ti0.975 Ta0.05Ti0.95 Ta0.05–0.75V0.95–0.25 Ta0.8–1W0.2–0 Tc0.1–0.4W0.9–0.6 Tc0.50W0.50 Tc0.60W0.40 Tc6Zr TeY ThTl3 Th0–0.55Y1–0.45 Ti0.70V0.30 TixV1-x Ti0.5Zr0.5 (annealed) Ti0.5Zr0.5 (quenched) Tl3Y V2Zr V0.26Zr0.74 W2Zr YZn
Tc, K
3.98 3.51 1.3 3.56 1.07 2.5 3.5 6.6 (max.) 0.15 4.0 7.5 1.52 1.84 5.7 0.5 1.30–1.42 0.72 5.8 5.2 3.76–2.63 0.80 1.7 1.4 3.2 2.4 2.9 2.8; 2.84 0.5 6.5–< 4.2 8.35 6.2 2.8 3.7 0.07–0.22 3.33 5.80 2.37–5.2 3.8 2.87–~1.6 0.92 1.3 2.9 4.30–2.65 1.2–4.4 1.25–7.18 7.52 7.88 9.7 1.02 0.87 1.2–1.8 6.14 0.2–7.5 1.23 2.0 1.52 8.80 5.9 2.16 0.33
* n denotes current carriers concentration in cm–3.
Section 12.indb 66
Crystal structure type hP12 hP12 cP40 C15 B2
L12-cP4 B2 A3 C14 C14 A3 B1-cF8 (NaCl) B1 or distorted A15-cP8 (Cr3Si) Same A2 A15 B1-cF8 A15-cP8 Cc, α-phase C32, β-phase A15 L12-tP32 (Ti3P) A15 A15, highly ordered A15, partially ordered A15 A15 B1 L12-cP4 A15-cP8 A15 A2 A15-cP8 Hexagonal Hexagonal A2 A2 Cubic α plus plus α A12 B1-cF8 L12-cP4 Cubic
L12-cP4 C15 C15 B2-cP2 (CsCl)
B. Superconductors with Tc > 10Κ Substance Al2CMo3 Al0.5Ge0.5Nb Al~0.8Ge~0.2Nb3 AlNb3 AlNb3 A1xNb1–x A1xNb1–x A10.27Nb0.73–0.48V0–0.25 A1 NbxV1–x A10.1Si0.9V3 A1V3 AuNb3 Au0–0.3Nb1–0.7 Au0.02–0.98Nb3Rh0.98–0.02 AuNb3(1–x)V3x B0.03C0.51Mo0.47 B4LuRh4 B2LuRu B4Rh4Y B0.1Si0.9V3 BaBi0.2O3Pb0.8 Ba2CaCu2O8T12 Ba2Cu3LaO6 Ba2Cu3O7Tm Ba2Cu3O7Y (Ba,La)2CuO4 Bi2CaCu2O8Sr2 Br2Mo6S6 C3La CMo CMo2 C0.5MoxNb1–x CMoxTi1–x CMo0.83Ti0.17 C0–0.38N1–0.62Ta CNb (whiskers) CNb C0.7–1.0Nb0.3–0 CNbxTa1–x CNb0.6–0.9W0.4–0.1 C0.1Si0.9V3 CTa CTa1–0.4W0–0.6 C0.66Th0.13Y0.21 C3Y2 CW (Ca,La)2CuO4 Cu(La,Sr)2O4 Cu1.8Mo6S8 Cr0.3SiV2.7 GaNb3 GaxNb3Sn1–x GaV3 GaV2.1–3.5 GeNb3 GeNb3 (quenched) GexNb3Sn1–x Ge0.5Nb3Sn0.5 Ge0.1Si0.9V3 GeV3 InLa3
Tc,K
10.0 12.6 20.7 18.0 12.0 <4.2–13.5 12–17.5 14.5–17.5 4.4–13.5 14.05 11.8 11.5 1.1–11.0 2.53–10.9 1.5–11.0 12.5 11.7 10 11.3 15.8 13.2 120 80 101 90 36 110 13.8 11.0 14.3 12.2 10.8–12.5 10.2(max) 10.2 10.0–11.3 7.5–10.5 11.5 6–11 8.2–13.9 12.5–11.6 16.4 10.3 8.5–10.5 17 11.5 10 18 39 10.8 11.3 14.5 14–18.37 16.8 6.3–14.45 23.2 6–17 17.6–18.0 11.3 14.0 11 9.83; 10.4
Crystal structure type A13 A15 A15 A15 D8b A15 A15
A15 A15
(Cr3Si) (FeCr)
(Cr3Si)
A15 A15 (B4CeCo4) A15
A15
B1 B1 B1 B1
(B4CeCo4)
(K2NiF4) (Mo6PbS8) (C3Pu2) (NaC1) o**
B1 B1 B1 A15 B1 B1
B1
A15 A15 A15 A15 A15 A15 A15 A15 A15 A15 LI2
(C3Pu2) (C3Pu2) (K2NiF4) (Mo6PbS8) (Cr3Si)
(AuCu3)
4/28/05 1:56:53 PM
Properties of Superconductors Substance In0–0.3Nb3Sn1–0.7 InV3 Ir0.4Nb0.6 LaMo6Se8 LiO4Ti2 MgB2 MoN Mo3Os Mo6Pb0.9S7.5 Mo3Re MoxRe1–x Mo0.52Re0.48 Mo0.57Re0.43 Mo~0.60Re0.395 MoRu Mo3Ru Mo6Se8T1 Mo0.3SiV2.7 Mn3Si Mo3Tc Mo0.3Tc0.7 MoxTc1–x MoTc3 NNb (whiskers) NNb (diffusion wires) N0.988Nb N0.824–0.988Nb N0.7–0.795Nb NNbxOy NNbxOy
Substance Ag2F Ag7NO11 Al2CMo3 BaBi3 Bi2Pt Bi3Sr Bi5Tl3 CdSn CoSi2 Cr0.1Ti0.3V0.6 In1-0.86Mg0-0.14
Section 12.indb 67
Tc,K
18.0–18.19 13.9 10 11.4 13.7 39.0±0.5 12; 14.8 12.7 15.2 10.0; 15 1.2–12.2 11.1 14.0 10.6 9.5–10.5 10.6 12.2 11.7 12.5 15 12.0 10.8–15.8 15.8 10–14.5 16.10 14.9; 17.3 14.4–15.3 11.3–12.9 13.5–17.0 6.0–11
12-67 Substance
Crystal structure type A15 A15
C32 A15 A15
A3 A15 A15 A15 A15 A15
B1 B1 B1
(FeCr) (Mo6PbS8) (A12MgO4) h* (Mo6PbS8)
(Mo6PbS8)
N100–42w/oNb0–58w/oTi N100–75w/oNb0–25w/oZr NNbxZr1–x N0.93Nb0.85Zr0.15 NTa NZr Nb3Pt Nb0.18Re0.82 Nb3Si Nb0.3SiV2.7 Nb3Sn Nb0.8Sn0.2 NbxSn1–x (film) Nb3Sn2 NbSnTa2 Nb2SnTa Nb2.5SnTa0.5 Nb2.75SnTa0.25 Nb3xSnTa3(1–x) Nb2SnTa0.5V0.5 NbTc3 Nb0.75Zr0.25 Nb0.66Zr0.33 PbTa3 RhTa3 RhZr2 Rh0–0.45Zr1–0.55 SiTi0.3V2.7 SiV3 SiV2.7Zr0.3
TABLE 5. Critical Field Data Ho (oersteds) 2.5 57 1700 740 10 530 >400 >266 105 1360 272.4–259.2
Substance InSb InxTl1-x In0.8Tl0.2 Mg0.47Tl0.53 Mo0.16Ti0.84 NbSn2 PbTl0.27 PbTl0.17 PbTl0.12 PbTl0.075 PbTl0.04
Tc,K
15–16.8 12.5–16.35 9.8–13.8 13.8 12–14 10.7 10.9 10 19 12.8 18.05 18.18; 18.5 2.6–18.5 16.6 10.8 16.4 17.6 17.8 6.0–18.0 12.2 10.5 10.8 10.8 17 10 10.8; 11.3 2.1–10.8 10.9 17.1 13.2
Crystal structure type
B1 B1 B1 B1 A15 A15 A15 A15 A15
A15 A15 A15 A15
(Mn)
o* t*
A15 A12
A15 A15 C16
(A12Cu)
A15 A15 A15
Ho (oersteds) 1100 252–284 252 220 <985 620 756 796 849 880 864
4/28/05 1:56:55 PM
Properties of Superconductors
12-68
TABLE 6. High Critical Magnetic-Field Superconductive Compounds and Alloys Substance
Hc1, kOe
9.8–10.2
C8K
0.39
C0.44Mo0.56 CNb CNb0.4Ta0.6 CTa CaxO3Sr1-xTi Cd0.1Hg0.9 (by weight) Cd0.05Hg0.95 Cr0.10Ti0.30V0.60 GaN GaxNb1-x GaSb (annealed) GaV1.95 GaV2.1-3.5 GaV3
12.5–13.5 8–10 10–13.6 9–11.4 <0.1–0.55
GaV4.5 HfxNby HfxTay Hg0.05Pb0.95 Hg0.101Pb0.899 Hg0.15Pb0.85 In0.98Pb0.02 In0.96Pb0.04 In0.94Pb0.06 In0.913Pb0.087 In0.316Pb0.684 In0.17Pb0.83 In1.000Te1.002 In0.95Tl0.05 In0.90Tl0.10 In0.83Tl0.17 In0.75Tl0.25 LaN La3S4 La3Se4 Mo0.52Re0.48
9.15
1.35 6.5 8.6 11.1
Mo0.6Re0.395
10.6
Mo0.5Ti0.5 Mo0.16Ti0.84
4.18
0.028
2.95 1.85–2.06
0.060
Mo0.913Ti0.087 Mo0.1-0.3U0.9-0.7 Mo0.17Zr0.83
Section 12.indb 68
Tc , K
Al2CMo3 AlNb3 BaxO3Sr1-xTi Bi0.5Cd0.1Pb0.27Sn0.13 BixPb1-x Bi0.56Pb0.44 Bi7.5w/oPb92.5w/ob Bi0.099Pb0.901 Bi0.02Pb0.98 Bi0.53Pb0.32Sn0.16 Bi1-0.93Sn0-0.07 Bi5Tl3 C8K (excess K)
<0.1–0.55 7.35–8.4 8.8
0.091 0.375 0.0039 max. 0.122 max. 0.29 0.46
6.4 0.55
5.6 5.85 4.24 5.3 6.3–14.45
6.75 3.45 3.68 3.90 4.2 3.5–3.7
0.087 0.12 0.19 0.22 0.002–0.004 0.23 0.28 0.071 0.725
0.4
0.235 0.23 0.1 0.1 0.095 ~10.17 0.155 0.263 0.257 0.242 0.216 0.45 ≈0.15 ≈0.2
156
Hc2, kOe
Hc3, kOe
1.2
>24 30 max. 15 2.32 2.8 0.73 >25 0–0.032 >5.6 0.160 (H⊥c) 0.730 (H|c) 0.025 (H⊥c) 0.250 (H|c) 98.5 16.9 14.1 4.6
3.06 4.2 4.2
0.34
2.04
0.31 84.4
2.16 0 4.2 4.2 3.5
>28 2.64 73e 230–300d 350e 500d 121c >52–>102 >28–>86 2.3 4.3 >13 0.12 0.18 0.55 3.7 2.8 1.2c 0.263 0.257 0.39 0.50 >25 >25 14–21 18–28 14–20 19–26 75c 98.7c 36–38 15 >25 30
Tobs, Ka
3.06 3.7 3.35 0.32 0.32 0.32 0.32 1.2 4.2 1.2 1.2
0 0 0 1.2 1.2
0.12 0.25 0.35 2.65 5.5
22–33 37–43 20–37 26–37
4.2 2.93 2.76 2.94 3.12 4.2 4.2 0 3.3 3.25 3.21 3.16 0.76 1.3 1.25 4.2 1.3 4.2 1.3 0 0 3.0 4.2
4/28/05 1:56:56 PM
Properties of Superconductors Substance
Tc , K
N(12.8 w/o)Nb NNb (wires)
15.2 16.1
NNbxO1-x NNbxZr1-x N0.93Nb0.85Zr0.15 Na0.086Pb0.914 Na0.016Pb0.984 Nb
13.5–17.0 9.8–13.8 13.8 9.15
Hc1, kOe
0.19 0.28
Nb Nb (unstrained) Nb (strained) Nb (cold-drawn wire) Nb (film) NbSc Nb3Sn
0.4–1.1 1.1–1.8 1.25–1.92 2.48
Nb0.1Ta0.9 Nb0.2Ta0.8 Nb0.65-0.73Ta0.02-0.10Zr0.25 NbxTi1-x
0.084
Nb0.222U0.778 NbxZr1-x
1.98
O3SrTi O3SrTi PbSb1 w/o(quenched) PbSb1 w/o(annealed) PbSb2.8 w/o(quenched) PbSb2.8 w/o(annealed) Pb0.871Sn0.129 Pb0.965Sn0.035 Pb1-0.26Tl0-0.74 PbTl0.17 Re0.26W0.74 Sb0.93Sn0.07 SiV3 SnxTe1–x Ta (99.95%)
Ta0.5Nb0.5 Ta0.65-0Ti0.35-1 Ta0.5Ti0.5 Te TcxW1-x Ti Ti0.75V0.25 Ti0.775V0.225 Ti0.615V0.385 Ti0.516V0.484 Ti0.415V0.585 Ti0.12V0.88 Ti0.09V0.91 Ti0.06V0.94
Section 12.indb 69
12-69
0.170
0.43 0.33
7.20–3.68 6.73 17.0
0.0049c 0.00195c
0.45 0.53
0.55 0.00043–0.00236 0.425 0.325 0.275 0.090
4.4–7.8 3.3 5.75–7.88
0.25c
5.3 4.7 7.07 7.20 7.49
0.029c 0.024c 0.050 0.062 0.078
Hc2, kOe
>9.5 153c 132 95 53 38 4- >130 >130 6.0 2.05 2.020 1.710 3–5.5 3.40 3.44 4.10 >25 >30 221 70 54 34 17 0.154 10 >70–>90 148 max. 120 max. 23 127 max. 94 max. 0.504c 0.420c >1.5 >0.7 >2.3 >0.7 1.1 0.56 2–6.9c 4.5c >30 0.12 156e 0.005–0.0775 1.850 1.425 1.175 0.375 3.55 >14–138 138 8–44 199c 172c 34 28 25 17.3 14.3 8.2
Hc3, kOe
13.2 0 4.2 8 12
Tobs, Ka
4.2 4.2
6–9.1 6.0–8.7 ≈10
1.4 4.2 4.2 4.2 4.2 4.2 4.2 4.2 14.15 15 16 17 4.195 4.2 4.2 1.2 4.2 1.2 1.2 4.2 0 0 4.2 4.2 4.2 4.2 0 0 3.7
2.7
28.1 16.4 12.7
0.012–0.079 1.3 2.27 2.66 3.72 4.2 1.2 1.2 0 4.2 4.2 0 0 4.2 4.2 4.2 4.2 4.2 4.2
4/28/05 1:56:58 PM
Properties of Superconductors
12-70 Substance
Tc , K
Ti0.03V0.97 TixV1-x V
5.31
V0.26Zr0.74
≈5.9
W (film)
1.7–4.1
a b c d e
Hc1, kOe
0.8 0.75 0.45 0.30 0.238 0.227 0.185 0.165
>34
6.8
Hc3, kOe
4.2 1.2 1.79 2 3 4 1.05 1.78 3.04 3.5 1
Tobs, Ka
Temperature of critical field measurement. w/o denotes weight percent. Extrapolated. Linear extrapolation. Parabolic extrapolation
References 1. B. W. Roberts, in Superconductive Materials and Some of Their Properties. Progress in Cryogenics, Vol. IV, 1964, pp. 160–231. 2. B. W. Roberts, Superconductive Materials and Some of Their Properties, NBS Technical Notes 408 and 482, U.S. Government Printing Office, 1966 and 1969; B. W. Roberts, J. Phys. Chem. Ref. Data, 5, 581, 1976. 3. B. W. Roberts, Properties of Selected Superconductive Materials, 1978 Supplement, NBS Technical Note 983, 1978. 4. T. Claeson, Phys. Rev., 147, 340, 1966. 5. C. J. Raub, W. H. Zachariasen, T. H. Geballe, and B. T. Matthias, J. Phys. Chem. Solids, 24, 1093, 1963. 6. T. H. Geballe, B. T. Matthias, V. B. Compton, E. Corenzwit, G. W. Hull, Jr., and L. D. Longinotti, Phys. Rev., 1A, 119, 1965. 7. C. J. Raub, V. B. Compton, T. H. Geballe, B. T. Matthias, J. P. Maita, and G. W. Hull, Jr., J. Phys. Chem. Solids, 26, 2051, 1965. 8. R. D. Blaugher, J. K. Hulm, and P. N. Yocom, J. Phys. Chem. Solids, 26, 2037, 1965. 9. T. Claeson and H. L. Luo, J. Phys. Chem. Solids, 27, 1081, 1966. 10. S. C. Ng and B. N. Brockhouse, Solid State Comm., 5, 79, 1967. 11. O. I. Shulishova and I. A. Shcherbak, Izv. AN SSSR, Neorg. Materials, 3, 1495, 1967. 12. T. F. Smith and H. L. Luo, J. Phys. Chem. Solids, 28, 569, 1967. 13. A. C. Lawson, J. Less-Common Metals, 23, 103, 1971. 14. R. Chevrel, M. Sergent, and J. Prigent, J. Solid State Chem., 3, 515, 1971. 15. M. Marezio, P. D. Dernier, J. P. Remeika, and B. T. Matthias, Mat. Res. Bull., 8, 657, 1973. 16. J. K. Hulm and R. D. Blaugher in Superconductivity in d- and f-Band Metals, D. H. Douglass, Ed., American Institute of Physics, 4, 1, 1972. 17. R. N. Shelton, A. C. Lawson, and D. C. Johnston, Mat. Res. Bull., 10, 297, 1975. 18. H. D. Wiesinger, Phys. Status Sol., 41A, 465, 1977. 19. O. Fisher, Applied Phys., 16, 1, 1978. 20. D. C. Johnston, Solid State Comm., 24, 699, 1977. 21. H. C. Ku and R. H. Shelton, Mat. Res. Bull., 15, 1441, 1980. 22. H. Barz, Mat. Res. Bull., 15, 1489, 1980. 23. G. P. Espinosa, A. S. Cooper, H. Barz, and J. P. Remeika, Mat. Res. Bull., 15, 1635, 1980. 24. E. M. Savitskii, V. V. Baron, Yu. V. Efimov, M. I. Bychkova, and L. F. Myzenkova, in Superconducting Materials, Plenum Press, 1981, p. 107. 25. R. Fluckiger and R. Baillif, in Topics in Current Physics, O. Fischer and M. B. Maple, Eds., Springer Verlag, 34, 113, 1982. 26. R. N. Shelton, in Superconductivity in d- and f-Band Metals, W. Buckel and W. Weber, Eds., Kernforschungszentrum, Karlsruhe, 1982, p. 123. 27. D. C. Johnston and H. F. Braun, Topics in Current Phys., 32, 11, 1982.
Section 12.indb 70
Hc2, kOe
3.8 108 max. 3.4 3.15 2.2 1.2
28. R. Chevrel and M. Sergent, Topics in Current Phys., 32, 25, 1982. 29. G. P. Espinosa, A. S. Cooper, and H. Barz, Mat. Res. Bull., 17, 963, 1982. 30. R. Muller, R. N. Shelton, J. W. Richardson, Jr., and R. A. Jacobson, J. Less-Comm. Met., 92, 177, 1983. 31. You-Xian Zhao and Shou-An He, in High Pressure in Science and Technology, North Holland, 22, 51, 1983. 32. You-Xian Zhao and Shou-An He, Solid State Comm., 24, 699, 1983. 33. G. P. Meisner and H. C. Ku, Appl. Phys., A31, 201, 1983. 34. R. J. Cava, D. W. Murphy, and S. M. Zahurak, J. Electrochem. Soc., 130, 2345, 1983. 35. R. N. Shelton, J. Less-Comm. Met., 94, 69, 1983. 36. B. Chevalier, P. Lejay, B. Lloret, Wang Xian–Zhong, J. Etourneau, and P. Hagenmuller, Annales de Chemie, 9, 191, 1984. 37. G. Venturini, M. Meot-Meyer, E. McRae, J. F. Mareche, and B. Rogues, Mat. Res. Bull., 19, 1647, 1984. 38. J. M. Tarascon, F. G. DiSalvo, D. W. Murphy, G. Hull, and J. V. Waszczak, Phys. Rev., 29B, 172, 1984. 39. G. V. Subba and G. Balakrishnan, Bull. Mat. Sci., 6, 283, 1984. 40. B. Batlog, Physica, 126B, 275, 1984. 41. M. J. Johnson, Ames Lab (USA) Report IS-T-1140, 1984. 42. I. M. Chapnik, J. Mat. Sci. Lett., 4, 370, 1985. 43. W. Rong-Yao, L. Q-Guang, and Z. Xiao, Phys. Status Sol., 90A, 763, 1985. 44. W. Xian-Zhong, B. Chevalier, J. Etourneau, and P. Hagenmuller, Mat. Res. Bull., 20, 517, 1985. 45. H. R. Ott, F. Hulliger, H. Rudigier, and Z. Fisk, Phys. Rev., 31B, 1329, 1985. 46. P. Villars and L. D. Calver, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, Vol. 1–3, ASM, 1985. 47. G. V. Subba Rao, K. Wagner, G. Balakhrishnan, J. Jakani, W. Paulus, and R. Scollhorn, Bull. Mat. Sci., 7, 215, 1985. 48. J. G. Bednorz and K. A. Muller, Zs. Physik, B64, 189, 1986. 49. W. Rong-Yao, Phys. Status Sol., 94A, 445, 1986. 50. H. D. Yang, R. N. Shelton, and H. F. Braun, Phys. Rev., 33B, 5062, 1986. 51. G. Venturini, M. Kanta, E. McRae, J. F. Mareche, B. Malaman, and B. Roques, Mat. Res. Bull., 21, 1203, 1986. 52. W. Rong-Yao, J. Mat. Sci. Lett., 5, 87, 1986. 53. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett., 58, 908, 1987. 54. R. J. Cava, R. B. Van Dover, B. Batlog, and E. A. Rietman, Phys. Rev. Lett., 58, 408, 1987. 55. L. C. Porter, T. J. Thorn, U. Geiser, A. Umezawa, H. H. Wang, W. K. Kwok, H-C. I. Kao, M. R. Monaghan, G. W. Crabtree, K. D. Carlson, and J. M. Williams, Inorg. Chem., 26, 1645, 1987. 56. A. M. Kini, U. Geiser, H-C. I. Kao, K. D. Carlson, H. H. Wang, M. R. Monaghan, and K. M. Williams, Inorg. Chem., 26, 1834, 1987.
4/28/05 1:56:59 PM
Properties of Superconductors 57. T. Penney, S. von Molnar, D. Kaiser, F. Holtzberg, and A. W. Kleinsasser, Phys. Rev., B38, 2918, 1988. 58. Y. K. Tao, J. S. Swinnea, A. Manthiram, J. S. Kim, J. B. Goodenoug, and H. Steinfink, J. Mat. Res., 3, 248, 1988. 59. G. G. Peterson, B. R. Weinberger, L. Lynds, and H. A. Krasinski, J. Mat. Res., 3, 605, 1988. 60. J. B. Torrance, Y. Tokura, A. Nazzai, and S. S. P. Parkin, Phys. Rev. Lett., 60, 542, 1988. 61. K. Kourtakis, M. Robbins, P. K. Gallagher, and T. Teifel, J. Mat. Res., 4, 1289, 1989. 62. J. C. Phillips, Physics of High-Tc Superconductors, Academic Press, 1989, p. 336. 63. Shui Wai Lin and L. I. Berger, Rev. Sci. Instrum., 60, 507, 1989. 64. M. Tinkham, Introduction to Superconductivity, McGraw–Hill, New York, 1975. 65. O. Fischer and M.B. Maple, Eds., Topics in Current Physics, Volume 32: Superconductivity in Ternary Compounds I; Volume 34: Superconductivity in Ternary Compounds II, Springer–Verlag, Berlin, 1982. 66. K. J. Dunn and F. P. Bundy, Phys. Rev., B25, 194, 1982. 67. A. Barone and G. Paterno, Physics and Applications of the Josephson Effect, Wiley, New York, 1982.
Section 12.indb 71
12-71 68. D. H. Douglass, Ed., Superconductivity in d- and f-Band Metals, Plenum Press, New York, 1976. 69. D. M. Ginsberg, Ed., Physical Properties of High Temperature Superconductors, (Volume II, 1990; Volume III, 1992; Volume V, 1996), World Scientific, Singapore. 70. T. Ishiguro and K. Yamji, Organic Superconductors, Springer-Verlag, Berlin, 1990. 71. Sh. Okada, K. Shimizu, T. C. Kobayashi, K. Amaya, and Sh. Endo., J. Phys. Soc. Jpn., 65, 1924, 1996. 72. A. Bourdillon and N. X. Tan Bourdillon, High Temperature Superconductors: Processing and Science, Academic Press, 1994. 73. J. M. Williams, J. R. Ferraro, R. J. Thorn, K. Carlson, U. Geiser, H. H. Wang, A. M. Kini, and M.-H. Whangbo, Organic Superconductors (Including Fullerenes): Synthesis, Structure, Properties, and Theory, Prentice–Hall, 1992. 74. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London), 410, 63, 2001. 75. Y. Boguslavsky, G. K. Perkins, X. Qi, L. F. Cohen, and A. D. Caplin, Nature (London), 410, 563, 2001. 76. B. Q. Fu, Y. Feng, G. Yan, Y. Zhao, A. K. Pradhan, C. H. Cheng, P. Ji, X. H. Liu, C. F. Liu, L. Zhou, and K. F. Yau, J. Appl. Phys., 92, 7341, 2002.
4/28/05 1:57:00 PM
HIGH TEMPERATURE SUPERCONDUCTORS C. N. R. Rao and A. K. Raychaudhuri The following tables give properties of a number of high temperature superconductors. Table 1 lists the crystal structure (space group and lattice constants) and the critical transition temperature Tc for the more important high temperature superconductors so far studied. Table 2 gives energy gap, critical current density, and penetration depth in the superconducting state. Table 3 gives electrical and thermal properties of some of these materials in the normal state. The tables were prepared in November 1992 and updated in November 1994.
References
2. Rao, C. N .R., Ed., Chemistry of High-Temperature Superconductors, World Scientific, Singapore, 1991. 3. Shackelford, J. F., The CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, 1992, 98–99 and 122–123. 4. Kaldis, E., Ed., Materials and Crystallographic Aspects of HTcSuperconductivity, Kluwer Academic Publ., Dordrecht, The Netherlands, 1992. 5. Malik, S. K. and Shah, S. S., Ed., Physical and Material Properties of High Temperature Superconductors, Nova Science Publ., Commack, N.Y., 1994. 6. Chmaissem, O. et. al., Physica, C230, 231–238, 1994. 7. Antipov, E. V. et. al., Physica, C215, 1–10, 1993.
1. Ginsburg, D. M., Ed., Physical Properties of High-Temperature Superconductors, Vols. I–III, World Scientific, Singapore, 1989–1992.
TABLE 1. Structural Parameters and Approximate Tc Values of High-Temperature Superconductors Material
La2CuO4+δ La2-xSrx(Bax)CuO4 La2Ca1-xSrxCu2O6 YBa2Cu3O7 YBa2Cu4O8 Y2Ba4Cu7O15 Bi2Sr2CuO6 Bi2CaSr2Cu2O8 Bi2Ca2Sr2Cu3O10 Bi2Sr2(Ln1-xCex)2Cu2O10 Tl2Ba2CuO6 Tl2CaBa2Cu2O8 Tl2Ca2Ba2Cu3O10 Tl(BaLa)CuO5 Tl(SrLa)CuO5 (Tl0.5Pb0.5)Sr2CuO5 TlCaBa2Cu2O7 (Tl0.5Pb0.5)CaSr2Cu2O7 TlSr2Y0.5Ca0.5Cu2O7 TlCa2Ba2Cu3O8 (Tl0.5Pb0.5)Sr2Ca2Cu3O9 TlBa2(La1-xCex)2Cu2O9 Pb2Sr2La0.5Ca0.5Cu3O8 Pb2(Sr,La)2Cu2O6 (Pb,Cu)Sr2(La,Ca)Cu2O7 (Pb,Cu)(Sr,Eu)(Eu,Ce)Cu2Ox Nd2-xCexCuO4 Ca1-xSrxCuO2 Sr1-xNdxCuO2 Ba0.6K0.4BiO3 Rb2CsC60 NdBa2Cu3O7 SmBaSrCu3O7 EuBaSrCu3O7 GdBaSrCu3O7 DyBaSrCu3O7 HoBaSrCu3O7 ErBaSrCu3O7 (multiphase) TmBaSrCu3O7 (multiphase) YBaSrCu3O7 HgBa2CuO4 HgBa2CaCu2O6 (annealed in O2) HgBa2Ca2Cu3O8 HgBa2Ca3Cu4O10
Structure
Bmab; a = 5.355, b = 5.401, c = 13.15 Å I4/mmm; a = 3.779, c = 13.23 Å I4/mmm; a = 3.825, c = 19.42 Å Pmmm; a = 3.821, b = 3.885, c = 11.676 Å Ammm; a = 3.84, b = 3.87, c = 27.24 Å Ammm; a = 3.851, b = 3.869, c = 50.29 Å Amaa; a = 5.362, b = 5.374, c = 24.622 Å A2aa; a = 5.409, b = 5.420, c = 30.93 Å A2aa; a = 5.39, b = 5.40, c = 37 Å P4/mmm; a = 3.888, c = 17.28 Å A2aa; a = 5.468, b = 5.472, c = 23.238 Å; I4/mmm; a = 3.866, c = 23.239 Å I4/mmm; a = 3.855, c = 29.318 Å I4/mmm; a = 3.85, c = 35.9 Å P4/mmm; a = 3.83, c = 9.55 Å P4/mmm; a = 3.7, c = 9 Å P4/mmm; a = 3.738, c = 9.01 Å P4/mmm; a = 3.856, c = 12.754 Å P4/mmm; a = 3.80, c = 12.05 Å P4/mmm; a = 3.80, c = 12.10 Å P4/mmm; a = 3.853, c = 15.913 Å P4/mmm; a = 3.81, c = 15.23 Å I4/mmm; a = 3.8, c = 29.5 Å Cmmm; a = 5.435, b = 5.463, c = 15.817 Å P2212; a = 5.333, b = 5.421, c = 12.609 Å P4/mmm; a = 3.820, c = 11.826 Å I4/mmm; a = 3.837, c = 29.01 Å I4/mmm; a = 3.95, c = 12.07 Å P4/mmm; a = 3.902, c = 3.35 Å P4/mmm; a = 3.942, c = 3.393 Å Pm3m; a = 4.287 Å a = 14.493 Å Pmmm; a = 3.878, b = 3.913, c = 11.753 I4/mmm; a = 3.854, c = 11.62 I4/mmm; a = 3.845, c = 11.59 I4/mmm; a = 3.849, c = 11.53 Pmmm; a = 3.802, b = 3.850, c = 11.56 Pmmm; a = 3.794, b = 3.849, c = 11.55 Pmmm; a = 3.787, b = 3.846, c = 11.54 Pmmm; a = 3.784, b = 3.849, c = 11.55 Pmmm; a = 3.803, b = 3.842, c = 11.54 I4/mmm; a = 3.878, c = 9.507 I4/mmm; a = 3.862, c = 12.705 Pmmm; a = 3.85, c = 15.85 Pmmm; a = 3.854, c = 19.008
Tc/K (maximum value) 39 35 60 93 80 93 10 92 110 25 92 119 128 40 40 40 103 90 90 110 120 40 70 32 50 25 30 110 40 31 31 58 84 88 86 90 87 82 88 84 94 127 133 126
12-72
Section 12.indb 72
4/28/05 1:57:02 PM
High Temperature Superconductors
12-73 TABLE 2. Superconducting Properties
Jc (0): Critical current density extrapolated to 0 K λab: Penetration depth in a-b plane kB: Boltzmann constant Material Y Ba2Cu3O7 Bi2Sr2CaCu2O8 Tl2Ba3CaCu2O8 La2-xSrxCuO4, x = 0.15 Nd2-xCexCuO4
Form Single Crystal Single Crystal Ceramic Ceramic Ceramic
Energy gap (∆) 2∆ƒit/kBTc† 2∆pp/kBTc* 5–6 4–5 8–9 5.5–6.5 6–7 4–6 7–9 4–6 8 4–5
10–6 × Jc (0)/A cm–2 30 (film) 2 10 (film, 80 K)
λab/Å 1400 2700 2000
0.2 (film)
* Obtained from peak to peak value. † Obtained from fit to BCS-type relation.
ρab: ρc: +ve: –ve: nH: k: in plane: out of plane: Material YBa2Cu3O7 YBa2Cu4O8 Bi2Sr2CuO6 Bi2Sr2CaCu2O8 Tl2Ba2CuO6 Tl2Ba2Ca2Cu3O10 La2-xSrxCuO4, x = 0.12 La2-xSrxCuO4, x = 0.20 Nd2–xCexCuO4, x = 0.17 x = 0.15
TABLE 3. Normal State Properties
Resistivity in the a-b plane Resistivity along the c axis ρc has positive temperature coefficient of resistivity ρc has negative temperature coefficient of resistivity Hall density Thermal conductivity Along a-b plane Perpendicular to a-b plane ρab/µΩ cm ρc/mΩ cm Form 300 K 100 K 300 K Single crystal 110 35 5 Film 200–300 60–100 Single crystal 75 20 10 Film 100–200 20–50 Single crystal 300 150 5000 Single crystal 150 50 >1000 Single crystal 300–400 50–75 200–300 Ceramic ∗∗∗ ∗∗ Single crystal 900 350 200 Single crystal 400 200 80 Film 400 160 Single crystal 500 275 140–180 35 Film
dρc/dT
10–21 × nH/cm–3 300 K 100 K
+ve
11–16 5–9
4–6 2–3
–ve
14 22
17
–ve
6
5
–ve
4
3
+ve
3.1
2.5 ≈ 2*
+ve for T >225 K +ve for T >150 K
k/(mW/cm K) at 300 K in plane out of plane 120
3
60
8
50 (for x = 0.04)
20
2.5 10 8.4
6.3
53 32
17 11
250 (for x = 0.15)
* At 200 K ** ρ ~0.4 mΩ cm at 120 K *** ρ ~1.5 mΩ cm at 300 K
Section 12.indb 73
4/28/05 1:57:04 PM
ORGANIC SUPERCONDUCTORS H.P.R. Frederikse Although the vast majority of organic compounds are insulators, a small number of organic solids show considerable electrical conductivity. Some of these materials appear to be superconductors. The superconducting organics fall primarily into two groups: those containing fulvalenes (pentagonal rings containing sulfur or selenium) and those based on fullerenes, involving the nearly spherical cluster C60. The transition temperatures Tc of the fulvalene derivatives are shown in Table 1. The abbreviations of the various molecular groups are listed in Table 2 and their chemical structures are depicted in Figure 1. Most of the Tc’s are between 1 and 12 K. Several of the compounds only show superconductivity under pressure. The fullerenes are A3C60 compounds, where A represents a single or a combination of alkali atoms. The C60 cluster is shown in
Figure 2a, while Figure 2b illustrates how the alkali atoms fit into the A3C60 molecule to form the A15 crystallographic structure. Their superconducting transition temperatures range from 8 to 31.3 K (see Table 3).
References 1. Ishigura, T. and Yamaji, K., Organic Superconductors, Springer-Verlag, Berlin, 1990. 2. Williams, Jack M. et al., Organic Superconductors (Including Fullerenes), Prentice Hall, Englewood Cliffs, N.J., 1992. 3. The Fullerenes, Ed.: Krato, H. W., Fisher, J. E., and Cox, D. E., Pergammon Press, Oxford, 1993. 4. Schluter, M. et al., in The Fullerenes (Ref. 3), p. 303.
TABLE 1. Critical Pressure and Maximum Critical Temperature of Organic Superconductors Material (TMTSF)2PF6 (TMTSF)2AsF6 (TMTSF)2SbF6 (TMTSF)2TaF6 (TMTSF)2ClO4 (TMTSF)2ReO4 (TMTSF)2FSO3 (ET)4(ReO4)2 βL-(ET)2I3 βH-(ET)2I3 γ-(ET)3I2.5 ε-(ET)2I3(I8)0.5 α-(ET)2I3I2-doped αt-(ET)2I3 ε→β-(ET)2I3a θ-(ET)2I3 κ-(ET)2I3
Pc/kbar
6.5 9 11 12 0 9.5 5 4.5 0 0 0 0 0 0 0 0 0
Tc/K
1.2 1.3 0.4 1.4 1.4 1.3 3 2 1.4 8.1 2.5 2.5 3.3 8 6 3.6 3.6
Material β-(ET)2IBr2 β-(ET)2AuI2 (ET)4Hg2.89Cl8 (ET)4Hg2.89Br8 (ET)3Cl2(H2O)2 κ-(ET)2Cu(NCS)2 κ-(d-ET)2Cu(NCS)2 (DMET)2Au(CN)2 (DMET)2AuI2 (DMET)2AuBr2 (DMET)2AuCl2 (DMET)2I3 (DMET)2lBr2 (MDT-TTF)2AuI2 TTF[Ni(dmit)2]2 TTF[Pd(dmit)2]2 (CH3)4N[Ni(dmit)2]2
Pc/kbar
0 0 0 12 16 0 0 1.5 5 0 0 0 0 0 2 20 7
Tc/K
2.8 4.8 4.2 1.8 2 10.4 11.4 0.9 0.6 1.9 0.9 0.6 0.7 3.5 1.6b 6.5 5
Converted form ε-type to β-type by thermal treatment. For 7 kbar. From Ishigura, T. and Yamaji, K., Organic Superconductors, Springer-Verlag, Berlin, 1990. With permission. a
b
TABLE 2. List of Symbols and Abbreviations
TTF TMTSF BEDT-TTF or “ET” MDT-TTF DMET dmit Tc Pc
tetrathiafulvalene tetramethyltetraselenafulvalene bis(ethylenedithio)tetrathiafulvalene methylenedithiotetrathiafulvalene [dimethyl(ethylenedithio)diselenadithiafulvalene] 4,5-dimercapto-1,3-dithiole-2-thione transition temperature to superconducting state minimum pressure required for superconducting transition
12-74
Section 12.indb 74
4/28/05 1:57:06 PM
Organic Superconductors
12-75
H3C
Se
Se
CH3
S
S
H3C
Se
Se
CH3
S
S
TMTSF
TTF
Tetramethyltetraselenafulvalene H H H H
S
S
S
S
S
S
S
S
Tetrathiafulvalene
H H H H
Me
Se
S
S
Me
Se
S
S
BEDT − TTF or ET
DMET
Bis(ethylenedithio)tetrathiafulvalene Dimethyl(ethylenedithio)diselenadithiafulvalene
S
S
S
S S
S
S
S
C
C
S
S C S
S M
C
n–
S
S C S
C S
MDT − TTF
M=Ni, Pd, Pt M(dmit)22–
Methylenedithiotetrathiafulvalene
Ligand is 4,5-dimercapto-1.3-dithiole-2-thione
FIGURE 1. Structures of various donor molecules and acceptor species.
(001)
(010)
(100)
a b FIGURE 2. (a) C60 cluster placed in a fcc lattice. Each crystal axis crosses a double bond shared by two hexagons. (b) A hypothetical A3C60 with the A15 structure. The structure can be seen to be an ordered defect structure of A6C60.
Section 12.indb 75
4/28/05 1:57:10 PM
Organic Superconductors
12-76 TABLE 3. Unit Cell and Tc for FCC-A3 C60 Na2Rb0.5Cs0.5C60 Na2CsC60 No. 1a Na2CsC60 No. 2a K3C60 K2RbC60 Rb2KC60 No. 1a Rb2KC60 No. 2a Rb3C60 Rb2CsC60
Lattice parameter(s) (Ã&#x2026;) 14.148(3) 14.132(2) 14.176(9) 14.253(3) 14.299(2) 14.336(1) 14.364(5) 14.436(2) 14.493(2)
Tc/K 8.0 10.5 14.0 19.3 21.8 24.4 26.4 29.4 31.3
Samples labeled No. 1 and No. 2 have the same nominal composition. From Schluter, M et. al., The Fullerenes, Ed.: Krato, H.W., Fisher, J.E., and Cox, D.E., Pergamon Press, Oxford, 1993. With permission.
a
Section 12.indb 76
4/28/05 1:57:12 PM
PROPERTIES OF SEMICONDUCTORS L.I. Berger The term semiconductor is applied to a material in which electric current is carried by electrons or holes and whose electrical conductivity, when extremely pure, rises exponentially with temperature and may be increased from its low “intrinsic” value by many orders of magnitude by “doping” with electrically active impurities. Semiconductors are characterized by an energy gap in the allowed energies of electrons in the material which separates the normally filled energy levels of the valence band (where “missing” electrons behave like positively charged current carriers “holes”) and the conduction band (where electrons behave rather like a gas of free negatively charged carriers with an effective mass dependent on the material and the direction of the electrons’ motion). This energy gap depends on the nature of the material and varies with direction in anisotropic crystals. It is slightly dependent on temperature and pressure, and this depen-
dence is usually almost linear at normal temperatures and pressures. Data are presented in five tables. Table 1 lists the main crystallographic and semiconducting properties of a large number of semiconducting materials in three main categories: “Tetrahedral Semiconductors” in which every atom is tetrahedrally coordinated to four nearest neighbor atoms (or atomic sites) as for example in the diamond structure; “Octahedral Semiconductors” in which every atom is octahedrally coordinated to six nearest neighbor atoms—as for example the halite structure; and “Other Semiconductors.” Table 2 gives electrical, magnetic, and optical properties, while Tables 3 and 4 give more details on the semiconducting properties and band structures of the most common semiconductors. Table 5 lists semiconducting minerals with typical resistivity ranges.
TABLE 1. Physico-Chemical Properties of Semiconductors (Listed by Crystal Structure)
Substance
Average Lattice Molecular atomic parameters Density weight weight (Å, room temp.) (g/cm3)
Melting point (K)
Microhardness, N/mm2 (M-Mohs Scale)
Specific heat, J/kg·K (300 K)
Coefficient of Thermal Debye thermal linear conductivity temp. expansion [mW/cm·K (K) [10–6 K–1 (300K)] (300K)]
1.1. Tetrahedral (Adamantine) Semiconductors 1.1.1. Diamond Structure Elements (Strukturbericht symbol A4, Space Group Fd3m-O 7h ) C (Diamond)
12.01
3.56683
3.513
≈4713 (12.4 GPa) Transition to graphite > 980
10 (M)
471.5
Si
28.09
5.43072
2.329
1687
11270 7644
Ge α-Sn
72.64
5.65754
5.323
1211.35
118.71
6.4912
5.769
505.1 (Tr. 286.4)
2340
1.18
9900(I) 23200(IIA) 13600(IIB)
702
645
2.6
1240
321.9
374
5.8
640
213
230
5.4 (220 K)
–
1.1.2. Sphalerite (Zinc Blende) Structure Compounds (Strukturbericht symbol B3 Space Group F 4 3m-Td2 ) I-VII Compounds CuF
82.54
41.27
4.255
CuCl
98.99
49.49
5.4057
3.53
695
2.3 (M)
490
240
12.1
8.4
CuBr
143.45
71.73
5.6905
4.98
770
2.5 (M)
381
207
15.4
12.5
6.60427
5.63
878
181
19.2
16.8
4.2
Cul
190.45
95.23
AgBr
187.77
93.89
AgI
234.77
117.39
6.502
1181
192
276
6.473 >1570 (Tr. 410)
2.5 (M)
270
5.67
2.5 (M)
232
134
–2.5
831 II-VI Compounds
BeS
41.08
20.54
4.865
2.36
BeSe
87.97
43.99
5.139
4.315
BeTe
136.61
68.31
5.626
5.090
BePo
(2318)
5.838
7.3
ZnO
81.39
40.69
4.63
5.675 2248
5.0 (M)
494
416
2.9
234
ZnS
97.46
48.72
5.4093
4.079 2100 (Tr. 1295)
1780
472
530
6.36
251
(109)
dec.
12-77
12-78
Substance
Properties of Semiconductors
Average Lattice Molecular atomic parameters Density weight weight (Å, room temp.) (g/cm3)
Melting point (K)
Microhardness, N/mm2 (M-Mohs Scale)
Specific heat, J/kg·K (300 K)
Coefficient of Thermal Debye thermal linear conductivity temp. expansion [mW/cm·K (K) [10–6 K–1 (300K)] (300K)]
ZnSe
144.34
72.17
5.6676
5.42
1790
1350
339
400
7.2
140
ZnTe
192.99
96.5
6.101
6.34
1568
900
264
223
8.19
108
ZnPo
(274)
(137)
6.309
CdS
144.48
72.24
5.832
4.826
1750
1250
330
219
4.7
200
CdSe
191.37
95.68
6.05
5.674
1512
1300
255
181
3.8
90
CdTe
240.01
120.00
6.477
5.86
1365
600
205
200
4.9
58.5
CdPo
(321)
(161)
6.665
HgS
232.66
116.33
5.8517
7.73
1820
3 (M)
210
HgSe
279.55
139.78
6.084
8.25
1070
2.5 (M)
178
151
5.46
10
HgTe
328.19
164.10
6.4623
8.17
943
300
164
242
4.6
20
793
≈1900
III-V Compounds BN
24.82
12.41
3.615
3.49
3239
10 (M)
BP(L.T.)
41.78
20.87
4.538
2.9
1398 (dec)
37000
200
BAs
85.73
42.87
4.777
≈2300
19000
≈625
AlP
57.95
28.98
5.451
2.42
≈2100
5.5 (M)
588
AlAs
101.90
50.95
5.6622
3.81
2013
5000
417
3.5
840
AlSb
148.74
74.37
6.1355
4.218
1330
4000
292
4.2
600
GaP
100.70
50.35
5.4905
4.13
1750
9450
446
5.3
752
GaAs
144.64
72.32
5.65315
5.316
1510
7500
344
5.4
560
GaSb
191.48
95.74
6.0954
5.619
980
4480
265
6.1
270
InP
145.79
72.90
5.86875
4.787
1330
4100
321
4.6
800
InAs
189.74
94.87
6.05838
5.66
1215
3300
268
249
4.7
290
InSb
236.58
118.29
6.47877
5.775
798
2200
144
202
4.7
160
≈980
320
920
Other sphalerite structure compounds MnS
87.00
MnSe
133.90
66.95
5.82
40.10
20.1
4.348
3.21
3070
Ga2Se3
376.32
75.26
5.429
4.92
1020
3160
Ga2Te3
522.24
104.45
5.899
5.75
1063
2370
47
In2Te3(H.T.)
608.44
121.7
6.173
5.8
940
1660
69
MgGeP2
158.84
β-SiC (3-C SiC)
43.5
39.71
5.011 2.9
4.9
8.9
50
5.652
ZnSnP2
246.00
61.5
5.65
ZnSnAs2(H.T.)
333.90
82.38
5.851
5.53
1050
1200
ZnSnSb2
427.56
106.89
6.281
5.67
870
76 2500
76
1.1.3. Wurtzite (Zincite) Structure Compounds (Strukturbericht symbol B4, Space Group P 63mc-C46v) I-VII Compounds CuCl
99.0
49.5
3.91
6.42
703
CuBr
143.45
71.73
4.06
6.66
770
Cul
190.45
95.23
4.31
7.09
Agl
234.77
117.40
4.580
7.494
BeO
25.01
12.51
2.698
4.380 7.39
II-VI Compounds MgTe
151.9
2800
76.0
4.54
3.85
≈2800
ZnO
81.37
40.69
3.24950 5.2069
5.66
2250
600
ZnS
97.43
48.72
3.8140 6.2576
4.1
2100
460
Properties of Semiconductors
Substance
12-79
Average Lattice Molecular atomic parameters Density weight weight (Å, room temp.) (g/cm3) 6.99
Melting point (K)
Microhardness, N/mm2 (M-Mohs Scale)
Specific heat, J/kg·K (300 K)
Coefficient of Thermal Debye thermal linear conductivity temp. expansion [mW/cm·K (K) [10–6 K–1 (300K)] (300K)]
ZnTe
192.99
46.50
4.27
CdS
144.48
72.23
4.1348 6.7490
4.82
1748
1568 401
CdSe
191.37
95.68
4.299
7.010
5.66
1512
316
CdTe
240.01
120.00
4.57
7.47
BP(H.T.)
41.79
20.90
3.562
5.900
AlN
40.99
20.50
3.111
4.978
3.26
≈2500
823
GaN
83.73
41.87
3.190
5.189
6.10
1500
656
InN
128.83
64.42
3.533
5.693
6.88
1200
556
III-V Compounds
Other wurtzite structure compounds MnS
87.00
43.5
3.985
6.45
MnSe
133.90
66.95
4.12
6.72
40.10
20.1
3.076
5.048
MnTe
182.54
91.27
4.078
6.701
Al2S3
150.14
30.03
3.579
5.829
2.55
1400
Al2Se3
290.84
58.17
3.890
6.30
3.91
1250
SiC
3.248
–
1.1.4. Chalcopyrite Structure Compounds (Strukturbericht symbol E11 , Space Group I 4 2d-D12 24 ) I-III-VI2 Compounds CuAlS2
154.65
38.66
5.323
10.44
3.47
2500
CuAlSe2
248.45
62.11
5.617
10.92
4.70
2260
CuAlTe2
345.73
86.43
5.976
11.80
5.50
2550
CuGaS2
197.39
49.53
5.360
10.49
4.35
2300
CuGaSe2
291.19
72.80
5.618
11.01
5.56
1970
4200
CuGaTe2
388.47
97.12
6.013
11.93
5.99
2400
3500
CuInS2
242.49
60.62
5.528
11.08
4.75
1400
2550
CuInSe2
336.29
84.07
5.785
11.56
5.77
1600
2050
CuInTe2
433.57
108.39
6.179
12.365
6.10
1660
400
CuTlS2
322.05
83.01
5.580
11.17
6.32
CuTlSe2(L.T.)
425.85
106.46
5.844
11.65
7.11
900
CuFeS2
183.51
45.88
5.29
10.32
4.088
1135
CuFeSe2
277.31
69.33
CuLaS2
266.58
66.65
5.65
10.86
AgAlS2
198.97
49.74
5.707
10.28
3.94
AgAlSe2
292.77
73.19
5.968
10.77
5.07
1220
AgAlTe2
390.05
97.51
6.309
11.85
6.18
1000
AgGaS2
241.71
60.43
5.755
10.28
4.72
AgGaSe2
335.51
83.88
5.985
10.90
5.84
1120
AgGaTe2
432.79
6.301
11.96
6.05
990
AgInS2(L.T.)
286.87
71.70
5.828
11.19
5.00
AgInSe2
380.61
95.15
6.102
11.69
5.81
1053 965
108.2
275
195
5.4
42
6.9
27
6.6
37
7.1
49
850
4400 1800
212
10
2250 1850
AgInTe2
477.89
119.47
6.42
12.59
6.12
AgFeS2
227.83
56.96
5.66
10.30
4.53
ZnSiP2
155.40
38.85
5.400
10.441
3.39
1640
1100
ZnGeP2
199.90
49.98
5.465
10.771
4.17
1295
8100
ZnSnP2
246.00
61.5
CdSiP2
202.43
50.61
30 9.49, 0.69
II-IV-V2 Compounds 180
6500 5.678
10.431
4.00
≈1470
10500
282
12-80
Substance
Properties of Semiconductors
Average Lattice Molecular atomic parameters Density weight weight (Å, room temp.) (g/cm3)
CdGeP2
246.94
61.74
5.741
10.775
CdSnP2
243.03
73.26
5.900
11.518
ZnSiAs2
242.20
60.55
5.61
10.88
ZnGeAs2
287.80
71.95
5.672
ZnSnAs2
333.90
83.48
CdSiAs2
290.34
72.58
5.884
CdGeAs2
334.83
83.71
5.9427 11.217 2
CdSnAs2
380.93
95.23
6.0944 11.918 2
Melting point (K)
4.48
Microhardness, N/mm2 (M-Mohs Scale)
Specific heat, J/kg·K (300 K)
Coefficient of Thermal Debye thermal linear conductivity temp. expansion [mW/cm·K (K) [10–6 K–1 (300K)] (300K)]
1049
5650
840
5000
4.70
1311
9200
11.153
5.32
1150
5.8515 11.704
5.53
1048 >1120
6850
5.60
938
4700
48
5.72
880
3450
40
10.882
110 195
140
6800
263
110
4550
271
150
1.1.5. Other Ternary Semiconductors with Tetrahedral Coordination I2-IV-VI3 Compounds Cu2SiS3(H.T.)
251.36
41.89
Cu2SiS3(L.T.)
3.684
6.004
3.81
5.290
10.156
3.63
1200
23
Cu2SiTe3
537.98
89.66
5.93
5.47
Cu2GeS3(H.T.)
295.88
49.31
5.317
4.45
5.327
5.215
4.46
Cu2GeSe3
436.56
72.76
5.589
5.485
5.57
Cu2GeTe3
582.51
97.09
5.958
5.935
5.92
Cu2SnS3
341.98
57.00
5.436
5.02
1110
2770
440
214
7.8
CuSnSe3
482.66
80.44
5.687
5.94
960
2510
310
148
8.9
Cu2SnTe3
628.61
104.77
6.048
6.51
680
1970
Ag2GeSe3
525.21
87.54
Ag2SnSe3
571.31
95.22
Ag2GeTe3
671.13
111.86
Ag2SnTe3
717.23
119.54
Cu3PS4
349.85
40.73
7.44
Cu3AsS4
393.79
49.22
6.43
6.14
4.37
931
Cu3AsSe4
581.37
72.67
5.570
10.957
5.61
733
Cu3SbS4
440.64
55.08
5.38
16.76
4.90
830
Cu3SbSe4
628.22
78.53
5.654
11.256
6.0
700
CuSi2P3
212.64
35.44
5.25
CuGe2P3
301.65
50.28
5.375
AgGe2P3
345.97
57.66
Cu2GeS3(L.T.)
1210
4550
510
254
7.2
1030
3840
340
168
8.4
2890
12 24 130 28 35 144
810 600 I3-V -VI4-Compounds 6.19 3.2
30.2
169
9.5
19
131
12.4
I-IV2-V3 Compounds 4.318
1113
8500
1015
6150
429
–
1.1.6. “Defect Chalcopyrite” Structure Compounds (Strukturbericht symbol E3, Space Group I 4 -S24 ) ZnAl2Se4
435.18
62.17
5.503
10.90
4.37
ZnAl2Te4(?)
629.74
84.96
5.904
12.05
4.95
ZnGa2S4(?)
333.06
47.58
5.274
10.44
3.80
ZnGa2Se4(?)
520.66
74.38
5.496
10.99
5.21
ZnGa2Te4(?)
715.22
102.17
5.937
11.87
5.67
ZnIn2Se4
610.86
87.27
5.711
11.42
5.44
1250
ZnIn2Te4
805.42
115.06
6.122
12.24
5.83
1075
CdAl2S4
294.61
42.09
5.564
10.32
3.06
CdAl2Se4
482.21
68.89
5.747
10.68
4.54
CdAl2Te4(?)
676.77
97.68
6.011
12.21
5.10
8.21
37.6
14.6
Properties of Semiconductors
Substance
12-81
Average Lattice Molecular atomic parameters Density weight weight (Å, room temp.) (g/cm3)
CdGa2S4
380.09
54.30
5.577
10.08
4.03
CdGa2Se4
567.69
81.10
5.743
10.73
5.32
CdGa2Te4
762.25
108.89
6.093
11.81
5.77
CdIn2Te4
852.45
121.78
6.205
12.41
5.9
HgAl2S4
382.79
54.68
5.488
10.26
4.11
Melting point (K)
Microhardness, N/mm2 (M-Mohs Scale)
Specific heat, J/kg·K (300 K)
Coefficient of Thermal Debye thermal linear conductivity temp. expansion [mW/cm·K (K) [10–6 K–1 (300K)] (300K)]
1060
HgAl2Se4
570.39
82.48
5.708
10.74
5.05
HgAl2Te4(?)
764.48
109.28
6.004
12.11
5.81
HgGa2S4
468.27
66.90
5.507
10.23
5.00
HgGa2Se4
655.87
93.70
5.715
10.78
6.18
HgIn2Se4
746.07
106.58
5.764
11.80
6.3
1100
HgIn2Te4(?)
940.63
134.38
6.186
12.37
6.3
980
3.21
3070
1.1.7. Other Adamantine Compounds α−SiC
40.10
20.10
Hg5Ga2Te8
2163.19
144.21
Hg5In2Te8
2253.39
150.23
Cdln2Se4
657.89
93.98
3.0817 15.12 6.235 6.328 a = c = 5.823
1.2. Octahedral Semiconductors 1.2.1. Halite Structure Semiconductors (Strukturbericht symbol B1, Space Group Fm3m-O5h) GeTe
200.21
100.10
5.98
SnSe
197.67
98.83
6.020
6.14
SnTe
246.31
123.15
6.313
6.45
1080 (max)
91
PbS
239.3
119.63
5.9362
7.61
1390
23
PbSe
286.2
143.08
6.1243
8.15
1340
17
PbTe
334.8
167.4
6.454
8.16
1180
23
7.98
880
1133
1.2.2. Selected Other Binary Halites BiSe
287.94
143.97
5.99
BiTe
336.58
168.29
6.47
EuSe
230.92
115.46
6.191
2300
GdSe
236.21
118.11
5.771
2400
NiO
74.69
37.35
4.1684
CdO
128.41
64.21
4.6953
SrS
119.69
59.84
6.0199
6.6
2.4
2260 1700
3.643
7
3000
1.3. Other Semiconductors 1.3.1. Antifluorite Structure Compounds (Fm3m–O5h ) Mg2Si
76.70
25.57
6.338
1.88
1375
11.5
Mg2Ge
121.22
40.4
6.380
3.08
1388
15.0
Mg2Sn
167.32
55.77
6.765
3.53
1051
9.9
Mg2Pb
225.81
85.27
6.836
5.1
823
10.0
92
1.3.2. Tetradymite Structure Compounds (R3m–D53d) Sb2Te3
626.3
125.26
4.25
30.3
6.44
Bi2Se3
654.84
130.97
4.14
28.7
7.51
895 979
167
Bi2Te3
800.76
160.15
4.38
30.45
7.73
858
155
24 16
30
12-82
Properties of Semiconductors
Substance
Average Lattice Molecular atomic parameters Density weight weight (Å, room temp.) (g/cm3)
Melting point (K)
Microhardness, N/mm2 (M-Mohs Scale)
Specific heat, J/kg·K (300 K)
Coefficient of Thermal Debye thermal linear conductivity temp. expansion [mW/cm·K (K) [10–6 K–1 (300K)] (300K)]
1.3.3. Skutterudite Structure Compounds (Im3–T5h) CoP3
151.85
37.96
7.7073
CoAs3
286.70
71.65
8.2060
>1270
CoSb3
424.18
106.05
9.0385
NiAs3
283.45
70.86
8.330
RhP3
195.83
48.96
7.9951
>1470
RhAs3
327.67
81.92
8.4427
>1270
RhSb3
468.16
117.04
9.2322
1170
IrP3
285.14
71.29
8.0151
7.36
>1470
IrAs3
416.98
104.25
8.4673
9.12
>1470
IrSb3
557.47
139.37
9.2533
9.35
1170
5.786
6.60
910
10.5
6.078
7.12
830
86
6.73
1230 1123
307
50
6.43 100
90 303
1.3.4. Selected Multinary Compounds AgSbSe2
387.54
96.88
AgSbTe2 (or Ag19Sb29Te52)
484.82
AgBiS2(H.T.)
380.97
95.24
5.648 5.82
121.2
AgBiSe2(H.T.)
474.77
118.69
AgBiTe2(H.T.)
572.05
143.01
6.155
Cu2CdSnS4
486.43
60.80
5.586
10.83
1.3.5. Some Elemental Semiconductors B
10.81
4.91
Se(gray)
78.96
4.36
12.6 4.95
2.34
2348
4.81
493
9.5 (M) 350
1277
1370
292.6
8.3
600
(||C) 17.89
(||C) 45.2
(⊥C) 74.09 Te
127.60
4.45
5.91
6.23
723
196.5
(⊥C) 13.1
16.8
(||C) 33.8 (⊥C) 19.7
TABLE 2. Basic Thermodynamic, Electrical, and Magnetic Properties of Semiconductors (Listed by Crystal Structure)
Substance
Miniumum Heat of Atomic room formation Volume Static magnetic temperature [kJ/mol compressibility dielectric susceptibility Index of energy gap (300K)] (10–10m2/N) constant (10–6 cgs) refraction (eV)
Mobility (room temp.) (cm2/V·s)
Breakdown voltage kV/mm
Electrons
Holes
Optical transition
5.4
1800
1400
i*
500
1.12
1900
500
i
30
0.67
3800
1820
i
0.0; 0.8
2500
2400
Remarks
2.1. Adamantine Semiconductors 2.1.1. Diamond Structure Elements (Strukturbericht symbol A4, Space Group Fd 3m–O7h) C
714.4
Si
324
Ge
291
α-Sn
267.5
18
5.7
–5.88
0.306
11.9
–3.9
0.768
16
–0.12
24
2.419 (589 nm) 3.49 (589 nm) 3.99 (589 nm) 2.75 (589 nm)
2.1.2. Sphalerite (Zinc Blende) Structure Compounds (Strukturbericht symbol B3 Space Group F 4 3m–T 2d) I-VII Compounds CuF CuCl 481 0.26 7.9 1.93 3.17
d
Nantokite
Properties of Semiconductors
Substance
12-83
Miniumum Heat of Atomic room formation Volume Static magnetic temperature [kJ/mol compressibility dielectric susceptibility Index of energy gap (300K)] (10–10m2/N) constant (10–6 cgs) refraction (eV)
CuBr Cul AgBr AgI BeS BeSe BeTe BePo ZnO ZnS ZnSe ZnTe ZnP CdS CdSe CdTe CdPo HgS HgSe HgTe
481 439 486 389
0.26 0.27 0.41
7.9 6.5 12.4 10
477
8.9
422 376
9.2 10.4
2.12 2.91 2.346 2.95 2.253 2.50 2.22 2.22 II-VI Compounds 4.17 3.61 1.45
–9.9
Mobility (room temp.) (cm2/V·s) Electrons
Holes
Optical transition
4000 30
d d i d
20
i i d
5(400˚C) d
2.356
3.54
180
2.89 3.56
2.58 2.26
540 340
28 100
Breakdown voltage kV/mm
Remarks
Marshite Bromirite Miersite
See 2.1.3. See also 2.1.3.
d d See 2.1.3. See 2.1.3.
339
7.2
2.50
1.44
1200
2.85 247 242
BN 815 BP(L.T.) BAs AlP AlAs 627 AlSb 585 0.571 GaP 635 0.110 GaAs 535 0.771 GaSb 493 0.457 InP 560 0.735 InAs 477 0.549 InSb 447 0.442 * i = indirect, d = direct, s = semimetal.
10.9 11 11.1 13.2 15.7 12.4 14.6 17.7
–13.8 –16.2 –14.2 –22.8 –27.7 –32.9
50
250
2.10 (α) –0.06 III-V Compounds 4.6 ≈2.1 ≈1.5 2.45 2.16 3.2 1.60 3.2 2.24 3.30 1.35 3.8 0.67 3.1 1.27 3.5 0.36 3.96 0.163
20000 25000
d ≈1.5 350
500 80 1200 200–400 300 8800 4000 4600 33000 78000
d
s s
Borazone Ignites 470K
70
420 550 150 400 1400 150 460 750
Metacinnabarite Tiemannite Coloradoite
i i i i d d d d d
Other sphalerite structure compounds MnS
See also 2.1.3. See also 2.1.3.
MnSe β-SiC Ga2Te3 271 In2Te3(H.T.) 198 MgGeP2 ZnSnP2 ZnSnAs2(H. T.) ZnSnSb2
2.697 –13.5 –13.6
2.3 1.35 1.04
4000 50 50
2.1 ≈0.7 0.4
2.1.3. Wurtzite (Zincite) Structure Compounds (Strukturbericht symbol B4, Space Group P 63 mc-C 46v) I-VII Compounds CuCl CuBr CuI AgI 2.63 II-VI Compounds BeO MgTe ZnO –350 3.2 180 ZnS –206 3.67 ZnTe –163
El–Td12 Same Same Same
Iodargirite
12-84
Substance
Properties of Semiconductors
Miniumum Heat of Atomic room formation Volume Static magnetic temperature [kJ/mol compressibility dielectric susceptibility Index of energy gap (300K)] (10–10m2/N) constant (10–6cgs) refraction (eV)
CdS CdSe CdTe
8.45; 9.12
BP(H.T.) AlN GaN InN MnS MnSe SiC MnTe Al2S3 Al2Se3
Mobility (room temp.) (cm2/V·s) Electrons
Holes
350 900 650
40 50
2.32
2.42 1.74 1.50 III-V Compounds
Optical transition
d d
Breakdown voltage kV/mm
Remarks
Greenockide Cadmoselite
6.02 3.34 2.0 Other wurtzite structure compounds
2.654 ≈1.0 4.1 3.1
426 367
2.1.4 Chalcopyrite Structure Compounds (Strukturbericht symbol E11, Space Group I 4 2d-D 12 2d ) I-III-VI2 Compounds CuAlS2 0.106 2.5 CuAlSe2 2.67 CuAlTe2 0.88 CuCaS2 0.106 2.38 CuGaSe2 0.141 0.96, 1.63 CuGaTe2 0.227 0.82, 1.0 CuInS2 0.141 1.2 CuInSe2 0.187 0.86, 0.92 CuInTe2 0.278 0.95 CuTlS2 CuTlSe2 1.07 (L.T.) CuFeS2 0.53 CuFeSe2 0.16 CuLaS2 AgAlS2 AgAlSe2 0.7 AgAlTe2 0.56 AgGaS2 0.150 1.66 AgGaSe2 0.182 1.1 0.280 1.9 AgGaTe2 AglnS2 0.185 1.18 (L.T.) AgInSe2 0.238 0.96, 0.52 AgInTe2 0.338 AgFeS2 II-IV-V2 Compounds ZnSiP2 312 2.3 1000 ZnGeP2 293 2.2 ZnSnP2 275 1.45 CdSiP2 0.103 2.2 1000 CdGeP2 289 1.8 CdSnP2 270 1.5 ZnSiAs2 290 1.7 ZnGeAs2 271 –14.4 0.85 ZnSnAs2 252 –18.4 0.65 CdSiAs2 CdGeAs2
266
0.143
CdSnAs2
247
13.7
Chalcopyrite
50 300
Disorders at 910 K Disorders at 903 K
–23.4
1.6 0.53
70
25
–21.5
0.26
22000
250
Properties of Semiconductors
Substance
12-85
Miniumum Heat of Atomic room formation Volume Static magnetic temperature [kJ/mol compressibility dielectric susceptibility Index of energy gap (300K)] (10–10m2/N) constant (10–6 cgs) refraction (eV)
2.1.5. Other Ternary Semiconductors with Tetrahedral Coordination II2-IV-VI3 Compounds Cu2SiS3 (H.T.) Cu2SiS3 (L.T.) Cu2SiTe3 Cu2GeS3 –18.7 (H.T.) Cu2GeS3 (L.T.) Cu2GeSe3 211.5 –21.3 0.94 Cu2GeTe3 190.2 –23.4 Cu2SnS3 –18.2 0.91 CuSnSe3 –21.0 0.66 Cu2SnTe3 –28.4 –29.6 0.91 (77K) Ag2GeSe3 Ag2SnSe3 –29.5 0.81 Ag2GeTe3 –31.4 0.25 Ag2SnTe3 –31.0 0.08 II3-V-VI4 Compounds Cu3PS4 Cu3AsS4 269.6 –15.8 1.24 Cu3AsSe4 161.3 –13.1 0.88 Cu3SbS4 –8.3 0.74 Cu3SbSe4 127.1 –20.5 0.31 II-IV2-V3 Compounds CuSi2P3 CuGe2P3 0.12 0.90 AgGe2P3
Mobility (room temp.) (cm2/V·s) Electrons
Holes
Optical transition
Breakdown voltage kV/mm
Remarks
Wurtzite Tetragonal Cubic Cubic 360
Tetragonal
238
Same Same Cubic Cubic Cubic
405 870
Enargite Famatinite Famatinite
El El
2.1.6. “Defect Chalcopyrite” Structure Compounds (Strukturbericht symbol E3, Space Group I 4-S24) ZnAl2Se4 ZnAl2Te4(?) ZnGa2S4 ≈3.4 (?) ZnGa2Se4(?) ≈2.2 ZnGa2Te4(?) 1.35 ZnIn2Se4 206 1.82 35 ZnIn2Te4 198 1.2 CdAl2S4 CdAl2Se4 CdAl2Te4(?) CdGa2S4 256 3.44 60 CdGa2Se4 216 2.43 33 CdGa2Te4 Cdln2Te4 195 (1.26 or 0.9) 4000 HgAl2S4 HgAl2Se4 HgAl2Te4(?) HgGa2S4 249 2.84 HgGa2Se4 204 1.95 400 HgIn2Se4 196 0.6 290 HgIn2Te4(?) 188 0.86 200 2.1.7. Other Adamantine Compounds α−SiC Hg5Ga2Te8
10.2
–6.4
2.67
2.86
400
Hg5ln2Te8
0.7
2000
Cdln2Se4
1.55
6H structure B3 with superlattice B3 with superlattice
12-86
Substance
Properties of Semiconductors Miniumum Heat of Atomic room formation Volume Static magnetic temperature [kJ/mol compressibility dielectric susceptibility Index of energy gap (300K)] (10–10m2/N) constant (10–6 cgs) refraction (eV)
Mobility (room temp.) (cm2/V·s) Electrons
Holes
Optical transition
Breakdown voltage kV/mm
Remarks
2.2. Octahedral Semiconductors 2.2.1. Halite Structure Semiconductors (Strukturbericht symbol B1, Space Group Fm3m-O 5h) GeTe SnSe SnTe PbS 435 0.5 600 PbSe 393 161 0.37 1000 PbTe 393 280 0.26 1600 360 0.25 2.2.2. Selected Other Binary Halites BiSe BiTe EuSe GdSe NiO CdO 531 SrS
600 900 600
Altaite
0.4 1.8 2.0 or 3.7 2.5 4.1
4 100
2.3.1. Antifluorite Structure Compounds (Fm3m-O 5h ) Mg2Si 79.08 Mg2Ge Mg2Sn 76.57 Mg2Pb 52.72
0.77 0.74 0.36 0.1
405 520 320
2.3.2. Tetradymite Structure Compounds (R3m-D53d ) Sb2Te3 Bi2Se3 Bi2Te3
0.3 0.35 0.21
600 1140
0.43 0.69 0.63
70
2.3. Other Semiconductors 70 110 260
360 680
R3m (166)
5 h
2.3.3. Skutterudite Structure Compounds (Im3-T ) CoP3 CoAs3 CoSb3 RhP3 RhAs3 RhSb3 IrSb3
0.85 0.80 1.18
2.3.4. Selected Multinary Compounds AgSbSe2 AgSbTe2 (orAg19Sb29 Te52) AgBiS2 (H.T.) AgBiSe2 (H.T.) AgBiTe2 (H.T.) Cu2CdSnS4 2.3.5. Some Elemental Semiconductors B 397.1 Se(gray) Te
~4000 ~3000 700 ~3000 ~7000 1500
0.58 0.7, 0.27
–6.7 6.6 –22.1 (0.1 GHz) –39.5
1.16
<2
3.4 2.5
1.55 1.5
10
3.3
0.33
1700
5 1200
P3121(152) Same
Properties of Semiconductors
12-87 TABLE 3. Semiconducting Properties of Selected Materials
Minimum energy gap (eV) Substance
R.T.
0K
dEg/dT × 104 eV/˚C
dEg/dP × 106 eV·cm2/ kg
Si Ge α−Sn Te
1.107 0.67 0.08 0.33
1.153 0.744 0.094
–2.3 –3.7 –0.5
–2.0 +7.3
AlAs AlSb GaP GaAs GaSb InP InAs InSb
2.2 1.6 2.24 1.35 0.67 1.27 0.36 0.165
2.3 1.7 2.40 1.53 0.78 1.41 0.43 0.23
–3.5 –5.4 –5.0 –3.5 –4.6 –2.8 –2.8
–1.6 –1.7 +9.4 +12 +4.6 +8 +15
ZnO ZnS ZnSe ZnTe CdO CdS CdSe GdTe HgSe HgTe
3.2 3.54 2.58 2.26 2.5 ± .1 2.4 1.74 1.44 0.30 0.15
2.80
–9.5 –5.3 –7.2
+0.6 +5.7 +6 +6
1.85 1.56
–6 –5 –4.6 –4.1
PbS PbSe PbTe
0.37 0.26 0.25
0.28 0.16 0.19
+4 +4 +4
ZnSb CdSb Bi2S3 Bi2Se3 Bi2Te3 Mg2Si Mg2Ge Mg2Sn Mg3Sb2 Zn3As2 Cd3As2 GaSe GaTe InSe TlSe CdSnAs2 Ga2Te2 α-In2Te2 β-In2Te2 Hg5In2Te8 SnO2
0.50 0.45 1.3 0.27 0.13
0.56 0.57
–5.4
0.21 0.93 0.55 2.05 1.66 1.8 0.57 0.23 1.1 1.1 1.0 0.5
+3.3 +8
–1
0.77 0.74 0.33 0.32
1.80
–0.95 –6.4 –9 –3.5
–3.8 –3.6 –3.9
1.55 1.2
–7
Density of states Electron mobility and temperature electron dependence effective mass μn (cm2/V·s) mda (mo) –x Elements 1.1 1900 2.6 0.55 3800 1.66 0.02 2500 1.65 0.08 1100 III-V Compounds 1200 0.09 200 1.5 0.35 300 1.5 0.068 9000 1.0 0.050 5000 2.0 0.067 5000 2.0 0.022 33,000 1.2 0.014 78,000 1.6 II-VI Compounds 0.38 180 1.5 180 540 340 0.1 120 0.165 400 0.13 650 1.0 0.14 1200 0.030 20,000 2.0 0.017 25,000 Halite Structure Compounds 0.16 800 0.3 1500 0.21 1600 Others 0.15 10 0.15 300 200 600 0.58 1200 1.68 0.46 400 2.5 280 2 0.37 320 20 10 1.1 0.046 100,000 0.88
Density of states hole effective Mass mdp (mn) 0.56 0.3 0.3 0.19
0.4 0.5 0.5 0.23 0.41 0.4
Hole mobility and temperature dependence μp (cm2/V·s) 500 1820 2400 560 420 500 150 500 1400 200 460 750
–x 2.3 2.33 2.0
1.8 1.5 2.1 0.9 2.4 2.3 2.1
5(400˚C) 28 100 0.8 0.6 0.35
50
0.5
350
0.1 0.34 0.14
1000 1500 750
1.07
2000 1100 675 510 70 110 260 82 10
2.2 2.2 2.2 1.5 1.5
1.95
20
0.3 0.05
14 900 30 25,000
0.6
20
1.5
50 5 11,000 78
1.1
1.7
–4.8 0.7
12-88
Properties of Semiconductors TABLE 4. Band Properties of Semiconductors
4.1. Data on Valence Bands of Semiconductors (Room Temperature) Band curvature effective mass (Expressed as fraction of free electron mass) Substance
Heavy holes
Light holes
“Split-off” band holes
Energy separation of “split-off” band (eV)
4.1.1. Semiconductors with Valence Band Maximum at the Center of the Brillouin Zone (“F”) Si 0.52 0.16 0.25 0.044 Ge 0.34 0.043 0.08 0.3 Sn 0.3 AlAs AlSb 0.4 0.7 GaP 0.13 GaAs 0.8 0.12 0.20 0.34 GaSb 0.23 0.06 0.7 InP 0.21 InAs 0.41 0.025 0.083 0.43 InSb 0.4 0.015 0.85 CdTe 0.35 HgTe 0.5 4.1.2. Semiconductors with Multiple Band Maxima Band curvature effective masses Number of equivalent Substance valleys and direction PbSe 4 “L” [111] PbTe 4 “L” [111] Bi2Te3 6
Longitudinal mL 0.095 0.27 0.207
Transverse mT 0.047 0.02 ~0.045
Measured (light) hole mobility (cm2/V·s) 500 1820 2400 550 100 400 1400 150 460 750 50 350
Anistrophy K = mL/mT 2.0 10 4.5
Measured (light) hole mobility (cm2/V·s) 1500 750 515
4.2. Data on Conduction Bands of Semiconductors (Room Temperature Data) 4.2.1. Single Valley Semiconductors Substance Energy gap (eV) Effective mass (mo) Mobility (cm2/V·s) Comments GaAs
1.35
0.067
8500
InP InAs InSb CdTe
1.27 0.36 0.165 1.44
0.067 0.022 0.014 0.11
5000 33,000 78,000 1000
3(or 6?) equivalent [100] valleys 0.36 eV above this maximum with a mobility of ~50. 3(or 6?) equivalent [100] valleys 0.4 eV above this minimum. Equivalent valleys ~1.0 eV above this minimum. 4(or 8?) equivalent [111] valleys 0.51 eV above this minimum.
4.2.2. Multivalley Semiconductors
Substance Si Ge GaSb PbSe PbTe Bi2Te3
Energy gap 1.107 0.67 0.67 0.26 0.25 0.13
Number of equivalent valleys and direction 6 in [100] “Δ” 4 in [111] at “L” as Ge (?) 4 in [111] at “L” 4 in [111] at “L” 6
Band curvature effective mass Longitudinal mL 0.00 1.588 ~1.0 0.085 0.21
Transverse mT 0.192 0.0815 ~0.2 0.05 0.029
Anisotropy K = mL/mT 4.7 19.5 ~5 1.7 5.5 ~0.05
TABLE 5. Resistivity of Semiconducting Minerals Mineral Diamond (C) Sulfides Argentite, Ag2S Bismuthinite, Bi2S3 Bornite, Fe2S3 · nCu2S Chalcocite, Cu2S Chalcopyrite, Fe2S3 · Cu2S Covellite, CuS Galena, PbS Haverite, MnS2 Marcasite, FeS2 Metacinnabarite, HgS Millerite, NiS Molybdenite, MoS2
ρ (ohm · m) 2.7 1.5 to 2.0 × 10–3 3 to 570 1.6 to 6000 × 10–6 80 to 100 × 10–6 150 to 9000 × 10–6 0.30 to 83 × 10–6 6.8 × 10–6 to 9.0 × 10–2 10 to 20 1 to 150 × 10–3 2 × 10–6 to 1 × 10–3 2 to 4 × 10–7 0.12 to 7.5
Mineral Pentlandite, (Fe, Ni)4S4 Pyrrhotite, Fe7S4 Pyrite, FeS2 Sphalerite, ZnS Antimony-sulfur compounds Berthierite, FeSb2S4 Boulangerite, Pb5Sb3S11 Cylindrite, Pb3Sn4Sb2S14 Franckeite, Pb5Sn3Sb2S14 Hauchecornite, Ni4(Bi, Sb)2S14 Jamesonite, Pb4FeSb6S14 Tetrahedrite, Cu3SbS3 Arsenic-sulfur compounds Arsenopyrite, FeAsS
ρ (ohm · m) 1 to 11 × 10–6 2 to 160 × 10–6 1.2 to 600 × 10–3 2.7 × 10–3 to 1.2 × 104 0.0083 to 2.0 2 × 103 to 4 × 104 2.5 to 60 1.2 to 4 1 to 83 × 10–6 0.020 to 0.15 0.30 to 30,000 20 to 300 × 10–6
Properties of Semiconductors Cobaltite, CoAsS Enargite, Cu3AsS4 Gersdorfite, NiAsS Glaucodote, (Co, Fe)AsS Antimonide Dyscrasite, Ag3Sb Arsenides Allemonite, SbAs3 Lollingite, FeAs2 Nicollite, NiAs Skutterudite, CoAs3 Smaltite, CoAs2 Tellurides Altaite, PbTe Calavarite, AuTe2 Coloradoite, HgTe
12-89 6.5 to 130 × 10–3 0.2 to 40 × 10–3 1 to 160 × 10–6 5 to 100 × 10–6 0.12 to 1.2 × 10–6 70 to 60,000 2 to 270 × 10–6 0.1 to 2 × 10–6 1 to 400 × 10–6 1 to 12 × 10–6 20 to 200 × 10−6 6 to 12 × 10−6 4 to 100 × 10–6
References 1. Beer, A. C., Galvanomagnetic Effects in Semiconductors, Academic Press, New York, 1963. 2. Goryunova, N. A., The Chemistry of Diamond-Like Semiconductors, The MIT Press, Cambridge, MA, 1965. 3. Abrikosov, N. Kh., Bankina, V. F., Poretskaya, L. E., Shelimova, L. E., and Skudnova, E.V., Semiconducting II-VI, IV-VI, and V-VI Compounds, Plenum Press, New York, 1969. 4. Berger, L. I. and Prochukhan, V. D., Ternary Diamond-Like Semiconductors, Cons. Bureau/Plenum Press, New York, 1969. 5. Shay, J. L. and Wernick, J. H., Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications, Pergammon Press, 1975. 6. Bergman, R., Thermal Conductivity in Solids, Clarendon, Oxford, 1976. 7. Handbook of Semiconductors, Vol. 1, Moss, T.S. and Paul, W., Eds., Band Theory and Transport Properties; Vol. 2, Moss, T.S. and Balkanski, M., Eds., Optical Properties of Solids; Vol. 3, Moss, T.S. and Keller, S.P., Eds., Materials Properties and Preparation, North Holland Publ. Co., Amsterdam, 1980. 8. Böer, K. W., Survey of Semiconductor Physics, Van Nostrand Reinhold, 1990. 9. Rowe, D. M., Ed., CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL, 1995. 10. Berger, L. I., Semiconductor Materials, CRC Press, Boca Raton, FL, 1997. 11. Glazov, V. M., Chizhevskaya, S.N., and Glagoleva, N.N., Liquid Semiconductors, Plenum Press, New York, 1969. 12. Phillips, J. C., Bonds and Bands in Semiconductors, Academic Press, New York, 1973. 13. Harrison, W. A., Electronic Structure and the Properties of Solids, Freeman Publ. House, San Francisco, 1980. 14. Balkanski, M., Ed., Optical Properties of Solids, North-Holland, Amsterdam, 1980.
Hessite, Ag2Te Nagyagite, Pb6Au(S,Te)14 Sylvanite, AgAuTe4 Oxides Braunite, Mn2O3 Cassiterite, SnO2 Cuprite, Cu2O Hollandite, (Ba, Na, K) Mn8O16 Ilmenite, FeTiO3 Magnetite, Fe3O4 Manganite, MnO · OH Melaconite, CuO Psilomelane, BaMn9O18 · 2H2O Pyrolusite, MnO2 Rutile, TiO2 Uraninite, UO2
4 to 100 × 10–6 20 to 80 × 10–6 4 to 20 × 10–6 0.16 to 1.0 4.5 × 10–4 to 10,000 10 to 50 2 to 100 × 10–3 0.001 to 4 52 × 10–6 0.018 to 0.5 6000 0.04 to 6000 0.007 to 30 29 to 910 1.5 to 200
15. Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, Hellwege, K.-H. and Madelung, O., Eds., Volumes 17 and 22, Springer Verlag, Berlin, 1984 (and further). 16. Shklovskii, B. L. and Efros, A.L., Electronic Processes in Doped Semiconductors, Springer Verlag, Berlin, 1984. 17. Cohen, M. L. and Chelikowsky, J. R., Electronic Structure and Optical Properties of Semiconductors, Springer Verlag, New York, 1988. 18. Glass, J.T., Messier, R.F., and Fujimori, N., Eds., Diamond, Silicon Carbide, and Related Wide Bandgap Semiconductors, MRS Symposia Proc. 1652, Mater. Res. Soc., Pittsburgh, 1990. 19. Palik, E., Ed., Handbook of Optical Constants of Solids II, Academic Press, New York, 1991. 20. Reed, M., Ed., Semiconductors and Semimetals, Volume 35, Academic Press, Boston, 1992. 21. Haug, H. and Koch, S. W., Quantum Theory of the Optical and Electronic Properties of Semiconductors, 2nd Edition, World Scientific, Singapore, 1993. 22. Lockwood, D. J., Ed., Proc. 22nd Intl. Conf. on the Physics of Semiconductors, Vancouver, 1994, World Scientific, Singapore, 1994. 23. Morelli, D. T., Caillat, T., Fleurial, J.-P., Borschchevsky, A., Vandersande, J., Chen, B., and Uher, C., Phys. Rev., B51, 9622, 1995. 24. Caillat, T., Borshchevsky, A., and Fleurial, J.-P., J. Appl. Phys., 80, 4442, 1996. 25. Fleurial, J.-P.,Caillat, T., and Borshchevsky, A., Proc. XVI Intl. Conf. Thermoelectrics, Dresden, Germany, August 26–29, 1997 (in print). 26. Borshchevsky, A. et al., U.S. Patents 5,610,366 (March 1977) and 5,831,286 (March 1998) 27. Jarrendahl, K. and Davis, R. F., Semiconductors and Semimetals, Vol. 52, Y.S. Park, Ed., 1998, pp. 1–20. 28. Bettini, M., Solid State Comm.,13, 599, 1973. 29. Chen, A. and Sher, A., Semiconductor Alloys, Physics and Material Engineering, Plenum Press, New York, 1995. 30. Holloway, P. H. and McGuire, G. E., Eds., Handbook of Compound Semiconductors, Noyes Publ., Park Ridge, NJ, 1995.
DIFFUSION DATA FOR SEMICONDUCTORS B. L. Sharma The diffusion coefficient D in many semiconductors may be expressed by an Arrhenius-type relation
Abbreviations used in the table are
D = Do exp(–Q/kT) where Do is a frequency factor, Q is the activation energy for diffusion, k is the Boltzmann constant, and T is the absolute temperature. This table lists Do and Q for various diffusants in common semiconductors.
AES – Auger Electron Spectroscopy DLTS – Deep Level Transient Spectroscopy SEM – Scanning Electron Microscopy SIMS – Secondary Ion Mass Spectrometry D(c) – Concentration Dependent Diffusion Coefficient Dmax – Maximum Diffusion Coefficient (f ) – Fast Diffusion Component (i) – Interstitial Diffusion Component (s) – Slow Diffusion Component () – Parallel to c Direction (⊥) – Perpendicular to c Direction
Semiconductor Si
Frequency factor, Do (cm2/s)
Activation energy, Q(eV)
Temperature range (°C)
Method of measurement
H
6 × 10–1
1.03
120–1207
Electrical and SIMS
1
Li Na
2.5 × 10–3 1.65 × 10–3
0.65 0.72
25–1350 530–800
2 3
K
1.1 × 10–3
0.76
740–800
Cu
4 × 10–2 4.7 × 10–3 2 × 10–3 2.4 × 10–4 2.75 × 10–3 (D ~ 10–7) (D ~ 6 × 10–14) 1 × 10–1 2.46 2.4 × 101 1.38 1.8 3.74 × 10–1 6 × 101 7.85 × 10–1 1.94 × 101 1.37 1.65 × 101 8 × 10–2 (D ~ 3.9 × 10–13) 2.5 × 10–7 7.5 × 10–9 4.2 × 10–12 2 × 10–3 8 × 10–3 2.8 × 10–5 1.45 × 10–2 3.3 × 10–1 1.54 × 102 1.6 × 103 3.5 × 10–1 2.5 × 103 7.55 × 103 3.2 × 101 2.7 × 10–3
1.0 0.43 (i) 1.6 0.39 (i) 2.05 (s) – – 1.4 3.59 3.87 3.41 3.2 3.39 3.89 3.63 3.86 3.7 3.9 3.2 – 1.74 1.2 (s) 0.13 (f ) 2.9 3.0 0.95 1.79 2.92 4.65 4.77 3.92 4.97 5.08 4.25 2.8
800–1100 300–700 1100–1350 700–1300
Electrical Electrical and flame photometry Electrical and flame photometry Radioactive Radioactive Radioactive Radioactive
1050 1100 980–1270 1100–1250 840–1250 1119–1390 1025–1175 1143–1393 900–1050 1180–1389 1150–1242 1244–1338 1105–1360 1100–1250 1050 1100–1280 730–1270
Electrical Electrical and SIMS Electrical Electrical Electrical Electrical Electrical Electrical Radioactive Electrical Radioactive Electrical Electrical Radioactive SIMS Electrical Radioactive
8 1 9 10 11 12 13 12 14 12 15 12 16 1 1 1 1
1100–1250 1100–1280 947–1097 950–1200 1070–1400 855–1175 1200–1400 855–1000 1030–1302 1100–1300 1050–1294 800–1200
Radioactive Radioactive Neutron activation DLTS Radioactive SIMS Radioactive Radioactive Radioactive SIMS Neutron activation Out Diffusion; SIMS
1 1 1 17 18 19 20 21 21 22 23 1
Diffusant
Ag Au Be Ca Zn B Al Ga In Tl Sc Ce Pr Pm Er Tm Yb Ti C Si (self ) Ge
Sn N
Ref.
3 4 5 6 7
12-92
Section 12.indb 92
4/28/05 1:57:17 PM
Diffusion Data for Semiconductors Semiconductor
Diffusant P
As
Sb Bi Cr Mo W O S Se Te Mn Fe Co Ni Ru
Ge
Rh Pd Pt Os Ir Li Na Cu
Ag Au Be Mg Zn Cd B Al Ga In Tl Si Ge (self ) Sn P As Sb
Section 12.indb 93
Frequency factor, Do (cm2/s)
12-93 Activation energy, Q(eV)
Temperature range (°C)
2.02 × 101 1.1 7.4 × 10–2 6.0 × 101 6.55 × 10–2 2.29 × 101 1.29 × 101 2.14 × 10–1 1.03 × 103 1.08 1 × 10–2 (D ~ 2 × 10–10) (D ~ 10–12) 7 × 10–2 1.4 × 10–1 5.95 × 10–3 9.5 × 10–1 5 × 10–1 6.9 × 10–4 1.3 × 10–3 2 × 10–3 2 × 10–3 (D ~ 5 × 10–7 – 5 × 10–6) (D ~ 10–6–10–4) 2.95 × 10–4 1.5 × 102 (D ~ 2 × 10–6) 4.2 × 10–2 1.3 × 10–3 9.1 × 10–3 3.95 × 10–1 1.9 × 10–4 4 × 10–2 4 × 10–3 4.4 × 10–2 4 × 10–2 2.25 × 102 5 × 10–1 (D ~ 8 × 10–9) 5
3.87 3.4 3.3 4.2 3.44 4.1 3.98 3.65 4.64 3.85 1 – – 2.44 2.53 1.83 2.6 3.34 0.63 0.68 0.69 0.47 –
1100–1250 900–1200 1130–1405 950–1350 1167–1394 900–1250 1190–1398 1190–1405 1220–1380 1190–1394 1100–1250 1000 1100 700–1250 700–1160 975–1200 1050–1250 900–1250 900–1200 30–1250 700–1300 800–1300 1000–1280
Electrical Radioactive Electrical Radioactive Electrical Electrical Radioactive Electrical Electrical Electrical Radioactive DLTS DLTS SIMS SIMS Radioactive Electrical SIMS Radioactive Radioactive Radioactive Radioactive Electrical
10 24 25 26 27 28 29 27 16 27 30 1 1 31 32 33 34 1 35 36 37 38 1
– 0.22 (i) 2.22 – 1.3 0.46 0.57 2.03 0.18 (i) 0.99 (s) 0.33 (i) 1.0 (i) 2.23 (s) 2.5 2.5 – 2.7
1000–1200 702–1320 800–1000 1280 950–1250 350–800 800–500 700–850 750–900 600–700 350–750 700–900 800–900 600–900 720–900 900 600–900
Electrical Nuclear Activation Electrical Electrical Electrical Electrical Electrical Radioactive Radioactive
39 1 1 40 41 42 43 44 45 5 46, 47 48 49 50 1
1.75 × 109 1.8 × 109 1.0 × 103 ~1.6 × 102 1.4 × 102 3.4 × 101 1.8 × 104 3.3 × 101 1.7 × 103 2.4 × 10–1 2.48 × 101 7.8 1.7 × 10–2 3.3 2.1 3.2 1.0 × 101
4.4 4.55 3.45 ~3.24 3.35 3.1 3.67 3.02 3.4 2.9 3.14 2.95 1.9 2.5 2.39 2.41 2.5
760–915 600–900 554–905 750–850 554–916 600–900 554–919 700–855 800–930 650–900 549–891 766–928 – 600–900 700–900 700–855 600–900
Radioactive Radioactive Radioactive Radioactive Electrical Electrical Radioactive and electrical Radioactive Electrical SIMS Electrical SIMS Electrical SIMS Radioactive Radioactive (γ) resonance Radioactive Radioactive Radioactive Electrical Electrical Radioactive Radioactive and electrical
Method of measurement
Ref.
51 52 51 53 54 55 51 56 57 58 59 60 61 45 51 62 57 51
4/28/05 1:57:18 PM
Diffusion Data for Semiconductors
12-94 Semiconductor
GaAs
Diffusant
Temperature range (°C)
3.3 4 × 10–1 (D ~ 10–9) (D ~ 10–10) 5.6 1.3 × 10–1 1.6 × 10–1 8 × 10–1 5.3 × 10–1
2.57 2.08 – – 2.43 1.08 1.12 0.9 1.0
650–850 – 920 920 750–900 750–900 750–850 670–900 250–500
Cu
3 × 10–2 6 × 10–2 1.5 × 10–3 4 × 10–4 1 × 10–3 7.3 × 10–6 4 × 10–5 1.5 × 101 2.5 × 10–1 1.3 × 10–3 5 × 10–2 (D ~ 5 × 10–14) (D ~ 4 × 10–18–10–14) 4 × 10–5 1 × 107 (D ~ 7 × 10–11) (D ~ 1.04 × 10–16) 1.1 × 10–1 1.6 × 10–5 6 × 10–4 1 × 10–5 (D ~ 10–12–10–10)
0.53 0.98 0.6 0.8 1.0 1.2 1.22 2.49 3.0 2.2 2.43 – 4.3 2.6 5.6 – – 2.5 2.06 2.5 2 2.9
100–500 450–750 800–1000 500–1150 740–1025 800–990 800–1200 600–980 750–1000 800–1100 868–1149 1100 850–1100 1025–1100 1125–1230 1000 825 850–1050 650–850 1060–1200 800–1000 800–1150
7 × 10–1 2.04 × 10–6 7.9 × 10–3 2 × 10–3 1.85 × 10–2 1.1 × 101 3 × 103 1.5 × 10–1 6.5 × 10–1 4.2 × 10–2 2.2 × 10–3 5 × 102 1.2 × 10–1 2.3 × 10–16 2.3 × 10–4
3.2 0.83 (f ) 1.7 (s) 2.2 1.1 2.6 2.95 4.16 3.5 2.49 1.8 2.32 2.5 2.64 1.0 1.9 (s)
– 750–1000 700–900 800–1100 700–900 1000–1300 750–900 1025–1200 1000–1150 850–1100 850–1150 750–1050 800–1000 750–1050 800–1000 527–657
1.2 × 10–1 4.7 × 10–3 (D ~ 2 × 10–13 – 1 × 10–11) 1.5 × 10–6 3.2 × 103 1.2 × 10–7 2.4 × 10–5 1.3 × 10–5 3.4 × 104 (D ~ 2.4 × 10–13 – 1.37 × 10–11)
0.7 (f ) 0.9 2 0.72 3.15 0.53 0.8 1.1 3.45 –
277–657 470–650 510–600 640–800 658–700 320–650 320–650 500–650 658–700 400–500
Cd Hg Al Ga (self ) In C Si Ge Sn P As (self ) Cr
O S Se Te Mn Fe Co Tm Li
Cu Zn Cd Ga (self ) In Sn Sb (self ) Se
Section 12.indb 94
Activation energy, Q(eV)
Bi O S Se Te Fe Co Ni Li
Ag Au Be Mg Zn
GaSb
Frequency factor, Do (cm2/s)
Method of measurement
Ref.
– Optical – – Radioactive Radioactive Radioactive Electrical Electrical and chemical Radioactive Ultrasonic Radioactive Radioactive Radioactive Electrical Electrical Radioactive Radioactive Radioactive Radioactive Radioactive AES Radioactive Radioactive Radioactive SIMS SIMS SIMS Radioactive Radioactive Reflectance measurements Radioactive SIMS
63 64 65 65 66 67 47 68
Chemical analysis Mass spectroscopy Radioactive Electrical Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Electrical and flame photometry
69 69 69 69 69 69 69 69 69 69 69 69
Radioactive Radioactive Electrical Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive
69 69 69 69 69 69 69 69 69
69 69 69 69 69 69 69 69 69 69 69 69 69 70 69 69 69 69 69 69 69 69 69 69 69
69
4/28/05 1:57:21 PM
Diffusion Data for Semiconductors Semiconductor
Activation energy, Q(eV)
Temperature range (°C)
3.8 × 10–4 5 × 10–2 5 × 102 – 8 20
1.20 1.9 (I) 2.3 (II) – 2.5 (I) 2.4 (II)
320–650 500–650 500–650 1000–1300 1050–1250 1100–1250
Be
(Dmax ~ 2.4 × 10–9– 8.5 × 10–8)
–
900–1000
Mg Zn Ge Cr S Mn
5 × 10–5 1.0 – 6.2 × 10–4 3.2 × 103 2.1 × 109 1.1 × 10–6 1.6 × 10–1 2.8 × 10–3 3.8 × 10–3 3.6 × 10–4 1.32 × 10–5 1.37 × 10–4 1.6 × 10–8 (D ~ 2 × 10–9– 4 × 10–8) 1.8 1.1 × 10–7 (D ~ 7 × 10–13– 2 × 10–10) 1 × 105 (D ~ 3 × 10–8)
1.4 2.1 – 1.2 4.7 4.7 0.9 2.3 2.9 0.69 0.59 0.48 0.73 0.3 – 1.9 0.72 – 3.85 –
700–1050 700–1300 900–1000 900–1130 1120–1305 T < 950 950–1130 980–1180 850–1100 600–900 500–900 600–820 600–900 750–900 700–900 700–900 700–900 450-650 830–990 550
7 × 1010 – 3.6 × 10-4 (D ~ 2 × 10–8) – 3 6.8 × 105 9 × 10–1 3.6 × 10–3 2.2 × 10–2 7.3 × 10–4 5.8 × 10–3 1.98 × 10–6 4.2 × 10–3 3.11 × 10–3 7.4 × 10–4 1.45 × 10–5 6 × 105 3.74 × 10–6 1.49 × 10–6 3 × 107 6.78 12.6 3.43 × 10–5 7 × 10–4 9 × 10–4 3 × 10–5 1 × 10–7 7 × 10–4 5 × 10–1
5.65 – 1.94 – 2.9 2 3.4 1.8 0.52 0.54 0.26 0.65 1.17 0.96 1.17 1.15 1.32 4.0 1.17 1.17 4.45 2.2 2.2 1.28 0.28 1.08 0.37 0.25 0.32 1.35
900–1000 600–900 585–708 550 650–750 600–950 600–700 600–950 342–875 525–890 450–900 600–900 600–900 600–900 600–900 650–900 650–850 740–900 600–900 600–900 740–900 600–900 600–900 600–900 0–210 200–500 230–490 440–510 140–510 362–508
Diffusant Te Fe
GaP
InP
Ag Au
Fe Co Cu Ag Au Zn Cd
In (self ) Sn P (self ) Cr S Se Mn Fe
InAs
Co Cu Ag Au Mg Zn
InSb
Cd Hg In (self ) Ge Sn As (self ) S Se Te Li Cu Ag Au Zn
Section 12.indb 95
Frequency factor, Do (cm2/s)
12-95 Method of measurement
Ref.
Radioactive Radioactive
69 69
Radioactive Radioactive Diffusion (I) A face and (II) B face Atomic absorption analysis Electrical Radioactive Radioactive Radioactive; ESR Radioactive Radioactive; ESR
69 69
Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Electrical Radioactive Radioactive Electrical Electrical Radioactive Etching and cathodoluminescence Radioactive Radioactive Electrical Cathodoluminescence SIMS Radioactive SIMS Radioactive Radioactive Radioactive Radioactive Radioactive Electrical Radioactive Electrical Radioactive Radioactive Radioactive Electrical Electrical Radioactive Electrical Electrical Electrical Electrical Radioactive Radioactive Radioactive Radioactive Radioactive
69 69 69 69 69 69 69 69 69 69 69 69
69 69 69 69 69 69 69
69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69
4/28/05 1:57:22 PM
Diffusion Data for Semiconductors
12-96 Semiconductor
Diffusant Cd Hg In (self ) Sn Pb Sb (self )
AlAs AlSb
ZnS
S Se Te Fe Co Ga Zn Cu Zn Cd Al (self ) Sb (self ) Cu
Au Zn (self )
Cd Al In S (self )
ZnSe
Se Mn Li Cu Ag Zn (self ) Cd Al Ga In S Se (self )
ZnTe
Ni Li
Zn (self )
CdS
Section 12.indb 96
Al In Te (self ) Li Na
Frequency factor, Do (cm2/s)
Activation energy, Q(eV)
Temperature range (°C)
– 1 × 10–5 1.3 × 10–4 4 × 10–6 6 × 10–7 1.8 × 1013 5.5 × 10–8 (D ~ 2.7 × 10–15) 5.35 × 10–4 3.1 × 1013 9 × 10–2 1.6 1.7 × 10–7 1 × 10–7 2.7 × 10–11 (D ~ 2 × 10–18– 10–15) (D ~ 9 × 10–11) 3.5 × 10–3 3.3 × 10–1 D(c) ~ 4 × 10–12– 3 × 10–10 2 1 2.6 × 10–3 4.3 × 10–4 9.75 × 10–3 1.75 × 10–4 3 × 10–4 1.5 × 104 1 × 1016 (D ~ 10–10) 5.69 × 10–4 3 × 101 2.16 × 104 8 × 10–5 (D ~ 5 × 10–13) 2.3 × 103 2.66 × 10–6 1 × 10–4 1.7 × 10–5 2.2 × 10–2 9.8 6.39 × 10–4 2.3 × 10–2 1.81 × 102 – (D ~ 2 × 10–12) (D ~ 8 × 10–12) 1.3 × 101 2.3 × 10–1 (D ~ 1.5 × 10–8– 1.7 × 10–7) 2.9 × 10–2
1.5 1.1 1.2 1.17 1.45 4.3 0.75 – 1.91 4.3 1.4 1.87 0.57 0.25 0.39 3.6 – 0.36 1.93 – 1.88 1.7 0.79 0.64 1.04 1.16 1.5 3.26 6.5 – 1.28 2.2 3.15 2.2 – 2.46 0.49 0.66 0.56 1.18 3.0 1.87 1.8 3.0 1.3 – – 2.5 2.7 – 1.22 (s)
355–455 250–500 360–500 425–500 400–500 475–517 390–512 500 400–500 475–517 360–500 380–500 300–500 440–510 420–500 850–1100 557 150–500 660–860 900 570–620 570–620 470–750 250–1200 400–800 500–800 925<T<940 940<T<1030 1030<T<1075 1100 800–1000 750–1000 600–800 740–1100 1070 500–800 950–980 400–800 200–570 400–800 760–1150 700–950 800–1100 900–1100 700–850 940 1060 860–1020 1000–1050 740–910 400–700
SIMS Radioactive Electrical Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Electrical Electrical Radioactive Radioactive Radioactive AES SEM Radioactive Radioactive Radioactive X-ray X-ray Radioactive Electroluminescence Luminescence Radioactive Radioactive
69 69 69 69 69 69 69 71 69 69 69 69 69 69 69 70 69 69 69 69 69 69 69 69 69 69 69
72 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69
1.7 × 10–4 2.34 1.4 × 101 – 4 2 × 104 3 × 10–6 (D ~ 3 × 10–7)
0.78 (f ) 2.56 2.69 2.0 1.96 3.8 0.68 –
Luminescence Luminescence Radioactive Radioactive Radioactive X-ray microprobe Radioactive Electrical Luminescence Radioactive Luminescence Radioactive Photoluminescence Luminescence Luminescence Electron probe – X-ray microprobe Radioactive Radioactive Luminescence Nuclear and chemical analysis
760–860 667–1077 700–1000 1100–1300 727–977 610–960 800
Radioactive Radioactive Electrical and optical Radioactive Radioactive Microhardness Radioactive
69 69 69 69 69 69 69
Method of measurement
Ref.
69
4/28/05 1:57:24 PM
Diffusion Data for Semiconductors Semiconductor
Diffusant
Radioactive Radioactive
69 69
700–1100 667–967 650–930
69 69
2.03 (⊥) 1.6 2.05 2.4 – 10.4 – – 10.9 – 0.53 1.5 1.25 (I) 2.18 (II)
Radioactive Optical and microprobe Radioactive, optical and microprobe
800–1100 800–900 750–1050 900 700–1000 800 1000 570–900 960 22–400 700–1000 600–900 600–900
69 69 69 69 69 69 69 69 69 69 69 69
(D ~ 5.3 × 10–12– 6 × 10–11) 2.6 × 103
– 1.55
900–1000 700–1000
(D ~ 1.5 × 10–10) 3.7 × 10–4 8.2 × 10–8 –
– 0.67 0.64 –
300 97–300 290–350 700–800
Au Cd (self )
6.7 × 101 1.26 3.26 × 102 1.58 × 101
2.0 2.07 2.67 (I) 2.44 (II)
600–1000 700–1000 650–900
In
8 × 10–2 1.17 × 102 6.48 × 10–4
1.61 2.21 (I) 1.15 (II)
650–1000 500–850
Sn P As O
8.3 × 10–2 (D ~ 1.2 × 10–10) – 5.6 × 10–9 6.0 × 10–10 1.7 × 10–4 8.54 × 10–7
2.2 – – 1.22 0.29 1.35 1.42 (I)
700–925 900 850 200–650 650–900 700–1000 600–900
Radioactive Radioactive Radioactive Radioactive Radioactive Electrical Radioactive Luminescence Photoluminescence Ultrasonic Radioactive Radioactive; (I) saturated Cd and (II) saturated Se pressure Radioactive Radioactive; saturated Se pressure Ion microprobe Radioactive Ion backscattering Electrical and photoluminescence Radioactive Radioactive Radioactive; (I) saturated Cd and (II) saturated Te pressure Radioactive Radioactive; (I) saturated Cd and (II) saturated Te pressure Radioactive Radioactive – Mass spectrometry
69
1.66 × 10–4 7.1 × 10–2 (D ~ 4 × 10–8)
1.38 (II) 1.6 0.77
500–800 520–800 900
Radioactive Radioactive; (I) saturated Cd and (II) saturated Te pressure Radioactive Radioactive
69 69
P S (self ) Se Te Cl I Ni Yb Ag Cd (self )
P Se (self ) Li Cu Ag
Se Te (self )
Cl Fe
Section 12.indb 97
1 × 101 6.5 × 10–4 1.6 × 10–2 – (D ~ 1.2 × 10–9) 1.3 × 10–7 (D ~ 3 × 10–10) (D ~ 5 × 10–12) 6.75 × 10–3 (D ~ 1.3 × 10–9) 2 × 10–4 1.6 × 10–3 6.3 × 10–2 4.12 × 10–2
Ref.
500–800 720–1000
Cd (self ) Ga In
0.76 1.05 0.72 1.2 (s) 0.8 (f ) 1.8 0.86 (s) 0.66 (f ) 2.0 – 2.3 ()
Method of measurement 69 69 69 69
Au Zn
1.5 × 10–3 1.2 × 10–2 8 × 10–5 2.5 × 101 2.4 × 10–1 2 × 102 1.27 × 10–9 1.22 × 10–8 3.4 – 6 × 101
Temperature range (°C)
Radioactive Ultrasonic Electrical Radioactive
Ag
CdTe
Activation energy, Q(eV)
400–700 300–700 20–200 300–500
Cu
CdSe
Frequency factor, Do (cm2/s)
12-97
69
69 69 69 69 69 69 69 69 69
69
69 69 69 69 69
69
4/28/05 1:57:25 PM
Diffusion Data for Semiconductors
12-98 Semiconductor HgSe HgTe
Diffusant Sb Se (self ) Ag Zn Cd Hg (self ) In Sn
PbS
Te (self ) Mn Cu
PbSe
Pb (self ) S (self ) Ni Na
PbTe
Cu Ag Pb (self ) Sb Se (self ) Cl Ni Na Sn Pb (self ) Sb Te Cl Ni
Frequency factor, Do (cm2/s)
6.3 × 10–5 – 6 × 10–4 5 × 10–8 3.1 × 10–4 2 × 10–8 6 × 10–6 1.72 × 10–6 1.8 × 10–3 10–6 1.5 × 10–4 4.6 × 10–4 5 × 10–3 8.6 × 10–5 6.8 × 10–5 1.78 × 101 1.5 × 101 5.6 × 10–6 2 × 10–5 7.4 × 10–4 4.98 × 10–6 3.4 × 10–1 2.1 × 10–5 1.6 × 10–8 (D ~ 1 × 10–10) 1.7 × 10–1 3.1 × 10–2 2.9 × 10–5 4.9 × 10–2 2.7 × 10–6 (D > 2.3 × 10–10) (D > 1 × 10–6)
Activation energy, Q(eV)
Method of measurement
Ref.
540–630 200–400 250–350 250–350 250–350 200–350 200–300 200–300
Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive
69 69 69 69 69 69 69 69
200–400 250–350 150–450 100–400 500–800 500–750 200–500 400–850
Radioactive Radioactive Electrical Electrical Radioactive Radioactive Electrical Radioactive
69 69 69 69 69 69 69 69
93–520 400–850 400–800 650–850 650–850 400–850 700 600–850 500–800 250–500 500–800 500–800
Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive Radioactive
69 69 69 69 69 69 69 69 69 69 69 69
– –
700 700
Radioactive Radioactive
69 69
References 1. N. A. Stolwijk and H. Bracht, in Diffusion in Semiconductors and NonMetallic Solids, D. L. Beke, Ed., Springer-Verlag, Berlin, 1998, 2-1. 2. E. M. Pell, Phys. Rev., 119, 1960; 119, 1014, 1960. 3. L. Svob, Solid State Electron, 10, 991, 1967. 4. B. I. Boltaks and I. I. Sosinov, Zh. Tekh. Fiz., 28, 3, 1958. 5. R. N. Hall and J. N. Racette, J. Appl. Phys., 35, 379, 1964. 6. B. I. Boltaks and Hsueh Shih-Yin, Sov. Phys. Solid State, 2, 2383, 1961. 7. W. R. Wilcox and T. J. LaChapelle, J. Appl. Phys., 35, 240, 1964. 8. E. A. Taft and R. O. Carlson, J. Electrochem. Soc., 117, 711, 1970. 9. R. Sh. Malkovich and N. A. Alimbarashvili, Sov. Phys. Solid State, 4, 1725, 1963. 10. R. N. Ghoshtagore, Solid State Electron, 15, 1113, 1972. 11. C. Hill, Semiconductor Silicon 1981, H. R. Huff, R. J. Kreiger, and Y. Takeishi, Eds., p. 988, Electrochem. Soc., 1981. 12. R. N. Ghoshtagore, Phys. Rev. B, 3, 2507, 1971. 13. W. Rosnowski, J. Electrochem. Soc., 125, 957, 1978. 14. J. S. Makris and B. J. Masters, J. Appl. Phys., 42, 3750, 1971. 15. M. F. Millea, J. Phys. Chem. Solids, 27, 315, 1965 (refer Reference 2). 16. C. S. Fuller and J. A. Ditzenberger, J. Appl. Phys., 27, 544, 1956. 17. S. Hocine and D. Mathiot, Appl. Phys. Lett., 53, 1269, 1988. 18. R. C. Newman and J. Wakefield, J. Phys. Chem. Solids, 19, 230, 1961. 19. L. Kalinowski and R. Seguin, Appl. Phys. Lett., 35, 211, 1979; Appl. Phys. Lett., 36, 171, 1980. 20. R. F. Peart, Phys. Stat. Sol., 15, K 119, 1966. 21. G. Hettich, H. Mehrer and K. Maler, Inst. Phys. Conf. Ser., 46, 500, 1979.
Section 12.indb 98
Temperature range (°C)
0.85 – 0.8 0.6 0.66 0.6 0.9 0.66 (s) 0.80 (f ) 1.4 1.3 0.36 0.31 1.52 1.38 0.95 1.74 (s) 0.4 (f ) 0.31 0.35 0.83 2.0 1.2 0.45 – 1.91 1.56 0.6 1.54 0.75
22. M. Ogina, Y. Oana and M. Watanabe, Phys. Stat. Sol. (a), 72, 535, 1982. 23. T. H. Yeh, S. M. Hu, and R. H. Kastl, Appl. Phys., 39, 4266, 1968. 24. I. Franz and W. Langheinrich, Solid State Electron, 14, 835, 1971. 25. R. N. Ghoshtagore, Hys. Rev. B, 3, 389, 1971. 26. B. J. Masters and J. M. Fairfield, J. Appl. Phys., 40, 2390, 1969. 27. R. N. Goshtagore, Phys. Rev. B, 3, 397, 1971. 28. R. S. Fair and J. C. C. Tsai, J. Electrochem. Soc., 122, 1689, 1975. 29. J. J. Rohan, N. E. Pickering, and J. Kennedy, J. Electrochem. Soc., 106, 705, 1969. 30. W. Wuerker, K. Roy, and J. Hesse, Matsr. Res. Bull., 9, 971, 1974. 31. J. C. Mikkelsen, Jr., Appl. Phys. Lett., 40, 336, 1982. 32. S. Tang Lee and D. Nicols, Appl. Phys. Lett., 47, 1001, 1985. 33. P. L. Gruzin, S. V. Zemskii, A. D. Bullkin, and N. M. Makarov, Sov. Phys. Sem., 7, 1241, 1974. 34. N. S. Zhdanovich and Yu. I. Kozlov, Svoistva Legir, Poluprovodn., V. S. Zemskov, Ed., Nauka, Moscow, 1977, 115–120; Fiz Tekh. Poluprovod., 9, 1594, 1975. 35. D. Gilles, W. Bergholze, and W. Schroeter, J. Appl. Phys., 59, 3590, 1986. 36. E. R. Weber, Appl. Phys. A, 30, 1, 1983. 37. E. R. Weber, Properties of Silicon, EMIS Datareviews Ser. No. 4, INSPEC Publications, 1988, 409–451. 38. M. K. Bakhadyrkhanov, S. Zainabidinov, and A. Khamidov, Sov. Phys. Sem., 14, 243, 1980. 39. S. A. Azimov, M. S. Yunosov, F. K. Khatamkulov, and G. Nasyrov, Poluprovod., N. Kh. Abrikosov and V. S. Zemskov, Eds., Nauka, Moscow, 1975, 21–23.
4/28/05 1:57:26 PM
Diffusion Data for Semiconductors 40. S. A. Azimov, M. S. Yunosov, G. Nurkuziev, and F. R. Karimov, Sov. Phys. Sem., 12, 981, 1978. 41. S. A. Azimov, B. V. Umarov, and M. S. Yunusov, Sov. Phys. Sem., 10, 842, 1976. 42. C. S. Fuller and J. A. Ditzenberger, Phys. Rev., 91, 193, 1953. 43. B. Pratt and F. Friedman, J. Appl. Phys., 37, 1893, 1966. 44. M. Stojic, V. Spiric, and D. Kostoski, Inst. Phys. Conf. Ser., 31, 304, 1976. 45. B. I. Boltaks, Diffusion in Semiconductors, Inforsearch, London, 1963, 162. 46. A. A. Bugai, V. E. Kosenko, and E. G. Miselyuk, Zh. Tekh. Fiz., 27, 67, 1957. 47. L. Y. Wei, J. Phys. Chem. Solids, 18, 162, 1961. 48. V. E. Kosenko, Sov. Phys. Solid State, 4, 42, 1962. 49. W. C. Dunlap, Jr., Phys. Rev., 97, 614, 1955 50. Yu. I. Belyaev and V. A. Zhidkov, Sov. Phys. Solid State, 3, 133, 1961. 51. W. C. Dunlap, Jr. Phys. Rev., 94, 1531, 1954. 52. V. E. Kosenko, Sov. Phys. Solid State, 1, 1481, 1960. 53. P. Dorner, W. Gust, A. Lodding, H. Odelius, B. Predel, and U. Roll, Acta Metall., 30, 941, 1982. 54. W. Meer and D. Pommerrening, Z. Agnew. Phys., 23, 369, 1967. 55. U. Sodervall, H. Odelius, A. Lodding, U. Roll, B. Predel, W. Gust, and P. Dorner, Phil. Mag. A, 54, 539, 1986. 56. P. Dorner, W. Gust, A. Lodding, H. Odelius, B. Predel, and U. Roll, Z. Metalkd., 73, 325, 1982.
Section 12.indb 99
12-99 57. P. V. Pavlov, Sov. Phys. Solid State, 8, 2377, 1967. 58. V. I. Tagirov and A. A. Kuliev, Sov. Phys. Solid State, 4, 196, 1962. 59. J. Raisanen, J. Hirvonen, and A. Anttila, Solid State Electron., 24, 333, 1981. 60. C. Vogel, G. Hettich, and H. Mehrer, J. Phys. C., 16, 6197, 1983. 61. H. Letaw, Jr., W. M. Portnoy, and L. Slifkin, Phys. Rev., 102, 363, 1956. 62. W. Bosenberg, Z. Naturforsch., 10a, 285, 1955. 63. V. M. Glazov and V. S. Zemskov, Physicochemical Principles of Semiconductor Doping, Israel Program for Scientific Translation, Jerusalem, 1968. 64. J. W. Corbett, R. S. McDonald, and G. D. Watkins, J. Phys. Chem. Solids, 25, 873, 1964. 65. W. W. Tyler, J. Phys. Chem. Solids, 8, 59, 1959. 66. V. D. Ignatkov and V. E. Kosenko, Sov. Phys. Solid State, 4, 1193, 1962. 67. A. A. Bugal, V. E. Kosenko, and E. G. Miseluk, Zh. Tekh. Fiz., 27, 210, 1957. 68. F. van der Maesen and J. A. Brenkman, Phillips Res. Rep., 9, 255, 1954. 69. M. B. Dutt and B. L. Sharma, in Diffusion in Semiconductors and NonMetallic Solids, D. L. Beke, Ed., Springer-Verlag, Berlin, 1998, 3-1. 70. L. L. Chang and A. Koma, Appl. Physics Lett., 29, 138, 1976. 71. D. L. Kendall, Semiconductors and Semimetals, Vol. 4, R. K. Willardson and A. C. Beer, Eds., Academic, 1968, 255. 72. H. J. Biter and F. Williams, J. Luminescence, 3, 395, 1971.
4/28/05 1:57:27 PM
PROPERTIES OF MAGNETIC MATERIALS H. P. R. Frederikse
Glossary of Symbols Quantity
Symbol
Magnetic field Magnetic induction Magnetization Spontaneous magnetization Saturation magnetization Magnetic flux Magnetic moment Coercive field Remanence Saturation magnetic polarization Magnetic susceptibility Magnetic permeability Magnetic permeability of free space Saturation magnetostriction Curie temperature Néel temperature
H B M Ms M0 Φ m, µ Hc Br Js χ µ µ0 λ (∆l/l) TC TN
SI
Units
A m-1 T (tesla) A m-1 A m-1 A m-1 Wb (weber) A m2 A m-1 T T
emu Oe (oersted) G (gauss) emu cm-3 emu cm-3 emu cm-3 maxwell erg/G Oe G G
H m–1 (henry/meter) H m–1 K K
K K
Magnetic moment µ = γħJ = g µB J where γ = gyromagnetic ratio; J = angular momentum; g = spectroscopic splitting factor (~2) µΒ = bohr magneton = 9.2741⋅10–24 J/T = 9.2741⋅10–21 erg/G Earth’s magnetic field H = 56 A m–1 = 0.7 Oe For iron: M0 = 1.7⋅106 A m–1; Br = 0.8⋅106 A m–1 1 Oe = (1000/4π) A m–1; 1 G = 10–4 T; 1 emu cm–3 = 103 A m–1 1 maxwell = 10–8 Wb µ0 = 4π 10–7 H m–1
Relation Between Magnetic Induction and Magnetic Field B (b) +Br (a) (c) +Hc
-Hc
(c)
H
-Br
FIGURE 1. Typical curve representing the dependence of magnetic induction B on magnetic field H for a ferromagnetic material. When H is first applied, B follows curve a as the favorably oriented magnetic domains grow. This curve flattens as saturation is approached. When H is then reduced, B follows curve b, but retains a finite value (the remanence Br) at H = 0. In order to demagnetize the material, a negative field –Hc (where Hc is called the coercive field or coercivity) must be applied. As H is further decreased and then increased to complete the cycle (curve c), a hysteresis loop is obtained. The area within this loop is a measure of the energy loss per cycle for a unit volume of the material.
(a) = Domain growth (b) = Field removal (c) = Hysteric curve on field
12-100
Section 12.indb 100
4/28/05 1:57:29 PM
Properties of Magnetic Materials
12-101 FIGURE 2. Schematic curve illustrating the B vs. H dependence for hard and soft magnetic materials. Hard materials have a larger remanence and coercive field, and a correspondingly large hysteresis loss.
B
Hard Soft H
Reference Ralls, K. M., Courtney, T. H., and Wulff, J., Introduction to Materials Science and Engineering, J. Wiley & Sons, New York, 1976, p. 577, 582. With permission.
Magnetic Susceptibility of the Elements
FIGURE 3. Molar susceptibility of the elements at room temperature (cgs units of 10–6 cm3/mol). Values are not available for Z = 9, 61, and 84–89; Fe, Co, and Ni (Z = 26–28) are ferromagnetic. Data taken from the table “Magnetic Susceptibility of the Elements and Inorganic Compounds” in Section 4.
Reference Gray, D. E., Ed., American Institute of Physics Handbook, Third Edition, McGraw Hill, New York, 1972, p. 5–224. With permission.
Section 12.indb 101
4/28/05 1:57:31 PM
Properties of Magnetic Materials
12-102 Ground State of Ions with Partly Filled d or f Shells Z
Element
n
S
L
J
Gr. state
22
Ti
1
1/2
2
3/2
2
23
V4+
1
1/2
2
3/2
2
23
V
3+
2
1
3
2
3
23
V2+
3
3/2
3
3/2
4
24
Cr
3
3/2
3
3/2
4
25
Mn4+
3
3/2
3
3/2
4
24
Cr
4
2
2
0
5
25
Mn3+
4
2
2
0
5
3+
3+
2+
1.73
1.55
1.8
1.73
1.55
1.8
F2
2.83
1.63
2.8
F3/2
3.87
0.77
3.8
F3/2
3.87
0.77
3.7
F3/2
3.87
0.77
4.0
D0
4.90
0
4.9
D0
4.90
0
5.0
S5/2
5.92
5.92
5.9
S5/2
5.92
5.92
5.9
D4
4.90
6.70
5.4
F9/2
3.87
6.54
4.8
F4
2.83
5.59
3.2
D5/2
1.73
3.55
1.9
25
Mn
5
5/2
0
5/2
Fe3+
5
5/2
0
5/2
6
26
Fe
6
2
2
4
5
27
Co2+
7
3/2
3
9/2
4
28
Ni2+
8
1
3
4
3
29
Cu
9
1/2
2
5/2
2
2+
pmeas
D3/2
26
2+
pcalcb
D3/2
6
2+
pcalca
pcalcc
a b c
58
Ce3+
1
1/2
3
5/2
2
59
Pr
2
1
5
4
3
60
Nd3+
3
3/2
6
9/2
4
61
3+
Pm
4
2
6
4
5
62
Sm3+
5
5/2
5
5/2
6
63
Eu
6
3
3
0
7
64
Gd3+
7
7/2
0
7/2
8
65
3+
Tb
8
3
3
6
7
66
Dy3+
9
5/2
5
15/2
6
67
Ho
10
2
6
8
5
68
Er3+
11
3/2
6
15/2
4
69
Tm
12
1
5
6
3
70
Yb3+
13
1/2
3
7/2
2
3+
3+
3+
3+
2.54
2.4
H4
3.58
3.5
I9/2
3.62
3.5
I4
2.68
H5/2
0.84
1.5
F0
0.0
3.4
S7/2
7.94
8.0
F6
9.72
9.5
H15/2
10.63
10.6
I8
10.60
10.4
I15/2
9.59
9.5
H6
7.57
7.3
F7/2
4.54
4.5
pcalc = 2[S(S + 1)]
1/2
pcalc = 2[J(J + 1)]1/2 pcalc = g[J(J + 1)]1/2
References 1. Jiles, D., Magnetism and Magnetic Materials, Chapman & Hall, London, 1991, p. 243.
Section 12.indb 102
F5/2
2. Kittel, C., Introduction to Solid State Physics, 6th Edition, J. Wiley & Sons, New York, 1986, pp. 405â&#x20AC;&#x201C;406. 3. Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Holt, Rinehart, and Winston, New York, 1976, p. 652.
4/28/05 1:57:33 PM
Properties of Magnetic Materials
12-103 Ferro- and Antiferromagnetic Elements
M0 is the saturation magnetization at T = 0 K nB is the number of Bohr magnetons per atom M0/gauss 22020 18170 6410
Fe Co Ni Cr Mn Ce Nd
nB 2.22 1.72 0.62
TC/K 1043 1388 627
Sm Eu Gd Tb
24880
7 9
293 220
Dy
10
87
Ho
10
20
Er
9
32
Tm
7
32
TN/K
311 100 12.5 19.2 7.8 106 13.8 90.5
230.2 176 133 80 56
References 1. Ashcroft, N. W., and Mermin, N. D., Solid State Physics, Holt, Rinehart, and Winston, New York, 1976, p.652.
TC is the Curie temperature TN is the NĂŠel temperature Comments
c-Axis antiferromagnetic Basal plane modulation on hexagonal sites Cubic sites order (periodicity different from high-T phase) Ordering on hexagonal sites Cubic site order Spiral along cube axis Basal plane ferromagnet Basal plane spiral Basal plane ferromagnet Basal plane spiral Bunched cone structure Basal plane spiral c-Axis ferrimagnetic cone structure c-Axis modulated structure c-Axis ferrimagnetic cone structure c-Axis modulated structure 2. Gschneidner, K. A., and Eyring, L., Handbook on the Physics and Chemistry of Rare Earths, North Holland Publishing Co., Amsterdam, 1978.
Selected Ferromagnetic Compounds M0 is the saturation magnetization at T = 293 K Compound MnB MnAs MnBi MnSb Mn4N MnSi CrTe CrBr3 CrI3 CrO2 EuO EuS GdCl3 FeB Fe2B FeBe5 Fe3C FeP *
M0/gauss 152 670 620 710 183 247 270 515 1910* 1184* 550*
TC is the Curie temperature TC/K 578 318 630 587 743 34 339 37 68 386 77 16.5 2.2 598 1043 75 483 215
cub(FeSi) hex(NiAs) hex(BiI3) hex(BiI3) tetr(TiO2) cub cub orthorh orthorh tetr (CuAl2) cub(MgCu2) orthorh orthorh (MnP)
At T = 0 K
References 1. Kittel, C., Introduction to Solid State Physics, 6th Edition, J. Wiley & Sons, New York, 1986.
Section 12.indb 103
Crystal system orthorh(FeB) hex(FeB) hex(FeB) hex(FeB)
2. Ashcroft, N. W., and Mermin, N. D., Solid State Physics, Holt, Rinehart, and Winston, New York, 1976.
4/28/05 1:57:34 PM
Properties of Magnetic Materials
12-104
Magnetic Properties of High-Permeability Metals and Alloys (Soft) Js is the saturation polarization WH is the hysteresis loss per cycle TC is the Curie temperature
µi is the initial permeability µm is the maximum permeability Hc is the coercive force Material
Composition (mass %)
Iron Iron Silicon-iron Silicon-iron (110) [001] Silicon-iron {100} <100> Mild steel Hypernik Deltamax {100} <100> Isoperm {100} <100> 78 Permalloy Supermalloy Mumetal Hyperco Permendur 2V-Permendur Supermendur 25Perminvar 7Perminvar Perminvar (magnet. annealed) Alfenol (or Alperm) Alfer Aluminum-Iron Sendust
Commercial 99Fe Pure 99.9Fe 96Fe-4Si 97Fe-3Si 97Fe-3Si Fe-0.1C-0.1Si-0.4Mn 50Fe-50Ni 50Fe-50Ni 50Fe-50Ni 78Ni-22Fe 79Ni-16Fe-5Mo 77Ni-16Fe-5Cu-2Cr 64Fe-35Co-0.5Cr 50Fe-50Co 49Fe-49Co-2V 49Fe-49Co-2V 45Ni-30Fe-25Co 70Ni-23Fe-7Co 43Ni-34Fe-23Co 84Fe-16Al 87Fe-13Al 96.5Fe-3.5Al 85Fe-10Si-5Al
µi/µ0
200 25000 500 9000 800 4000 500 90 4000 100000 20000 650 500 800 400 850 3000 700 500 36000
References 1. McCurrie, R. A., Structure and Properties of Ferromagnetic Materials, Academic Press, London, 1994, p. 42.
Applications
µm/µ0
6000 350000 7000 40000 100000 1100 70000 200000 100 100000 1000000 100000 10000 6000 4000 60000 2000 4000 400000 55000 3700 19000 120000
Hc/A m–1 70 0.8 40 12 6 200 4 16 480 4 0.15 4 80 160 160 16 100 50 2.4 3.2 53 24 1.6
Js/T
2.16 2.16 1.95 2.01 2.01
1.60 1.55 1.60 1.05 0.79 0.75 2.42 2.46 2.45 2.40 1.55 1.25 1.50 0.8 1.20 1.90 0.89
WH/J m–3
TC/K
500 60 50–150 35–140
1043 1043 1008 1015 1015
22
753 773
50 2 20 300 1200 600 1150
651 673 673 1243 1253 1253 1253
723 673 753
2. Gray, D. E., Ed., American Institute of Physics Handbook, Third Edition, McGraw Hill, New York, 1972, p. 5–224.
Applications of High-Permeability Materials
Requirements
Power applications Distribution and power transformers
Low core losses, high permeability, high saturation magnetic polarization
High-quality motors and generators, stators and armatures, switchedmode power supplies Instrument transformers Audiofrequency transformers
Low core losses, high permeability, high magnetic polarization
Pulse transformers
High permeability Cores for inductor coils
Audiofrequency
Low hysteresis, high permeability
Carrier frequency
Very low hysteresis and eddy current loss
Radiofrequency
High permeability at low fields
Relays, switches Earth leakage circuit Magnetic shielding
Section 12.indb 104
}
Miscellaneous High permeability, low remanence, low coercivity Low core loss for AC applications
4/28/05 1:57:35 PM
Properties of Magnetic Materials
Applications
12-105 Applications of High-Permeability Materials
Requirements
Magnetic recording heads
High initial permeability, low or zero remanence
Magnetic amplifiers Saturable reactors Saturable transformers Transformer cores
Rectangular hysteresis loops, low hysteresis loss
}
Magnetic shunts for temperature compensation in magnetic circuits
Low Curie temperature, appropriate decrease in permeability with increase in temperature
Electromagnets in indicating instruments, fire detection, quartz watches, electromechanical devices
High permeability, high saturation magnetic polarization
Magnetic yokes in permanent magnet devices, such as lifting and holding magnets, loudspeakers
High permeability, high saturation magnetic polarization
Reference McCurrie, R. A., Structure and Properties of Ferromagnetic Materials, Academic Press, London, 1994. With permission.
Saturation Magnetostriction of Selected Materials
The tabulated parameter λs is related to the fractional change in length ∆l/l by ∆l/l = (3/2)λs(cos2θ – 1/3), where θ is the angle of rotation. Material
λs × 106 –7 +9 –33 –62 +27 0 +70 +30 +40 –110 –1560 +1753 +2000 +35 0
Iron Fe - 3.2% Si Nickel Cobalt 45 Permalloy, 45% Ni - 55% Fe Permalloy, 82% Ni - 18% Fe Permendur, 49% Co - 49% Fe - 2% V Alfer, 87% Fe - 13% Al Magnetite, Fe3O4 Cobalt ferrite, CoFe2O4 SmFe2 TbFe2 Tb0.3Dy0.7Fe1.93 (Terfenol D) Fe66Co18B15Si (amorphous) Co72Fe3B6Al3 (amorphous)
Reference McCurrie, R.A., Structure and Properties of Ferromagnetic Materials, Academic Press, London, 1994, p. 91; additional data provided by A.E. Clark, Adelphi, MD.
Properties of Various Permanent Magnetic Materials (Hard) Br is the remanence H is the flux coercivity B c H is the intrinsic coercivity i c
Composition Alnico1 20Ni;12Al;5Co Alnico2 17Ni;10Al;12.5Co;6Cu Alnico3 24-30Ni;12-14Al;0-3Cu Alnico4 21-28Ni;11-13Al;3-5Co;2-4Cu Alnico5 14Ni;8Al;24Co;3Cu Alnico6 16Ni;8Al;24Co;3Cu;2Ti Alnico8 15Ni;7Al;35Co;4Cu;5Ti Alnico9 15Ni;7Al;35Co;4Cu;5Ti Alnico12 13.5Ni;8Al;24.5Co;2Nb
S12_20.indd 105
(BH)max is the maximum energy product TC is the Curie temperature Tmax is the maximum operating temperature
Br/T
0.72 0.72 0.5–0.6 0.55–0.75 1.25 1.05 0.83 1.10 1.20
Hc/103 A m–1
B
53 1.6 1.45
Hc/103 A m–1
i
35 40–50 40–54 36–56 54 75 160 1.45 64
(BH)max/kJ m–3
25 13–14 10 11–12 40 52 45 75 76.8
TC/°C
Tmax/°C
850
520
850
520
5/2/05 1:05:18 PM
Properties of Magnetic Materials
12-106 Composition
Br/T
BaFe12O19 (Ferroxdur) SrFe12O19 LaCo5 CeCo5 PrCo5 NdCo5 SmCo5 Sm(Co0.76Fe0.10Cu0.14)6.8 Sm(Co0.65Fe0.28Cu0.05Zr0.02)7.7 Nd2Fe14B sintered Fe;52Co;14V (Vicalloy II) Fe;24Cr;15Co;3Mo (anisotropic) Fe;28Cr;10.5Co (Chromindur II) Fe;23Cr;15Co;3V;2Ti Cu;20Ni;20Fe (Cunife) Cu;21Ni;29Fe (Cunico) Pt;23Co Mn;29.5Al;0.5C (anisotropic)
References
Hc/103 A m–1
B
0.4 0.4 0.91 0.77 1.20 1.22 1.00 1.04 1.2 1.22 1.0 1.54 0.98 1.35 0.55 0.34 0.64 0.61
192 3.3
7.9 4.8 10 8.4 42 67 32 4 4 0.5 4 2.16
696 5 16 1120
1. McCurrie, R. A., Structure and Properties of Ferromagnetic Materials, Academic Press, London, 1994, p. 204.
Js is the saturation magnetic polarization TC is the Curie temperature ∆H is the line width Material
Js/T
Hc/103 A m–1
i
1.6 2.95
2.4
(BH)max/kJ m–3
29 30 164 117 286 295 196 212 264 280 28 76 16 44 12 8 76 56
TC/°C
400 400
480 300
350 120
Selected Ferrites
TC/°C
∆H/kA m–1
Applications
0.52 0.60 0.34 0.14 0.50 0.50 0.31 0.15 0.12 0.05 0.25 0.14 0.17 0.53 0.39
575 585 575 440 375 300 590 450 430 1860 290
Garnets Y3Fe5O12 Y3Fe5O12 (single crys.) (Y,Al)3Fe5O12 (Y,Gd)3Fe5O12 Sm3Fe5O12 Eu3Fe5O12 GdFe5O12
0.178 0.178 0.12 0.06 0.170 0.116 0.017
280 292 250 250 305 293 291
55 0.5 80 150
Microwave devices Microwave devices Microwave devices Microwave devices Microwave devices Microwave devices Microwave devices
0.45 0.34 0.28
430 470 130 390 500 450
1.5 12 25 16 8
Permanent magnets Microwave devices Microwave devices Microwave devices Microwave devices Permanent magnets
0.16 0.4
250 300 300 100 500 500 500 500 350
2. Gray, D. E., Ed., American Institute of Physics Handbook, Third Edition, McGraw Hill, New York, 1972, p. 5–165. 3. Jiles, D., Magnetism and Magnetic Materials, Chapman & Hall, London, 1991.
Spinels γ-Fe2O3 Fe3O4 NiFe2O4 MgFe2O4 NiZnFe2O4 MnFe2O4 NiCoFe2O4 NiCoAlFe2O4 NiAl0.35Fe1.65O4 NiAlFe2O4 Mg0.9Mn0.1Fe2O4 Ni0.5Zn0.5Al0.8Fe1.2O4 CuFe2O4 CoFe2O4 LiFe5O8
Hexagonal crystals BaFe12O19 Ba3Co2Fe24O41 Ba2Zn2Fe12O22 Ba3Co1.35Zn0.65Fe24O41 Ba2Ni2Fe12O22 SrFe12O19
Tmax/°C
450 450 567 380 620 637 700 800 800 300 700 630 630 630 410
455 520 670
Reference
350 70 120 50 140 330 67 32 56 17
Microwave devices Transformer cores Microwave devices Microwave devices Microwave devices Microwave devices Microwave devices Microwave devices Microwave devices Electromechanical transducers Microwave devices
McCurrie, R. A., Structure and Properties of Ferromagnetic Materials, Academic Press, London, 1994.
Section 12.indb 106
4/28/05 1:57:37 PM
Properties of Magnetic Materials
12-107 Spinel Structure (AB2O4)
A
B
FIGURE 4. Arrangement of metal ions in the two octants A and B, showing tetrahedrally (A) and octahedrally (B) coordinated sites. (Reprinted from McCurrie, R.A., Ferromagnetic Materials, Academic Press, London, 1994. With permission.)
A B O2-
Selected Antiferromagnetic Solids TN is the Néel temperature
Material
Structure
Binary oxides MnO FeO CoO NiO α-Mn2O3 CuO UO2 Er2O3 Gd2O3
cub(fcc) cub(fcc) cub(fcc) cub(fcc) cub monocl cub cub cub
122 198 291 525 90 230 30.8 3.4 1.6
orth orth orth orth orth orth cub cub orth cub* cub cub* cub cub cub* orth cub
282 100 750 224 760 118 110 5.3 141 673 125 88.3 115 275 60 149 82
Perovskites LaCrO3 LaMnO3 LaFeO3 NdCrO3 NdFeO3 YbCrO3 CaMnO3 EuTiO3 YCrO3 BiFeO3 KCoF3 KMnF3 KFeF3 KNiF3 NaMnF3 NaNiF3 RbMnF3 Spinels Co3O4 NiCr2O4
Section 12.indb 107
cub tetr
TN/K
40 65
Material
Structure
TN/K
ZnCr2O4 ZnFe2O4 GeFe2O4 MgV2O4 MnGa2O4
cub cub cub cub cub
NiAs and related structures CrAs CrSb CrSe MnTe NiS CrS
orth hex hex hex hex monocl
300 705–723 300 320–323 263 460
Rutile and related structures CoF2 CrF2 FeF2 MnF2 NiF2 CrCl2 MnO2 FeOF
tetr monocl tetr tetr tetr orth tetr tetr
38 53 79 67 83 20 84 315
Corundum and related structures Cr2O3 α-Fe2O3 FeTiO3 MnTiO3 CoTiO3
rhomb rhomb rhomb rhomb rhomb
318 948 68 41 38
VF3 and related structures CoF3 CrF3
rhomb rhomb
460 80
15 9 10 45 33
4/28/05 1:57:39 PM
Properties of Magnetic Materials
12-108 Material
Structure
FeF3 MnF3 MoF3
rhomb monocl rhomb
Miscellaneous K2NiF4 MnI2 CoUO4 CaMn2O4 CrN CeC2 FeSn Mn2P
tetr hex orth orth cub* tetr hex hex
TN/K
394 43 185 97 3.4 12 225 273 33 373 103
References 1. Gray, D. E., Ed., American Institute of Physics Handbook, Third Edition, McGraw Hill, New York, 1972, p. 5–168 to 5–183. 2. Kittel, C., Introduction to Solid State Physics, 6th Edition, J. Wiley & Sons, New York, 1986. 3. Ashcroft, N. W., and Mermin, N. D., Solid State Physics, Holt, Rinehart, and Winston, New York, 1976, p. 697.
* Distorted.
Section 12.indb 108
4/28/05 1:57:39 PM
ELECTRON WORK FUNCTION OF THE ELEMENTS The electron work function Φ is a measure of the minimum energy required to extract an electron from the surface of a solid. It is defined more precisely as the energy difference between the state in which an electron has been removed to a distance from the surface of a single crystal face that is large enough that the image force is negligible but small compared to the distance to any other face (typically about 10-4 cm) and the state in which the electron is in the bulk solid. In general, Φ differs for each face of a monocrystalline sample. Since Φ is dependent on the cleanliness of the surface, measurements reported in the literature often cover a considerable range. This table contains selected values for the electron work function of the elements which may be regarded as typical values for a reasonably clean surface. The method of measurement is indicated for each value. The following abbreviations appear: Element
Plane
Φ/eV
Ag
100 110 111 100 110 111 polycr 100 110 111 polycr polycr polycr polycr polycr polycr polycr polycr polycr polycr polycr 100 110 111 112 polycr 100 111 polycr polycr polycr polycr liquid polycr 100 110 111
4.64 4.52 4.74 4.20 4.06 4.26 (3.75) 5.47 5.37 5.31 (4.45) 2.52 4.98 4.34 (5.0) 2.87 4.08 2.9 5.0 4.5 1.95 5.10 4.48 4.94 4.53 2.5 4.67 4.81 4.32 2.90 5.0 3.9 4.475 4.09 5.67 5.42 5.76
Al
As Au
B Ba Be Bi C Ca Cd Ce Co Cr Cs Cu
Eu Fe Ga Gd Ge Hf Hg In Ir
Method PE PE PE PE PE PE PE PE PE PE TH TH PE PE CPD PE CPD PE PE PE PE FE PE PE PE PE PE PE PE CPD CPD PE PE PE PE PE PE
Element K La Li Lu Mg Mn Mo
Na Nb
Nd Ni
Os Pb Pd Pt
Rb Re Rh
TE – Thermionic emission PE – Photoelectric effect FE – Field emission CPD – Contact potential difference polycr – Polycrystalline sample amorp – Amorphous sample Values in parentheses are only approximate.
References 1. Hölzl, J., and Schulte, F. K., Work Functions of Metals, in Solid Surface Physics, Höhler, G., Ed., Springer-Verlag, Berlin, 1979. 2. Riviere, J. C., Work Function: Measurements and Results, in Solid State Surface Science, Vol.1, Green, M., Ed., Decker, New York, 1969. 3. Michaelson, H. B., J. Appl. Phys., 48, 4729, 1977.
Plane
Φ/eV
210 polycr polycr polycr polycr polycr polycr 100 110 111 112 114 332 polycr 001 110 111 112 113 116 310 polycr 100 110 111 polycr polycr polycr 111 polycr 110 111 320 331 polycr polycr polycr
5.00 2.29 3.5 2.93 (3.3) 3.66 4.1 4.53 4.95 4.55 4.36 4.50 4.55 2.36 4.02 4.87 4.36 4.63 4.29 3.95 4.18 3.2 5.22 5.04 5.35 5.93 4.25 5.22 5.6 5.64 5.84 5.93 5.22 5.12 2.261 4.72 4.98
Method PE PE PE FE CPD PE PE PE PE PE PE PE PE PE TH TH TH TH TH TH TH PE PE PE PE PE PE PE PE PE FE FE FE FE PE TE PE
Element
Plane
Φ/eV
Method
Ru Sb
4.71 4.55 4.7 3.5 5.9 4.85 (4.91) 4.60 2.7 4.42 (2.59) 4.25 4.15 4.80 4.00 3.0 4.95 3.4 4.33 (3.84) 3.63 3.73 3.90 3.67 4.3 4.55 4.63 5.22 4.45 4.46 4.32 3.1 3.63
PE
Y Zn
polycr amorp 100 polycr polycr n p 100 p 111 polycr polycr polycr polycr 100 110 111 polycr polycr polycr polycr polycr polycr 100 110 113 polycr polycr 100 110 111 113 116 polycr polycr
PE PE CPD CPD PE PE CPD TH TH TH TH TH PE PE TH PE CPD PE PE PE PE PE CPD FE FE FE FE TH PE PE
Zr
polycr polycr
(4.9) 4.05
CPD PE
Sc Se Si
Sm Sn Sr Ta
Tb Te Th Ti Tl U
V W
12-114
S12_21.indd 114
5/2/05 1:20:49 PM
SECONDARY ELECTRON EMISSION The secondary emission yield, or secondary emission ratio, δ, is the average number of secondary electrons emitted from a bombarded material for every incident primary electron. It is a function of the primary electron energy Ep. The maximum yield δmax corresponds to a primary electron energy Epmax (see figure). The two primary electron energies corresponding to a yield of unity are denoted the first and second crossovers (EI and EII). An insulat-
ing target, or a conducting target that is electrically floating, will charge positively or negatively depending on the primary electron energy. For EI < Ep < EII, δ > 1 and the surface charges positively provided there is a collector present that is positive with respect to the target. For Ep < EI or Ep > EII, δ < 1, and the surface charges negatively with respect to the potential of the source of primary electrons.
1.5 δmax δ 1.0 0.5
Ep EII EI max Primary Electron Energy (Ep) Element Ag Al Au B Ba Bi Be C (diamond) C (graphite) C (soot) Cd Co Cs Cu Fe Ga Ge Hg K Compound Alkali halides CsCl KBr (crystal) KCl (crystal) KCl (layer) KI (crystal) KI (layer) LiF (crystal) LiF (layer) NaBr (crystal) NaBr (layer) NaCl (crystal) NaCl (layer) NaF (crystal) NaF (layer) NaI (crystal) NaI (layer) RbCl (layer) Oxides Ag2O Al2O3 (layer) BaO (layer)
δmax 1.5 1.0 1.4 1.2 0.8 1.2 0.5 2.8 1.0 0.45 1.1 1.2 0.7 1.3 1.3 1.55 1.15 1.3 0.7
Epmax (eV) 800 300 800 150 400 550 200 750 300 500 450 600 400 600 400 500 500 600 200 δmax 6.5 14 12 7.5 10 5.6 8.5 5.6 24 6.3 14 6.8 14 5.7 19 5.5 5.8 1.0 2–9 2.3–4.8
EI (eV) 200 300 150 50 None None None None 300 None 300 200 None 200 120 75 150 350 None Epmax(eV) 1800 1600 1200 1600 700 1800 1200 600 1200 1300
400
EII (eV) >2000 300 >2000 600 None None None >5000 300 None 700 None None 1500 1400 None 900 >1200 None
Element Li Mg Mo Na Nb Ni Pb Pd Pt Rb Sb Si Sn Ta Th Ti Tl W Zr Compound BeO CaO Cu2O MgO (crystal) MgO (layer) MoO2 SiO2 (quartz) SnO2 Sulfides MoS2 PbS WS2 ZnS Others BaF2 (layer) CaF2 (layer) BiCs3 BiCs GeCs Rb3Sb SbCs3 Mica Glasses
δmax 0.5 0.95 1.25 0.82 1.2 1.3 1.1 >1.3 1.8 0.9 1.3 1.1 1.35 1.3 1.1 0.9 1.7 1.4 1.1
Epmax (eV) 85 300 375 300 375 550 500 >250 700 350 600 250 500 600 800 280 650 650 350 δmax 3.4 2.2 1.2 20–25 3–15 1.2 2.1–4 3.2 1.1 1.2 1.0 1.8 4.5 3.2 6 1.9 7 7.1 6 2.4 2–3
EI (eV) None None 150 None 150 150 250 120 350 None 250 125 None 250 None None 70 250 None
EII (eV) None None 1200 None 1050 >1500 1000 None 3000 None 2000 500 None >2000 None None >1500 >1500 None
Epmax(eV) 2000 500 400 1500 400–1500 400 640 500 350
1000 1000 700 450 700 350 300–450
12-115
Section 12.indb 115
4/28/05 1:58:02 PM
Optical Properties of Selected Elements J. H. Weaver and H. P. R. Frederikse These tables list the index of refraction n, the extinction coefficient k, and the normal incidence reflection R (φ = 0) as a function of photon energy E, which is expressed in electron volts (eV). To convert the energy in eV to the wavelength in µm, use λ = 1.2398/ E. To compute the dielectric function ˜ε = ε1 + iε2 from the complex ˜ = n + ik, use ε1 = n2 – k2 and ε2 = 2nk. index of refraction N The optical constants in these tables are abridged from three more extensive tabulations: •
• •
Optical Properties of Metals (OPM), Volumes I and II, Physics Data, Nr. 18-1 and 18-2, J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Koch, Fachinformationzentrum, Karlsruhe, Germany. Handbook of Optical Constants (HOC), Vol. I, 1985, and Vol. II, 1991. E. D. Palik, Ed., Academic Press, Inc., London. American Institute of Physics Handbook (AIPH), 3rd Edition, D. E. Gray, Ed., McGraw-Hill, New York, 1972.
tors are listed at the end of the tables. Generally, tabulated values for the optical properties are accurate to better than 10%. Data in parentheses are extrapolated or interpolated values. For most elements the spectral range covered is from the far infrared (0.010 or 0.10 eV) to the far ultraviolet (10, 30 or 300 eV). The intervals between successive energies in the tables are chosen in such a way that the major spectral features are preserved. Very small values of k are expressed in exponential notation, e.g., 1.23E-5 means 1.23 × 10-5. The following table is convenient for identifying the energy entries in these tables with the corresponding wavelengths: λ 1 mm 500 µm 100 µm 50 µm 10 µm 5 µm 1 µm
The first two of these major sources provide detailed comparisons of all optical data available in the literature at the time of the compilation. For critical applications the reader should refer to the original work. References for individual metals and semiconducEnergy (eV)
n
Aluminium1 0.040 98.595 0.050 74.997 0.060 62.852 0.070 53.790 0.080 45.784 0.090 39.651 0.100 34.464 0.125 24.965 0.150 18.572 0.175 14.274 0.200 11.733 0.250 8.586 0.300 6.759 0.350 5.438 0.400 4.454 0.500 3.072 0.600 2.273 0.700 1.770 0.800 1.444 0.900 1.264 1.000 1.212 1.100 1.201 1.200 1.260 1.300 1.468 1.400 2.237 1.500 2.745 1.600 2.625 1.700 2.143 1.800 1.741 1.900 1.488 2.000 1.304
12-120
k 203.701 172.199 150.799 135.500 123.734 114.102 105.600 89.250 76.960 66.930 59.370 48.235 40.960 35.599 31.485 25.581 21.403 18.328 15.955 14.021 12.464 11.181 10.010 8.949 8.212 8.309 8.597 8.573 8.205 7.821 7.479
R(φ = 0) 0.9923 0.9915 0.9906 0.9899 0.9895 0.9892 0.9889 0.9884 0.9882 0.9879 0.9873 0.9858 0.9844 0.9834 0.9826 0.9817 0.9806 0.9794 0.9778 0.9749 0.9697 0.9630 0.9521 0.9318 0.8852 0.8678 0.8794 0.8972 0.9069 0.9116 0.9148
Energy (eV) 2.200 2.400 2.600 2.800 3.000 3.200 3.400 3.600 3.800 4.000 4.200 4.400 4.600 4.800 5.000 6.000 6.500 7.000 7.500 8.000 8.500 9.000 9.500 10.000 10.500 11.000 11.500 12.000 12.500 13.000 13.500 14.000 14.200
n 1.018 0.826 0.695 0.598 0.523 0.460 0.407 0.363 0.326 0.294 0.267 0.244 0.223 0.205 0.190 0.130 0.110 0.095 0.082 0.072 0.063 0.056 0.049 0.044 0.040 0.036 0.033 0.033 0.034 0.038 0.041 0.048 0.053
k 6.846 6.283 5.800 5.385 5.024 4.708 4.426 4.174 3.946 3.740 3.552 3.380 3.222 3.076 2.942 2.391 2.173 1.983 1.814 1.663 1.527 1.402 1.286 1.178 1.076 0.979 0.883 0.791 0.700 0.609 0.517 0.417 0.373
R(φ = 0) 0.9200 0.9228 0.9238 0.9242 0.9241 0.9243 0.9245 0.9246 0.9247 0.9248 0.9248 0.9249 0.9249 0.9249 0.9244 0.9257 0.9260 0.9262 0.9265 0.9269 0.9272 0.9277 0.9282 0.9286 0.9293 0.9298 0.9283 0.9224 0.9118 0.8960 0.8789 0.8486 0.8312
E/eV 0.00124 0.00248 0.01240 0.02480 0.12398 0.24797 1.240
Energy (eV) 14.400 14.600 14.800 15.000 15.200 15.400 15.600 15.800 16.000 16.200 16.400 16.750 17.000 17.250 17.500 17.750 18.000 18.500 19.000 19.500 20.000 20.500 21.000 21.500 22.000 22.500 23.000 23.500 24.000 24.500 25.000 25.500 26.000
λ 6000 Å 5000 Å 4000 Å 3000 Å 2000 Å 1000 Å 400 Å
n 0.058 0.067 0.086 0.125 0.178 0.234 0.280 0.318 0.351 0.380 0.407 0.448 0.474 0.498 0.520 0.540 0.558 0.591 0.620 0.646 0.668 0.689 0.707 0.724 0.739 0.753 0.766 0.778 0.789 0.799 0.809 0.817 0.826
E/eV 2.066 2.480 3.100 4.133 6.199 12.398 30.996
k 0.327 0.273 0.211 0.153 0.108 0.184 0.073 0.065 0.060 0.055 0.050 0.045 0.042 0.040 0.038 0.036 0.035 0.032 0.030 0.028 0.027 0.025 0.024 0.023 0.022 0.021 0.021 0.020 0.019 0.018 0.018 0.017 0.016
R(φ = 0) 0.8102 0.7802 0.7202 0.6119 0.4903 0.3881 0.3182 0.2694 0.2326 0.2031 0.1789 0.1460 0.1278 0.1129 0.1005 0.0899 0.0809 0.0664 0.0554 0.0467 0.0398 0.0342 0.0296 0.0258 0.0226 0.0199 0.0177 0.0157 0.0140 0.0126 0.0113 0.0102 0.0092
Optical Properties of Selected Elements Energy (eV) 27.000 28.000 29.000 30.000 35.000 40.000 45.000 50.000 55.000 60.000 65.000 70.000 72.500 75.000 77.500 80.000 85.000 90.000 95.000 100.000 110.000 120.000 130.000 140.000 150.000 160.000 170.000 180.000 190.000 200.000 220.000 240.000 260.000 280.000 300.000
n 0.840 0.854 0.865 0.876 0.915 0.940 0.957 0.969 0.979 0.987 0.995 1.006 1.025 1.011 1.008 1.007 1.007 1.005 0.999 0.991 0.994 0.991 0.987 0.989 0.990 0.989 0.989 0.990 0.990 0.991 0.992 0.993 0.993 0.994 0.995
Carbon (diamond)2 0.06199 2.3741 0.06888 2.3741 0.07749 2.3745 0.08856 2.3750 0.1033 2.3757 0.1240 2.3765 0.1550 2.3772 0.1907 0.2066 2.3779 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 2.3787 0.32 0.33 0.34 0.35
k 0.015 0.014 0.014 0.013 0.010 0.008 0.007 0.006 0.005 0.004 0.004 0.004 0.004 0.024 0.025 0.024 0.028 0.031 0.036 0.030 0.025 0.024 0.021 0.016 0.015 0.014 0.011 0.010 0.009 0.007 0.006 0.005 0.004 0.003 0.002
3.1 E-05 5.7 E-05 1.21E-04 2.36E-04 3.82E-04 5.21E-04 2.96E-04 4.39E-04 2.75E-04 7.82E-05 1.32E-04 1.30E-04 1.11E-04 2.99E-05 1.89E-05 2.11E-05
R(φ = 0) 0.0076 0.0063 0.0053 0.0044 0.0020 0.0010 0.0005 0.0003 0.0001 0.0000 0.0000 0.0000 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.166 0.166 0.166 0.166 0.166 0.166 0.166 0.166
0.167
Energy (eV) 0.36 0.37 0.38 0.39 0.40 0.41 0.4133 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.4959 0.6199 0.8266 1.240 1.378 1.459 1.550 1.653 1.771 1.889 1.926 2.066 2.105 2.271 2.480 2.650 2.845 3.100 3.434 3.576 3.961 4.160 4.511 4.8187 5.00 5.30 5.35 5.40 5.50 5.55 5.60 5.80 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.15 7.20
12-121 n
2.3795
2.3801 2.3813 2.3837 2.3905 2.3934 2.3953 2.3975 2.4003 2.4036 2.4073 2.4084 2.4133 2.4147 2.4210 2.4299 2.4380 2.4627 2.4849 2.4955 2.5465 2.6205 2.6383
2.740 2.780 2.826 2.852 2.879 2.910 2.944 2.985 3.031 3.085 3.146 3.220 3.322 3.444 3.464 3.437
k 2.47E-05 2.80E-05 3.11E-05 3.67E-05 3.58E-05 3.25E-05 2.94E-05 2.87E-05 3.14E-05 3.62E-05 3.22E-05 1.57E-05 6.17E-06
3.82E-07
8.97E-07 1.29E-06 1.47E-06 2.98E-06 6.45E-06 1.04E-05 3.41E-05 5.48E-04 1.48E-03 5.02E-03 7.99E-03 8.62E-03 9.30E-03 9.74E-03 9.87E-03 1.10E-02 1.47E-02 2.20E-02 3.44E-02 5.24E-02 9.35E-02 0.210 0.307 0.388
R(φ = 0)
0.167
0.167 0.167 0.167 0.168 0.169 0.169 0.169 0.170 0.170 0.171 0.171 0.171 0.172 0.173 0.174 0.175 0.178 0.182 0.183 0.190 0.200 0.203
0.216 0.222 0.228 0.231 0.235 0.239 0.243 0.248 0.254 0.261 0.268 0.277 0.289 0.304 0.308 0.307
Energy (eV) 7.30 7.40 7.50 7.60 7.80 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.20 12.40 12.60 12.80 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00
n 3.376 3.335 3.321 3.306 3.276 3.251 3.232 3.228 3.247 3.272 3.308 3.348 3.398 3.453 3.514 3.565 3.600 3.582 3.507 3.346 3.090 2.736 2.383 1.983 1.532 1.312 1.223 1.129 1.070 1.018 0.972 0.917 0.861 0.805 0.753 0.707 0.665 0.626 0.589 0.557 0.527 0.487 0.518 0.597 0.586 0.562 0.538 0.516 0.501 0.494 0.493
Cesium (evaporated)3 2.145 0.264 2.271 0.278 2.845 0.425 3.064 0.540 3.397 0.671 3.966 0.827 4.889 0.916
k 0.473 0.515 0.533 0.592 0.659 0.712 0.765 0.806 0.855 0.910 0.978 1.055 1.147 1.258 1.403 1.581 1.813 2.078 2.380 2.693 2.986 3.228 3.354 3.382 3.265 2.953 2.722 2.379 2.178 2.034 1.929 1.845 1.767 1.692 1.619 1.546 1.476 1.408 1.341 1.273 1.203 1.052 0.888 0.850 0.829 0.787 0.736 0.679 0.616 0.552 0.490
R(φ = 0) 0.303 0.300 0.299 0.300 0.300 0.300 0.301 0.303 0.308 0.314 0.322 0.331 0.342 0.355 0.371 0.389 0.411 0.434 0.460 0.488 0.518 0.551 0.580 0.610 0.641 0.627 0.604 0.557 0.526 0.504 0.489 0.482 0.477 0.474 0.471 0.467 0.463 0.459 0.455 0.449 0.442 0.413 0.330 0.270 0.268 0.265 0.260 0.252 0.239 0.221 0.201
1.123 0.950 0.438 0.320 0.233 0.174 0.143
0.631 0.561 0.235 0.127 0.057 0.018 0.007
Optical Properties of Selected Elements
12-122 Energy (eV)
n
k
Chromium4 0.06 21.19 0.10 11.81 0.14 15.31 0.18 8.73 0.22 5.30 0.26 3.91 0.30 3.15 0.42 3.47 0.54 3.92 0.66 3.96 0.78 4.13 0.90 4.43 1.00 4.47 1.12 4.53 1.24 4.50 1.36 4.42 1.46 4.31 1.77 3.84 2.00 3.48 2.20 3.18 2.40 2.75 2.60 2.22 2.80 1.80 3.00 1.54 3.20 1.44 3.40 1.39 3.60 1.26 3.80 1.12 4.00 1.02 4.20 0.94 4.40 0.90 4.50 0.89 4.60 0.88 4.70 0.86 4.80 0.86 4.90 0.86 5.00 0.85 5.10 0.86 5.20 0.87 5.40 0.93 5.60 0.95 5.80 0.97 6.00 0.94 6.20 0.89 6.40 0.85 6.60 0.80 6.80 0.75 7.00 0.74 7.20 0.71 7.40 0.69 7.60 0.66 7.80 0.67 8.00 0.68 8.20 0.71 8.50 0.74 9.0 0.83 9.50 0.92 10.00 0.98 10.50 1.01
42.00 29.76 26.36 25.37 20.62 17.12 14.28 8.97 7.06 5.95 5.03 4.60 4.43 4.31 4.28 4.30 4.32 4.37 4.36 4.41 4.46 4.36 4.06 3.71 3.40 3.24 3.12 2.95 2.76 2.58 2.42 2.35 2.28 2.21 2.13 2.07 2.01 1.94 1.87 1.80 1.74 1.74 1.73 1.69 1.66 1.59 1.51 1.45 1.39 1.33 1.23 1.15 1.07 1.00 0.92 0.81 0.74 0.73 0.72
R(φ = 0) 0.962 0.955 0.936 0.53 0.954 0.951 0.943 0.862 0.788 0.736 0.680 0.650 0.639 0.631 0.629 0.631 0.632 0.639 0.644 0.656 0.677 0.698 0.703 0.695 0.670 0.657 0.661 0.660 0.651 0.639 0.620 0.607 0.598 0.586 0.572 0.557 0.542 0.523 0.503 0.466 0.443 0.437 0.444 0.446 0.447 0.444 0.439 0.425 0.414 0.404 0.378 0.347 0.315 0.278 0.235 0.170 0.132 0.120 0.112
Energy (eV) 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 20.00 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 29.0 30.0
n 1.05 1.09 1.13 1.15 1.15 1.12 1.09 1.03 1.00 0.96 0.92 0.31 0.90 0.88 0.87 0.84 0.82 0.77 0.76 0.74 0.72 0.71 0.70 0.69 0.68 0.68 0.67 0.68 0.68 0.70 0.71 0.72 0.73 0.75 0.77 0.78
Cobalt, single crystal, 0.10 6.71 0.15 4.66 0.20 3.55 0.25 3.98 0.30 4.04 0.40 4.24 0.50 4.41 0.60 4.91 0.70 5.24 0.80 5.17 0.90 4.94 1.00 4.46 1.10 4.07 1.20 3.81 1.30 3.60 1.40 3.37 1.50 3.10 1.60 2.84 1.70 2.66 1.80 2.45 1.90 2.31 2.00 2.21 2.10 2.13
0.69 0.69 0.70 0.73 0.77 0.80 0.82 0.82 0.82 0.80 0.77 0.75 0.73 0.72 0.70 0.69 0.68 0.64 0.63 0.58 0.55 0.52 0.50 0.48 0.45 0.43 0.39 0.36 0.33 0.31 0.28 0.26 0.25 0.23 0.22 0.21
k
R(φ = 0) 0.103 0.100 0.101 0.108 0.119 0.128 0.135 0.142 0.143 0.141 0.139 0.134 0.132 0.130 0.129 0.130 0.131 0.130 0.129 0.121 0.116 0.112 0.109 0.105 0.101 0.096 0.089 0.080 0.072 0.063 0.055 0.048 0.043 0.037 0.032 0.030
→
∥ ĉ5 37.87 25.47 18.78 14.59 12.16 9.13 7.19 6.13 5.85 5.89 5.95 5.86 5.61 5.36 5.20 5.09 4.96 4.77 4.57 4.41 4.18 4.00 3.85
E
0.982 0.973 0.962 0.933 0.907 0.847 0.782 0.729 0.713 0.716 0.720 0.722 0.715 0.706 0.701 0.701 0.701 0.697 0.690 0.687 0.675 0.664 0.654
Energy (eV) 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.00 7.40 7.60 7.80 8.00
n 2.07 2.01 1.95 1.88 1.81 1.73 1.66 1.61 1.55 1.46 1.38 1.31 1.28 1.26 1.25 1.24 1.24 1.23 1.22 1.21 1.19 1.16 1.10 1.03 0.97 0.94 0.91 0.91 0.91 0.91 0.92 0.93 0.94 0.95
Cobalt, single crystal, 0.10 5.83 0.15 4.24 0.20 3.87 0.30 4.34 0.40 4.66 0.50 5.17 0.60 5.77 0.70 6.15 0.80 6.08 0.90 5.57 1.00 4.83 1.10 4.31 1.20 4.02 1.30 3.78 1.40 3.55 1.50 3.26 1.60 3.03 1.70 2.83 1.80 2.61 1.90 2.41 2.00 2.25 2.10 2.13 2.20 2.04 2.30 1.99 2.40 1.95
3.70 3.59 3.49 3.40 3.32 3.24 3.13 3.05 2.96 2.80 2.64 2.48 2.33 2.20 2.10 2.01 1.94 1.88 1.83 1.79 1.77 1.75 1.73 1.68 1.62 1.53 1.46 1.38 1.32 1.26 1.21 1.17 1.13 1.09
k
R(φ = 0) 0.642 0.634 0.627 0.622 0.618 0.615 0.607 0.600 0.594 0.579 0.563 0.544 0.519 0.495 0.471 0.452 0.435 0.423 0.411 0.403 0.399 0.400 0.406 0.407 0.401 0.386 0.368 0.345 0.326 0.305 0.286 0.269 0.253 0.239
→
⊥ ĉ5 32.36 21.37 15.53 10.01 7.39 5.75 5.17 5.20 5.61 5.93 5.94 5.60 5.34 5.16 5.05 4.93 4.74 4.60 4.45 4.27 4.09 3.89 3.72 3.56 3.44
E
0.979 0.965 0.042 0.865 0.785 0.709 0.682 0.685 0.702 0.715 0.721 0.711 0.701 0.694 0.692 0.692 0.687 0.684 0.683 0.677 0.670 0.659 0.646 0.632 0.620
Optical Properties of Selected Elements Energy (eV) 2.50 2.60 2.70 2.80 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80
n 1.90 1.86 1.79 1.72 1.66 1.60 1.50 1.42 1.36 1.33 1.31 1.28 1.27 1.26 1.25 1.24 1.22 1.21 1.17 1.11 1.04 0.98 0.94 0.92 0.91 0.91 0.91 0.92 0.93 0.94
3.34 3.26 3.19 3.11 3.03 2.94 2.78 2.62 2.47 2.33 2.21 2.12 2.03 1.95 1.90 1.84 1.80 1.78 1.76 1.74 1.69 1.62 1.54 1.46 1.38 1.32 1.26 1.21 1.17 1.13
Copper6 0.10 0.50 1.00 1.50 1.70 1.75 1.80 1.85 1.90 2.00 2.10 2.20 2.30 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40
29.69 1.71 0.44 0.26 0.22 0.21 0.21 0.22 0.21 0.27 0.47 0.83 1.04 1.12 1.15 1.17 1.18 1.23 1.27 1.31 1.34 1.34 1.42 1.49 1.52 1.53 1.47 1.38 1.28
71.57 17.63 8.48 5.26 4.43 4.25 4.04 3.85 3.67 3.24 2.81 2.60 2.59 2.60 2.50 2.36 2.21 2.07 1.95 1.87 1.81 1.72 1.64 1.64 1.67 1.71 1.78 1.80 1.78
k
R(φ = 0) 0.611 0.605 0.602 0.596 0.591 0.586 0.571 0.553 0.533 0.511 0.488 0.471 0.452 0.435 0.423 0.411 0.403 0.399 0.400 0.406 0.407 0.401 0.386 0.368 0.345 0.326 0.305 0.285 0.269 0.253 0.980 0.979 0.976 0.965 0.958 0.956 0.952 0.947 0.943 0.910 0.814 0.673 0.618 0.602 0.577 0.545 0.509 0.468 0.434 0.407 0.387 0.364 0.336 0.329 0.334 0.345 0.366 0.380 0.389
Energy (eV) 5.60 5.80 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 11.00 12.00 13.00 14.00 14.50 15.00 15.50 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00
12-123 n 1.18 1.10 1.04 0.96 0.97 1.00 1.03 1.03 1.03 1.03 1.04 1.07 1.09 1.08 1.06 1.03 1.01 0.98 0.95 0.91 0.89 0.88 0.88 0.90 0.92 0.94 0.96 0.96 0.92 0.88 0.86 0.85 0.86 0.88 0.89 0.90 0.91 0.92 0.92 0.92 0.93 0.93 0.93 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96
1.74 1.67 1.59 1.37 1.20 1.09 1.03 0.98 0.92 0.87 0.82 0.75 0.73 0.72 0.72 0.72 0.71 0.69 0.67 0.62 0.56 0.51 0.45 0.41 0.38 0.37 0.37 0.40 0.40 0.38 0.35 0.30 0.26 0.24 0.22 0.21 0.20 0.20 0.19 0.19 0.18 0.17 0.17 0.16 0.16 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.11 0.11
k
R(φ = 0) 0.391 0.389 0.380 0.329 0.271 0.230 0.206 0.189 0.171 0.154 0.139 0.118 0.111 0.109 0.111 0.111 0.111 0.109 0.106 0.097 0.084 0.071 0.059 0.048 0.040 0.035 0.035 0.040 0.044 0.043 0.039 0.032 0.025 0.020 0.017 0.015 0.014 0.013 0.012 0.011 0.010 0.009 0.009 0.008 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004
Energy (eV) 58.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 69.00 70.00 75.00 80.00 85.00 90.00
n 0.96 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.96
0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08
Gallium (liquid)7 1.425 2.40 1.550 2.09 1.771 1.65 2.066 1.25 2.480 0.89 3.100 0.59
9.20 8.50 7.60 6.60 5.60 4.50
k
Germanium, single crystal8 0.01240 (4.0065) 3.00E-03 0.01364 4.0063 2.40E-03 0.01488 (4.0060) 1.70E-03 0.01612 (4.0060) 1.55E-03 0.01736 (4.0060) 1.50E-03 0.01860 1.50E-03 0.01984 1.60E-03 0.02108 1.60E-03 0.02232 1.55E-03 0.02356 1.53E-03 0.02480 1.50E-03 0.02604 1.25E-03 0.02728 8.50E-04 0.02852 6.50E-04 0.02976 7.00E-04 0.03100 3.9827 8.50E-04 0.03224 1.55E-03 0.03348 2.75E-03 0.03472 3.55E-03 0.03596 (3.9900) 3.05E-03 0.03720 2.75E-03 0.03844 2.70E-03 0.03968 (3.9930) 2.90E-03 0.04092 2.95E-03 0.04215 3.20E-03 0.04339 6.30E-03 0.04463 3.40E-03 0.04587 (3.9955) 2.50E-03 0.04711 2.10E-03 0.04835 2.00E-03 0.04959 8.00E-04 0.05083 1.40E-03 0.05207 1.35E-03 0.05331 1.10E-03 0.05455 8.00E-04
R(φ = 0) 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.900 0.898 0.898 0.897 0.898 0.896 0.361 0.361 0.361 0.361 0.361
0.358
0.359
0.359
0.360
Optical Properties of Selected Elements
12-124 Energy (eV) 0.05579 0.05703 0.05827 0.05951 0.06075 0.06199 0.06323 0.06447 0.06571 0.06695 0.06819 0.06943 0.07067 0.07191 0.07315 0.07439 0.07514 0.07749 0.07999 0.08266 0.08551 0.08920 0.09460 0.09840 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6
n
3.9992
(4.0000)
4.0009 4.0011 4.0013 4.0015
4.0063 4.0108 4.0246 4.0429 (4.074) (4.104) 4.180 4.275 4.285 4.325 4.385 4.420 4.495 4.560 4.635 4.763 4.897 5.067 5.380 5.588 5.748 5.283 5.062 4.610 4.340 4.180 4.082 4.035 4.037 4.082 4.141 4.157 4.128 4.070 4.020 3.985
k 6.00E-04 9.0 E-04 6.5 E-04 4.6 E-04 4.0 E-04 3.98E-04 4.0 E-04 4.3 E-04 4.4 E-04 4.3 E-04 3.1 E-04 3.3 E-04 3.8 E-04 3.3 E-04 2.5 E-04 1.9 E-04 1.58E-04 9.55E-05 1.71E-04 9.78E-05 5.77E-05 3.98E-05 4.59E-05 3.51E-05 3.70E-05
6.58E-07 1.27E-04 5.67E-03 7.45E-02 8.09E-02 0.103 0.123 0.167 0.190 0.298 0.345 0.401 0.500 0.540 0.933 1.634 2.049 2.318 2.455 2.384 2.309 2.240 2.181 2.140 2.145 2.215 2.340 2.469 2.579 2.667 2.759
R(φ = 0)
0.360
0.360
0.360 0.360 0.360 0.360
0.361 0.361 0.362 0.364 0.367 0.370 0.377 0.385 0.386 0.390 0.395 0.398 0.405 0.411 0.418 0.428 0.439 0.453 0.475 0.495 0.523 0.516 0.519 0.508 0.492 0.480 0.471 0.464 0.461 0.463 0.471 0.482 0.490 0.497 0.502 0.509
Energy (eV) 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0
n 3.958 3.936 3.920 3.905 3.869 3.745 3.338 2.516 1.953 1.720 1.586 1.498 1.435 1.394 1.370 1.364 1.371 1.383 1.380 1.360 1.293 1.209 1.108 1.30 1.10 1.00 0.92 0.92 0.92 0.93
k 2.863 2.986 3.137 3.336 3.614 4.009 4.507 4.669 4.297 3.960 3.709 3.509 3.342 3.197 3.073 2.973 2.897 2.854 2.842 2.846 2.163 2.873 2.813 2.34 2.05 1.80 1.60 1.40 1.20 1.14 1.00 0.86 0.237 0.179 0.144 0.110 0.0747 0.1020 0.0999 0.0856 0.0740 0.0651 0.0604
Gold, electropolished, Au (110)9 0.10 8.17 82.83 0.20 2.13 41.73 0.30 0.99 27.82 0.40 0.59 20.83 0.50 0.39 16.61 0.60 0.28 13.78 0.70 0.22 11.75 0.80 0.18 10.21 0.90 0.15 9.01 1.00 0.13 8.03 1.20 0.10 6.54 1.40 0.08 5.44 1.60 0.08 4.56 1.80 0.09 3.82 2.00 0.13 3.16 2.10 0.18 2.84
R(φ = 0) 0.517 0.527 0.539 0.556 0.579 0.612 0.659 0.705 0.713 0.702 0.690 0.677 0.664 0.650 0.636 0.622 0.609 0.600 0.598 0.602 0.479 0.632 0.641 0.517 0.489 0.448 0.348 0.282 0.262 0.167
0.995 0.995 0.995 0.995 0.994 0.994 0.994 0.993 0.993 0.992 0.991 0.989 0.986 0.979 0.953 0.925
Energy (eV) 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40
n 0.24 0.50 0.82 1.24 1.43 1.46 1.50 1.54 1.54 1.54 1.55 1.56 1.58 1.62 1.64 1.63 1.59 1.55 1.51 1.48 1.45 1.41 1.35 1.30 1.27 1.25 1.23 1.22 1.21 1.21 1.21 1.21 1.22 1.24 1.25 1.27 1.30 1.34 1.36 1.38 1.38 1.35 1.31 1.30 1.30 1.31 1.31 1.30 1.31 1.33 1.36 1.37 1.37 1.36 1.35 1.34 1.34 1.34 1.34 1.35
2.54 1.86 1.59 1.54 1.72 1.77 1.79 1.80 1.81 1.80 1.78 1.76 1.73 1.73 1.75 1.79 1.81 1.81 1.79 1.78 1.77 1.76 1.74 1.69 1.64 1.59 1.54 1.49 1.40 1.33 1.27 1.20 1.14 1.09 1.05 1.01 0.97 0.95 0.95 0.96 0.98 0.99 0.96 0.92 0.89 0.88 0.86 0.83 0.81 0.78 0.78 0.79 0.80 0.80 0.80 0.79 0.77 0.76 0.74 0.73
k
R(φ = 0) 0.880 0.647 0.438 0.331 0.356 0.368 0.368 0.369 0.371 0.368 0.362 0.356 0.349 0.346 0.351 0.360 0.366 0.369 0.368 0.367 0.368 0.370 0.370 0.364 0.354 0.344 0.332 0.319 0.295 0.275 0.256 0.236 0.218 0.203 0.190 0.177 0.167 0.162 0.161 0.164 0.169 0.171 0.165 0.155 0.147 0.144 0.140 0.133 0.126 0.122 0.121 0.124 0.126 0.127 0.125 0.123 0.120 0.116 0.113 0.111
Optical Properties of Selected Elements Energy (eV) 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.80 21.20 21.60 22.00 22.40 22.80 23.20 23.60 24.00 24.40 24.80 25.20 25.60 26.00 26.40 26.80 27.20 27.60 28.00 28.40 28.80 29.20 29.60 30.00
n 1.36 1.38 1.39 1.44 1.45 1.42 1.37 1.33 1.29 1.26 1.24 1.22 1.21 1.20 1.19 1.19 1.19 1.19 1.19 1.20 1.21 1.21 1.18 1.14 1.10 1.05 1.00 0.94 0.89 0.85 0.82 0.80 0.80 0.80 0.80 0.82 0.83 0.84 0.85 0.85 0.86 0.86 0.87 0.88 0.88 0.88 0.87 0.86
0.72 0.71 0.71 0.73 0.79 0.84 0.86 0.86 0.86 0.84 0.83 0.81 0.79 0.78 0.76 0.75 0.74 0.74 0.73 0.74 0.76 0.80 0.83 0.85 0.87 0.88 0.88 0.86 0.83 0.79 0.75 0.70 0.66 0.62 0.58 0.56 0.54 0.52 0.51 0.50 0.49 0.49 0.48 0.48 0.48 0.48 0.48 0.48
k
R(φ = 0) 0.109 0.108 0.109 0.115 0.127 0.137 0.140 0.140 0.139 0.135 0.132 0.127 0.123 0.119 0.116 0.114 0.111 0.109 0.109 0.110 0.116 0.125 0.133 0.141 0.149 0.156 0.162 0.164 0.163 0.157 0.149 0.138 0.125 0.113 0.101 0.090 0.084 0.079 0.074 0.071 0.068 0.065 0.063 0.062 0.062 0.062 0.064 0.064
→
Hafnium, single crystal, E ∥ ĉ10 0.52 1.48 4.11 0.56 1.84 3.29 0.60 2.34 2.62 0.66 3.21 2.13 0.70 3.70 2.03 0.76 4.31 2.10 0.80 4.61 2.31 0.86 4.71 2.70 0.90 4.64 2.85 0.95 4.54 2.96 1.00 4.45 3.00
0.747 0.615 0.486 0.428 0.441 0.476 0.504 0.533 0.541 0.545 0.545
Energy (eV) 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00
12-125 n 4.28 4.08 3.87 3.72 3.60 3.52 3.52 3.57 3.63 3.65 3.64 3.53 3.34 3.15 2.99 2.83 2.68 2.54 2.40 2.27 2.14 2.00 1.87 1.78 1.71 1.66 1.63 1.60 1.56 1.52 1.48 1.45 1.43 1.41 1.39 1.39 1.39 1.38 1.38 1.37 1.36 1.35 1.35 1.32 1.28 1.26 1.26 1.27 1.28 1.31 1.33 1.34 1.36 1.37 1.40 1.43 1.45 1.47 1.48 1.49
3.08 3.10 3.04 2.95 2.85 2.73 2.61 2.56 2.59 2.67 2.81 2.99 3.09 3.11 3.13 3.12 3.10 3.08 3.04 3.00 2.95 2.89 2.79 2.68 2.58 2.48 2.40 2.33 2.27 2.21 2.14 2.07 2.01 1.95 1.89 1.83 1.79 1.75 1.71 1.68 1.61 1.55 1.51 1.48 1.41 1.35 1.28 1.22 1.16 1.13 1.10 1.07 1.05 1.02 1.01 1.01 1.01 1.02 1.04 1.07
k
R(φ = 0) 0.547 0.544 0.536 0.525 0.514 0.500 0.488 0.485 0.489 0.498 0.511 0.526 0.534 0.537 0.540 0.542 0.542 0.543 0.544 0.544 0.544 0.544 0.538 0.528 0.517 0.503 0.491 0.481 0.473 0.466 0.455 0.442 0.431 0.420 0.407 0.394 0.382 0.373 0.364 0.356 0.341 0.324 0.314 0.308 0.295 0.278 0.258 0.240 0.224 0.212 0.204 0.197 0.191 0.183 0.179 0.178 0.180 0.183 0.186 0.193
Energy (eV) 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.00 19.60 20.00 20.60 21.00 21.60 22.00 22.60 23.00 23.60 24.00 24.60
n 1.50 1.48 1.46 1.41 1.36 1.32 1.28 1.24 1.20 1.16 1.13 1.10 1.07 1.04 1.02 0.96 0.92 0.88 0.84 0.83 0.83 0.81 0.79 0.79 0.83 0.81 0.79 0.79 0.80 0.81 0.84 0.87 0.89 0.93 0.94 0.97 0.99 1.01 1.03 1.06 1.07 1.09 1.09 1.10
1.10 1.14 1.18 1.21 1.22 1.22 1.22 1.21 1.20 1.19 1.17 1.16 1.14 1.12 1.10 1.06 1.01 0.96 0.90 0.83 0.80 0.76 0.70 0.64 0.60 0.60 0.55 0.50 0.46 0.42 0.38 0.34 0.33 0.32 0.31 0.30 0.29 0.28 0.28 0.28 0.28 0.29 0.30 0.31
k
R(φ = 0) 0.201 0.211 0.222 0.230 0.235 0.238 0.240 0.241 0.242 0.242 0.241 0.241 0.239 0.238 0.236 0.232 0.225 0.218 0.205 0.186 0.172 0.167 0.153 0.132 0.111 0.114 0.105 0.089 0.077 0.064 0.051 0.040 0.036 0.030 0.027 0.023 0.022 0.020 0.020 0.020 0.021 0.022 0.023 0.024
→
Hafnium, single crystal, E ⊥ ĉ10 0.52 2.25 4.65 0.56 2.34 3.66 0.60 2.84 2.89 0.66 3.71 2.35 0.70 4.26 2.21 0.76 4.97 2.33 0.80 5.41 2.62 0.86 5.46 3.36 0.90 5.22 3.62 0.95 4.95 3.72 1.00 4.76 3.76 1.10 4.43 3.80 1.20 4.07 3.74 1.30 3.79 3.55 1.40 3.61 3.36
0.723 0.623 0.512 0.469 0.482 0.521 0.554 0.593 0.601 0.602 0.602 0.601 0.594 0.578 0.561
Optical Properties of Selected Elements
12-126 Energy (eV) 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80
n 3.55 3.58 3.63 3.66 3.63 3.51 3.35 3.18 2.99 2.78 2.65 2.54 2.42 2.31 2.20 2.08 1.94 1.83 1.74 1.68 1.62 1.57 1.53 1.49 1.45 1.41 1.38 1.35 1.33 1.31 1.30 1.29 1.28 1.28 1.27 1.27 1.27 1.27 1.26 1.24 1.21 1.19 1.18 1.19 1.21 1.22 1.23 1.26 1.28 1.30 1.33 1.35 1.38 1.40 1.42 1.43 1.45 1.43 1.40 1.37
3.13 3.01 2.98 3.02 3.14 3.26 3.33 3.36 3.39 3.35 3.26 3.22 3.17 3.13 3.08 3.05 2.98 2.88 2.78 2.69 2.61 2.52 2.45 2.38 2.32 2.25 2.18 2.11 2.05 1.99 1.93 1.88 1.82 1.77 1.73 1.69 1.62 1.57 1.52 1.48 1.42 1.36 1.29 1.22 1.18 1.14 1.10 1.06 1.04 1.02 1.00 0.99 0.99 1.00 1.02 1.04 1.08 1.12 1.16 1.19
k
R(φ = 0) 0.540 0.529 0.526 0.530 0.541 0.551 0.558 0.563 0.568 0.569 0.562 0.560 0.559 0.558 0.558 0.561 0.560 0.555 0.547 0.538 0.529 0.519 0.510 0.501 0.493 0.484 0.474 0.462 0.451 0.438 0.427 0.415 0.402 0.389 0.379 0.367 0.349 0.335 0.322 0.313 0.302 0.285 0.265 0.244 0.230 0.217 0.206 0.194 0.187 0.180 0.174 0.173 0.173 0.174 0.178 0.184 0.193 0.204 0.214 0.223
Energy (eV) 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.00 19.60 20.00 20.60 21.00 21.60 22.00 22.60 23.00 23.60 24.00 24.60
n 1.32 1.27 1.23 1.19 1.15 1.12 1.08 1.05 1.03 1.00 0.97 0.92 0.88 0.83 0.80 0.79 0.80 0.77 0.76 0.76 0.81 0.78 0.77 0.77 0.79 0.80 0.82 0.86 0.88 0.91 0.93 0.96 0.97 1.00 1.01 1.03 1.05 1.06 1.07 1.09
1.21 1.21 1.20 1.20 1.19 1.17 1.16 1.14 1.12 1.10 1.08 1.04 0.99 0.94 0.88 0.81 0.77 0.73 0.68 0.61 0.58 0.57 0.53 0.48 0.44 0.39 0.36 0.33 0.32 0.31 0.30 0.29 0.29 0.28 0.28 0.27 0.28 0.28 0.29 0.30
Iridium11 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50
28.49 15.32 9.69 6.86 5.16 4.11 3.42 3.05 2.98 2.79 2.93 3.14 3.19 3.15 3.04 2.96 2.85 2.72 2.65
60.62 45.15 35.34 28.84 24.25 20.79 18.06 15.82 14.06 11.58 9.78 8.61 7.88 7.31 6.84 6.41 6.07 5.74 5.39
k
R(φ = 0) 0.230 0.234 0.235 0.237 0.237 0.237 0.237 0.236 0.235 0.233 0.231 0.226 0.219 0.211 0.196 0.177 0.160 0.154 0.140 0.119 0.099 0.102 0.092 0.077 0.065 0.053 0.041 0.032 0.030 0.025 0.023 0.021 0.020 0.019 0.019 0.018 0.019 0.020 0.021 0.022 0.975 0.973 0.972 0.969 0.967 0.964 0.960 0.954 0.944 0.925 0.895 0.862 0.840 0.822 0.808 0.791 0.779 0.767 0.750
Energy (eV) 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00
n 2.68 2.69 2.64 2.57 2.50 2.40 2.29 2.18 2.07 1.98 1.91 1.85 1.81 1.77 1.73 1.62 1.53 1.52 1.61 1.64 1.58 1.45 1.31 1.18 1.10 1.04 1.00 0.98 0.96 0.95 0.94 0.94 0.94 0.95 0.97 0.99 1.02 1.03 1.08 1.13 1.18 1.22 1.26 1.29 1.33 1.36 1.39 1.42 1.44 1.45 1.45 1.44 1.43 1.41 1.38 1.34 1.31 1.28 1.25 1.24
5.08 4.92 4.81 4.68 4.57 4.48 4.38 4.26 4.14 4.00 3.86 3.73 3.61 3.51 3.43 3.26 3.05 2.81 2.69 2.68 2.71 2.68 2.60 2.49 2.35 2.22 2.09 1.98 1.86 1.78 1.68 1.59 1.50 1.42 1.34 1.27 1.20 1.14 1.06 1.03 1.00 0.98 0.96 0.95 0.94 0.95 0.95 0.97 0.99 1.01 1.04 1.07 1.09 1.12 1.13 1.14 1.13 1.12 1.10 1.08
k
R(φ = 0) 0.728 0.716 0.710 0.704 0.699 0.697 0.695 0.692 0.689 0.682 0.673 0.665 0.655 0.646 0.640 0.629 0.610 0.573 0.541 0.535 0.549 0.561 0.567 0.570 0.559 0.543 0.522 0.499 0.474 0.454 0.427 0.401 0.375 0.345 0.318 0.290 0.262 0.241 0.208 0.191 0.179 0.171 0.164 0.160 0.157 0.159 0.161 0.163 0.169 0.175 0.182 0.187 0.193 0.200 0.206 0.208 0.208 0.206 0.203 0.199
Optical Properties of Selected Elements Energy (eV) 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.20 19.60 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 32.00 34.00 36.00 38.00 40.00
n 1.21 1.19 1.18 1.17 1.16 1.17 1.18 1.19 1.20 1.21 1.23 1.25 1.28 1.30 1.30 1.27 1.24 1.20 1.15 1.10 1.04 0.99 0.94 0.89 0.84 0.79 0.76 0.73 0.70 0.69 0.68 0.67 0.67 0.66 0.66 0.66 0.66 0.65 0.64 0.64 0.62 0.64 0.69 0.73 0.76
1.05 1.01 0.98 0.95 0.91 0.88 0.87 0.84 0.83 0.83 0.82 0.82 0.83 0.87 0.93 0.97 1.00 1.03 1.05 1.06 1.05 1.04 1.02 1.00 0.99 0.96 0.92 0.87 0.83 0.79 0.76 0.72 0.69 0.66 0.63 0.61 0.59 0.57 0.55 0.53 0.44 0.35 0.27 0.24 0.22
Iron5 0.10 0.15 0.20 0.26 0.30 0.36 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10
6.41 6.26 3.68 4.98 4.87 4.68 4.42 4.14 3.93 3.78 3.65 3.52 3.43 3.33
33.07 22.82 18.23 13.68 12.05 10.44 9.75 8.02 6.95 6.17 5.60 5.16 4.79 4.52
k
R(φ = 0) 0.191 0.181 0.173 0.165 0.155 0.147 0.142 0.136 0.133 0.131 0.129 0.127 0.131 0.140 0.154 0.166 0.176 0.187 0.197 0.205 0.210 0.215 0.220 0.222 0.228 0.232 0.228 0.223 0.218 0.209 0.200 0.192 0.181 0.174 0.166 0.158 0.151 0.148 0.145 0.140 0.119 0.091 0.059 0.044 0.034 0.978 0.956 0.958 0.911 0.892 0.867 0.858 0.817 0.783 0.752 0.725 0.700 0.678 0.660
Energy (eV) 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.83 4.00 4.17 4.33 4.50 4.67 4.83 5.00 5.17 5.33 5.50 5.67 5.83 6.00 6.17 6.33 6.50 6.67 6.83 7.00 7.17 7.33 7.50 7.67 7.83 8.00 8.17 8.33 8.50 8.67 8.83 9.00 9.17 9.33
12-127 n 3.24 3.16 3.12 3.05 3.00 2.98 2.92 2.89 2.85 2.80 2.74 2.65 2.56 2.46 2.34 2.23 2.12 2.01 1.88 1.78 1.70 1.62 1.55 1.50 1.47 1.43 1.38 1.30 1.26 1.23 1.20 1.16 1.14 1.14 1.12 1.11 1.09 1.09 1.10 1.09 1.08 1.04 1.02 1.00 0.97 0.96 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.92 0.93 0.92 0.91
4.26 4.07 3.87 3.77 3.60 3.52 3.46 3.37 3.36 3.34 3.33 3.34 3.31 3.31 3.30 3.25 3.23 3.17 3.12 3.04 2.96 2.87 2.79 2.70 2.63 2.56 2.49 2.39 2.27 2.18 2.10 2.02 1.93 1.87 1.81 1.75 1.17 1.65 1.61 1.59 1.57 1.55 1.51 1.47 1.43 1.39 1.35 1.30 1.26 1.23 1.21 1.18 1.16 1.14 1.12 1.10 1.08 1.07 1.06 1.04
k
R(φ = 0) 0.641 0.626 0.609 0.601 0.585 0.577 0.573 0.563 0.563 0.562 0.563 0.567 0.567 0.570 0.576 0.575 0.580 0.580 0.583 0.580 0.576 0.572 0.565 0.556 0.548 0.542 0.534 0.527 0.510 0.494 0.482 0.470 0.451 0.435 0.425 0.408 0.401 0.383 0.373 0.366 0.365 0.365 0.358 0.351 0.346 0.333 0.327 0.311 0.298 0.288 0.279 0.272 0.265 0.258 0.251 0.246 0.240 0.236 0.233 0.231
Energy (eV) 9.50 9.67 9.83 10.00 10.17 10.33 10.50 10.67 10.83 11.00 11.17 11.33 11.50 11.67 11.83 12.00 12.17 12.33 12.50 12.67 12.83 13.00 13.17 13.33 13.50 13.67 13.83 14.00 14.17 14.33 14.50 14.67 14.83 15.00 15.17 15.33 15.50 15.67 15.83 16.00 16.17 16.33 16.50 16.67 16.83 17.00 17.17 17.33 17.50 17.67 17.83 18.00 18.17 18.33 18.50 18.67 18.83 19.00 19.17 19.33
n 0.90 0.90 0.89 0.88 0.87 0.87 0.87 0.88 0.89 0.91 0.92 0.93 0.93 0.93 0.92 0.91 0.90 0.89 0.98 0.87 0.86 0.85 0.84 0.84 0.83 0.82 0.81 0.81 0.80 0.80 0.79 0.79 0.78 0.78 0.78 0.78 0.77 0.77 0.77 0.77 0.78 0.78 0.78 0.77 0.78 0.78 0.78 0.78 0.77 0.77 0.78 0.78 0.78 0.78 0.77 0.77 0.77 0.77 0.76 0.76
1.02 1.00 0.99 0.97 0.94 0.91 0.89 0.87 0.85 0.83 0.83 0.84 0.84 0.84 0.84 0.84 0.84 0.83 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.73 0.72 0.71 0.79 0.69 0.67 0.66 0.65 0.64 0.63 0.62 0.61 0.60 0.58 0.58 0.57 0.56 0.55 0.55 0.54 0.54 0.53 0.52 0.51 0.51 0.51 0.50 0.50 0.50 0.49 0.49 0.49 0.48
k
R(φ = 0) 0.226 0.221 0.218 0.213 0.203 0.196 0.189 0.179 0.170 0.162 0.159 0.159 0.160 0.162 0.163 0.163 0.165 0.164 0.165 0.166 0.166 0.162 0.161 0.160 0.159 0.157 0.154 0.151 0.149 0.146 0.144 0.141 0.138 0.135 0.131 0.238 0.126 0.123 0.119 0.116 0.112 0.110 0.107 0.106 0.103 0.102 0.100 0.098 0.097 0.095 0.092 0.091 0.090 0.089 0.089 0.088 0.087 0.087 0.088 0.087
Optical Properties of Selected Elements
12-128 Energy (eV) 19.50 19.67 19.83 20.00 20.17 20.33 20.50 20.67 20.83 21.00 21.17 21.33 21.50 21.67 21.83 22.00 22.17 22.33 22.50 22.67 22.83 23.00 23.17 23.33 23.50 23.67 23.83 24.00 24.17 24.33 24.50 24.67 24.83 25.00 26.00 27.00 28.00 29.00 30.00
n 0.75 0.75 0.75 0.74 0.74 0.74 0.74 0.73 0.73 0.73 0.72 0.72 0.72 0.72 0.72 0.72 0.71 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.73 0.73 0.74 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.76 0.78 0.79 0.81 0.82
0.47 0.47 0.46 0.45 0.44 0.44 0.42 0.43 0.42 0.41 0.40 0.39 0.38 0.38 0.37 0.36 0.35 0.34 0.34 0.33 0.32 0.31 0.30 0.29 0.28 0.28 0.27 0.27 0.26 0.26 0.25 0.25 0.24 0.24 0.21 0.18 0.16 0.14 0.13
Lithium12 0.14 0.54 0.75 1.05 1.35 1.65 1.95 2.25 2.55 2.85 3.15 3.45 3.75 4.05 4.35 4.65 4.95 5.25 5.55 5.85
0.659 0.661 0.561 0.448 0.338 0.265 0.221 0.206 0.217 0.247 0.304 0.334 0.345 0.346 0.333 0.317 0.302 0.299 0.310 0.342
38.0 12.6 7.68 5.58 4.36 3.55 2.94 2.48 2.11 1.82 1.60 1.45 1.32 1.21 1.11 1.01 0.906 0.795 0.688 0.594
k
R(φ = 0) 0.086 0.085 0.084 0.083 0.081 0.081 0.080 0.079 0.078 0.077 0.076 0.074 0.073 0.071 0.070 0.068 0.067 0.064 0.063 0.062 0.059 0.058 0.056 0.054 0.050 0.049 0.047 0.045 0.044 0.043 0.042 0.040 0.039 0.038 0.031 0.026 0.021 0.017 0.014 0.998 0.984 0.963 0.946 0.935 0.925 0.913 0.892 0.854 0.797 0.715 0.656 0.611 0.578 0.557 0.540 0.520 0.484 0.434 0.365
Energy (eV) 6.15 6.45 6.75 7.05 7.35 7.65 7.95 8.25 8.55 8.85 9.15 9.45 9.75 10.1 10.4 10.6
n 0.376 0.408 0.440 0.466 0.492 0.517 0.545 0.572 0.601 0.624 0.657 0.680 0.708 0.726 0.743 0.753
k 0.522 0.460 0.407 0.364 0.320 0.282 0.246 0.214 0.189 0.163 0.144 0.130 0.119 0.108 0.102 0.080
R(φ = 0) 0.306 0.256 0.214 0.183 0.155 0.131 0.109 0.091 0.075 0.063 0.050 0.042 0.034 0.029 0.025 0.022
Magnesium (evaporated)13 2.145 0.48 3.71 2.270 0.57 3.47 2.522 0.53 2.92 2.845 0.52 2.65 3.064 0.52 2.05 5.167 0.10 1.60 5.636 0.15 1.50 6.200 0.20 1.40 6.889 0.25 1.30 7.750 0.20 1.20 8.857 0.15 0.95 10.335 0.25 0.40
0.880 0.843 0.805 0.777 0.681 0.894 0.832 0.765 0.693 0.722 0.730 0.419
Manganese14 0.64 3.89 0.77 3.78 0.89 3.65 1.02 3.48 1.14 3.30 1.26 3.10 1.39 2.97 1.51 2.83 1.64 2.70 1.76 2.62 1.88 2.56 2.01 2.51 2.13 2.47 2.26 2.39 2.38 2.32 2.50 2.25 2.63 2.19 2.75 2.11 2.88 2.06 3.00 2.00 3.12 1.96 3.25 1.92 3.37 1.89 3.50 1.89 3.62 1.87 3.74 1.86 3.87 1.86 3.99 1.86 4.12 1.86
0.738 0.710 0.688 0.673 0.662 0.653 0.643 0.634 0.627 0.617 0.606 0.596 0.585 0.577 0.567 0.559 0.552 0.545 0.536 0.528 0.518 0.509 0.498 0.484 0.475 0.463 0.451 0.438 0.427
5.95 5.41 5.02 4.74 4.53 4.35 4.18 4.03 3.91 3.78 3.65 3.54 3.43 3.33 3.23 3.14 3.06 2.98 2.90 2.82 2.74 2.67 2.59 2.51 2.45 2.38 2.32 2.25 2.19
Energy (eV) 4.24 4.36 4.49 4.61 4.74 4.86 4.98 5.11 5.23 5.36 5.48 5.60 5.73 5.85 5.98 6.10 6.22 6.35 6.47 6.60
n 1.85 1.85 1.86 1.85 1.84 1.83 1.82 1.82 1.81 1.78 1.74 1.73 1.72 1.70 1.67 1.63 1.62 1.59 1.55 1.48
Mercury (liquid)15 0.2 13.99 0.3 11.37 0.4 9.741 0.5 8.528 0.6 7.574 0.8 6.086 1.0 4.962 1.2 4.050 1.4 3.324 1.6 2.746 1.8 2.284 2.0 1.910 2.2 1.620 2.4 1.384 2.6 1.186 2.8 1.027 3.0 0.898 3.2 0.798 3.4 0.713 3.6 0.644 3.8 0.589 4.0 0.542 4.2 0.507 4.4 0.477 4.6 0.452 4.8 0.431 5.0 0.414 5.2 0.401 5.4 0.394 5.6 0.386 5.7 0.386 5.8 0.386 5.9 0.385 6.0 0.386 6.1 0.388 6.2 0.390 6.3 0.399 6.4 0.412 6.5 0.428
2.14 2.08 2.03 1.99 1.94 1.91 1.86 1.82 1.79 1.76 1.73 1.70 1.67 1.64 1.61 1.58 1.55 1.52 1.50 1.47
k
14.27 11.95 10.65 9.805 9.195 8.312 7.643 7.082 6.558 6.054 5.582 5.150 4.751 4.407 4.090 3.802 3.538 3.294 3.074 2.860 2.665 2.502 2.341 2.195 2.058 1.929 1.806 1.687 1.569 1.454 1.396 1.341 1.287 1.232 1.176 1.118 1.058 1.002 0.949
R(φ = 0) 0.417 0.406 0.395 0.388 0.378 0.372 0.362 0.354 0.348 0.342 0.337 0.331 0.325 0.319 0.313 0.307 0.301 0.295 0.292 0.288 0.869 0.846 0.830 0.818 0.808 0.796 0.789 0.786 0.785 0.783 0.782 0.782 0.780 0.779 0.779 0.779 0.777 0.773 0.770 0.763 0.755 0.749 0.738 0.727 0.715 0.701 0.685 0.666 0.642 0.617 0.601 0.585 0.569 0.551 0.531 0.510 0.481 0.450 0.418
Optical Properties of Selected Elements Energy (eV) 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5
n 0.436 0.438 0.459 0.510 0.585 0.663 0.717 0.769 0.817 0.860 0.893 0.929 0.946 0.952 0.953 0.956 0.965 0.975 0.988 1.009 1.044 1.061 1.062 1.054 1.045 1.041 1.039 1.039 1.050 1.064 1.078 1.092 1.104 1.115 1.125 1.135 1.146 1.159 1.170 1.177 1.184 1.191 1.195 1.200 1.208
k 0.898 0.836 0.756 0.676 0.617 0.589 0.584 0.575 0.574 0.580 0.597 0.623 0.639 0.645 0.638 0.624 0.607 0.588 0.568 0.548 0.541 0.557 0.567 0.569 0.561 0.550 0.537 0.523 0.491 0.467 0.445 0.430 0.416 0.404 0.394 0.383 0.374 0.368 0.367 0.367 0.366 0.367 0.367 0.366 0.364
R(φ = 0) 0.392 0.367 0.320 0.255 0.191 0.148 0.128 0.111 0.100 0.094 0.093 0.096 0.098 0.099 0.097 0.093 0.087 0.082 0.076 0.069 0.066 0.069 0.071 0.072 0.070 0.068 0.065 0.062 0.055 0.050 0.045 0.042 0.040 0.038 0.037 0.035 0.034 0.034 0.034 0.034 0.034 0.035 0.035 0.035 0.035
Molybdenum16 0.10 18.53 0.15 8.78 0.20 5.10 0.25 3.36 0.30 2.44 0.34 2.00 0.38 1.70 0.42 1.57 0.46 1.46 0.50 1.37 0.54 1.35 0.58 1.34 0.62 1.38 0.66 1.43
68.51 47.54 35.99 28.75 23.80 20.84 18.44 16.50 14.91 13.55 12.36 11.34 10.44 9.67
0.985 0.985 0.985 0.984 0.983 0.982 0.980 0.978 0.975 0.971 0.966 0.960 0.952 0.942
Energy (eV) 0.70 0.74 0.78 0.82 0.86 9.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60
12-129 n 1.48 1.51 1.60 1.64 1.70 1.74 1.94 2.15 2.44 2.77 3.15 3.53 3.77 3.84 3.81 3.74 3.68 3.68 3.76 3.79 3.59 3.36 3.22 3.13 3.08 3.05 3.04 3.03 3.05 3.06 3.06 3.06 3.05 3.04 3.04 3.04 3.01 2.77 2.39 2.06 1.75 1.46 1.22 1.07 0.96 0.89 0.85 0.81 0.79 0.78 0.78 0.80 0.81 0.81 0.75 0.71 0.69 0.67 0.66 0.65
8.99 8.38 7.83 7.35 6.89 6.48 5.58 4.85 4.22 3.74 3.40 3.30 3.41 3.51 3.58 3.58 3.52 3.45 3.41 3.61 3.78 3.73 3.61 3.51 3.42 3.33 3.27 3.21 3.18 3.18 3.19 3.21 3.23 3.27 3.31 3.40 3.51 3.77 3.88 3.84 3.76 3.62 3.42 3.20 2.99 2.80 2.64 2.50 2.36 2.24 2.13 2.04 1.98 1.95 1.90 1.81 1.73 1.65 1.57 1.49
k
R(φ = 0) 0.932 0.921 0.906 0.892 0.876 0.859 0.805 0.743 0.671 0.608 0.562 0.550 0.562 0.570 0.576 0.576 0.571 0.565 0.562 0.578 0.594 0.591 0.582 0.573 0.565 0.566 0.550 0.544 0.540 0.540 0.541 0.543 0.546 0.550 0.554 0.564 0.576 0.610 0.640 0.658 0.678 0.695 0.706 0.706 0.700 0.688 0.674 0.660 0.641 0.619 0.592 0.568 0.548 0.542 0.552 0.542 0.530 0.512 0.495 0.475
Energy (eV) 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.00 15.60 16.00 16.60 17.00 17.60 18.00 18.60 19.00 19.60 20.00 20.60 21.00 21.60 22.00 22.60 23.00 23.60 24.00 24.60 25.00 25.60 26.00 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00 31.00 32.00 33.00 34.00 35.00
n 0.65 0.65 0.67 0.69 0.71 0.74 0.77 0.81 0.86 0.91 0.98 1.05 1.12 1.18 1.23 1.25 1.26 1.25 1.23 1.20 1.17 1.15 1.13 1.13 1.14 1.15 1.14 1.10 1.04 0.94 0.87 0.77 0.71 0.66 0.64 0.62 0.61 0.61 0.60 0.59 0.58 0.58 0.58 0.60 0.62 0.66 0.68 0.71 0.73 0.76 0.79 0.81 0.83 0.86 0.88 0.92 0.92 0.90 0.91 0.87
1.41 1.33 1.25 1.19 1.12 1.05 0.99 0.93 0.88 0.83 0.79 0.77 0.78 0.80 0.85 0.89 0.92 0.98 1.00 1.02 1.02 1.01 1.00 0.99 0.99 1.01 1.04 1.10 1.12 1.14 1.12 1.08 1.02 0.94 0.89 0.81 0.77 0.71 0.69 0.63 0.60 0.53 0.49 0.43 0.39 0.35 0.33 0.31 0.29 0.28 0.27 0.26 0.26 0.26 0.26 0.29 0.32 0.33 0.34 0.37
k
R(φ = 0) 0.450 0.420 0.385 0.355 0.320 0.285 0.250 0.217 0.188 0.162 0.138 0.125 0.123 0.125 0.135 0.145 0.154 0.168 0.178 0.185 0.187 0.185 0.182 0.179 0.179 0.184 0.194 0.216 0.233 0.257 0.270 0.283 0.284 0.275 0.264 0.245 0.234 0.215 0.207 0.195 0.185 0.166 0.151 0.124 0.106 0.085 0.072 0.060 0.050 0.041 0.036 0.031 0.028 0.025 0.023 0.024 0.030 0.032 0.034 0.043
Optical Properties of Selected Elements
12-130 Energy (eV) 36.00 37.00 38.00 39.00 40.00
n 0.82 0.81 0.81 0.82 0.83
0.34 0.30 0.27 0.25 0.23
Nickel17 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.20 6.40
9.54 5.45 4.12 4.25 4.19 4.03 3.84 4.03 3.84 3.59 3.38 3.18 3.06 2.97 2.85 2.74 2.65 2.53 2.43 2.28 2.14 2.02 1.92 1.85 1.80 1.75 1.71 1.67 1.65 1.64 1.63 1.62 1.61 1.61 1.61 1.61 1.62 1.63 1.64 1.66 1.69 1.72 1.73 1.74 1.71 1.63 1.53 1.40 1.27 1.16 1.09 1.04 1.00 1.01
45.82 30.56 22.48 17.68 15.05 13.05 11.43 9.64 8.35 7.48 6.82 6.23 5.74 5.38 5.10 4.85 4.63 4.47 4.31 4.18 4.01 3.82 3.65 3.48 3.33 3.19 3.06 2.93 2.81 2.71 2.61 2.52 2.44 2.36 2.30 2.23 2.17 2.11 2.07 2.02 1.99 1.98 1.98 2.01 2.06 2.09 2.11 2.10 2.04 1.94 1.83 1.73 1.54 1.46
k
R(φ = 0) 0.043 0.038 0.033 0.029 0.025 0.983 0.978 0.969 0.950 0.934 0.918 0.900 0.864 0.835 0.813 0.794 0.774 0.753 0.734 0.721 0.708 0.695 0.688 0.679 0.677 0.670 0.659 0.649 0.634 0.620 0.605 0.590 0.575 0.557 0.542 0.525 0.509 0.495 0.480 0.467 0.454 0.441 0.428 0.416 0.405 0.397 0.393 0.392 0.396 0.409 0.421 0.435 0.449 0.454 0.449 0.435 0.417 0.371 0.345
Energy (eV) 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50
n 1.01 1.02 1.03 1.03 1.03 1.02 1.01 1.01 1.00 0.99 0.98 0.97 0.97 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.97 0.99 1.01 1.04 1.05 1.07 1.07 1.07 1.08 1.08 1.08 1.08 1.07 1.07 1.07 1.06 1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.96 0.94 0.92 0.91 0.90 0.90 0.89 0.89 0.90 0.91 0.91 0.91 0.92 0.91 0.90 0.90
1.40 1.35 1.30 1.27 1.24 1.22 1.18 1.15 1.13 1.11 1.08 1.05 1.01 0.99 0.96 0.93 0.89 0.87 0.83 0.80 0.76 0.75 0.73 0.72 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.70 0.70 0.71 0.70 0.70 0.70 0.70 0.69 0.69 0.68 0.67 0.66 0.64 0.63 0.61 0.58 0.56 0.54 0.51 0.49 0.47 0.46 0.45 0.44 0.44 0.44 0.43 0.43
k
R(φ = 0) 0.325 0.308 0.291 0.282 0.273 0.265 0.256 0.248 0.242 0.235 0.228 0.220 0.211 0.203 0.194 0.185 0.175 0.166 0.155 0.145 0.129 0.123 0.115 0.111 0.109 0.108 0.108 0.107 0.106 0.106 0.105 0.105 0.105 0.105 0.106 0.106 0.106 0.107 0.107 0.106 0.105 0.104 0.103 0.101 0.098 0.096 0.092 0.087 0.082 0.077 0.071 0.066 0.061 0.057 0.055 0.053 0.051 0.052 0.051 0.051
Energy (eV) 25.00 26.00 27.00 28.00 29.00 30.00 35.00 40.00 45.00 50.00 60.00 65.00 68.00 70.00 75.00 80.00 90.00
n 0.89 0.88 0.87 0.87 0.86 0.86 0.86 0.87 0.88 0.92 0.96 0.98 0.96 0.94 0.94 0.94 0.94
0.42 0.39 0.37 0.35 0.34 0.32 0.24 0.18 0.13 0.10 0.08 0.09 0.12 0.11 0.09 0.07 0.06
Niobium18 0.12 0.20 0.24 0.28 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15 2.25 2.35 2.45 2.55 2.65 2.75 2.85 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20
15.99 7.25 5.47 4.26 3.11 2.28 1.83 1.57 1.41 1.35 1.35 1.44 1.55 1.65 1.76 1.95 2.15 2.36 2.54 2.69 2.82 2.89 2.92 2.93 2.92 2.89 2.83 2.74 2.66 2.58 2.51 2.48 2.45 2.44 2.46 2.48 2.52 2.56 2.59 2.62 2.64 2.64
53.20 34.14 28.88 24.95 20.03 15.58 12.67 10.59 9.00 7.74 6.70 5.86 5.18 4.63 4.13 3.68 3.37 3.13 2.99 2.89 2.86 2.87 2.87 2.87 2.88 2.90 2.92 2.90 2.86 2.80 2.68 2.60 2.53 2.45 2.38 2.33 2.29 2.27 2.28 2.29 2.33 2.42
k
R(φ = 0) 0.050 0.046 0.042 0.040 0.037 0.034 0.022 0.014 0.008 0.004 0.002 0.002 0.004 0.004 0.003 0.002 0.002 0.979 0.976 0.975 0.974 0.970 0.964 0.956 0.947 0.935 0.918 0.893 0.857 0.814 0.768 0.715 0.650 0.595 0.552 0.527 0.510 0.505 0.505 0.505 0.505 0.506 0.509 0.512 0.511 0.507 0.500 0.485 0.475 0.465 0.453 0.442 0.435 0.428 0.426 0.427 0.429 0.434 0.447
Optical Properties of Selected Elements Energy (eV) 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.70 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.00 15.60 16.00 16.60 17.00 17.20 17.40 17.80 18.00 18.60 19.00 19.60 20.00
n 2.53 2.39 2.32 2.26 2.16 2.00 1.81 1.63 1.49 1.38 1.31 1.26 1.24 1.23 1.22 1.20 1.14 1.07 1.02 1.00 0.99 0.99 0.99 1.00 1.01 1.04 1.07 1.10 1.13 1.18 1.23 1.27 1.30 1.32 1.32 1.31 1.30 1.28 1.27 1.25 1.24 1.24 1.24 1.23 1.20 1.16 1.11 1.08 0.99 0.92 0.85 0.80 0.79 0.77 0.75 0.74 0.73 0.72 0.72 0.72
2.56 2.56 2.52 2.57 2.62 2.68 2.67 2.60 2.49 2.38 2.25 2.14 2.04 1.96 1.91 1.88 1.85 1.78 1.69 1.60 1.51 1.43 1.39 1.36 1.29 1.22 1.18 1.13 1.09 1.05 1.04 1.04 1.06 1.08 1.10 1.12 1.13 1.13 1.13 1.12 1.10 1.09 1.09 1.12 1.13 1.15 1.16 1.16 1.14 1.11 1.04 0.99 0.96 0.93 0.87 0.85 0.77 0.72 0.66 0.62
k
R(φ = 0) 0.467 0.470 0.465 0.475 0.487 0.505 0.518 0.522 0.520 0.512 0.496 0.480 0.460 0.441 0.430 0.427 0.430 0.428 0.412 0.390 0.365 0.340 0.328 0.315 0.290 0.265 0.245 0.227 0.209 0.194 0.187 0.185 0.190 0.195 0.200 0.204 0.207 0.209 0.210 0.209 0.204 0.200 0.201 0.208 0.216 0.225 0.234 0.238 0.247 0.250 0.245 0.240 0.236 0.230 0.217 0.209 0.185 0.170 0.150 0.137
Energy (eV) 20.60 21.00 21.60 22.00 22.60 23.00 23.60 24.00 24.60 25.00 25.60 26.00 26.60 27.00 27.60 28.00 28.60 29.00 29.60 30.00 31.00 32.00 33.00 34.00 35.20 36.00 37.50 39.50 40.50
12-131 n 0.71 0.72 0.75 0.78 0.82 0.85 0.88 0.91 0.94 0.96 0.99 1.00 1.03 1.04 1.06 1.08 1.11 1.13 1.16 1.18 1.18 1.20 1.21 1.20 1.17 1.15 1.07 0.95 0.92
0.55 0.50 0.43 0.40 0.35 0.33 0.30 0.29 0.28 0.27 0.26 0.26 0.25 0.25 0.25 0.24 0.24 0.25 0.26 0.28 0.31 0.34 0.38 0.42 0.47 0.50 0.53 0.50 0.47
k
Osmium (Polycrystalline)9 0.10 4.08 50.23 0.15 2.90 33.60 0.20 2.44 25.11 0.25 2.35 19.99 0.30 2.23 16.54 0.35 2.33 14.06 0.40 2.45 12.32 0.45 2.43 11.02 0.50 2.41 9.97 0.55 2.33 9.12 0.60 2.21 8.37 0.65 2.11 7.68 0.70 2.02 7.04 0.75 2.00 6.46 0.80 2.00 5.95 0.85 2.01 5.51 0.90 2.03 5.10 0.95 2.05 4.74 1.00 2.09 4.41 1.10 2.15 3.84 1.20 2.16 3.35 1.30 2.25 2.77 1.40 2.49 2.23 1.50 2.84 1.80 1.60 3.36 1.62 1.70 3.70 1.75 1.80 3.78 1.83 1.90 3.81 1.75 2.00 3.98 1.60 2.10 4.26 1.54
R(φ = 0) 0.119 0.100 0.075 0.063 0.045 0.038 0.029 0.025 0.022 0.020 0.018 0.017 0.016 0.015 0.015 0.015 0.016 0.017 0.020 0.023 0.026 0.031 0.038 0.044 0.051 0.056 0.064 0.063 0.059 0.994 0.990 0.985 0.977 0.969 0.955 0.940 0.927 0.913 0.901 0.890 0.877 0.862 0.842 0.820 0.796 0.769 0.742 0.712 0.651 0.592 0.506 0.419 0.369 0.379 0.411 0.423 0.418 0.418 0.432
Energy (eV) 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.30 10.40 10.50 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60
n 4.58 4.84 5.10 5.28 5.36 5.30 5.07 4.65 4.05 3.29 2.93 2.75 2.73 2.71 2.53 2.24 2.01 1.88 1.74 1.58 1.46 1.36 1.27 1.20 1.13 1.06 1.01 0.97 0.95 0.92 0.91 0.90 0.90 0.91 0.91 0.94 0.96 0.98 1.01 1.04 1.08 1.10 1.13 1.16 1.19 1.20 1.22 1.23 1.24 1.25 1.24 1.23 1.19 1.17 1.16 1.15 1.14 1.15 1.16 1.17
1.62 1.76 2.01 2.38 2.82 3.29 3.78 4.18 4.40 3.96 3.79 3.45 3.32 3.34 3.44 3.44 3.31 3.19 3.12 3.00 2.88 2.77 2.65 2.54 2.44 2.33 2.21 2.11 2.00 1.91 1.81 1.72 1.63 1.55 1.48 1.40 1.34 1.29 1.24 1.19 1.16 1.14 1.11 1.10 1.08 1.08 1.08 1.09 1.10 1.11 1.13 1.14 1.15 1.12 1.10 1.08 1.03 1.01 0.98 0.97
k
R(φ = 0) 0.457 0.479 0.506 0.532 0.557 0.580 0.603 0.624 0.639 0.614 0.607 0.577 0.562 0.565 0.584 0.599 0.598 0.592 0.596 0.597 0.593 0.589 0.582 0.575 0.571 0.562 0.548 0.532 0.514 0.497 0.476 0.451 0.426 0.400 0.375 0.344 0.319 0.296 0.274 0.255 0.238 0.229 0.217 0.209 0.203 0.201 0.200 0.201 0.203 0.206 0.213 0.217 0.223 0.216 0.211 0.205 0.191 0.183 0.174 0.170
Optical Properties of Selected Elements
12-132 Energy (eV) 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.80 21.20 21.60 22.00 22.40 22.80 23.20 23.60 24.00 24.40 24.80 25.20 25.60 26.00 26.40 26.80 27.20 28.00 28.40 28.80 29.20 29.60 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00
n 1.17 1.16 1.16 1.17 1.20 1.25 1.28 1.28 1.27 1.26 1.23 1.19 1.14 1.10 1.05 0.96 0.93 0.89 0.86 0.83 0.80 0.78 0.77 0.75 0.75 0.73 0.72 0.70 0.69 0.67 0.66 0.65 0.63 0.65 0.64 0.64 0.65 0.65 0.65 0.65 0.65 0.66 0.68 0.70 0.72 0.74 0.77 0.79 0.81 0.84
Palladium19 0.10 4.13 0.15 3.13 0.20 3.07 0.26 3.11 0.30 3.56 0.36 3.98 0.40 4.27 0.46 4.27 0.50 4.10
0.96 0.94 0.91 0.89 0.86 0.87 0.90 0.94 0.97 1.01 1.04 1.08 1.10 1.10 1.11 1.10 1.09 1.05 1.02 0.99 0.96 0.93 0.90 0.88 0.86 0.84 0.82 0.80 0.77 0.75 0.72 0.69 0.66 0.62 0.59 0.57 0.55 0.53 0.51 0.49 0.45 0.41 0.37 0.34 0.31 0.29 0.27 0.26 0.26 0.26
k
54.15 35.82 26.59 20.15 17.27 14.41 13.27 12.11 11.44
R(φ = 0) 0.169 0.165 0.156 0.148 0.140 0.140 0.147 0.157 0.167 0.178 0.189 0.200 0.210 0.219 0.227 0.239 0.240 0.240 0.237 0.235 0.230 0.226 0.220 0.217 0.211 0.209 0.207 0.205 0.202 0.199 0.195 0.189 0.183 0.165 0.156 0.148 0.140 0.134 0.128 0.121 0.111 0.095 0.079 0.068 0.057 0.048 0.040 0.035 0.031 0.026 0.994 0.990 0.983 0.971 0.955 0.932 0.916 0.902 0.896
Energy (eV) 0.56 0.60 0.72 0.80 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00
n 3.92 3.80 3.51 3.35 2.99 2.81 2.65 2.50 2.34 2.17 2.08 2.00 1.92 1.82 1.75 1.67 1.60 1.53 1.47 1.41 1.37 1.32 1.29 1.26 1.23 1.20 1.17 1.14 1.12 1.10 1.08 1.07 1.06 1.05 1.03 1.04 1.03 1.03 1.01 0.96 0.90 0.85 0.81 0.78 0.76 0.74 0.73 0.72 0.73 0.73 0.75 0.77 0.79 0.83 0.88 0.94 0.96 1.00 1.04 1.07
k 10.49 9.96 8.70 8.06 6.89 6.46 6.10 5.78 5.50 5.22 4.95 4.72 4.54 4.35 4.18 4.03 3.88 3.75 3.61 3.48 3.36 3.25 3.13 3.03 2.94 2.85 2.77 2.68 2.60 2.52 2.45 2.38 2.31 2.25 2.19 2.09 2.01 1.94 1.90 1.86 1.79 1.70 1.62 1.54 1.45 1.37 1.29 1.21 1.13 1.05 0.98 0.91 0.85 0.78 0.73 0.70 0.70 0.65 0.65 0.64
R(φ = 0) 0.883 0.876 0.854 0.840 0.811 0.800 0.790 0.781 0.774 0.767 0.755 0.745 0.737 0.729 0.721 0.714 0.707 0.700 0.693 0.685 0.676 0.668 0.658 0.648 0.639 0.630 0.622 0.613 0.602 0.591 0.581 0.570 0.558 0.547 0.537 0.510 0.493 0.476 0.470 0.472 0.474 0.463 0.449 0.437 0.418 0.397 0.375 0.350 0.316 0.287 0.255 0.223 0.195 0.163 0.133 0.117 0.114 0.097 0.094 0.090
Energy (eV) 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 25.00 26.40 27.80 29.20
n 1.12 1.14 1.16 1.18 1.19 1.20 1.19 1.18 1.18 1.17 1.15 1.13 1.10 1.08 1.06 1.07 1.06 1.07 1.07 1.08 1.08 1.07 1.03 0.99 0.95 0.91 0.88 0.86 0.85 0.84 0.81 0.80 0.81 0.82
0.65 0.65 0.65 0.64 0.65 0.66 0.67 0.67 0.67 0.67 0.68 0.69 0.68 0.66 0.63 0.61 0.61 0.59 0.59 0.59 0.61 0.65 0.67 0.67 0.66 0.64 0.62 0.59 0.56 0.54 0.51 0.43 0.38 0.35
Platinum20 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.10 1.20 1.30 1.40 1.50 1.60
13.21 8.18 5.90 4.70 3.92 3.28 2.81 3.03 3.91 4.58 5.13 5.52 5.71 5.57 5.31 5.05 4.77 4.50 4.25 3.86 3.55 3.29 3.10 2.92 2.76
44.72 31.16 23.95 19.40 16.16 13.66 11.38 9.31 7.71 7.14 6.75 6.66 6.83 7.02 7.04 6.98 6.91 6.77 6.62 6.24 5.92 5.61 5.32 5.07 4.84
k
R(φ = 0) 0.089 0.088 0.087 0.086 0.087 0.089 0.091 0.091 0.092 0.093 0.095 0.098 0.096 0.092 0.086 0.081 0.080 0.077 0.077 0.077 0.080 0.090 0.098 0.103 0.103 0.103 0.101 0.097 0.091 0.086 0.084 0.066 0.052 0.046 0.976 0.969 0.962 0.954 0.945 0.936 0.922 0.882 0.813 0.777 0.753 0.746 0.751 0.759 0.762 0.763 0.765 0.763 0.762 0.753 0.746 0.736 0.725 0.716 0.706
Optical Properties of Selected Elements Energy (eV) 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40
n 2.63 2.51 2.38 2.30 2.23 2.17 2.10 2.03 1.96 1.91 1.87 1.83 1.79 1.75 1.68 1.63 1.58 1.53 1.49 1.45 1.43 1.39 1.38 1.36 1.36 1.36 1.36 1.36 1.38 1.39 1.42 1.45 1.48 1.50 1.50 1.49 1.48 1.48 1.47 1.47 1.47 1.47 1.47 1.48 1.49 1.49 1.49 1.48 1.46 1.43 1.40 1.37 1.35 1.33 1.31 1.30 1.29 1.29 1.29 1.29
4.64 4.43 4.26 4.07 3.92 3.77 3.67 3.54 3.42 3.30 3.20 3.10 3.01 2.92 2.76 2.62 2.48 2.37 2.25 2.14 2.04 1.95 1.85 1.76 1.67 1.61 1.54 1.47 1.40 1.35 1.29 1.26 1.24 1.24 1.25 1.23 1.22 1.20 1.18 1.17 1.15 1.14 1.13 1.12 1.11 1.12 1.13 1.15 1.15 1.16 1.15 1.14 1.12 1.10 1.08 1.06 1.04 1.01 1.00 0.97
k
R(φ = 0) 0.697 0.686 0.678 0.664 0.654 0.642 0.636 0.626 0.616 0.605 0.595 0.585 0.575 0.565 0.546 0.527 0.507 0.491 0.472 0.452 0.432 0.415 0.392 0.372 0.350 0.332 0.315 0.295 0.276 0.261 0.246 0.236 0.231 0.230 0.231 0.228 0.225 0.221 0.216 0.212 0.209 0.205 0.202 0.200 0.198 0.200 0.203 0.207 0.209 0.211 0.210 0.207 0.203 0.199 0.194 0.188 0.183 0.177 0.173 0.165
Energy (eV) 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00
12-133 n 1.29 1.31 1.31 1.31 1.30 1.27 1.27 1.25 1.24 1.24 1.25 1.27 1.31 1.30 1.28 1.23 1.18 1.11 1.03 0.94 0.87 0.81 0.77 0.75 0.74 0.73 0.73 0.73 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.74 0.73
Potassium21 0.55 0.139 0.58 0.119 0.63 0.106 0.67 0.091 0.73 0.079 0.81 0.066 0.92 0.056 1.05 0.044 1.23 0.040 1.44 0.040 1.65 0.044 1.87 0.050 2.07 0.053 2.27 0.049 2.45 0.046 2.64 0.043 2.82 0.043 2.95 0.041 3.06 0.041 3.40 0.052 3.71 0.089 3.97 0.287
0.94 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.89 0.87 0.86 0.85 0.88 0.94 0.99 1.03 1.06 1.09 1.10 1.08 1.04 0.98 0.92 0.87 0.82 0.77 0.73 0.70 0.67 0.65 0.63 0.62 0.60 0.59 0.58 0.58 0.58
k
7.10 6.72 6.32 5.79 5.30 4.75 4.19 3.58 3.04 2.56 2.19 1.84 1.62 1.43 1.28 1.14 1.02 0.898 0.799 0.549 0.288 0.091
R(φ = 0) 0.158 0.155 0.155 0.155 0.156 0.157 0.155 0.151 0.146 0.142 0.138 0.135 0.142 0.157 0.171 0.184 0.197 0.212 0.226 0.238 0.240 0.235 0.226 0.213 0.201 0.187 0.174 0.162 0.150 0.142 0.136 0.130 0.125 0.121 0.118 0.120 0.124 0.989 0.990 0.990 0.990 0.989 0.989 0.988 0.987 0.985 0.979 0.970 0.955 0.943 0.938 0.933 0.928 0.919 0.913 0.905 0.852 0.719 0.310
Energy (eV) 4.00 4.065 4.133 4.203 4.275 4.350 4.428 4.509 4.592 4.679 4.769 4.862 4.959 5.061 5.166 5.276 5.391 5.510 5.637 5.767 6.048 6.199 6.358 6.526 6.702 6.888 7.085 7.293 7.514 7.749 7.999 8.260 8.551 8.856 9.184 9.537 9.919 10.33 11.0 12.0
n 0.34 0.38 0.41 0.45 0.48 0.52 0.55 0.58 0.61 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.79 0.81 0.83 0.85 0.87 0.88 0.90 0.91 0.92 0.92 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
k 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.028
R(φ = 0) 0.245 0.204 0.177 0.145 0.125 0.101 0.085 0.072 0.060 0.049 0.043 0.037 0.032 0.027 0.023 0.019 0.016 0.015 0.012 0.009 0.007 0.006 0.005 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
→
Rhenium, single crystal, E ∥ ĉ9 0.10 6.06 51.03 0.15 4.66 33.96 0.20 4.16 25.36 0.25 4.03 20.10 0.30 4.37 16.69 0.35 4.50 14.53 0.40 4.53 12.96 0.45 4.53 11.78 0.50 4.53 10.88 0.55 4.50 10.26 0.60 4.29 9.75 0.65 4.07 9.35 0.70 3.80 8.94 0.75 3.48 8.55 0.80 3.21 8.10 0.85 2.96 7.68 0.90 2.73 7.24 0.95 2.56 6.79 1.00 2.45 6.36
0.991 0.984 0.975 0.962 0.943 0.925 0.909 0.893 0.878 0.867 0.861 0.856 0.853 0.850 0.846 0.841 0.835 0.826 0.813
Optical Properties of Selected Elements
12-134 Energy (eV) 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20
n 2.38 2.35 2.39 2.44 2.50 2.59 2.70 2.82 2.90 2.97 3.03 3.06 3.07 3.06 3.02 2.96 2.89 2.89 2.99 3.11 2.90 2.83 2.93 2.86 2.81 2.86 2.81 2.56 2.41 2.39 2.34 2.20 2.02 1.83 1.65 1.54 1.45 1.32 1.26 1.20 1.16 1.12 1.08 1.05 1.05 1.05 1.06 1.09 1.11 1.13 1.16 1.18 1.20 1.23 1.25 1.28 1.29 1.30 1.30 1.29
5.61 5.02 4.54 4.13 3.79 3.49 3.27 3.10 3.00 2.91 2.86 2.84 2.82 2.81 2.80 2.77 2.68 2.57 2.47 2.57 2.68 2.50 2.48 2.56 2.51 2.55 2.74 2.83 2.71 2.68 2.75 2.81 2.84 2.80 2.71 2.59 2.50 2.31 2.23 2.15 2.06 1.99 1.89 1.80 1.71 1.62 1.55 1.48 1.43 1.39 1.34 1.32 1.29 1.26 1.25 1.25 1.25 1.26 1.27 1.28
k
R(φ = 0) 0.778 0.742 0.702 0.662 0.624 0.587 0.557 0.535 0.520 0.510 0.504 0.501 0.499 0.498 0.497 0.493 0.482 0.468 0.457 0.470 0.482 0.459 0.457 0.467 0.460 0.466 0.489 0.504 0.493 0.488 0.500 0.515 0.530 0.538 0.541 0.532 0.526 0.508 0.500 0.493 0.480 0.470 0.454 0.435 0.411 0.386 0.360 0.336 0.317 0.301 0.281 0.274 0.264 0.252 0.246 0.242 0.242 0.244 0.247 0.249
Energy (eV) 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.00 17.40 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.80 21.20 21.60 22.00 22.40 22.80 23.20 23.60 24.00 24.40 24.80 25.20 25.60 26.00 26.40 26.80 27.20 27.60 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 42.00 44.00 46.00 48.00
n 1.28 1.26 1.24 1.23 1.22 1.21 1.22 1.22 1.24 1.27 1.29 1.29 1.26 1.23 1.19 1.14 1.12 1.07 0.99 0.93 0.87 0.81 0.77 0.73 0.70 0.67 0.64 0.61 0.58 0.55 0.53 0.51 0.50 0.48 0.48 0.47 0.47 0.47 0.47 0.48 0.48 0.49 0.50 0.51 0.54 0.57 0.62 0.66 0.68 0.72 0.76 0.79 0.82 0.85 0.89 0.88 0.88 0.89 0.85 0.82
1.28 1.28 1.26 1.24 1.21 1.18 1.16 1.13 1.12 1.11 1.15 1.19 1.22 1.25 1.27 1.29 1.30 1.30 1.30 1.29 1.28 1.25 1.21 1.18 1.14 1.11 1.08 1.04 1.01 0.97 0.93 0.89 0.85 0.80 0.76 0.72 0.68 0.65 0.61 0.57 0.54 0.51 0.48 0.45 0.39 0.33 0.29 0.26 0.24 0.21 0.20 0.20 0.19 0.20 0.21 0.26 0.26 0.29 0.32 0.30
k
R(φ = 0) 0.252 0.252 0.249 0.244 0.237 0.230 0.222 0.215 0.209 0.204 0.213 0.225 0.236 0.248 0.259 0.269 0.275 0.286 0.300 0.311 0.321 0.330 0.332 0.333 0.332 0.332 0.334 0.335 0.340 0.341 0.338 0.334 0.329 0.319 0.207 0.296 0.282 0.270 0.255 0.240 0.225 0.208 0.193 0.176 0.145 0.114 0.086 0.065 0.054 0.041 0.031 0.025 0.021 0.018 0.016 0.022 0.022 0.026 0.035 0.036
Energy (eV) 50.00 52.00 54.00 56.00 58.00
n 0.80 0.78 0.72 0.66 0.65
0.30 0.30 0.30 0.24 0.16
k
R(φ = 0) 0.038 0.044 0.055 0.061 0.055
→
Rhenium, single crystal, E ⊥ ĉ9 0.10 4.25 42.83 0.15 3.28 28.08 0.20 3.28 20.66 0.25 3.47 16.27 0.30 3.73 13.44 0.35 3.93 11.54 0.40 3.99 10.15 0.45 4.17 9.03 0.50 4.34 8.26 0.55 4.45 7.73 0.60 4.53 7.40 0.65 4.44 7.26 0.70 4.13 7.09 0.75 3.77 6.75 0.80 3.55 6.32 0.85 3.39 5.95 0.90 3.26 5.61 0.95 3.17 5.27 1.00 3.09 4.96 1.10 3.05 4.39 1.20 3.08 3.89 1.30 3.20 3.56 1.40 3.23 3.38 1.50 3.23 3.12 1.60 3.29 2.88 1.70 3.38 2.72 1.80 3.47 2.59 1.90 3.54 2.50 2.00 3.63 2.43 2.10 3.74 2.40 2.20 3.83 2.38 2.30 3.93 2.44 2.40 4.00 2.55 2.50 4.01 2.70 2.60 3.90 2.84 2.70 3.74 2.92 2.80 3.57 2.88 2.90 3.49 2.75 3.00 3.53 2.71 3.20 3.55 2.84 3.40 3.34 2.88 3.60 3.25 2.83 3.80 3.24 2.84 4.00 3.19 2.94 4.20 3.05 3.06 4.40 2.88 3.15 4.60 2.67 3.18 4.80 2.44 3.17 5.00 2.25 3.12 5.20 2.10 3.04 5.40 1.96 2.96 5.60 1.84 2.88 5.80 1.73 2.81 6.00 1.61 2.74
0.991 0.984 0.971 0.951 0.926 0.900 0.875 0.846 0.821 0.801 0.788 0.784 0.784 0.779 0.766 0.752 0.737 0.719 0.701 0.658 0.613 0.578 0.559 0.532 0.507 0.491 0.480 0.473 0.469 0.470 0.472 0.481 0.492 0.505 0.514 0.517 0.511 0.497 0.493 0.506 0.508 0.501 0.502 0.513 0.526 0.539 0.548 0.554 0.556 0.555 0.553 0.551 0.549 0.549
Optical Properties of Selected Elements Energy (eV) 6.20 6.40 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.00 17.40 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.80 21.20 21.60 22.00 22.40 22.80 23.20 23.60 24.00 24.40
n 1.51 1.42 1.28 1.22 1.16 1.12 1.12 1.08 1.05 1.05 1.05 1.06 1.07 1.09 1.11 1.14 1.17 1.20 1.24 1.29 1.33 1.36 1.38 1.37 1.36 1.33 1.31 1.28 1.26 1.23 1.22 1.20 1.19 1.20 1.22 1.27 1.31 1.31 1.28 1.24 1.17 1.14 1.06 0.95 0.88 0.82 0.76 0.72 0.67 0.64 0.61 0.60 0.58 0.57 0.56 0.55 0.53 0.52 0.50 0.49
2.64 2.56 2.37 2.28 2.19 2.08 1.98 1.93 1.83 1.74 1.66 1.58 1.52 1.46 1.41 1.36 1.31 1.27 1.24 1.22 1.23 1.25 1.28 1.31 1.33 1.34 1.34 1.33 1.32 1.29 1.26 1.23 1.20 1.16 1.13 1.12 1.17 1.23 1.28 1.33 1.37 1.38 1.39 1.38 1.36 1.33 1.29 1.25 1.21 1.15 1.10 1.06 1.02 0.98 0.95 0.92 0.89 0.85 0.82 0.79
k
R(φ = 0) 0.545 0.541 0.526 0.517 0.508 0.493 0.468 0.463 0.443 0.418 0.397 0.372 0.351 0.327 0.309 0.290 0.273 0.258 0.244 0.234 0.233 0.238 0.245 0.253 0.259 0.264 0.266 0.266 0.264 0.257 0.251 0.245 0.236 0.225 0.214 0.207 0.218 0.234 0.251 0.270 0.288 0.297 0.314 0.334 0.346 0.355 0.360 0.363 0.369 0.364 0.357 0.349 0.342 0.336 0.328 0.325 0.322 0.317 0.314 0.309
12-135
Energy (eV) 24.80 25.20 25.60 26.00 26.40 26.80 27.20 27.60 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 42.00 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00
n 0.48 0.47 0.47 0.46 0.46 0.46 0.47 0.48 0.49 0.51 0.55 0.59 0.64 0.67 0.70 0.74 0.77 0.80 0.84 0.88 0.87 0.87 0.88 0.84 0.82 0.80 0.77 0.71 0.66 0.64
0.75 0.72 0.68 0.64 0.61 0.57 0.53 0.50 0.47 0.41 0.34 0.29 0.26 0.24 0.22 0.20 0.19 0.19 0.19 0.21 0.25 0.25 0.28 0.31 0.30 0.30 0.30 0.29 0.23 0.16
Rhodium11 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.90 3.00
18.48 8.66 5.85 4.74 4.20 3.87 3.67 3.63 3.62 3.71 3.67 3.51 3.26 3.01 2.78 2.60 2.42 2.30 2.20 2.12 2.05 2.00 1.94 1.90 1.88 1.85 1.80 1.63 1.53
69.43 37.46 25.94 19.80 16.07 13.51 11.72 10.34 9.36 8.67 8.26 7.94 7.63 7.31 6.97 6.64 6.33 6.02 5.76 5.51 5.30 5.11 4.94 4.78 4.65 4.55 4.49 4.36 4.29
k
R(φ = 0) 0.303 0.295 0.286 0.276 0.263 0.249 0.231 0.216 0.198 0.164 0.129 0.097 0.072 0.060 0.047 0.036 0.029 0.023 0.018 0.016 0.023 0.023 0.026 0.035 0.036 0.039 0.044 0.055 0.061 0.055 0.986 0.977 0.967 0.955 0.941 0.925 0.908 0.887 0.867 0.848 0.837 0.832 0.829 0.827 0.823 0.818 0.813 0.805 0.798 0.789 0.780 0.772 0.765 0.756 0.748 0.743 0.742 0.748 0.753
Energy (eV) 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.60 11.00 11.60 12.00 12.60 13.00 13.60 14.00 14.60 15.00 15.60 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00
n 1.41 1.30 1.20 1.11 1.04 0.99 0.95 0.91 0.88 0.86 0.83 0.80 0.78 0.79 0.79 0.79 0.80 0.80 0.79 0.76 0.73 0.70 0.68 0.67 0.66 0.66 0.66 0.67 0.68 0.69 0.71 0.74 0.78 0.83 0.88 0.95 1.01 1.07 1.12 1.17 1.26 1.29 1.32 1.32 1.32 1.32 1.32 1.32 1.30 1.28 1.25 1.24 1.23 1.22 1.22 1.23 1.25 1.24 1.18 1.10
4.20 4.09 3.97 3.84 3.71 3.58 3.45 3.34 3.23 3.12 2.94 2.76 2.60 2.46 2.34 2.23 2.14 2.06 2.00 1.93 1.85 1.77 1.69 1.60 1.52 1.43 1.35 1.27 1.20 1.12 1.04 0.97 0.89 0.83 0.77 0.73 0.71 0.69 0.69 0.69 0.73 0.76 0.80 0.82 0.82 0.83 0.85 0.86 0.89 0.90 0.90 0.89 0.88 0.88 0.87 0.88 0.92 0.98 1.05 1.09
k
R(φ = 0) 0.760 0.764 0.767 0.769 0.768 0.764 0.759 0.753 0.747 0.739 0.722 0.706 0.684 0.659 0.635 0.613 0.591 0.573 0.561 0.556 0.544 0.534 0.518 0.498 0.476 0.452 0.423 0.394 0.363 0.329 0.288 0.252 0.212 0.179 0.148 0.125 0.110 0.102 0.098 0.098 0.106 0.113 0.124 0.127 0.129 0.131 0.134 0.138 0.144 0.147 0.147 0.147 0.145 0.144 0.143 0.145 0.155 0.172 0.193 0.213
Optical Properties of Selected Elements
12-136 Energy (eV) 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00
n 1.00 0.91 0.86 0.83 0.81 0.79 0.75 0.73 0.70 0.69 0.67 0.66 0.65 0.65 0.65 0.65 0.65 0.66 0.64 0.61 0.60 0.65 0.69 0.73 0.74 0.74 0.75
1.09 1.05 1.00 0.95 0.92 0.90 0.87 0.84 0.81 0.77 0.74 0.70 0.66 0.64 0.61 0.59 0.54 0.51 0.49 0.44 0.37 0.30 0.28 0.27 0.28 0.27 0.25
k
R(φ = 0) 0.230 0.234 0.228 0.219 0.214 0.213 0.214 0.210 0.208 0.202 0.195 0.188 0.176 0.168 0.159 0.152 0.137 0.127 0.127 0.126 0.110 0.074 0.058 0.049 0.047 0.045 0.041
→
Ruthenium, single crystal, E ∥ ĉ9 0.10 11.50 51.38 0.20 5.93 27.14 0.30 4.33 18.50 0.40 3.60 13.97 0.50 3.18 11.04 0.60 3.28 8.89 0.70 3.62 7.73 0.80 3.42 7.02 0.90 3.25 6.12 1.00 3.39 5.33 1.10 3.66 4.83 1.20 3.84 4.57 1.30 3.94 4.38 1.40 4.02 4.19 1.50 4.16 4.07 1.60 4.33 4.08 1.70 4.42 4.21 1.80 4.40 4.38 1.90 4.29 4.61 2.00 4.04 4.81 2.10 3.69 4.90 2.20 3.35 4.82 2.30 3.09 4.70 2.40 2.89 4.55 2.50 2.74 4.40 2.60 2.64 4.25 2.70 2.58 4.14 2.80 2.54 4.05 2.90 2.48 4.03 3.00 2.38 4.03 3.10 2.26 4.00 3.20 2.13 3.96
0.984 0.970 0.953 0.933 0.909 0.865 0.822 0.801 0.766 0.715 0.675 0.654 0.638 0.624 0.614 0.615 0.624 0.636 0.651 0.667 0.679 0.683 0.681 0.677 0.671 0.663 0.656 0.650 0.650 0.656 0.661 0.666
Energy (eV) 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.00 15.60 16.00 16.50 17.00
n 2.00 1.87 1.76 1.66 1.57 1.49 1.42 1.37 1.29 1.22 1.16 1.11 1.06 1.01 0.95 0.92 0.90 0.88 0.87 0.84 0.82 0.79 0.76 0.75 0.73 0.73 0.73 0.72 0.72 0.73 0.74 0.74 0.75 0.77 0.79 0.82 0.85 0.88 0.92 0.96 1.01 1.05 1.09 1.12 1.15 1.18 1.21 1.23 1.26 1.27 1.28 1.28 1.28 1.27 1.27 1.27 1.28 1.30 1.32 1.34
3.91 3.83 3.74 3.65 3.55 3.45 3.35 3.24 3.08 2.93 2.79 2.67 2.56 2.46 2.35 2.23 2.14 2.05 1.98 1.91 1.84 1.77 1.69 1.61 1.54 1.46 1.39 1.33 1.26 1.20 1.14 1.08 1.02 0.97 0.91 0.86 0.81 0.76 0.72 0.69 0.67 0.66 0.65 0.65 0.65 0.65 0.66 0.67 0.69 0.72 0.74 0.75 0.76 0.76 0.76 0.76 0.77 0.78 0.80 0.85
k
R(φ = 0) 0.671 0.673 0.674 0.675 0.673 0.672 0.668 0.661 0.649 0.639 0.628 0.617 0.607 0.600 0.593 0.576 0.559 0.545 0.531 0.521 0.510 0.500 0.489 0.472 0.455 0.433 0.411 0.391 0.366 0.342 0.318 0.295 0.267 0.243 0.217 0.190 0.167 0.144 0.125 0.110 0.100 0.094 0.090 0.088 0.087 0.088 0.090 0.092 0.098 0.104 0.108 0.111 0.114 0.114 0.114 0.114 0.115 0.118 0.123 0.136
Energy (eV) 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00
n 1.32 1.26 1.18 1.11 1.05 0.99 0.92 0.86 0.83 0.81 0.77 0.74 0.71 0.68 0.67 0.66 0.67 0.67 0.67 0.69 0.71 0.73 0.75 0.77 0.79 0.80 0.82 0.83
0.93 0.99 1.02 1.02 1.02 1.02 0.99 0.94 0.90 0.86 0.79 0.74 0.69 0.63 0.57 0.51 0.46 0.43 0.37 0.33 0.30 0.27 0.25 0.24 0.23 0.22 0.22 0.22
k
R(φ = 0) 0.155 0.173 0.185 0.192 0.199 0.208 0.212 0.209 0.203 0.193 0.182 0.171 0.163 0.154 0.140 0.124 0.107 0.097 0.084 0.070 0.058 0.048 0.039 0.035 0.039 0.027 0.024 0.022
→
Ruthenium, single crystal, E ⊥ ĉ5 0.10 11.85 50.81 0.20 6.68 27.18 0.30 4.94 18.92 0.40 3.90 14.51 0.50 3.27 11.63 0.60 2.98 9.54 0.70 2.82 7.99 0.80 2.73 6.71 0.90 2.82 5.54 1.00 3.17 4.59 1.10 3.69 3.91 1.20 4.28 3.66 1.30 4.66 3.72 1.40 4.86 3.79 1.50 4.99 3.89 1.60 5.08 4.03 1.70 5.12 4.22 1.80 5.10 4.45 1.90 4.96 4.78 2.00 4.61 5.06 2.10 4.21 5.09 2.20 3.94 5.00 2.30 3.69 4.97 2.40 3.44 4.88 2.50 3.27 4.77 2.60 3.14 4.66 2.70 3.06 4.59 2.80 2.99 4.59 2.90 2.87 4.64 3.00 2.64 4.69 3.10 2.40 4.64
0.983 0.966 0.950 0.933 0.915 0.888 0.856 0.815 0.751 0.670 0.604 0.585 0.593 0.601 0.609 0.618 0.629 0.642 0.660 0.677 0.682 0.681 0.684 0.684 0.681 0.677 0.674 0.676 0.686 0.701 0.710
Optical Properties of Selected Elements Energy (eV) 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.00 15.60 16.00 16.50
n 2.18 2.00 1.84 1.71 1.60 1.50 1.41 1.35 1.29 1.21 1.16 1.13 1.09 1.03 0.97 0.91 0.88 0.86 0.84 0.82 0.81 0.78 0.76 0.73 0.70 0.68 0.67 0.66 0.66 0.65 0.66 0.66 0.68 0.69 0.70 0.73 0.77 0.82 0.86 0.90 0.94 0.99 1.04 1.08 1.11 1.14 1.17 1.20 1.22 1.25 1.26 1.27 1.27 1.26 1.25 1.25 1.25 1.25 1.27 1.28
4.55 4.43 4.30 4.16 4.03 3.90 3.77 3.64 3.53 3.31 3.13 2.97 2.86 2.75 2.64 2.52 2.40 2.29 2.20 2.11 2.04 1.97 1.89 1.82 1.75 1.67 1.59 1.51 1.44 1.36 1.29 1.22 1.15 1.09 1.02 0.95 0.89 0.84 0.81 0.77 0.74 0.72 0.71 0.70 0.70 0.70 0.71 0.72 0.73 0.76 0.78 0.81 0.83 0.84 0.84 0.84 0.84 0.85 0.85 0.89
k
R(φ = 0) 0.717 0.721 0.723 0.723 0.722 0.721 0.718 0.713 0.707 0.694 0.679 0.662 0.652 0.648 0.643 0.635 0.622 0.605 0.591 0.576 0.564 0.556 0.545 0.538 0.527 0.513 0.496 0.476 0.454 0.430 0.403 0.378 0.346 0.317 0.286 0.251 0.216 0.185 0.163 0.143 0.127 0.115 0.108 0.104 0.102 0.101 0.102 0.104 0.107 0.113 0.118 0.124 0.129 0.132 0.132 0.133 0.133 0.134 0.134 0.145
Energy (eV) 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00
12-137 n 1.28 1.25 1.19 1.12 1.07 1.02 0.97 0.91 0.85 0.80 0.77 0.71 0.67 0.64 0.61 0.60 0.60 0.61 0.62 0.61 0.63 0.65 0.67 0.70 0.72 0.73 0.75 0.77 0.79
0.94 1.00 1.04 1.05 1.05 1.04 1.04 1.03 1.01 0.97 0.94 0.87 0.79 0.73 0.66 0.59 0.53 0.48 0.45 0.40 0.34 0.31 0.28 0.26 0.25 0.23 0.22 0.22 0.22
k
R(φ = 0) 0.158 0.175 0.190 0.200 0.205 0.212 0.219 0.228 0.234 0.234 0.233 0.229 0.218 0.205 0.194 0.177 0.155 0.134 0.123 0.114 0.093 0.077 0.065 0.054 0.047 0.041 0.035 0.031 0.028
→
Selenium, single crystal, E || ĉ22 0.01364 2.914 0.248 0.01488 3.175 9.95E-02 0.01612 3.263 2.13E-03 0.01736 3.306 3.81E-02 0.01860 3.330 7.04E-03 0.01984 3.346 4.23E-02 0.02108 3.358 3.40E-03 0.02232 3.366 5.31E-02 0.02356 3.372 1.96E-03 0.02480 3.377 2.39E-02 0.02604 3.380 0.02728 1.16E-02 0.02976 7.96E-03 0.03224 8.57E-03 0.03472 2.70E-02 0.03720 3.397 1.72E-02 0.04463 1.13E-02 0.04959 3.403 2.79E-03 0.05703 1.56E-03 0.06199 3.405 1.35E-03 0.06819 5.79E-04 0.07439 3.407 4.44E-04 0.08059 4.41E-04 0.08679 3.408 4.32E-04 0.09299 2.44E-04 0.09919 3.409 3.23E-04 0.1116 3.409 2.87E-04 0.1240 3.410 2.71E-04 0.2480 3.417 2.67E-04 0.3720 3.427 1.90E-04
0.242 0.272 0.282 0.287 0.290 0.291 0.293 0.294 0.294 0.295 0.295
0.297 0.298 0.298 0.298 0.298 0.299 0.299 0.299 0.299 0.301
Energy (eV) 0.4959 0.6199 0.7439 0.8679 0.9919 1.116 1.240 1.50 1.60 1.70 1.80 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.5 5.0 6.0 7.0 8.0 9.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0
n 3.442 3.462 3.486 3.516 3.551 3.592 3.640
4.46 4.79 4.49 4.28 4.40 4.59 4.44 3.92 3.69 3.39 (3.00) (2.65) (2.30) 1.92 1.50 1.57 1.84 1.35 1.35 0.92 1.00 0.81 0.65 0.65 0.69 0.81 0.91 0.86 0.85 0.87
k 1.41E-04 1.12E-04 9.42E-05 8.07E-05 7.11E-05 6.37E-05 5.81E-05 1.33E-04 1.59E-04 6.27E-04 2.20E-02 0.76 1.19 1.21 1.32 1.70 2.29 2.59 2.76 3.01
R(φ = 0) 0.302 0.304 0.307 0.310 0.314 0.319 0.324
2.78 2.31 1.49 1.45 1.68 1.64 1.07 1.10 0.91 0.61 0.48 0.36 0.25 0.18 0.15 0.13 0.11
0.528 0.482 0.288 0.276 0.353 0.342 0.238 0.232 0.211 0.160 0.120 0.076 0.030 0.011 0.012 0.011 0.008
Selenium, single crystal, E ⊥ ĉ22 0.01364 2.854 0.0239 0.01488 2.932 0.0325 0.01612 3.140 0.1750 0.01736 2.959 1.3300 0.01860 2.111 0.2550 0.01984 2.356 0.0746 0.02108 2.462 0.0276 0.02232 2.502 0.0442 0.02356 2.543 0.0097 0.02480 2.550 0.0239 0.02604 2.582 0.02728 2.600 0.0101 0.02976 2.576 9.95E-03 0.03224 2.598 1.16E-02 0.03472 2.607 1.68E-02 0.03720 2.613 1.54E-02 0.04463 1.17E-02 0.04959 2.627 3.58E-03 0.05703 8.65E-04
0.402 0.438 0.431 0.417 0.430 0.462 0.490 0.493 0.502 0.521
→
0.231 0.241 0.269 0.321 0.133 0.164 0.178 0.184 0.190 0.191 0.195 0.198 0.194 0.197 0.199 0.199 0.201
Optical Properties of Selected Elements
12-138 Energy (eV) 0.06199 0.06819 0.07439 0.08059 0.08679 0.09299 0.09919 0.1116 0.1240 0.2480 0.3720 0.4959 0.6199 0.7439 0.8679 0.9919 1.116 1.240 1.50 1.60 1.70 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.50 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00
n 2.632 2.635 2.636 2.637 2.638 2.639 2.645 2.652 2.654 2.675 2.692 2.713 2.739 2.772 2.816
3.32 3.38 3.07 2.93 3.00 3.12 3.30 3.35 3.22 3.06 2.84 2.51 2.18 1.75 1.25 1.32 1.62 1.81 1.66 1.72 1.25 0.98 0.68 0.61 0.73 0.78 0.78 0.78 0.80 0.79
k 2.07E-03 2.89E-04 1.59E-04 1.35E-04 1.42E-04 1.04E-04 8.95E-05 8.84E-05 8.51E-05 5.97E-05 5.44E-05 4.58E-05 3.82E-05 3.32E-05 2.96E-05 2.69E-05 2.48E-05 2.31E-05 7.37E-05 8.63E-05 3.60E-04 0.11 0.65 0.73 0.61 0.53 0.58 0.70 1.01 1.24 1.47 1.66 1.81 1.83 1.94 1.50 0.73 0.61 0.69 1.02 0.95 1.02 0.92 0.96 0.65 0.48 0.39 0.32 0.26 0.19 0.14
Silicon, single crystal23 0.01240 3.4185 2.90E-04 0.01488 3.4190 2.30E-04 0.01736 3.4192 1.90E-04 0.01984 3.4195 1.70E-04 0.02480 3.4197 0.03100 3.4199 0.04092 3.4200 0.04463 1.08E-04
R(φ = 0) 0.202 0.202 0.202 0.203 0.203 0.203 0.204 0.205 0.205 0.208 0.210 0.213 0.216 0.221 0.226
0.289 0.310 0.282 0.259 0.263 0.279 0.305 0.328 0.334 0.344 0.351 0.356 0.352 0.382 0.316 0.107 0.105 0.135 0.182 0.171 0.181 0.178 0.274 0.191 0.094 0.060 0.046 0.036 0.023 0.020 0.300 0.300 0.300 0.300 0.300 0.300 0.300
Energy (eV) 0.04959 0.05703 0.06199 0.06943 0.07439 0.08059 0.08679 0.09299 0.09919 0.1054 0.1116 0.1178 0.1240 0.1364 0.1488 0.1612 0.1736 0.1798 0.1860 0.1922 0.1984 0.2046 0.2108 0.2170 0.2232 0.2294 0.2356 0.2418 0.2480 0.3100 0.3626 0.4568 0.6199 0.8093 1.033 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5
n 3.4201 3.4204
(3.4207)
3.4215
(3.4230)
(3.4244)
3.4261 3.4294 3.4327 3.4393 3.4490 3.4784 3.5193 (3.5341)
3.673 3.714 3.752 3.796 3.847 3.906 3.969 4.042 4.123 4.215 4.320 4.442 4.583 4.753 4.961 5.222 5.570 6.062 6.709 6.522 5.610
k 9.15E-05 1.56E-04 2.86E-04 3.84E-04 7.16E-04 1.52E-04 1.02E-04 2.59E-04 1.77E-04 1.53E-04 2.02E-04 1.22E-04 6.76E-05 5.49E-05 2.41E-05 2.49E-05 1.68E-05 2.45E-05 2.66E-06 1.74E-06 8.46E-07 5.64E-07 4.17E-07 4.05E-07 3.94E-07 3.26E-07 2.97E-07 2.82E-07 1.99E-07
2.50E-09
1.30E-05 1.80E-04 2.26E-03 7.75E-03 5.00E-03 8.00E-03 1.00E-02 0.013 0.016 0.022 0.030 0.032 0.048 0.060 0.073 0.090 0.130 0.163 0.203 0.269 0.387 0.630 1.321 2.705 3.014
R(φ = 0) 0.300 0.300
0.300
0.300
0.300
0.300
0.300 0.301 0.301 0.302 0.303 0.306 0.311 0.312
0.327 0.331 0.335 0.340 0.345 0.351 0.357 0.364 0.372 0.380 0.390 0.400 0.412 0.426 0.442 0.461 0.486 0.518 0.561 0.592 0.575
Energy (eV) 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 12.0 14.0 16.0 18.0 20.0 22.14 24.31 26.38 28.18 30.24 31.79 34.44 36.47 38.75 40.00
n 5.296 5.156 5.065 5.016 5.010 5.020 4.888 4.086 3.120 2.451 1.988 1.764 1.658 1.597 1.570 1.571 1.589 1.579 1.471 1.340 1.247 1.180 1.133 1.083 1.010 0.847 0.682 0.563 0.478 0.414 0.367 0.332 0.306 0.257 0.275 0.345 0.455 0.567 0.675 0.752 0.803 0.834 0.860 0.877 0.899 0.913 0.925 0.930
k 2.987 3.058 3.182 3.346 3.587 3.979 4.639 5.395 5.344 5.082 4.678 4.278 3.979 3.749 3.565 3.429 3.354 3.353 3.366 3.302 3.206 3.112 3.045 2.982 2.909 2.73 2.45 2.21 2.00 1.82 1.66 1.51 1.38 0.963 0.641 0.394 0.219 0.0835 0.0405 0.0243 0.0178 0.0152 0.0138 0.0132 0.0121 0.0113 0.0104 0.0100
R(φ = 0) 0.564 0.563 0.568 0.577 0.591 0.614 0.652 0.703 0.726 0.740 0.742 0.728 0.710 0.693 0.675 0.658 0.646 0.647 0.663 0.673 0.675 0.673 0.672 0.673 0.677 0.688 0.691 0.693 0.691 0.688 0.683 0.672 0.661 0.590 0.460 0.297 0.159 0.079 0.038 0.020 0.012 0.008 0.006 0.004 0.003 0.002 0.002 0.001
Silver6 0.10 0.20 0.30 0.40 0.50 1.00 1.50 2.00 2.50 3.00 3.25
9.91 2.84 1.41 0.91 0.67 0.28 0.27 0.27 0.24 0.23 0.23
90.27 45.70 30.51 22.89 18.32 9.03 5.79 4.18 3.09 2.27 1.86
0.995 0.995 0.994 0.993 0.992 0.987 0.969 0.944 0.914 0.864 0.816
Optical Properties of Selected Elements Energy (eV) 3.50 3.60 3.70 3.77 3.80 3.90 4.00 4.10 4.20 4.30 4.50 4.75 5.00 5.50 6.00 6.50 7.00 7.50 8.00 9.00 10.00 11.00 12.00 13.00 14.00 14.50 15.00 16.00 17.00 18.00 19.00 20.00 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 28.50 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 38.00 40.00 42.00 44.00
n 0.21 0.23 0.30 0.53 0.73 1.30 1.61 1.73 1.75 1.73 1.69 1.61 1.55 1.45 1.34 1.25 1.18 1.14 1.16 1.33 1.46 1.52 1.61 1.66 1.72 1.64 1.56 1.42 1.33 1.28 1.27 1.29 1.35 1.37 1.34 1.26 1.17 1.10 1.04 0.99 0.95 0.91 0.90 0.89 0.89 0.89 0.90 0.91 0.92 0.93 0.93 0.92 0.90 0.88 0.86 0.89 0.89 0.90 0.90 0.90
1.42 1.13 0.77 0.40 0.30 0.36 0.60 0.85 1.06 1.13 1.28 1.34 1.36 1.34 1.28 1.18 1.06 0.91 0.75 0.56 0.56 0.56 0.59 0.64 0.78 0.88 0.92 0.91 0.86 0.80 0.75 0.71 0.75 0.80 0.87 0.93 0.94 0.93 0.90 0.87 0.83 0.78 0.74 0.69 0.65 0.62 0.59 0.57 0.56 0.54 0.53 0.53 0.51 0.49 0.45 0.44 0.39 0.37 0.35 0.33
k
R(φ = 0) 0.756 0.671 0.475 0.154 0.053 0.040 0.103 0.153 0.194 0.208 0.238 0.252 0.257 0.257 0.246 0.225 0.196 0.157 0.114 0.074 0.082 0.088 0.100 0.112 0.141 0.152 0.156 0.151 0.139 0.124 0.111 0.103 0.112 0.124 0.141 0.157 0.163 0.165 0.165 0.160 0.154 0.144 0.133 0.121 0.109 0.099 0.090 0.084 0.079 0.074 0.072 0.072 0.071 0.067 0.061 0.055 0.043 0.039 0.036 0.033
12-139
Energy (eV) 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00 62.00 64.00 66.00 68.00 70.00 72.00 74.00 76.00 78.00 80.00 85.00 90.00 95.00 100.00
n 0.90 0.89 0.88 0.89 0.88 0.87 0.87 0.87 0.88 0.88 0.88 0.87 0.83 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.86 0.87
Sodium24 0.55 0.58 0.63 0.67 0.73 0.81 0.92 1.05 1.23 1.44 1.65 1.87 2.07 2.27 2.45 2.64 2.82 2.95 3.06 3.20 3.40 3.71 3.97 6.199 6.358 6.526 6.702 6.888 7.130 7.328 7.583 7.847 8.015 8.634 9.143 9.709 10.20
0.262 0.241 0.207 0.175 0.147 0.123 0.099 0.078 0.064 0.053 0.050 0.049 0.053 0.059 0.063 0.066 0.068 0.068 0.069 0.065 0.061 0.055 0.049 0.390 0.454 0.485 0.533 0.574 0.616 0.641 0.674 0.700 0.710 0.762 0.800 0.819 0.843
0.32 0.31 0.29 0.28 0.17 0.26 0.24 0.22 0.21 0.21 0.21 0.21 0.20 0.18 0.17 0.16 0.15 0.14 0.11 0.08 0.06 0.04 9.97 9.45 8.80 8.09 7.42 6.67 5.82 5.11 4.35 3.72 3.22 2.76 2.48 2.23 2.07 1.88 1.76 1.63 1.54 1.47 1.33 1.13 1.01
k
R(φ = 0) 0.031 0.030 0.027 0.024 0.024 0.024 0.021 0.018 0.016 0.016 0.016 0.017 0.021 0.016 0.014 0.013 0.013 0.012 0.011 0.009 0.007 0.005 0.990 0.989 0.990 0.990 0.990 0.989 0.989 0.989 0.987 0.986 0.983 0.978 0.971 0.961 0.953 0.943 0.936 0.928 0.921 0.921 0.916 0.908 0.908 0.193 0.141 0.120 0.093 0.073 0.056 0.048 0.038 0.031 0.029 0.018 0.012 0.010 0.007
Energy (eV) 11.08 11.83 12.73 13.05 13.42 13.73 14.07 14.83 15.05 15.46 16.21 18.10 21.12 25.51 26.95 27.68 28.37 29.52
n 0.870 0.887 0.907 0.913 0.914 0.917 0.922 0.934 0.936 0.942 0.948 0.964 0.979 0.993 1.00 1.01 1.01 1.02
Tantalum16 0.10 10.14 0.15 9.45 0.20 5.77 0.26 3.67 0.30 2.87 0.38 2.03 0.50 1.37 0.58 1.15 0.70 0.96 0.78 0.89 0.90 0.84 1.00 0.89 1.10 0.93 1.20 0.98 1.30 1.00 1.40 1.04 1.50 1.09 1.60 1.15 1.70 1.24 1.80 1.35 1.90 1.57 2.00 1.83 2.10 2.10 2.20 2.36 2.30 2.56 2.40 2.68 2.50 2.75 2.60 2.80 2.70 2.84 2.80 2.85 2.90 2.84 3.00 2.81 3.20 2.73 3.40 2.61 3.60 2.49 3.80 2.40 4.00 2.36 4.20 2.35 4.40 2.39 4.60 2.45 4.80 2.53
k
66.39 46.41 35.46 27.53 23.90 18.87 14.26 12.19 9.92 8.77 7.38 6.47 5.75 5.14 4.62 4.15 3.73 3.33 2.95 2.60 2.24 1.99 1.84 1.81 1.86 1.92 1.98 2.02 2.08 2.14 2.20 2.24 2.31 2.33 2.30 2.22 2.14 2.06 2.01 2.00 2.06
R(φ = 0) 0.005 0.004 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.984 0.9834 0.982 0.981 0.980 0.978 0.974 0.970 0.962 0.956 0.942 0.992 0.899 0.872 0.842 0.805 0.762 0.707 0.640 0.560 0.460 0.388 0.354 0.351 0.365 0.378 0.388 0.395 0.405 0.412 0.420 0.425 0.432 0.435 0.430 0.418 0.406 0.392 0.384 0.384 0.394
Optical Properties of Selected Elements
12-140 Energy (eV) 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.20 12.40 12.60 12.80 13.00 13.60 14.00 14.60 15.00 15.60 16.00 16.60 17.00 17.60 18.00 18.60 19.00 19.60 20.00 20.60 21.00 21.60 22.00 22.60
n 2.58 2.52 2.31 2.06 1.83 1.63 1.48 1.37 1.29 1.23 1.18 1.15 1.13 1.12 1.11 1.11 1.12 1.13 1.14 1.17 1.19 1.21 1.21 1.21 1.21 1.20 1.19 1.18 1.16 1.15 1.13 1.11 1.09 1.07 1.05 1.02 1.00 0.98 0.96 0.94 0.93 0.91 0.90 0.85 0.80 0.72 0.68 0.63 0.60 0.60 0.55 0.53 0.53 0.53 0.54 0.55 0.57 0.64 0.64 0.69
2.20 2.44 2.61 2.67 2.63 2.56 2.45 2.33 2.22 2.11 2.01 1.91 1.82 1.75 1.68 1.61 1.55 1.50 1.45 1.41 1.40 1.38 1.38 1.38 1.37 1.37 1.37 1.37 1.36 1.36 1.35 1.35 1.34 1.33 1.32 1.31 1.29 1.28 1.26 1.24 1.22 1.16 1.15 1.15 1.13 1.08 1.04 0.97 0.92 0.92 0.79 0.71 0.65 0.57 0.52 0.44 0.39 0.34 0.32 0.27
k
R(φ = 0) 0.416 0.450 0.480 0.501 0.510 0.515 0.512 0.504 0.492 0.478 0.462 0.445 0.425 0.406 0.390 0.370 0.350 0.332 0.317 0.301 0.294 0.289 0.287 0.285 0.285 0.286 0.286 0.287 0.288 0.289 0.290 0.292 0.293 0.294 0.295 0.296 0.295 0.294 0.292 0.289 0.286 0.272 0.272 0.285 0.293 0.301 0.304 0.301 0.296 0.296 0.274 0.254 0.236 0.207 0.185 0.153 0.127 0.089 0.081 0.058
Energy (eV) 23.00 23.60 24.00 24.60 25.00 25.60 26.00 26.60 27.00 27.60 28.00 28.60 29.00 29.60 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 Tellurium, 0.01364 0.01488 0.01612 0.01736 0.01860 0.01984 0.02108 0.02232 0.02356 0.02480 0.02604 0.02728 0.02976 0.03224 0.03472 0.03720 0.03968 0.04339 0.04711 0.05083 0.05579 0.06199 0.07439 0.08679 0.09919 0.12400 0.15500 0.20660 0.24800 0.31 0.35 0.41 0.5 0.6
n 0.73 0.80 0.80 0.82 0.83 0.86 0.88 0.87 0.87 0.89 0.90 0.91 0.92 0.94 0.95 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.97 0.95
0.24 0.26 0.26 0.25 0.25 0.24 0.25 0.26 0.25 0.23 0.23 0.22 0.22 0.22 0.22 0.23 0.24 0.25 0.25 0.26 0.27 0.28 0.28 0.29 0.29
k
R(φ = 0) 0.043 0.033 0.034 0.029 0.026 0.022 0.022 0.023 0.022 0.019 0.017 0.015 0.014 0.014 0.014 0.014 0.015 0.015 0.016 0.017 0.018 0.019 0.021 0.022 0.023
→
∥ ĉ25 4.82 5.26 5.47 5.59
E
5.94 5.96
5.98
6.246 6.253 6.286 6.316 6.372
6.53 6.71
0.118 0.0505 0.0278 0.0174 0.0796 0.0696 0.0749 0.1900 0.2220 0.0716 0.0682 0.0832 0.0149 2.14E-03 1.71E-02 3.71E-03 2.44E-03 1.59E-03 7.85E-04 7.38E-04 3.89E-04 3.09E-04 2.52E-04 2.96E-04 3.68E-04 3.34E-04
7.48E-05 1.18E-05 4.93E-04 6.74E-03 2.30E-02 7.50E-02
0.431 0.463 0.477 0.485
0.507 0.508
0.509
0.524 0.525 0.526 0.528 0.531
0.539 0.549
Energy (eV) 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 11.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 Tellurium, 0.01364 0.01488 0.01612 0.01736 0.01860 0.01984 0.02108 0.02232 0.02356 0.02480 0.02604 0.02728 0.02976 0.03224 0.03472 0.03720 0.03968 0.04339 0.04711 0.05083
n 7.00 7.23 7.48 7.70 6.99 7.11 6.75 6.89 4.67 4.94 3.94 3.25 2.73 2.30 1.69 1.33 1.32 1.63 1.72 1.73 1.78 1.83 1.72 1.54 1.55 0.99 1.47 0.86 0.80 0.79 0.67 0.59 0.48 0.74 0.83 0.85 0.87 0.89 0.90
k 0.24 0.48 0.94 1.56 2.22 2.46 2.91 3.70 4.67 5.16 5.08 4.77 4.42 4.16 3.44 2.64 1.96 1.60 1.57 1.45 1.36 1.36 1.51 1.37 1.23 0.93 1.25 0.86 0.77 0.76 0.59 0.49 0.31 0.20 0.18 0.15 0.12 0.090 0.045
R(φ = 0) 0.563 0.574 0.589 0.606 0.593 0.604 0.606 0.637 0.654 0.681 0.686 0.681 0.674 0.674 0.646 0.571 0.428 0.312 0.302 0.276 0.257 0.257 0.289 0.260 0.226 0.179 0.233 0.181 0.165 0.164 0.146 0.147 0.160 0.035 0.018 0.013 0.009 0.006 0.003
0.2980 0.0894 0.0535 0.4990 0.1170 0.0343 0.0421 0.1060 0.0880 0.0458 0.0928 0.0886 0.0232 3.06E-03 1.25E-02 2.65E-03 1.89E-03 1.41E-03 8.38E-04 6.79E-04
0.204 0.325 0.370 0.420
→
⊥ ĉ25 2.61 3.65 4.10 4.63
E
(4.42)
4.71 4.74
0.398
0.422 0.425
Optical Properties of Selected Elements Energy (eV) 0.05579 0.06199 0.07439 0.08679 0.09919 0.1240 0.1550 0.2066 0.2480 0.31 0.35 0.41 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 11.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0
n 4.77
4.796 4.809 4.838 4.864 4.929
4.90 4.93 4.95 5.10 5.22 5.35 5.17 5.56 5.88 6.10 5.94 5.10 4.24 3.57 3.03 2.51 1.72 1.32 1.28 1.47 1.74 1.94 2.19 2.48 2.60 2.59 2.39 1.11 2.08 0.99 0.84 0.87 0.59 0.64 0.52 0.50 0.56 0.54 0.50 0.48 0.46
k 1.59E-04 1.16E-04 7.23E-05 5.34E-05 4.28E-05 3.18E-05
2.19E-05 3.18E-05 7.89E-02 0.149
R(φ = 0) 0.427
0.429 0.430 0.432 0.434 0.439
0.11 0.13 0.22 0.45 0.63 0.63 1.15 1.80 2.69 3.61 3.77 3.75 3.63 3.39 2.70 2.01 1.28 0.82 0.51 0.39 0.32 0.40 0.69 0.91 1.00 1.24 1.11 1.04 1.01 0.87 0.87 0.55 0.41 0.38 0.29 0.25 0.20 0.17 0.088
0.437 0.439 0.441 0.452 0.461 0.472 0.462 0.488 0.517 0.545 0.571 0.594 0.593 0.591 0.588 0.578 0.532 0.440 0.251 0.132 0.104 0.118 0.148 0.192 0.226 0.245 0.235 0.259 0.224 0.215 0.237 0.182 0.282 0.144 0.161 0.165 0.110 0.113 0.127 0.135 0.140
Titanium (Polycrystalline)14 0.10 5.03 23.38 0.15 3.00 15.72 0.20 2.12 11.34 0.25 2.05 8.10 0.30 6.39 9.94 0.35 2.74 6.21
0.965 0.954 0.939 0.890 0.833 0.792
Energy (eV) 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.85 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20
12-141 n 2.49 3.35 4.43 4.71 4.38 4.04 3.80 3.62 3.47 3.35 3.28 3.17 2.98 2.74 2.54 2.36 2.22 2.11 2.01 1.92 1.86 1.81 1.78 1.75 1.71 1.68 1.63 1.59 1.55 1.50 1.44 1.37 1.30 1.24 1.17 1.11 1.08 1.06 1.04 1.05 1.13 1.17 1.21 1.24 1.27 1.17 1.24 1.21 1.15 1.11 1.08 1.04 1.05 1.06 1.07 1.11 1.09 1.11 1.10 1.10
4.68 3.25 3.22 3.77 3.89 3.82 3.65 3.52 3.40 3.30 3.25 3.28 3.32 3.30 3.23 3.11 2.99 2.88 2.77 2.67 2.56 2.47 2.39 2.34 2.29 2.25 2.21 2.17 2.15 2.12 2.09 2.06 2.01 1.96 1.90 1.83 1.78 1.73 1.62 1.45 1.33 1.29 1.23 1.21 1.20 1.16 1.21 1.22 1.21 1.18 1.14 1.06 1.02 0.97 0.95 0.94 0.92 0.93 0.94 0.95
k
R(φ = 0) 0.708 0.545 0.555 0.597 0.603 0.596 0.582 0.570 0.560 0.550 0.546 0.549 0.557 0.559 0.557 0.550 0.540 0.530 0.520 0.509 0.495 0.483 0.471 0.462 0.456 0.451 0.447 0.444 0.442 0.442 0.442 0.443 0.443 0.441 0.436 0.430 0.423 0.413 0.389 0.333 0.284 0.265 0.244 0.236 0.228 0.228 0.234 0.241 0.244 0.240 0.232 0.212 0.198 0.182 0.175 0.167 0.165 0.165 0.169 0.171
Energy (eV) 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.60 21.20 21.60 22.00 22.40 22.80 23.20 23.60 24.00 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 30.0
n 1.08 1.04 1.02 1.00 0.97 0.95 0.94 0.91 0.89 0.86 0.85 0.81 0.80 0.79 0.81 0.81 0.79 0.78 0.77 0.76 0.76 0.76 0.77 0.77 0.79 0.79 0.79 0.83 0.84 0.87 0.90 0.93 0.94 0.94 0.95 0.96 0.97 0.98 0.98 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.95 0.92 0.91 0.91 0.89 0.89 0.88 0.86 0.85 0.84 0.82 0.83 0.84
0.95 0.96 0.95 0.94 0.93 0.91 0.90 0.88 0.88 0.85 0.83 0.79 0.76 0.72 0.69 0.69 0.68 0.67 0.65 0.55 0.52 0.48 0.45 0.42 0.38 0.36 0.32 0.31 0.28 0.27 0.25 0.25 0.24 0.23 0.24 0.25 0.25 0.27 0.27 0.29 0.31 0.31 0.32 0.33 0.33 0.34 0.35 0.35 0.34 0.33 0.33 0.33 0.32 0.31 0.30 0.29 0.26 0.25 0.22
k
R(φ = 0) 0.175 0.181 0.181 0.182 0.182 0.181 0.179 0.179 0.180 0.178 0.175 0.167 0.162 0.152 0.139 0.139 0.139 0.137 0.132 0.106 0.097 0.087 0.077 0.069 0.058 0.052 0.045 0.037 0.030 0.025 0.020 0.017 0.165 0.017 0.016 0.016 0.017 0.018 0.019 0.020 0.023 0.024 0.025 0.027 0.028 0.030 0.031 0.033 0.032 0.032 0.032 0.032 0.032 0.032 0.033 0.033 0.029 0.027 0.022
Optical Properties of Selected Elements
12-142 Energy (eV) Tungsten27 0.10 0.20 0.25 0.30 0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20
n
k
14.06 3.87 2.56 1.83 1.71 1.86 1.92 1.69 1.40 1.23 1.17 1.28 1.45 1.59 1.83 2.12 2.36 2.92 3.11 3.15 3.15 3.14 3.05 3.00 3.12 3.29 3.48 3.67 3.84 3.82 3.70 3.60 3.54 3.49 3.49 3.45 3.38 3.34 3.31 3.31 3.32 3.35 3.39 3.43 3.45 3.39 3.24 3.13 3.05 2.99 2.96 2.95 3.02 3.13 3.24 3.33 3.40 3.27
54.71 28.30 22.44 18.32 15.71 13.88 12.63 11.59 10.52 9.45 8.44 7.52 6.78 6.13 5.52 5.00 4.61 4.37 4.44 4.43 4.36 4.32 4.04 3.64 3.24 2.96 2.79 2.68 2.79 2.91 2.94 2.89 2.84 2.76 2.72 2.72 2.68 2.62 2.55 2.49 2.45 2.42 2.41 2.45 2.55 2.66 2.70 2.67 2.62 2.56 2.50 2.43 2.33 2.32 2.41 2.57 2.85 3.27
R(φ = 0)
0.983 0.981 0.980 0.979 0.973 0.963 0.954 0.952 0.952 0.948 0.938 0.917 0.888 0.856 0.810 0.759 0.710 0.661 0.660 0.658 0.653 0.649 0.627 0.590 0.545 0.515 0.500 0.494 0.507 0.518 0.518 0.512 0.506 0.497 0.494 0.493 0.487 0.480 0.472 0.466 0.461 0.459 0.460 0.465 0.476 0.485 0.488 0.482 0.476 0.468 0.460 0.451 0.440 0.442 0.455 0.475 0.505 0.548
Energy (eV) 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80 17.20 17.60 18.00 18.40 18.80 19.20 19.60 20.00 20.40 20.80 21.20 21.60 22.00 22.40
n 2.92 2.43 2.00 1.70 1.47 1.32 1.21 1.12 1.06 1.01 0.98 0.95 0.93 0.94 0.94 0.96 0.99 1.01 1.01 1.02 1.03 1.05 1.09 1.13 1.19 1.24 1.27 1.29 1.28 1.27 1.25 1.22 1.20 1.16 1.10 1.04 0.98 0.94 0.91 0.90 0.90 0.93 0.97 0.98 0.97 0.94 0.90 0.85 0.80 0.74 0.69 0.64 0.60 0.56 0.54 0.52 0.50 0.50 0.49 0.49
3.58 3.70 3.61 3.42 3.24 3.04 2.87 2.70 2.56 2.43 2.30 2.18 2.06 1.95 1.86 1.76 1.70 1.65 1.60 1.55 1.50 1.44 1.38 1.34 1.33 1.34 1.36 1.39 1.42 1.44 1.46 1.48 1.48 1.48 1.47 1.44 1.40 1.35 1.28 1.23 1.17 1.13 1.12 1.14 1.17 1.19 1.21 1.21 1.20 1.18 1.15 1.11 1.07 1.02 0.97 0.92 0.87 0.82 0.77 0.73
k
R(φ = 0) 0.586 0.618 0.637 0.643 0.646 0.640 0.631 0.619 0.607 0.593 0.573 0.556 0.533 0.505 0.481 0.449 0.422 0.401 0.388 0.369 0.352 0.329 0.307 0.287 0.274 0.270 0.274 0.282 0.290 0.297 0.305 0.313 0.318 0.323 0.329 0.333 0.332 0.325 0.312 0.296 0.276 0.255 0.246 0.249 0.260 0.273 0.289 0.304 0.317 0.330 0.340 0.347 0.353 0.354 0.350 0.342 0.331 0.318 0.303 0.287
Energy (eV) 22.80 23.20 23.60 24.00 24.40 24.80 25.20 25.60 26.00 26.40 26.80 27.00 27.50 28.00 28.50 29.00 29.50 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00
n 0.49 0.49 0.48 0.49 0.50 0.51 0.53 0.55 0.57 0.59 0.61 0.62 0.64 0.67 0.69 0.71 0.73 0.75 0.78 0.79 0.82 0.84 0.85 0.85 0.84 0.83 0.81 0.80
Vanadium9 0.10 12.83 0.20 3.90 0.28 2.13 0.36 1.54 0.44 1.28 0.52 1.16 0.60 1.10 0.68 1.07 0.76 1.08 0.80 1.10 0.90 1.18 1.00 1.34 1.10 1.60 1.20 1.93 1.30 2.25 1.40 2.48 1.50 2.57 1.60 2.57 1.70 2.52 1.80 2.45 1.90 2.36 2.00 2.34 2.10 2.31 2.20 2.28 2.30 2.23 2.40 2.15 2.50 2.02 2.60 1.89 2.70 1.74 2.80 1.61 2.90 1.48
0.69 0.66 0.62 0.57 0.53 0.49 0.46 0.43 0.40 0.38 0.37 0.36 0.34 0.32 0.31 0.30 0.30 0.29 0.29 0.29 0.28 0.29 0.31 0.32 0.33 0.33 0.33 0.33
k
45.89 24.30 17.35 13.32 10.74 8.93 7.59 6.54 5.67 5.30 4.50 3.80 3.26 2.88 2.71 2.72 2.79 2.84 2.88 2.88 2.85 2.81 2.78 2.80 2.83 2.88 2.91 2.92 2.89 2.85 2.80
R(φ = 0) 0.272 0.263 0.252 0.234 0.213 0.191 0.171 0.150 0.132 0.117 0.105 0.099 0.085 0.073 0.065 0.057 0.052 0.047 0.042 0.040 0.033 0.032 0.033 0.036 0.039 0.040 0.042 0.045 0.978 0.975 0.973 0.966 0.957 0.945 0.929 0.909 0.882 0.864 0.811 0.730 0.632 0.543 0.498 0.491 0.499 0.507 0.512 0.515 0.514 0.509 0.506 0.510 0.516 0.528 0.540 0.552 0.561 0.569 0.577
Optical Properties of Selected Elements Energy (eV) 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.33 7.66 8.00 8.33 8.66 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50
n 1.36 1.16 0.99 0.87 0.80 0.78 0.80 0.83 0.87 0.90 0.91 0.93 0.94 0.96 0.98 0.97 0.97 0.97 0.98 0.97 0.98 0.98 0.98 0.98 0.96 0.94 0.91 0.89 0.87 0.88 0.90 0.89 0.88 0.87 0.86 0.86 0.86 0.86 0.85 0.84 0.84 0.83 0.82 0.82 0.82 0.82 0.81 0.81 0.81 0.81 0.81 0.81 0.82 0.82 0.82 0.83 0.83 0.83 0.83 0.84
2.73 2.55 2.37 2.17 1.96 1.76 1.60 1.47 1.38 1.31 1.26 1.18 1.14 1.09 1.06 1.02 0.98 0.94 0.91 0.89 0.87 0.85 0.81 0.81 0.79 0.77 0.74 0.71 0.65 0.58 0.58 0.57 0.55 0.53 0.51 0.49 0.47 0.46 0.45 0.43 0.41 0.40 0.38 0.37 0.35 0.34 0.32 0.31 0.29 0.28 0.27 0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17
k
R(φ = 0) 0.582 0.585 0.586 0.575 0.547 0.503 0.449 0.400 0.355 0.326 0.304 0.271 0.258 0.235 0.223 0.212 0.199 0.185 0.175 0.170 0.162 0.155 0.146 0.145 0.142 0.136 0.133 0.126 0.112 0.091 0.089 0.086 0.082 0.079 0.075 0.070 0.065 0.062 0.061 0.059 0.056 0.054 0.051 0.048 0.045 0.043 0.041 0.038 0.036 0.033 0.032 0.029 0.027 0.025 0.024 0.022 0.020 0.019 0.018 0.016
12-143
Energy (eV) 27.00 27.50 28.00 28.50 29.00 29.50 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00
n 0.84 0.85 0.85 0.86 0.86 0.86 0.87 0.88 0.90 0.90 0.91 0.92 0.94 0.94 0.95 0.95 0.95
0.16 0.16 0.15 0.14 0.14 0.13 0.13 0.12 0.11 0.10 0.10 0.09 0.10 0.10 0.11 0.12 0.13
k
R(φ = 0) 0.015 0.014 0.013 0.012 0.011 0.010 0.009 0.008 0.007 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.005
→
Zinc, E ∥ ĉ28 0.7514 1.9241 0.827 1.7921 0.866 1.5571 0.952 1.4824 0.992 1.5762 1.033 1.5407 1.078 1.5853 1.127 1.7768 1.181 1.9808 1.240 2.8821 1.305 3.2039 1.377 2.9459 1.459 3.2523 1.550 3.8086 1.653 3.7577 1.722 3.5908 1.823 3.4234 1.937 3.0132 1.984 1.8562 2.066 1.4856 2.094 1.2525 2.119 1.0017 2.275 0.7737 2.445 0.6395 2.666 0.4430 2.917 0.3589 3.220 0.3069 3.594 0.2737 4.065 0.2510 4.678 0.2354
7.5619 6.9973 6.7753 6.2296 5.8843 5.3192 4.9013 4.5307 4.2004 3.4766 3.0042 3.5761 4.2447 4.6212 4.6239 4.4614 4.3232 3.9974 3.9706 4.0555 3.9961 3.8683 3.9129 3.4013 3.1379 2.8140 2.5088 2.1737 1.8528 1.6357
0.883 0.874 0.881 0.868 0.847 0.823 0.793 0.748 0.701 0.575 0.520 0.584 0.640 0.657 0.659 0.650 0.642 0.624 0.690 0.737 0.762 0.789 0.832 0.821 0.851 0.853 0.847 0.828 0.799 0.776
7.4158 6.9688 6.6886 6.2212 5.8910 5.4001 4.9025 4.4062 4.0176 3.2873
0.905 0.892 0.892 0.881 0.863 0.850 0.822 0.746 0.684 0.555
→
Zinc, E ⊥ ĉ28 0.751 1.4469 0.827 1.4744 0.866 1.3628 0.952 1.3165 0.992 1.3835 1.033 1.2889 1.078 1.3095 1.127 1.6897 1.181 1.9701 1.240 2.8717
Energy (eV) 1.305 1.377 1.459 1.550 1.653 1.722 1.823 1.937 1.984 2.066 2.094 2.119 2.275 2.455 2.666 2.917 3.220 3.594 4.065 4.678
n 3.3991 3.1807 3.5064 4.1241 4.0269 3.9369 3.7549 3.4512 3.2515 2.0802 1.7084 1.3329 0.9725 0.7568 0.5470 0.4774 0.3911 0.3147 0.3013 0.2806
k 2.7684 3.4709 4.1994 4.7768 4.8027 4.6356 4.3042 4.1942 4.2980 4.7231 4.7923 4.4751 4.2879 3.7627 3.4277 3.0476 2.7463 2.3041 2.0077 1.7997
Zirconium (Polycrystalline)28 0.10 6.18 1.76 0.15 3.37 1.30 0.20 2.34 1.08 0.26 2.24 1.06 0.30 2.59 1.14 0.36 3.17 1.26 0.40 3.09 1.24 0.46 3.36 1.30 0.50 4.13 1.44 0.56 5.01 1.58 0.60 5.18 1.61 0.70 4.54 1.51 0.80 4.03 1.42 0.90 3.74 1.37 0.96 3.69 1.36 1.00 3.66 1.35 1.10 3.65 1.35 1.20 3.53 1.33 1.30 3.25 1.27 1.40 3.10 1.25 1.50 3.02 1.23 1.60 2.88 1.20 1.70 2.68 1.16 1.80 2.49 1.12 2.00 2.14 1.03 2.10 1.99 1.00 2.20 1.87 0.97 2.30 1.78 0.94 2.40 1.71 0.92 2.50 1.62 0.90 2.60 1.54 0.88 2.70 1.46 0.86 2.80 1.40 0.84 2.90 1.34 0.82 3.00 1.30 0.81 3.10 1.26 0.80 3.30 1.19 0.77 3.40 1.16 0.76 3.50 1.13 0.75
R(φ = 0) 0.497 0.569 0.630 0.664 0.667 0.657 0.635 0.631 0.644 0.738 0.774 0.791 0.825 0.824 0.845 0.834 0.835 0.821 0.789 0.770 0.300 0.123 0.058 0.052 0.073 0.110 0.105 0.123 0.175 0.231 0.242 0.202 0.168 0.149 0.145 0.143 0.142 0.134 0.116 0.106 0.100 0.091 0.078 0.067 0.047 0.040 0.034 0.030 0.027 0.024 0.022 0.019 0.018 0.016 0.016 0.015 0.014 0.013 0.013
Optical Properties of Selected Elements
12-144 Energy (eV) 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80
n 1.10 1.07 1.04 1.01 0.98 0.94 0.89 0.85 0.81 0.78 0.77 0.77 0.80 0.87 1.00 1.11 1.23 1.33 1.42 1.49 1.54 1.58 1.61 1.63 1.66 1.67 1.68 1.68 1.66
0.74 0.73 0.72 0.71 0.70 0.68 0.67 0.65 0.64 0.63 0.62 0.62 0.63 0.66 0.71 0.75 0.78 0.81 0.84 0.86 0.88 0.89 0.90 0.90 0.91 0.91 0.92 0.92 0.91
k
R(φ = 0) 0.013 0.013 0.012 0.012 0.012 0.013 0.013 0.014 0.014 0.015 0.016 0.016 0.014 0.013 0.012 0.013 0.014 0.016 0.018 0.020 0.022 0.023 0.024 0.025 0.026 0.026 0.026 0.026 0.026
Energy (eV) 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.50 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.40 12.80 13.20 13.60 14.00 14.40 14.80 15.20 15.60 16.00 16.40 16.80
n 1.65 1.63 1.60 1.57 1.52 1.47 1.42 1.35 1.32 1.28 1.23 1.19 1.16 1.13 1.11 1.09 1.08 1.05 1.01 0.98 0.95 0.92 0.89 0.90 0.92 0.95 0.98 1.01 1.04
References 1. Shiles, E., Sasaki, T., Inokuti, M., and Smith, D. Y., Phys. Rev. Sect. B, 22, 1612, 1980. 2. Edwards, D. F., and Philipp, H. R., in HOC-I, p. 665. 3. Ives, H. E., and Briggs, N. B., J. Opt. Soc. Am., 27, 395, 1937. 4. Bos, L. W., and Lynch, D. W., Phys. Rev. Sect. B, 2, 4567, 1970. 5. Weaver, J. H., Colavita, E., Lynch, D. W., and Rosei, R., Phys. Rev. Sect. B, 19, 3850, 1979. 6. Hagemann, H. J., Gudat, W., and Kunz, C., J. Opt. Soc. Am., 65, 742, 1975. 7. Schulz, L. G., J. Opt. Soc. Am., 47, 64, 1957. 8. Potter, R. F., in HOC-I, p. 465. 9. Olson, C. G., Lynch, D. W., and Weaver, J. H., unpublished. 10. Lynch, D. W., Olson, C. G., and Weaver, J. H., unpublished. 11. Weaver, J. H., Olson, C. G., and Lynch, D. W., Phys. Rev. Sect. B, 15, 4115, 1977. 12. Lynch, D. W., and Hunter, W. R., in HOC-II, p. 345. 13. Priol, M. A., Daudé, A., and Robin, S., Compt. Rend., 264, 935, 1967. 14. Johnson, P. B., and Christy, R. W., Phys. Rev. Sect. B, 9, 5056, 1974.
0.91 0.90 0.89 0.89 0.87 0.86 0.84 0.82 0.81 0.80 0.78 0.77 0.76 0.75 0.74 0.74 0.73 0.72 0.71 0.70 0.69 0.68 0.67 0.67 0.68 0.69 0.70 0.71 0.72
k
R(φ = 0) 0.025 0.025 0.024 0.023 0.021 0.020 0.018 0.016 0.016 0.015 0.014 0.014 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.012
Energy (eV) 17.20 17.60 18.00 18.40 18.80 19.20 19.60 20.00 20.60 21.00 21.60 22.00 22.60 23.00 23.60 24.00 24.60 25.00 25.60 26.00 26.60 27.00 27.60 28.00 28.60 29.00 29.60 30.00
n 1.09 1.13 1.17 1.21 1.24 1.27 1.29 1.30 1.29 1.27 1.23 1.20 1.15 1.12 1.08 1.05 1.02 1.00 0.97 0.95 0.91 0.88 0.84 0.83 0.82 0.81 0.82 0.82
0.74 0.75 0.76 0.78 0.79 0.80 0.80 0.81 0.80 0.80 0.78 0.77 0.76 0.75 0.73 0.73 0.71 0.71 0.69 0.69 0.67 0.66 0.65 0.64 0.64 0.64 0.64 0.64
k
R(φ = 0) 0.013 0.013 0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.015 0.014 0.014 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.013 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.014
15. Arakawn, E. T., and Inagaki, T., in HOC-II, p. 461. 16. Weaver, J. H., Lynch, D. W., and Olson, D. G., Phys. Rev. Sect. B, 10, 501, 1973. 17. Lynch, D. W., Rosei, R., and Weaver, J. H., Solid State Commun., 9, 2195, 1971. 18. Weaver, J. H., Lynch, D. W., and Olson, C. G., Phys. Rev. Sect. B, 7, 4311, 1973. 19. Weaver, J. H., and Benbow, R. L., Phys. Rev. Sect. B, 12, 3509, 1975. 20. Weaver, J. H., Phys. Rev., Sect. B, 11, 1416, 1975. 21. Lynch, D. W., and Hunter, W. R., in HOC-II, p. 364. 22. Palik, E. D., in HOC-II, p. 691. 23. Edwards, D. F., in HOC-I, p. 547. 24. Lynch, D. W., and Hunter, W. R., in HOC-II, p. 354. 25. Palik, E. D., in HOC-II, p. 709. 26. Lynch, D. W., Olson, C. G., and Weaver, J. H., Phys. Rev. Sect. B, 11, 3671, 1975. 27. Weaver, J. H., Lynch, D. W., and Olson, C. G., Phys. Rev. Sect. B, 12, 1293, 1975. 28. Lanham, A. P., and Terherne, D. M., Proc. Phys. Soc., 83, 1059, 1964.
Elasto-optic, Electro-optic, and Magneto-optic Constants When a crystal is subjected to a stress field, an electric field, or a magnetic field, the resulting optical effects are in general dependent on the orientation of these fields with respect to the crystal axes. It is useful, therefore, to express the optical properties in terms of the refractive index ellipsoid (or indicatrix): x2 y2 z 2 + + =1 nx2 n 2y nz2
or
∑B x y ij
ij
i
j
= 1 (i, j = 1, 2, 3)
where 1 1 Bij = = 2 ε ij n ij
ε is the dielectric constant or permeability; the quantity Bij is called impermeability. A crystal exposed to a stress S will show a change of its impermeability. The photo-elastic (or elasto-optic) constants, Pijkl, are defined by 1 1 ∆ = ∆ 2 = ∑ Pijkl Skl n ij ε ij kl
where n is the refractive index and Skl are the strain tensor elements; the Pijkl are the elements of a 4th rank tensor. When a crystal is subjected to an electric field E, two possible changes of the refractive index may occur depending on the symmetry of the crystal. 1. All materials, including isotropic solids and polar liquids, show an electro-optic birefringence (Kerr effect) which is proportional to the square of the electric field, E: 1 ∆ 2 = ∑ K ijkl Ek El = ∑ g ijkl pk pl n ij k k ,l =1, 2 ,3
where Ek and El are the components of the electric field and Pk and Pl the electric polarizations. The coefficients, Kijkl, are the quadratic electro-optic coefficients, while the constants gijkl are known as the Kerr constants. 2. The other electro-optic effect only occurs in the 20 piezoelectric crystal classes (no center of symmetry). This effect is known as the Pockels effect. The optical impermeability changes linearly with the static field
12-164
1 ∆ 2 = ∑ rij ,k Ek n ij k
The coefficients rij,k have the name (linear) electro-optic coefficients. The values of the electro-optic coefficients depend on the boundary conditions. If the superscripts T and S denote, respectively, the conditions of zero stress (free) and zero strain (clamped) one finds: rijT = rijS + qikE e jk = rijS + PikE d jk
where ejk = (∂Tk/∂Ej)S and djk = (∂Sk/∂Ej)T are the appropriate piezoelectric coefficients. The interaction between a magnetic field and a light wave propagating in a solid or in a liquid gives rise to a rotation of the plane of polarization. This effect is known as Faraday rotation. It results from a difference in propagation velocity for left and right circular polarized light. The Faraday rotation, θF , is linearly proportional to the magnetic field H: θ F =VlH
where l is the light path length and V is the Verdet constant (minutes/oersted·cm). For ferromagnetic, ferrimagnetic, and antiferromagnetic materials the magnetic field in the above expression is replaced by the magnetization M and the magneto-optic coefficient in this case is known as the Kund constant K: Specific Faraday rotation F =KM
In the tables below the Faraday rotation is listed at the saturation magnetization per unit length, together with the absorption coefficient α, the temperature T, the critical temperature TC (or TN), and the wavelength of the measurement. In the tables that follow, the properties are presented in groups:
• Elasto-optic coefficients (photoelastic constants) • Linear electro-optic coefficients (Pockels constants) • Quadratic electro-optic coefficients (Kerr constants) • Magneto-optic coefficients: • Verdet constants • Faraday rotation parameters
Within each group, materials are classified by crystal system or physical state. References are given at the end of each group of tables.
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
12-165
ELASTO-OPTIC COEFFICIENTS (PHOTOELASTIC CONSTANTS) Name Cubic (43m, 432, m3m) Sodium fluoride Sodium chloride Sodium bromide Sodium iodide Potassium fluoride Potassium chloride Potassium bromide Potassium iodide Rubidium chloride Rubidium bromide Rubidium iodide Lithium fluoride Lithium chloride Ammonium chloride Cadmium telluride Calcium fluoride Copper chloride Copper bromide Copper iodide Diamond Germanium Gallium arsenide Gallium phosphide Strontium fluoride Strontium titanate KRS-5 KRS-6 Zinc sulfide
Formula NaF NaCl NaBr NaI KF KCl KBr KI RbCl RbBr RbI LiF LiCl NH4Cl CdTe CaF2 CuCl CuBr CuI C Ge GaAs GaP SrF2 SrTiO3 Tl(Br,I) Tl(Br,Cl) ZnS
Rare Gases
λ/µm 0.633 0.589 0.589 0.589 0.546 0.633 0.589 0.590 0.589 0.589 0.589 0.589 0.589 0.589 1.06 0.55–0.65 0.633 0.633 0.633 0.540–0.589 3.39 1.15 0.633 0.633 0.633 0.633 0.633 0.633
Formula
Neon (T = 24.3 K) Argon (T = 82.3 K) Krypton (T = 115.6 K) Xenon (T = 160.5 K)
p12 0.20 0.159 0.184 – 0.20 0.16 0.165 0.171 0.172 0.185 0.167 0.13 – 0.245 –0.017 0.226 0.250 0.195 0.151 0.123 –0.128 –0.140 –0.082 0.269 0.095 0.149 –0.337 –0.01
p44 –0.03 –0.011 –0.0036 0.0048 –0.029 –0.025 –0.022 – –0.041 –0.034 –0.023 –0.045 –0.0177 0.042 –0.057 0.0254 –0.082 –0.083 –0.068 –0.161 –0.072 –0.072 –0.074 0.0185 0.072 –0.0725 –0.164 0.075
p11
p12
p44
p11-p12 –0.12 –0.042 –0.035 –0.0141 0.06 0.06 0.047 0.041 0.116 0.108 0.095 –0.11 –0.0407 –0.103 –0.135 –0.183 –0.130 –0.123 –0.119 –0.385 –0.023 –0.025 –0.069 –0.189 – –0.289 –0.114 0.101
Ref. 1 2 1 3 1 4 5 6 7,8 7,8 7,8 5 3 9 10 11 12 12 12 13 14 15 15 16 17 18,20 19,20 15
p11-p12
Ref.
0.488 0.488 0.488 0.488
0.157 0.256 0.34 0.284
0.168 0.302 0.34 0.370
0.004 0.015 0.037 0.029
Formula Gd3Ga5O12 Y3Fe5O12 Y3Ga5O12 Y3Al5O12
λ/µm 0.514 1.15 0.633 0.633
p11 –0.086 0.025 0.091 –0.029
p12 –0.027 0.073 0.019 0.0091
p44 –0.078 0.041 0.079 –0.0615
p11-p12 –0.059 – – –0.038
Ref. 23 15 17 15
Cubic (23, m3) Barium nitrate
Formula Ba(NO3)2
λ/µm 0.589
p11
p44 –0.0205
Pb(NO3)2 NaBrO3 NaClO3 Sr(NO3)2
p13 p11–p13 = 0.713 0.20 0.213 0.20 0.316
Ref. 13
Lead nitrate Sodium bromate Sodium chlorate Strontium nitrate
p12 p11–p22 = 0.992 0.24 0.218 0.24 0.362
GGG YIG YGG YAG
Ne Ar Kr Xe
λ/µm
p11 0.08 0.115 0.148 – 0.26 0.22 0.212 0.212 0.288 0.293 0.262 0.02 – 0.142 –0.152 0.038 0.120 0.072 0.032 –0.278 –0.151 –0.165 –0.151 0.080 0.15 –0.140 –0.451 0.091
Garnets
Hexagonal (mmc, 6mm) Beryl Cadmium sulfide Zinc oxide Zinc sulfide
Formula Be3Al2Si6O18 CdS ZnO ZnS
λ/µm 0.589 0.633 0.633 0.633
0.589 0.589 0.589 0.41
–
0.162 0.185 0.162 0.178
–0.0198 –0.0139 –0.0198 –0.014
p11
p12
p13
p31
p33
0.0099 –0.142 ±0.222 –0.115
0.175 –0.066 ±0.099 0.017
0.191 –0.057 –0.111 0.025
0.313 –0.041 ±0.088 0.0271
0.023 –0.20 –0.235 –0.13
–0.011 –0.046 0 –0.086
p44 –0.152 –0.099 0.0585 –0.0627
21 22 21 22
24,25 26 26 27 Ref. 28 15,2 30 31
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
12-166 Trigonal (3m, 32, 3m) Sapphire Calcite Lithium niobate Lithium tantalate Cinnabar Quartz Proustite Sodium nitrite Tellurium
Formula Al2O3 CaCO3 LiNbO3 LiTaO3 HgS SiO2 Ag3AsS3 NaNO2 Te
Tetragonal (4/mmm, 42m, 422) Ammonium dihydrogen phosphate Barium titanate Cesium dihydrogen arsenate Magnesium fluoride Calomel Potassium dihydrogen phosphate Rubidium dihydrogen arsenate Rubidium dihydrogen phosphate Strontium barium niobate Strontium barium niobate Tellurium oxide Rutile Tetragonal (4, ¯4, 4/m) Cadmium molybdate Lead molybdate Sodium bismuth molybdate
Orthorhombic (222, m22, mmm) Ammonium chlorate Ammonium sulfate Rochelle salt Iodic acid (α) Sulfur (α) Barite Topaz
λ/µm 0.644 0.514 0.633 0.633 0.633 0.589 0.633 0.633 10.6
p11 –0.23 0.062 ±0.034 –0.081
p12 –0.03 0.147 ±0.072 0.081
0.16 ±0.10
0.27 ±0.19 ±0.21 0.130
0.155
Formula ADP BaTiO3 CDA MgF2 Hg2Cl2 KDP RDA RDP Sr0.75Ba0.25Nb2O6 Sr0.5Ba0.5Nb2O6 TeO2 TiO2
p12 0.10 0.24 0.205
p13 0.13 0.255 0.25
p12 0.24
p13 0.18
p21 0.23
(NH4)2SO4
0.633
0.26
0.19
±0.260
±0.230 ±0.27
NaKC4H4O6 HIO3 S BaSO4 Al2SiO4(OH,F)2
0.589 0.633 0.633 0.589 –
0.35 0.302 0.324 0.21 –0.085
0.41 0.496 0.307 0.25 0.069
0.42 0.339 0.268 0.16 0.052
0.37 0.263 0.272 0.34 0.095
λ/µm 0.589
p11 = 0.313 p12 = 0.251 p13 = 0.270 p15 = –0.10 p21 = 0.281 p22 = 0.252 p23 = 0.272
–0.030
0.29 ±0.24 ±0.25 –
–
p13 0.169 – 0.200 – ±0.256 0.174 0.200 0.218 0.08 0.17 0.340 –0.139
p16 – 0.017 –
λ/µm p11 0.633 –
Formula C2H7NO3S
p31 –0.04 0.241 ±0.178 0.089
±0.027 –
Formula NH4ClO3
Monoclinic (2, m, 2/m) Taurine
p14 0.00 –0.011 ±0.066 –0.026
p12 0.277 – 0.225 – ±0.440 0.282 0.239 0.240 0.10 0.08 0.187 0.143
p11 0.319 0.425 0.267 – ±0.551 0.287 0.227 0.273 0.16 0.06 0.0074 0.017
λ/µm 0.589 0.633 0.633 0.546 0.633 0.589 0.633 0.633 0.633 0.633 0.633 0.633
Formula λ/µm p11 0.633 0.12 CdMoO4 0.633 0.24 PbMoO4 NaBi(MoO4)2 0.633 0.243
p13 0.02 0.186 ±0.139 0.093 ±0.445 0.27 ±0.22 ±0.215 –
p22
0.28 0.412 0.301 0.24 –0.120
p23 0.20
p31 0.11 0.175 0.21
p31 0.197 – 0.195 – ±0.137 0.241 0.205 0.210 0.11 0.09 0.090 –0.080
p33 0.18 0.300 0.29
p41 0.01 –0.036 ±0.154 –0.085 – –0.047 – 0.055 –
p33 0.167 – 0.227 – ±0.010 0.122 0.182 0.208 0.47 0.23 0.240 –0.057
p44 – 0.067 –
p44 –0.10 –0.058 ±0.300 0.028 – –0.079 – –0.06 –
p44 –0.058 – – ±0.0776 – –0.019 – – – – –0.17 –0.009
p45 – –0.01 –
p61 – 0.013 –
p66 –0.091 – – ±0.0488 ±0.047 –0.064 – – – – –0.046 –0.060
p66 – 0.05 –
Ref. 15,32 33 15,34 15,35 36 37 38 39 15
Ref. 40 41 42 43 44 45 41 41 46 46 47 48
Ref. 49 52 –
p32 0.18
p33 ±0.02
p44 p55 <±0.02 –
±0.254 0.20
±0.26
0.26
0.015
±0.0015 0.012
52
0.34 0.304 0.310 0.19 0.065
0.35 0.345 0.232 0.22 0.085
0.36 0.336 0.270 0.31 –0.083
–0.030 0.084 0.143 0.002 –0.095
0.0046 –0.030 0.019 –0.012 –0.031
53 54 54 55 28
p25 = –0.0025 p31 = 0.362 p32 = 0.275 p33 = 0.308 p35 = –0.003 p44 = 0.0025 p46 = –0.0056
p31 0.19
p33 –0.20 0.139 ±0.060 –0.044 ±0.115 0.10 ±0.20
0.36 0.251 0.203 0.28 0.095
p51 = –0.014 p52 = 0.006 p53 = 0.0048 p55 = 0.047 p64 = 0.0024 p66 = 0.0028
p66 ±0.04
–0.025 0.098 0.118 0.037 0.098
Ref. 51
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants Isotropic Fused silica Water Polystyrene Lucite Orpiment Tellurium oxide Laser glasses
Dense flint glasses (examples)
Formula SiO2 H2O As2S3-glass TeO2-glass LGS-247-2 LGS-250-3 LGS-1 KGSS-1621 LaSF SF4 U10502 TaFd7
λ/µm 0.633 0.633 0.633 0.633 1.15 0.633 0.488
0.633
p11 0.121 ±0.31 ±0.30 ±0.30 0.308 0.257 ±0.168 ±0.135 ±0.214 ±0.205 0.088 0.215 0.172 0.099
p12 0.270 ±0.31 ±0.31 0.28 0.299 0.241 ±0.230 ±0.198 ±0.250 ±0.239 0.147 0.243 0.179 0.138
References A. Narasimhamurty, T. S., Photoelastic and Electro-Optic Properties of Crystals, Plenum Press, New York, 1981, pp. 290–293. B. Weber, M. J., Ed., CRC Handbook of Laser Science and Technology, Volume IV, Part 2, CRC Press, Boca Raton, FL, 1986, pp. 324–331. 1. Petterson, H. E., J. Opt. Soc. Am., 63, 1243, 1973. 2. Burstein, E. and Smith, P. L., Phys. Rev., 74, 229, 1948. 3. Pakhnev, A. V., et al., Sov. Phys. J. (transl.), 18, 1662, 1975. 4. Feldman, A., Horovitz, D., and Waxler, R. M., Appl. Opt., 16, 2925, 1977. 5. Iyengar, K. S., Nature (London), 176, 1119, 1955. 6. Bansigir, K. G. and Iyengar, K. S., Acta Crystallogr., 14, 727, 1961. 7. Pakhev, A. V., et al., Sov. Phys. J. (transl.), 20, 648, 1975. 8. Bansigir, K. G., Acta Crystallogr., 23, 505, 1967. 9. Krishna Rao, K. V. and Krishna Murty, V. G., Ind. J. Phys., 41, 150, 1967. 10. Weil, R. and Sun, M. J., Proc. Int. Symp. CdTe (Detectors), Strasbourg Centre de Rech. Nucl., 1971, XIX-1 to 6, 1972. 11. Schmidt, E. D. D. and Vedam, K., J. Phys. Chem. Solids, 27, 1563, 1966. 12. Biegelsen, D. K., et al., Phys. Rev. B, 14, 3578, 1976. 13. Helwege, K. H., Landolt-Börnstein, New Series Group III, Vol. II, Springer-Verlag, Berlin, 1979. 14. Feldman, A., Waxler, R. M., and Horovitz, D., J. Appl. Phys., 49, 2589, 1978. 15. Dixon, R. W., J. Appl. Phys., 38, 5149, 1967. 16. Shabin, O. V., et al., Sov. Phys. Sol. State (transl.), 13, 3141, 1972. 17. Reintjes, J. and Schultz, M. B., J. Appl. Phys., 39, 5254, 1968. 18. Rivoallan, L. and Favre, F., Opt. Commun., 8, 404, 1973. 19. Rivoallan, L. and Favre, F., Opt. Commun., 11, 296, 1974. 20. Afanasev, I. I., et al., Sov. J. Opt. Technol., 46, 663, 1979. 21. Rand, S. C., et al., Phys. Rev. B, 19, 4205, 1979. 22. Sipe, J. E., Can J. Phys., 56, 199, 1978. 23. Christyi, I. L., et al., Sov. Phys. Sol. State (transl.), 17, 922, 1975. 24. Narasimhamurty, T. S., Curr. Sci. (India), 23, 149, 1954. 25. Smith, T. M. and Korpel, A., IEEE J. Quant. Electron., QE-1, 283, 1965.
12-167 p44 –0.075
0.0045 0.0079
–0.030 –0.014 –0.004 –0.020
Ref. 15 15 25 25 15 56 57
58
26. Narasimhamurty, T. S., Proc. Ind. Acad. Sci., A40, 164, 1954. 27. Rabman, A., Bhagarantam Commem. Vol., Bangalore Print. and Publ., 173, 1969. 28. Eppendahl, R., Ann. Phys. (IV), 61, 591, 1920. 29. Laurenti, J. P. and Rouzeyre, M., J. Appl. Phys., 52, 6484, 1981. 30. Sasaki, H., et al., J. Appl. Phys., 47, 2046, 1976. 31. Uchida, N. and Saito, S., J. Appl. Phys., 43, 971, 1972. 32. Waxler, R. M. and Farabaugh, E. M., J. Res. Natl. Bur. Stand., A74, 215, 1970. 33. Nelson, D. F., Lazay, P. D., and Lax, M., Phys. Rev., B6, 3109, 1972. 34. O’Brien, R. J., Rosasco, G. J., and Weber, A., J. Opt. Soc. Am., 60, 716, 1970. 35. Avakyants, L. P., et al., Sov. Phys., 18, 1242, 1976. 36. Sapriel, J., Appl. Phys. Lett., 19, 533, 1971. 37. Narasimhamurty, T. S., J. Opt. Soc. Am., 59, 682, 1969. 38. Zubrinov, I. I., et al., Sov. Phys. Sol. State (transl.), 15, 1921, 1974. 39. Kachalov, O. V. and Shpilko, I. O., Sov. Phys. JETP (transl.), 35, 957, 1972. 40. Narasimhamurty, T. S., et al., J. Mater. Sci., 8, 577, 1973. 41. Tada, K. and Kikuchi, K., Jpn. J. Appl. Phys., 19, 1311, 1980. 42. Aleksandrov, K. S., et al., Sov. Phys. Sol. State (transl.), 19, 1090, 1977. 43. Afanasev, I. I., et al., Sov. Phys. Sol. State (transl.), 17, 2006, 1975. 44. Silvestrova, I. M., et al., Sov. Phys. Cryst. (transl.), 20, 649, 1975. 45. Veerabhadra Rao, K. and Narasimhamurty, T. S., J. Mater. Sci., 10, 1019, 1975. 46. Venturini, E. L., et al., J. Appl. Phys., 40, 1622, 1969. 47. Vehida, N. and Ohmachi, Y., J. Appl. Phys., 40, 4692, 1969. 48. Grimsditch, M. H. and Ramdus, A. K., Phys. Rev. B, 22, 4094, 1980. 49. Schinke, D. P. and Viehman,W., unpublished data. 50. Coquin, G. A., et al., J. Appl. Phys., 42, 2162, 1971. 51. Vasquez, F., et al., J. Phys. Chem. Solids, 37, 451, 1976. 52. Luspin, Y. and Hauret, G., C.R.Ac. Sci. Paris, B274, 995, 1972. 53. Narasimhamurty, T. S., Phys. Rev., 186, 945, 1969. 54. Haussühl, S. and Weber, H. J., Z. Kristall., 132, 266, 1970. 55. Vedam, K., Proc. Ind. Ac. Sci., A34, 161, 1951. 56. Yano, T., Fukumoto, A., and Watanabe, A., J. Appl. Phys., 42, 3674, 1971. 57. Manenkov, A. A. and Ritus, A. I., Sov. J. Quant. Electr., 8, 78, 1978. 58. Eschler, H. and Weidinger, F., J. Appl. Phys., 46, 65, 1975.
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
12-168
LINEAR ELECTRO-OPTIC COEFFICIENTS Name Cubic (¯43m) Cuprous bromide Cuprous chloride Cuprous iodide Eulytite (BSO) Germanium eulytite (BGO) Gallium arsenide Gallium phosphide Hexamethylenetetramine Sphalerite Zinc selenide Zinc telluride Cadmium telluride
Cubic (23) Ammonium chloride (77 K) Ammonium cadmium langbeinite Ammonium manganese langbeinite Thallium cadmium langbeinite Potassium magnesium langbeinite Bismuth monogermanate Bismuth monosilicate Sodium chlorate Sodium uranyl acetate Trenhydrobromide Trenhydrochloride
Formula CuBr CuCl CuI Bi4Si3O12 Bi4Ge3O12 GaAs GaP C6H12N4 ZnS ZnSe ZnTe CdTe
Formula
Tetragonal (4mm) Barium titanate Potassium lithium niobate Lead titanate Strontium barium niobate (SBN75) Strontium barium niobate (SBN46)
Formula NH4H2PO4 NH4D2PO4 NH4H2AsO4 CsH2AsO4 CsD2AsO4 KH2PO4 KD2PO4 KH2AsO4 KD2AsO4 RbH2PO4 RbH2AsO4 RbD2AsO4
– 0.546 0.546 0.546 0.546 – – 0.589 0.546 – – Ttran K 148 242 – 143 212 123 222 97 162 147 110 178
r41 pm/V 24.5 – – – – 8.6 8.8 12.5 – – – –
r63 pm/V –8.5 11.9 9.2 18.6 36.6 –10.5 23.8 10.9 18.2 15.5 13.0 21.4
Ttran
r13
r33
r51
K
pm/V
pm/V
pm/V
Formula BaTiO3 K3Li2Nb5O15 PbTiO3 Sr0.75Ba0.25Nb2O6 Sr0.46Ba0.54Nb2O6
r41 pm/V 1.5 0.70 0.53 0.37 0.40 3.3 3.3 0.4 0.87 1.5 1.7
λ/µm
NH4Cl (NH4)2Cd2(SO4)3 (NH4)2Mn2(SO4)3 Tl2Cd2(SO4)3 K2Mg2(SO4)3 Bi12GeO20 Bi12SiO20 NaClO3 NaUO2(CH3COO)3 N(CH2CH2NH2)3 3HBr N(CH2CH2NH2)3 3HCl
Tetragonal (¯42m) Ammonium dihydrogen phosphate (ADP) Ammonium dideuterium phosphate (AD*P) Ammonium dihydrogen arsenate (ADA) Cesium dihydrogen arsenate (CsDA) Cesium dideuterium arsenate (CsD*A) Potassium dihydrogen phosphate (KDP) Potassium dideuterium phosphate (KD*P) Potassium dihydrogen arsenate (KDA) Potassium dideuterium arsenate (KD*A) Rubidium dihydrogen phosphate (RDP) Rubidium dihydrogen arsenate (RDA) Rubidium dideuterium arsenate (RD*A)
r41 pm/V 0.85 3.6 –5.0 0.54 1.0 1.6 –1.07 0.78 2.1 2.0 4.2 6.8
λ/µm 0.525 0.633 0.55 0.63 0.63 10.6 0.56 0.633 0.65 0.546 3.41 3.39
406 693 765 330 602
8 8.9 13.8 6.7 ~180
28 5.9 5.9 1340 35
– – – 42 –
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
Hexagonal (6mm) Greenockite Greenockite (const. strain) Wurzite Zincite
Formula CdS CdS ZnS ZnO
Hexagonal (6) Lithium iodate Lithium potassium sulfate
Trigonal (3m) Cesium nitrate Lithium niobate Lithium tantalate Lithium sodium sulfate Tourmaline
Formula LiIO3 LiKSO4
Formula CsNO3 LiNbO3 LiTaO3 LiNaSO4 –
Trigonal (32) Cesium tartrate Cinnabar Potassium dithionate Strontium dithionate Quartz Selenium
Orthorhombic (222) Ammonium oxalate Rochelle salt
Orthorhombic (mm2) Barium sodium niobate (BSN) Potassium niobate
r13 pm/V
r13 pm/V
4.1 r13–r33 = 1.6
Ttran K 425 1483 890 – –
2.9 2.4 1.8 +2.6
r33 pm/V 6.4 –
r42 pm/V 1.4 –
r33 pm/V – 30.8 30.5 – –
Ttran K – 659 – – 1140 398
r11 pm/V 1.0 3.1 0.26 0.1 –0.47 2.5
r41 pm/V – 1.5 – – 0.2
r41 pm/V 230 –2.0
r52 pm/V 330 –1.7
– 8.6 8.4 – –
Ttran K
r23 pm/V 13 1.3
r13 pm/V 15 28
Formula
Ca2Nb2O7 (NH2CH2COOH)3·H2SO4
Ttrans K
– 322
r42 pm/V – 28 – – –
r63 pm/V 250 +0.32
r33 pm/V 48 64
r22 pm/V 0.33 7.2
r51 pm/V 3.7 – – –
r51 pm/V 3.3 –
r22 pm/V 0.43 7.0 – <0.02 0.3
– Tu = 297 Tl = 255
Ttrans K 833 476
2.0 – – –
r42 pm/V
r13 pm/V
Formula Cs2C4H4O6 HgS K2S2O6 SrS2O6·4H2O SiO2 Se
Formula Ba2NaNbO15 KNbO3
r33 pm/V
3.1 1.1 0.9 –1.4
Formula (NH4)2C2O4·4H2O KNaC4H4O6·4H2O
Monoclinic (2) Calcium pyroniobate Triglycine sulfate (TGS)
12-169
r42 pm/V 92 380
r32 pm/V 13.7 13.6
References 1. Narasimhamurty, T. S., Photoelastic and Electro-Optic Properties of Crystals, Plenum Press, New York, 1981, pp. 405–407. 2. Weber, M. J., Ed., CRC Handbook of Laser Science and Technology, Vol. IV, CRC Press, Boca Raton, FL, 1986, pp. 258–278.
r51 pm/V 90 105
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
12-170
QUADRATIC ELECTRO-OPTIC COEFFICIENTS Kerr Constants of Ferroelectric Crystals1,2 Name Barium titanate Strontium titanate Potassium tantalate niobate Potassium tantalate Lithium niobate Lithium tantalate Barium sodium niobate (BSN)
Formula BaTiO3 SrTiO3 KTa0.65Nb0.35O3 KTaO3 LiNbO3 LiTaO3 Ba0.8Na0.4Nb2O6
Ttran K 406 – 330 13 1483 938 833
λ µm 0.633 0.633 0.633 0.633 – – –
g11 1010 esu 1.33 – 1.50 – 0.94 1.0 1.55
g12 1010 esu –0.11 – –0.42 – 0.25 0.17 0.44
g11–g12 1010 esu 1.44 1.56 1.92 1.77 0.7 0.8 1.11
g44 1010 esu – 1.63 1.33 0.6 0.7
Kerr Constants of Selected Liquids2 K is the Kerr constant at a wavelength of 589 nm and at room temperature; ε is the static dielectric constant; tm is the melting point; and tb is the normal boiling point Name Carbon disulfide Acetone Methyl ethyl ketone Pyridine Ethyl cyanoacetate o-Dichlorobenzene Benzenesulfonyl chloride Nitrobenzene Ethyl 3-aminocrotonate Paraldehyde
Molecular formula CS2 C3H6O C4H8O C5H5N C5H7NO2 C6H4Cl2 C6H5ClO2S C6H5NO2 C6H11NO2 C6H12O3
K 10–7 esu +3.23 +16.3 +13.6 +20.4 +38.8 +42.6 +89.9 +326 +31.0 –23.0
Benzaldehyde
C7H6O
+80.8
p-Chlorotoluene o-Nitrotoluene m-Nitrotoluene p-Nitrotoluene Benzyl alcohol
C7H7Cl C7H7NO2 C7H7NO2 C7H7NO2 C7H8O
+23.0 +174 +177 +222 –15.4
m-Cresol
C7H8O
+21.2
m-Chloroacetophenone Acetophenone
C8H7ClO C8H8O
+69.1 +66.6
Quinoline Ethyl salicylate Carvone Ethyl benzoylacetate Water
C9H7N C9H10O3 C10H14O C11H12O3 H2O
+15.0 +19.6 +23.6 +16.0 +4.0
a
Dielectric constant at radio frequencies (108–109 Hz).
ε
2.63 21.0 18.56 13.26 31.6 10.12 28.90 35.6 – 14.7 12.0a 17.85 14.1a 6.25 26.26 24.95 22.2 11.92 10.8a 12.44 5.0a 17.44 15.8a 9.16 8.48 11.2 13.50 80.10
tm °C –111.5 –94.8 –86.67 –42 –22.5 –16.7 +14.5 +5.7 +33.9 +12.6
tb °C +46.3 +56.1 +79.6 +115.23 205 180 247 210.8 210 124
–26
179.05
+7.5 –10 +15.5 +51.6 –15.3
162.4 222.3 232 238.3 205.8
+11.8
202.27
+19.7
202.3
–14.78 +1.3 <0 <0 0.00
237.16 231.5 230 270 100.0
References 1. Narasimhamurty, T. S., Photoelastic and Electro-Optic Properties of Crystals, Plenum Press, New York, 1981, p. 408. 2. Gray, D. E., Ed., AIP Handbook of Physics, McGraw Hill, New York, 1972, p. 6–241.
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
12-171
MAGNETO–OPTIC CONSTANTS Verdet Constants of Non-Magnetic Crystals1 V is the Verdet constant; n is the refractive index; and λ is the wavelength. Material Al2O3 BaTaO3
Bi4Ge3O12 C (diamond) CaCO3 CaF2 Cd0.55Mn0.45Te CuCl GaSe KAl(SO4)2·12H2O KBr KCl KI KTaO3
LaF3 (H∥c)
MgAl2O4 NH4AlSO4·12H2O NH4Br NH4Cl NaBr NaCl NaClO3 NiSO4·6H2O SiO2 SrTiO3
ZnS ZnSe
T K 300 300 403 403 403 403 300 300 300 300 300 300 300 300 298 300 300 300 300 300 300 296 296 296 296 296 300 300 300 300 300 300 300 300 300 300 300 300 300 300 297 297 300 300 298 298 298 298 300 300 300 300 300 300 300
λ nm 546.1 589.3 427 496 620 826 442 632.8 1064 589.3 589.3 589.3 632.8 546.1 632.8 589.3 546.1 589.3 589.3 546.1 589.3 352 413 496 620 826 325 442 632.8 1064 589.3 589.3 589.3 546.1 589.3 546.1 546.1 589.3 546.1 589.3 546.1 589.3 546.1 589.3 413 496 620 826 546.1 589.3 476 496 514 587 632.8
n
1.771 1.768
2.077 2.048 2.031 2.417 1.658 1.434 1.93 1.456 1.564 1.560 1.490 1.673 1.666
1.639 1.615 1.601 1.592 1.718 1.459 1.711 1.643
1.544 1.515 1.511 1.546 1.544 2.627
2.368 2.826 2.759 2.721 2.627 2.592
V min/Oe cm 0.0240 0.0210 0.95 0.38 0.18 0.072 0.289 0.099 0.026 0.0233 0.019 0.0088 6.87 0.20 0.80 0.0124 0.0500 0.0425 0.0275 0.083 0.070 0.44 0.19 0.096 0.051 0.022 0.054 0.028 0.012 0.006 0.021 0.0128 0.0504 0.0410 0.0362 0.0621 0.0410 0.0345 0.0105 0.0081 0.0256 0.0221 0.0195 0.0166 0.78 0.31 0.14 0.066 0.287 0.226 1.50 1.04 0.839 0.529 0.406
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
12-172
Verdet Constants of Rare-Earth Aluminum Garnets at Various Wavelengths1 The absorption coefficient α for these materials ranges from 0.2 to 0.6 cm–1 at 300 K. Material Tb2Al5O12
Dy3Al5O12 Ho3Al5O12 Er3Al5O12 Tm3Al5O12 Yb3Al5O12
T/K 300 77 4.2 1.45 300 300 300 300 298 77
λ = 405 nm –2.266
–1.241 –0.709 –0.189 +0.151 0.287 0.718
450 nm –1.565 –102.16
480 nm –1.290 –83.45
–200.95 –0.942 –0.320 –0.240 +0.103 0.215 0.540
–172.52 –0.803 –0.260 –0.154 +0.093 0.186 0.481
Verdet Constants for KDP-Type Crystals1
Measurements refer to T = 298 K and λ = 632.8 nm, with k ∥ [001]. V Material min/Oe cm KH2PO4 (KDP) KH0.3D1.7PO4 (KD*P) NH4H2PO4 (ADP) KH2AsO4 (KDA) KH0.1D1.9AsO4 (KD*A) NH4H2AsO4 (ADH)
0.0124 0.145 0.138 0.238 0.245 0.244
V in min/Oe cm 520 nm 546 nm –1.039 –0.912 –3.425 –3.051 –64.80 –58.35 –139.28 –125.07 –0.667 –0.592 –0.335 –0.304 –0.162 –0.157 0.076 0.069 0.140 0.133 0.393 0.342
578 nm –0.787 –2.603 –53.77 –111.27 –0.518 –0.299 –0.145 +0.059 0.116 0.302
635 nm –0.620 –2.008 48.39 97.47 –0.411 –0.105 +0.048 0.094 0.239
Verdet Constants of Gases2
670 nm –0.542 –1.815 –45.15 –93.42 –0.359 –0.206 –0.089
Values refer to T = 0°C and P = 101.325 kPa (760 mmHg); nD is the refractive index at a wavelength of 589 nm. 106 × V 3 min/Oe cm Gas (nD – 1) × 10 He 0.036 +0.40 Ar 2.81 +9.36 +6.29 H2 0.297 +6.46 N2 0.272 +5.69 O2 Air 0.293 +6.27 0.773 +31.9 Cl2 HCl 0.447 +21.5 0.63 +41.5 H2S 0.376 +19.0 NH3 CO 0.34 +11.0 0.45 +9.39 CO2 NO 0.297 –58 CH4 0.444 +17.4 +44.0 n-C4H10
Verdet Constants of Liquids2
nD is the refractive index at a wavelength of 589 nm and a temperature of 20°C, unless otherwise indicated. V is the Verdet constant. 102 × V Liquid λ/nm t/°C min/Oe cm nD P 589 33 +13.3 S 589 114 +8.1 1.929 (110°C) 589 20 +1.309 1.3328 H2O 589 19.7 +1.257 1.3384 D2O 578 97.4 +1.35 H3PO4 589 20 +4.255 1.6255 CS2 578–589 25.1 +1.60 1.463 (15°C) CCl4 578 18 +7.45 1.601 (14°C) SbCl5 578 17 –1.65 1.61 TiCl4 578 46 –5.3 TiBr4 Methanol 589 18.7 +0.958 1.3289 Acetone 578–589 20.0 +1.116 1.3585 Toluene 578–589 15.0 +2.71 1.4950 Benzene 578–589 15.0 +3.00 1.5005 Chlorobenzene 589 15 +2.92 1.5246 Nitrobenzene 589 15 +2.17 1.5523 Bromoform 589 17.9 +3.13 1.5960
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
12-173
Verdet Constants of Rare Earth Paramagnetic Crystals1 n is the refractive index, and V is the Verdet constant at the wavelength and temperature indicated. Rare Earth Ce3+(30%)
CaF2
Ce3+
CeF3
Pr3+(5%)
CaF2
Nd3+(2.9%) Nd3+
CaF2 NdF3
Eu3+(3%)
CaF2
Eu2+
EuF2
Tb3+
KTb3F10
Tb3+
LiTbF4
Tb3+
Tb3Ga5O12
Host
T/K 300 300 300 300 300 300 77 300 300 300 300 300 300 4.2 300 290 77 300 4.2 4.2 300 300 300 300 300 300 300 300 300 77 300 300 300 300 300 300 300 300 300 300
λ/nm 325 442 633 1064 442 633 633 1064 266 325 442 633 1064 426 442 633 633 1064 430 440 450 500 550 600 650 1064 325 442 633 633 1064 325 442 633 1064 500 570 633 830 1060
n 1.516 1.502 1.494 1.489 1.613 1.598 1.589 1.471 1.461 1.451 1.445 1.441 1.60 1.59 1.58
1.531 1.518 1.510 1.505 1.493 1.481 1.473 1.469 1.989 1.981 1.976 1.967 1.954
V min/Oe cm –0.956 –0.297 –0.111 –0.035 –1.05 –0.406 –1.418 –0.113 –0.172 –0.0818 –0.0089 –0.0168 –0.0045 –0.19 –0.553 –0.209 –0.755 –0.097 29 22 –4.5 –2.6 –1.6 –1.1 –0.8 –0.19 –2.174 –0.933 –0.386 –1.94 –0.114 –1.9 –0.98 –0.44 –0.13 –0.749 –0.581 –0.461 –0.21 –0.12
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
12-174
Verdet Constants of Paramagnetic Glasses1
The Verdet constant V is given at room temperature for the wavelengths indicated. Rare earth phosphate glasses of composition R2O3·xP2O5, where x is given in the second column Verdet constant V in min/Oe cm λ = 405 λ = 436 λ = 480 λ = 500 λ = 520 λ= 546 λ= 578 R x nm nm nm nm nm nm nm La 0.037 0.030 0.024 0.022 0.020 0.018 0.015 Ce 2.67 –0.672 0.510 –0.366 –0.326 –0.287 –0.253 –0.217 Pr 3.09 –0.447 –0.332 –0.283 –0.261 –0.236 –0.208 –0.182 Nd 2.92 –0.250 –0.209 –0.167 –0.155 –0.136 –0.134 –0.094 Sm 2.87 0.026 0.024 0.020 0.020 0.017 0.015 0.014 Eu 2.93 –0.025 –0.017 –0.010 –0.006 –0.006 –0.005 –0.004 Gd 3.01 0.018 0.015 0.014 0.012 0.012 0.011 0.011 Tb 2.94 –0.560 –0.458 –0.357 –0.323 –0.295 –0.261 –0.226 Dy 2.51 –0.540 –0.453 –0.359 –0.331 –0.301 0.268 –0.237 Ho 2.94 –0.299 –0.313 –0.156 –0.153 –0.138 –0.138 –0.119 Er 3.01 –0.139 –0.121 –0.100 –0.111 –0.095 –0.062 –0.060 Tm 2.79 0.019 0.013 0.012 0.009 0.008 0.006 0.005 Yb 3.01 0.087 0.072 0.056 0.050 0.045 0.041 0.036
λ= 600 nm –0.014 –0.197 –0.170 –0.080 0.012 –0.003 0.010 –0.206 –0.217 –0.110 –0.057 0.004 0.032
λ= 635 nm 0.013 –0.173 –0.150 –0.080 0.011 –0.002 0.009 –0.190 –0.197 –0.098 –0.051 0.004 0.029
λ= 670 nm – –0.150 –0.132 –0.071 0.010 –0.002 0.009 –0.164 –0.173 –0.084 –0.044 0.007 0.024
0.018 –0.146 –0.059 0.016 –0.016 0.017 –0.186 –0.177 –0.096 –0.040 0.021 0.043 –0.348 –0.332 –0.317
0.016 –0.128 –0.056 0.014 0.014 0.015 –0.167 –0.159 – –0.035 0.018 0.037 –0.306 –0.290 –0.271
0.014 –0.110 –0.046 0.012 –0.012 0.013 –0.142 –0.138 –0.074 –0.034 0.016 0.033 –0.265 –0.252 –0.243
The following are rare earth borate glasses with composition: for La and Pr: R2O3·xP2O5; for Tb–Pr and Dy–Pr: R2O3·xB2O3; and for other elements: R2O3·0.85La3O3·xB2O3. La Pr-La Nd-La Sm-La Eu-La Gd-La Tb-La Dy-La Ho-La Er-La Tm-La Yb-La Tb-Pr Dy-Pr Pr
3.04 5.44 5.41 4.97 4.69 4.71 4.73 4.88 4.36 4.50 4.75 8.58 4.99 4.63 2.56
0.043 –0.380 –0.180 0.032 –0.081 0.032 –0.512 –0.436 –0.269 –0.093 0.060 0.115 –0.940 –0.850 –0.843
0.036 –0.307 –0.147 0.030 –0.060 0.026 –0.419 –0.361 –0.252 –0.078 0.046 0.094 –0.786 – –0.646
0.029 –0.230 –0.120 0.025 –0.038 0.024 –0.319 –0.299 –0.123 –0.068 0.039 0.073 –0.560 – –0.471
0.026 –0.220 –0.111 0.024 –0.033 0.022 –0.288 –0.273 –0.131 –0.082 0.034 0.066 –0.536 –0.497 –0.480
0.023 –0.201 –0.096 0.022 –0.029 0.021 –0.262 –0.246 –0.112 – 0.031 0.060 –0.489 –0.465 –0.432
0.022 –0.178 –0.094 0.019 –0.024 0.020 –0.234 –0.220 –0.128 –0.045 0.026 0.054 –0.436 –0.413 –0.390
0.019 –0.153 –0.100 0.017 0.019 0.018 –0.205 –0.193 –0.104 –0.042 0.023 0.046 –0.380 –0.358 –0.334
Verdet Constants of Diamagnetic Glasses1
The Verdet constant V is given at room temperature for the wavelengths indicated. Verdet constant V in min/Oe cm Glass type Composition (wt. %) λ = 325 nm λ = 442 nm λ = 633 nm 100% SiO2 0.013 SiO2 100% B2O3 0.010 B2O3 0.079 0.033 0.022 CdO 47.5% CdO, 52.5% P2O5 0.072 0.044 0.020 ZnO 36.4% ZnO, 63.6% P2O5 88.9% TeO2, 11.1% P2O5 0.196 0.076 TeO2 63.1% ZrF4, 14.9% BaF2, 0.011 ZrF4 7.2% LaF3, 1.9% AlF3, 9.1% PbF2, 3.8% LiF
λ = 1064 nm
0.022
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
Bi2O3 PbO
Tl2O SnO TeO3
Sb2O3
95% Bi2O3, 5% B2O3 95% PbO, 5% B2O3 82% PbO, 18% SiO2 50% PbO, 15% K2O, 35% SiO2 95% Tl2O, 5% B2O3 82% Tl2O, 18% SiO2 50% Tl2O, 15% K2O, 35% SiO2 76% SnO, 13% B2O3, 11% SiO2 75% TeO2, 25% Sb2O3 80% TeO2, 20% ZnCl2 84% TeO2, 16% BaO 70% TeO2, 30% WO3 20% TeO2, 80% PbO 25% Sb2O3, 75% TeO2 75% Sb2O3, 75% Cs2O, 5% Al2O3 75% Sb2O3, 10% Cs2O, 10% Rb2O, 5% Al2O3
12-175
λ = 700 nm 0.086 0.093 0.077 0.032 0.092 0.100 0.036 0.071 0.076 0.073 0.056 0.052 0.128 0.076 0.074 0.078
λ = 853 nm 0.051 0.061 0.045 0.020 0.061 0.067 0.022 0.046 0.052 0.046 0.041 0.035 0.075 0.050 0.044 0.052
λ = 1060 nm 0.033 0.031 0.027 0.011 0.032 0.043 0.012 0.026 0.032 0.025 0.029 0.022 0.048 0.032 0.025 0.030
Verdet Constants of Commercial Glasses1
This table gives the density, ρ, refractive index at 589 nm, nD, and Verdet constant, V, for the wavelengths indicated; the data refer to room temperature. V in min/Oe cm Glass ρ nD λ = 365.0 nm λ = 404.7 nm λ = 435.8 nm λ = 546.1 nm λ = 578.0 nm type g/cm3 BSC 2.49 1.5096 0.0499 0.0392 0.0333 0.02034 0.01798 HC 2.53 1.5189 0.0561 0.0440 0.0372 0.0225 0.01995 LBC 2.87 1.5406 0.0609 0.0477 0.0403 0.0245 0.0216 LF 3.23 1.5785 0.1143 0.0850 0.0693 0.0394 0.0344 BLF 3.48 1.6047 0.1112 0.0832 0.0685 0.0393 0.0344 DBC 3.56 1.6122 0.0662 0.0517 0.0435 0.0261 0.0231 DF 3.63 1.6203 0.1473 0.1076 0.0872 0.0485 0.0423 EDF 3.9 1.6533 0.1725 0.1248 0.1007 0.0556 0.0483 The composition of the glasses in weight percent is: Glass type BSC HC LBC LF BLF DBC DF EDF
SiO2 69.6 72.0 57.1 52.5 45.2 36.2 46.3 40.6
B2O3 6.7 – 1.8 – – 7.7 – –
K2O 20.5 10.1 13.7 9.5 7.8 0.2 1.1 7.5
CaO 2.9 11.4 0.3 0.3 – 0.2 0.3 0.2
Al2O3 0.3 0.3 0.2 0.2 – 3.5 0.2 0.2
As2O3 0.1 0.2 0.1 0.1 0.4 0.7 0.1 0.2
Na2O – 6.1 – – – – 5.0 0.1
BaO – – 26.9 – 16.0 44.6 – –
References 1. Weber, M. J., CRC Handbook of Laser Science and Technology, Vol. IV, Part 2, CRC Press, Boca Raton, FL, 1988, pp. 299–310. 2. Gray, D. E., Ed., American Institute of Physics Handbook, Third edition, McGraw Hill, New York, 1972, p. 6–230.
ZnO – – – – 8.3 6.7 – –
PbO – – – 37.6 22.2 – 47.0 51.5
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
12-176
Faraday Rotation
Ferro-, Ferri-, and Antiferromagnetic Solids Tc
4 π Ms
F
α
2 F/α
T
λ
Material
K
gauss
deg/cm
cm
deg
K
nm
Fe
1043
21,800
Co
1390
18,200
Ni
633
6,400
Permalloy (Ni/Fe = 82/18) Ni/Fe = 100/0 Ni/Fe = 80/20 Ni/Fe = 60/40 Ni/Fe = 40/60 Ni/Fe = 20/80 Ni/Fe = 0/100 MnBi
803
10,700
4.4 × 105 6.5 × 105 7 × 105 7 × 105 2.9 × 105 5.5 × 105 5.5 × 105 5.5 × 105 0.8 × 105 2.6 × 105 1.5 × 105 1 × 105 1.2 × 105
6.5 × 105 5.0 × 105 4.2 × 105 3.5 × 105 – 6.1 × 105 4.5 × 105 3.6 × 105 – 5.8 × 105 4.8 × 105 4.1 × 105 6 × 105
1.4 2.6 3.3 4.0 – 1.8 2.4 2.7 – 0.9 0.6 0.25 0.4
300 300 300 300 300 300 300 300 300 300 300 300 300
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500
MnAs
313
–
CrTe
334
1015
FeRh Y3Fe5O12 (YIG)
333 560
– 2500
1.2 × 105 2.2 × 105 2.9 × 105 2.2 × 105 3.3 × 105 3.5 × 105 4.2 × 105 7.5 × 105 0.44 × 105 0.62 × 105 0.5 × 105 0.4 × 105 0.9 × 105 2400 1250 750 175
7.05 × 105 7.10 × 105 7.54 × 105 8.17 × 105 8.10 × 105 8.13 × 105 6.1 × 105 4.2 × 105 5.0 × 105 4.4 × 105 2.0 × 105 1.2 × 105 3.3 × 105 1500 1400 450 <0.06
0.34 0.62 0.77 0.54 0.81 0.86 1.4 3.6 0.174 0.28 0.5 0.7 0.56 3.2 1.8 3.3 >3 × 103
300 300 300 300 300 300 300 300 300 300 300 300 348 300 300 300 300
Gd3Fe5O12 (GdIG)
Tn = 564 T = 286
7300
NiFe2O4
858
3350
CoFe2O4
793
4930
MgFe2O4
593-713e
1450e
Li0.5Fe2.5O4
863–953e
3240e to 3900
BaFe12O19
723
–
Ba2Zn2Fe12O19
–
–
–2000 –1050 –300 –80 2.0 × 104 –1.0 × 104 –120 +75 +110 2.75 × 104 3.6 × 104 –2.5 × 104 –60 0 +35 –440 +10 +110 +135 –50 +75 +150 +165 90
6000 900 100 70 5.9 × 104 10 × 104 38 15 32 12 × 104 17 × 104 6 × 104 100 12 6 150 85 44 80 –38 20 20 22 120
0.6 2.3 6.0 2.3 0.7 0.2 6 10 7 0.5 0.4 0.8 1 0 11 6 0.2 5 3 3 7.5 15 15 1.5
300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
632.8 632.8 632.8 632.8 632.8 632.8 450 900 500 900 550 900 700 555 625 770 5000 to 1500 500 600 800 1000 286 500 1500 3000 5000 286 400 660 2500 4000 6000 1500 3000 5000 7000 2000 3000 5000 7000 5000
639
6,000 10,800 14,900 14,400 19,400 21,600 7,700
–1
Elasto-Optic, Electro-Optic, and Magneto-Optic Constants
12-177
Tc
4 π Ms
F
α
2 F/α
T
λ
Material
K
gauss
deg/cm
cm–1
deg
K
nm
RbNiF3
220
1250
RbNi0.75Co0.25F3 RbFeF3
109 102
– –
FeF3
365
CrCl3
16.8
40 at 300 K 3880
CrBr3
32.5
3390
CrI3
68
2690
FeBO3
348
EuO
69
115 at 300 K 23700
EuS
16.3
–
EuSe
7.0
13,200
75 360 70 310 75 180 3400 1600 620 300 670 180 2000 –500 –1000 3 × 105 1.6 × 105 1.1 × 105 0.8 × 105 3200 450 –1.0 × 105 5 × 105 0.5 × 105 3 × 104 660 –1.6 × 105 –9.6 × 105 +5.5 × 105 1.45 × 105 0.95 × 105
65 35 10 70 25 9 7 3 1.5 2.5 14 4.4 200 300 70 3 × 103 1.4 × 104 6.3 × 103 3 × 103 140 38 0.5 × 104 9.7 × 104 7.8 × 104 >0.5 >1.0 0 3.3 × 104 1.2 × 105 80 60
2.0 20 14 9 6 40 900 1100 830 240 95 82 20 3 30 200 23 35 53 45 24 40 10 1.3 ~105 1300 – 58 9.2 3600 3170
300 77 77 77 77 77 82 82 82 82 300 300 1.5 1.5 1.5 1.5 1.5 1.5 1.5 300 300 5 5 5 20 20 6 6 6 4.2 4.2
7000 450a 600a 800a 1000a 600b 300c 400c 600c 800c 349d 522.5d 410 450 590 478 500 970 1000 500 700 1100 700 500 2500 10600 825 690 563 750 800
a b c d e
Measured along the C-axis (magnetic hard axis). Measured along the C-axis (magnetic easy axis). Measured along the C-axis ([100]-direction at room temperature). Strong natural birefringence interferes with the Faraday effect. Depends on heat treatment.
Reference 1. Weber, M. J., Ed., CRC Handbook of Laser Science and Technology, Vol. IV, Part 2, CRC Press, Boca Raton, FL, 1988, pp. 288–296.
NONLINEAR OPTICAL CONSTANTS H. P. R. Frederikse The relation between the polarization density P of a dielectric medium and the electric field E is linear when E is small, but becomes nonlinear as E acquires values comparable with interatomic electric fields (105 to 108 V/cm). Under these conditions the relation between P and E can be expanded in a Taylor’s series P = ε 0 χ (1 ) E + 2 χ ( 2 ) E 2 + 4 χ ( 3 ) E 3 +
(1)
where εo is the permittivity of free space, while χ(1) is the linear and χ(2), χ(3) etc. the nonlinear optical susceptibilities. If we consider two optical fields, the first Ejω (along the j-direction at frequency ω1) and the second Ekω (along the k-direction at frequency ω2) one can write the second term of the Taylor’s series as follows 1
2
ω3 = ω1 ± ω2 ω1 ω2 Pi (ω1 ω2 ) = 2 χ ijk E j Ek
When ω1 ≠ ω2 the (parametric) mixing of the two fields gives rise to two new polarizations at the frequencies ω3 = ω1 + ω2 and ω3´ = ω1 – ω2. When the two frequencies are equal, ω1 = ω2 = ω, the result is Second Harmonic Generation (SHG): χijk(2ω, ω, ω), while equal and opposite frequencies, ω1 = ω and ω2 = –ω leads to Optical Rectification (OR): χijk(0, ω, –ω). In the SHG case the following convention is adopted: the second order nonlinear coefficient d is equal to one half of the second order nonlinear susceptibility dijk = 1/2 χ( 2 )
Because of the symmetry of the indices j and k one can replace these two by a single index (subscript) m. Consequently the notation for the SHG nonlinear coefficient in reduced form is dim where m takes the values 1 to 6. Only noncentrosymmetric crystals can possess a nonvanishing dijk tensor (third rank). The unit of the SHG coefficients is m/V (in the MKSQ/SI system). In centrosymmetric media the dominant nonlinearity is of the third order. This effect is represented by the third term in the Taylor’s series (Equation 1); it is the result of the interaction of a number of optical fields (one to three) producing a new frequency ω4 = ω1 + ω2 + ω3. The third order polarization is given by Pj (ω1 ω2 ω3 ) = g 4 χ jklm Ekω1 E1ω2 Emω3
This coefficient is a fourth rank tensor. In the THG case the matrices must be invariant under permutation of the indices k, l, and m; as a result the notation for the third order nonlinear coefficient can be simplified to Cjn. The unit of Cjn is m2·V–2 (in the MKSQ/SI system). Applications of second order nonlinear optical materials include the generation of higher (up to sixth) optical harmonics, the mixing of monochromatic waves to generate sum or difference frequencies (frequency conversion), the use of two monochromatic waves to amplify a third wave (parametric amplification) and the addition of feedback to such an amplifier to create an oscillation (parametric oscillation). Third order nonlinear optical materials are used for THG, selffocusing, four wave mixing, optical amplification, and optical conjugation. Many of these effects – as well as the variation and modulation of optical propagation caused by mechanical, electric, and magnetic fields (see the preceeding table on “Elasto-Optic, Electro-Optic, and Magneto-Optic Constants”) are used in the areas of optical communication, optical computing, and optical imaging.
References 1. Handbook of Laser Science and Technology, Vol. 111, Part 1; Weber, M. J. Ed., CRC Press, Boca Raton, FL, 1986. 2. Dmitriev, V.G., Gurzadyan, G.G., and Nikogosyan, D., Handbook of Nonlinear Optical Crystals, Springer-Verlag, Berlin, 1991. 3. Shen, Y.R., The Principles of Nonlinear Optics, John Wiley, New York, 1984. 4. Yariv, A., Quantum Electronics, 3rd edition, John Wiley, New York, 1988. 5. Bloembergen, N., Nonlinear Optics, W.A. Benjamin, New York, 1965. 6. Zernike F. and Midwinter, J.E., Applied Nonlinear Optics, John Wiley, New York, 1973. 7. Hopf, F.A. and Stegeman, G.I., Applied Classical Electrodynamics, Volume 2: Nonlinear Optics, John Wiley, New York, 1986. 8. Nonlinear Optical Properties of Organic Molecules and Crystals, Chemla, D. S., and Zyss, J., Eds., Academic Press, Orlando, FL, 1987. 9. Optical Phase Conjugation, Fisher, R. A., Ed., Academic Press, New York, 1983. 10. Zyss, J., Molecular Nonlinear Optics: Materials, Devices and Physics, Academic Press, Boston, 1994. 11. Nonlinear Optics, 5 articles in Physics Today, (Am. Inst. of Phys.), Vol. 47, No. 5, May, 1994.
Third Harmonic Generation (THG) is achieved when ω1 = ω2 = ω3 = ω. In this case the constant g4 = 1/4. The third order nonlinear coefficient C is related to the third order susceptibility as follows: C jklm = 1/4 χ jklm
12-174
Section 12.indb 174
4/28/05 1:59:45 PM
Nonlinear Optical Constants
12-175 Selected SHG Coefficients of NLO Crystals*
Symmetry Material
dim × 1012
class
GaAs GaP InAs
43 m 43 m 43 m
ZnSe
43 m
β-ZnS
43 m
ZnTe
43 m
CdTe Bi4GeO12 N4(CH2)6 (hexamine) LiIO3
43 m 43 m 43 m
ZnO
6 mm
6
α-ZnS
6 mm
CdS
6 mm
CdSe
6 mm
BaTiO3
4 mm
PbTiO3
4 mm
K3Li2Nb5O15
4 mm
K0.8Na0.2Ba2Nb5O15 SrBaNb5O15
4 mm 4 mm
NH4H2PO4 (ADP)
42 m
KH2PO4 (KDP)
42 m
KD2PO4 (KD*P)
42 m
KH2AsO4 (KDA)
42 m
CdGeAs2 AgGaS2
42 m 42 m
m/V d14 = 134.1 ± 42 d14 = 71.8 ± 12.3 d14 = 364 ± 47 d14 = 210 d14 = 78.4 ± 29.3 d36 = 26.6 ± 1.7 d14 = 30.6 ± 8.4 d36 = 20.7 ± 1.3 d14 = 92.2 ± 33.5 d14 = 83.2 ± 8.4 d36 = 89.6 ± 5.7 d14 = 167.6 ± 63 d14 = 1.28 d14 = 4.1 d33 = –7.02 d31 = –5.53 ± 0.3 d33 = –5.86 ± 0.16 d31= 1.76 ± 0.16 d15 = 1.93 ± 0.16 d33 = 11.37 ± 0.07 d33 = 37.3 ± 12.6 d31 = –18.9 ± 6.3 d15 = 21.37 ± 8.4 d33 = 25.8 ± 1.6 d31 = –13.1 ± 0.8 d15 = 14.4 ± 0.8 d33 = 54.5 ± 12.6 d31 = –26.8 ± 2.7 d33 = 6.8 ± 1.0 d31 = 15.7 ± 1.8 d15 = 17.0 ± 1.8 d33 = 7.5 ± 1.2 d31 = 37.6 ± 5.6 d15 = 33.3 ± 5 d33 = 11.2 ± 1.6 d31 = 6.18 ± 1.28 d15 = 5.45 ± 0.54 d31 = 13.6 ± 1.6 d33 = 11.3 ± 3.3 d31 = 4.31 ± 1.32 d15 = 5.98 ± 2 d36 = 0.53 d36 = 0.85 d36 = 0.44 d36 = 0.47 ± 0.07 d36 = 0.38 ± 0.016 d36 = 0.34 ± 0.06 d14 = 0.37 d36 = 0.43 ± 0.025 d36 = 0.39 ± 0.4 d36 = 351 ± 105 d36 = 18 ± 2.7
λ µm
Symmetry Material
class
42 m 42 m
10.6 1.058 1.058 10.6 10.6 1.058 10.6 1.058 10.6 1.058 1.058 10.6 1.064 1.06 1.06 1.064 1.058
AgGaSe2 (NH2)2CO (urea) AlPO4 Se Te SiO2 (quartz) HgS (C6H5CO)2 [benzil] β-BaB2O4 [BBO]
32 32 32 32 32 32 3m
LiNbO3
3m
LiTaO3
3m
Ag3AsS3 [proustite]
3m
1.058 1.058 1.058 10.6 10.6 10.6 1.058 1.058 1.058 10.6 10.6 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 0.694 1.064 0.694 1.058 0.694 1.058 1.06 0.694 10.6 10.6
Ag3SbS3 [pyrargerite]
3m
α-HIO3 NO2 · CH3NOC5H4 · (POM) Ba2NaNb5O15 [Banana]
222 222 mm 2
C6H4(NO2)2 [MDB]
mm 2
Gd2(MoO4)3
mm 2
KNbO3
mm 2
KTiOPO4 [KTP]
mm 2
NO2C6H4 · NH2 [mNA]
mm 2
C10H12N3O6 [MAP]
2
(NH2CH2COOH)3H2SO4 [TGS]
2
dim × 1012 m/V
λ µm
d36 = 37.4 ± 6.0 d36 = 1.3 d11 = 0.35 ± 0.03 d11 = 97 ± 25 d11 = 650 ± 30 d11 = 0.335 d11 = 50.3 ± 17 d11 = 3.6 ± 0.5 d22 = 2.22 ± 0.09 d31 = 0.16 ± 0.08 d33 = 34.4 d31 = –5.95 d22 = 2.76 d33 = –16.4 ± 2 d31 = –1.07 ± 0.2 d22 = +1.76 ± 0.2 d31 = 11.3 ± 2.5 d22 = 18.0 ± 2.5 d31 = 12.6 ± 4 d22 = 13.4 ± 4 d36 = 5.15 ± 0.16 d36 = 6.4 ± 1.0
10.6 1.06 1.058 10.6 10.6 1.064 10.6 1.064 1.06 1.06 1.06 1.06 1.06 1.058 1.058 1.058 10.6 10.6 10.6 10.6 1.064 1.064
d33 = –17.6 ± 1.28 d31 = –12.8 ± 1.28 d33 = 0.74 d32 = 2.7 d31 = 1.78 d33 = –0.044 ± 0.008 d32 = +2.42 ± 0.36 d31 = –2.49 ± 0.37 d33 = –19.58 ± 1.03 d32 = +11.34 ± 1.03 d31 = –12.88 ± 1.03 d33 = 13.7 d32 = ± 5.0 d31 = ± 6.5 d33 = 13.12 ± 1.28 d32 = 1.02 ± 0.22 d31 = 12.48 ± 1.28 d23 = 10.67 ± 1.3 d22 = 11.7 ± 1.3 d21 = 2.35 ± 0.5 d25 = –0.35 ± 0.3 d23 = 0.32
1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.06 1.06 1.06 1.064 1.064 1.064 1.064 1.064 1.064 1.064 0.694
* These data are taken from References 1 and 2.
Section 12.indb 175
4/28/05 1:59:47 PM
Nonlinear Optical Constants
12-176
Material NH4H2PO4 [ADP] C6H6 [benzene] CdGeAs2 p-type: 5 × 1016 cm–3 C40H56 [β-carotene] GaAs high-resistivity Ge LiIO3 KBr KCl KH2PO4 [KDP] Si p-type: 1014 cm–3 NaCl NaF
Selected THG Coefficients of Some NLO Materials* Cjn × 1020 NLO process m2/V–2 (–3ω,ω,ω,ω) C11 = 0.0104 C18 = 0.0098 (–3ω,ω,ω,ω) C11 = 0.0184 ± 0.0042 (–3ω,ω,ω,ω) C11 = 182 ± 84 C16 = 175 C18 = –35 (–3ω,ω,ω,ω) C11 0.263 ± 0.08 (–3ω,ω,ω,–ω) C11 = 62 ± 31 (–3ω,ω,ω,–ω) C11 = 23.5 ± 12 (–3ω,ω,ω,–ω) C12 = 0.2285 C35 = 6.66 ± 1 (–3ω,ω,ω,–ω) C11 = 0.0392 C18/C11 = 0.3667 (–3ω,ω,ω,–ω) C11 = 0.0168 C18/C11 = 0.28 (–3ω,ω,ω,–ω) C11–3C18 = 0.04 (–3ω,ω,ω,–ω) C11 = 82.8 ± 25 (–3,ω,ω,ω,–ω) C11 = 0.0168 C18/C11 = 0.4133 (–3ω,ω,ω,–ω) C11 = 0.0035
λ µm 1.06 1.06 1.89 10.6 10.6 10.6 1.89 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
* These data are taken from Reference 1.
Section 12.indb 176
4/28/05 1:59:48 PM
Phase Diagrams H. P. R. Frederikse A phase is a structurally homogeneous portion of matter. Regardless of the number of chemical constituents of a gas, there is only one vapor phase. This is true also for the liquid form of a pure substance, although a mixture of several liquid substances may exist as one or several phases, depending on the interactions among the substances. On the other hand a pure solid may exist in several phases at different temperatures and pressures because of differences in crystal structure (Reference 1). At the phase transition temperature, Ttr, the chemical composition of the solid remains the same, but a change in the physical properties often will take place. Such changes are found in ferroelectric crystals (example BaTiO3) which develop a spontaneous polarization below Ttr, in superconductors (example Pb) which lose all electrical resistance below the transition point, and in many other classes of solids. In quite a few cases it is difficult to bring about the phase transition, and the high- (or low-) temperature phase persists in its metastable form. Many liquids remain in the liquid state for shorter or longer periods of time when cooled below the melting point (supercooling). However, often the slightest disturbance will cause solidification. Persistence of the high temperature phase in solid– solid transitions is usually of much longer duration. An example of this behavior is found in white tin; although gray tin is the thermodynamically stable form below Ttr (286.4 K), the metal remains in its undercooled, white tin state all the way to T = 0 K, and crystals of gray tin are very difficult to produce. A phase diagram is a map that indicates the areas of stability of the various phases as a function of external conditions (temperature and pressure). Pure materials, such as mercury, helium, water, and methyl alcohol are considered one-component systems and they have unary phase diagrams. The equilibrium phases in two-component systems are presented in binary phase diagrams. Because many important materials consist of three, four, and more components, many attempts have been made to deduce their multicomponent phase diagrams. However, the vast majority of systems with three or more components are very complex, and no overall maps of the phase relationships have been worked out. It has been shown during the last 20 to 25 years that very useful partial phase diagrams of complex systems can be obtained by means of thermodynamic modeling (References 2, 3). Especially for complicated, multicomponent alloy systems the CALPHAD method has proved to be a successful approach for producing valuable portions of very intricate phase diagrams (Reference 4). With this method thermodynamic descriptions of the free energy functions of various phases are obtained that are consistent with existing (binary) phase diagram information and other thermodynamic data. Extrapolation methods are then used to extend the thermodynamic functions into a ternary system. Comparison of the results of this procedure with available experimental data is then used to fine-tune the phase diagram and add ternary interaction functions if necessary. In principle this approximation strategy can be extended to four, five, and more component systems. The nearly two dozen phase diagrams shown below present the reader with examples of some important types of single and multicomponent systems, especially for ceramics and metal alloys. This makes it possible to draw attention to certain features like the kinetic aspects of phase transitions (see Figure 22, which presents a time-temperature-transformation, or TTT, diagram for the precipitation of α-phase particles from the β-phase in a Ti-Mo alloy; Reference 1, pp. 358–360). The general references listed below and the references to individual figures contain phase diagrams for many additional systems.
General References 1. Ralls, K. M., Courtney, T. H., and Wulff, J., Introduction to Materials Science and Engineering, Chapters 16 and 17, John Wiley & Sons, New York, 1976. 2. Kaufman, L., and Bernstein, H., Computer Calculation of Phase Diagrams, Academic Press, New York, 1970. 3. Kattner, U. R., Boettinger, W. J. B., and Coriell, S. R., Z. Metallkd., 87, 9, 1996. 4. Dinsdale, A. T., Ed., CALPHAD, Vol. 1–20, Pergamon Press, Oxford, 1977–1996 and continuing. 5. Baker, H., Ed., ASM Handbook, Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, OH, 1992. 6. Massalski, T. B., Ed., Binary Alloy Phase Diagrams, Second Edition, ASM International, Materials Park, OH, 1990. 7. Roth. R. S., Ed., Phase Diagrams for Ceramists, Vol. I (1964) to Volume XI (1995), American Ceramic Society, Waterville, OH.
References to Individual Phase Diagrams Figure 1.
Carbon: Reference 7, Vol. X (1994), Figure 8930. Reprinted with permission. Figure 2. Si-Ge : Ref. 5, p. 2.231. Reprinted with permission. Figure 3. H2O (ice): See figure. Figure 4. SiO2: Reference 7, Vol. XI (1995), Figure 9174. Reprinted with permission. Figure 5. Fe-O: Darken, L.S., and Gurry, R.W., J. Am. Chem. Soc., 68, 798, 1946. Reprinted with permission. Figure 6. Ti-O: Reference 5, p. 2.324. Reprinted with permission. Figure 7. BaO-TiO2: Reference 7, Vol. III (1975), Figure 4302. Reprinted with permission. Figure 8. MgO-Al2O3: Reference 7, Vol. XI (1995), Figure 9239. Reprinted with permission. Figure 9. Y2O3-ZrO2: Reference 7, Vol. XI (1995), Figure 9348. Reprinted with permission. Figure 10. Si-N-Al-O (Sialon): Reference 7, Vol. X (1994), Figure 8759. Reprinted with permission. Figure 11. PbO-ZrO2-TiO2 (PZT): Reference 7, Vol. III (1975), Figure 4587. Reprinted with permission. Figure 12. Al-Si-Ca-O: Reference 7 (1964), Vol. I, Figure 630. Reprinted with permission. Figure 13. Y-Ba-Cu-O: Whitler, J.D., and Roth, R.S., Phase Diagrams for High Tc Superconductors, Figure S-082, American Ceramic Society, Waterville, OH, 1990. Reprinted with permission. Figure 14. Al-Cu: Reference 5, p. 2.44. Reprinted with permission. Figure 15. Fe-C: Ralls, K.M., Courtney, T.H., and Wulff, J., Introduction to Materials Science and Engineering, Figure 16.13, John Wiley & Sons, New York, 1976. Reprinted with permission. Figure 16. Fe-Cr: Reference 5, p. 2.152. Reprinted with permission. Figure 17. Cu-Sn: Reference 5, p. 2.178. Reprinted with permission. Figure 18. Cu-Ni: Reference 5, p. 2.173. Reprinted with permission. Figure 19. Pb-Sn (solder): Reference 5, p. 2.335. Reprinted with permission. Figure 20. Cu-Zn (brass): Subramanian, P.R., Chakrabarti, D.J., and Laughlin, D.E., Eds., Phase Diagrams of Binary Copper Alloys, p. 487, ASM International, Materials Park, OH, 1994. Reprinted with permission. Figure 21. Co-Sm: Reference 5, p. 2.148. Reprinted with permission. Figure 22. Ti-Mo: Reference 5, p. 2.296; Reference 1, p. 359. Reprinted with permission. Figure 23. Fe-Cr-Ni: Reference 5, Figure 48. Reprinted with permission.
12-181
Phase Diagrams
12-182 200
P/GPa
150
Diamond 100
50 Liquid A B 0
C
Graphite
0
2000
4000 T/K
6000
Figure 1. Phase diagram of carbon. (A) Martensitic transition: hex graphite → hex diamond. (B) Fast graphite-to-diamond transition. (C) Fast diamond-to-graphite transition.
Figure 2.
Si-Ge system.
Phase
(Ge,Si) High-pressure phases GeII SiII
Composition, mass % Si 0 to 100
Pearson symbol cF8
Space group – Fd3 m
– –
tI4 tI4
I41/amd I41/amd
Phase Diagrams
12-183 200
Liquid
150
VII
100
t/°C
50
VI
0 V
III
VIII
I -50 II -100
-150 0
500
1000
1500
2000
2500
3000
3500
P/MPa
Figure 3. Diagram of the principal phases of ice. Solid lines are measured boundaries between stable phases; dotted lines are extrapolated. Ice IV is a metastable phase that exists in the region of ice V. Ice IX exists in the region below –100°C and pressures in the range 200–400 MPa. Ice X exists at pressures above 44 GPa. See Table 1 for the coordinates of the triple points, where liquid water is in equilibrium with two adjacent solid phases.
Table 1. Crystal Structure, Density, and Transition Temperatures for the Phases of Ice Phase
Crystal system
Ih Ic II III IV V
Hexagonal Cubic Rhombohedral Tetragonal Rhombohedral Monoclinic
VI VII VIII IX X
Tetragonal Cubic Tetragonal Tetragonal Cubic
Cell parameters a = 4.513; c = 7352 a = 6.35 a = 7.78; α = 113.1° a = 6.73; c = 6.83 a = 7.60; α = 70.1° a = 9.22; b = 7.54, c = 10.35; β = 109.2° a = 6.27; c = 5.79 a = 3.41 a = 4.80; c = 6.99 a = 6.73; c = 6.83 a = 2.83
References 1. Wagner, W., Saul, A., and Pruss, A., J. Phys. Chem. Ref. Data, 23, 515, 1994. 2. Lerner, R.G. and Trigg, G.L., Eds., Encyclopedia of Physics, VCH Publishers, New York, 1990.
Triple points
Z
n
ρ/g cm-3
4 8 12 12 16 28
4 4 4 4 4 4
0.93 0.94 1.18 1.15 1.27 1.24
I-III: –21.99°C, 209.9 MPa
10 2 8 12 2
4 8 8 4 8
1.31 1.56 1.56 1.16 2.51
VI-VII: 82°C, 2216 MPa
III-V: –16.99°C, 350.1 MPa V-VI: 0.16°C, 632.4 MPa
3. Donnay, J.D.H. and Ondik, H.M, Crystal Data Determinative Tables, Third Edition, Volume 2, Inorganic Compounds, Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 1973. 4. Hobbs, P.V., Ice Physics, Oxford University Press, Oxford, 1974. 5. Glasser, L., J. Chem. Edu., 81, 414, 2004.
Phase Diagrams
12-184 2000
Liq. Crist βQuartz
t/°C
M
1300° 34 kbars
1190° 1.43 kbars
Cal cula ted
1500
Trid
1000
Coesite
500
αQuartz Stishovite
0
20
40
60 80 P/kbar
100
120
SiO2 system. Crist = cristobalite; Trid = tridymite.
Atom % Oxygen
Liq. iron
54
56
A B
58
Liq. iron + Liq. oxide
Liquid oxide
C
R´ Liquid oxide + magnetite
δ-Iron + liq. oxide
I H
G
S
60 Liquid oxide + oxygen
V
Liq. iron
1600
1400
52
50
Magnetite
Figure 4.
0
R
3000
Magnetite + oxygen
Y
Z 2600
γ-Iron + liq. oxide
N J .. Wustite γ-Iron .. + wustite
Hematite + oxygen
t/°C
1200
1000
.. Wustite + magnetite
L
2200
°F 1800
Magnetite + hematite
800 α-Iron .. + wustite
1400
600
Q
1000 α-Iron + magnetite
FeO 400
Figure 5.
Fe-O system.
0 .2 .4 22
24
26 Mass % Oxygen
Fe3O4 28
Fe3O3 Z´ 30
Phase Diagrams Point
t/°C
A B C G H I J L N
a
12-185
1539 1528 1528 1400a 1424 1424 1371 911a 1371
%O
pCO /pCO
0.16 22.60 22.84 25.60 25.31 23.16 23.10 22.91
0.209 0.209 0.263 16.2 16.2 0.282 0.447 0.282
Point
2
t/°C
Q R R´ S V Y Z Z´
%O
560 1583 1583 1424 1597 1457 1457
pCO /pCO 2
23.26 28.30 28.07 27.64 27.64 28.36 30.04 30.6
1.05
16.2
Values for pure iron.
2200
Mass Percent Oxygen 10 20
0
30
40 TinO2n-1
2000 ~1885°C
L
1842°C 1870°C
1800
t/°C
~1250°C 1200
βTiO
(αTi)
1000
940°C
Ti3O
600
βTi1-xO
αTiO
882°C
Ti3O2
800
TiO (rutile)
1400
2 higher Magneli phases
γTiO
(βTi)
βTi2O3
1720°C 1670°C
1600
αTi1-xO
Ti2O 400 0
10
20
Ti
Figure 6.
30 40 Atomic Percent Oxygen
50
60
70
Ti-O system. Phase
(βTi) (αTi) Ti3O Ti2O γTiO Ti3O2 βTiO αTiO βTi1–xO αTi1–xO βTi2O3 αTi2O3 βTi3O5 αTi3O5 α´Ti3O5 γTi4O7 βTi4O7 αTi4O7 γTi5O9 βTi6O11 Ti7O13 Ti8O15 Ti9O17 Rutile TiO2 Metastable phases Anatase Brookite High-pressure phases TiO2-II TiO2-III
Composition, mass % O
Pearson symbol
Space group
0 to 3 0 to 13.5 ~8 to ~13 ~10 to 14.4 15.2 to 29.4 ~18 ~24 to ~29.4 ~25.0 ~29.5 ~29.5 33.2 to 33.6 33.2 to 33.6 35.8 35.8 35.8 36.9 36.9 36.9 37.6 38.0 38.3 38.5 38.7 40.1
cI2 hP2 hP~16 hP3 cF8 hP~5 c** mC16 oI12 tI18 hR30 hR30 m** mC32 mC32 aP44 aP44 aP44 aP28 aC68 aP40 aC92 aP52 tP6
Im¯3m P63/mmc P¯3c P¯3m1 Fm¯3m P6/mmm – A2/m or B*/* I222 I4/m R¯3c R¯3c – C2/m Cc P¯1 P¯1 P¯1 P¯1 A¯1 P¯1 A¯1 P¯1 P42/mnm
– –
tI12 oP24
I41/amd Pbca
– –
oP12 hP~48
Pbcn –
pO /atm 2 1 1 0.0575 1 1
Phase Diagrams
12-186 1600
TiO2 + Liq.
1500
Liquid
t /°C
1428° 1400 BaTiO3 + Liq.
~1357°
TiO2 + BaTi4O9
~1330°
~1320°
~1300°
1200
Figure 7.
60 BaO
70
Ba2Ti9O20
BaTi4O9
BaTiO3 + Ba6Ti17O40
Ba4Ti13O30
Ba6Ti17O40
1300
TiO2 + Ba2Ti9O20
80
90
100 TiO2
Mol %
BaO-TiO2 system.
2800
2600
2400 Spinel ss + Liquid
Periclase ss + Liquid
t/°C
2200 2105° Periclase 2000 ss
1995° Spinel ss
1800 Periclase ss + Spinel ss 1600 ~1500° Periclase + Spinel 1400 0 MgO Figure 8.
MgO-Al2O3 system.
10
20
30
40 Mol %
50
60
70 Al2O3
Phase Diagrams
12-187
Liquid
2800 Hss
Css + Liq. 2400 Yss + Hss 2000
Css
Css + Yss Yss
1700°C
t/°C
1650°± 50°
1600
(28%)
Css + 6:1
1375°
1325°± 25°
Tetss + Css
(55%)
1200
6:1ss
Css + 4:3 (95.5%) 490°
Zr3Y4O12
800
Tetss
4:3 + 1:6ss
400
Monss Monss + Css
0
0 Y2O3
20
40
60 Mol %
80
100 ZrO2
Figure 9. Y2O3-ZrO2 system. Css = cubic ZrO2 ss (fluorite-type ss); Yss = cubic Y2O3 ss; Tetss = tetragonal ZrO2 ss; Monss = monoclinic ZrO2 ss; Hss = hexagonal Y2O3 ss; 3:4 = Zr3Y4O12; 1:6 = ZrY6O11 ss.
Phase Diagrams
12-188 3(SiO2) 100
2(Al2O3)
Al6Si4O13 ss
Liquid ALON ss
X
80
1700°C
Mol %
60
8H
40 β´
O´
R
15
Si2ON2
H
12
20
R
21
R
27
δ
2H
0 0 Si3N4
20
40
60
80
100 4(AIN)
Mol %
Figure 10. 3(SiO2)-Si3N4-4(AlN)-2(Al2O3) system. “Behavior” diagram at 1700°C. The labels 8H, 15R, 12H, 21R, 27R, 2Hδ indicate defect AlN polytypes. β´ = 3-sialon (Si6–xAlxOxN8–x); O´ = sialon of Si2ON2 type; X = SiAlO2N (“nitrogen mullite”). ALON ss = aluminum oxynitride ss extending from approximately Al7O9N to Al3O3N.
PbO
1100°C
Liq. + (PT-PZ)ss (PT-PZ)ss(rhom) (PZ-PT)ss(orth)
(PT-PZ)ss(tet) PbTiO3
PbZrO3
ZT
Zss + (PT-PZ)ss
-PZ PT Zss + ZT + (PT-PZ)ss
Tss
+ (P
T-P Z
)ss
)ss
+( Tss + ZT + (PT-PZ)ss
TiO2 (8%) Figure 11.
40
TiZrO4 Mol %
60
80 (86%)
PbO-ZrO2-TiO2 (PZT) system, subsolidus at 1100°C. P = PbO; T = TiO2; Z = ZrO2.
ZrO2
Phase Diagrams
Figure 12.
12-189
CaO-Al2O3-SiO2 system (temperatures in °C).
Crystalline Phases Notation Oxide formula SiO2 Cristobalite Tridymite Pseudowollastonite CaO·SiO2 Rankinite 3CaO·2SiO2 Lime CaO Corundum Al2O3 Mullite 3Al2O3·2SiO2 Anorthite CaO·Al2O3·2SiO2 Gehlenite 2CaO·Al2O3·SiO2
}
Temperatures up to approximately 1550°C are on the Geophysical Laboratory Scale; those above 1550°C are on the 1948 International Scale.
Phase Diagrams
12-190 BaO(BaCO3)
c1 P ss
Ba4Y2O7
Ba2CuO3
~4:1:2
~5:1:3
Ba2Y2O5
BaCuO2 b2
Ba3Y4O9
a2
2:1:3
BaY2O4 1:2:1 a1
Y2Cu2O3 0 1/2(Y2O3)
20
40
b1 Mol %
60
c2 100 CuO
80
Figure 13. BaO-Y2O3-CuO system. 2:1:3 = Ba2YCu3O7–x; 1:2:1 = BaY2CuO5; 4:1:2 = Ba4YCu2O7.5+x; and 5:1:3 = Ba5YCu3O9.5 + x. The superconducting 2:1:3 phase was prepared using barium peroxide.
1100
0
Atomic Percent Copper 20 30 40
10
50
60
70
80
90 100 1084.87°
β0
1000 γ0
L 900
β
ε1
t/°C
800
700
γ1 660.452°C ε2
600
δ
η1
548.2°C
500
ζ1
η2
400
θ
(Al)
(Cu) ζ2
300 0 Al Figure 14.
567°C
Al-Cu system.
10
20
30
40 50 60 Mass Percent Copper
70
α2
80
90
100 Cu
Phase Diagrams
12-191 Phase (Al) θ η1 η2 ζ1 ζ2 ε1 ε2 δ γ0 γ1 β0 β α2 (Cu) Metastable phases θ´ β´ Al3Cu2
Composition, wt % Cu 0 to 5.65 52.5 to 53.7 70.0 to 72.2 70.0 to 72.1 74.4 to 77.8 74.4 to 75.2 77.5 to 79.4 72.2 to 78.7 77.4 to 78.3 77.8 to 84 79.7 to 84 83.1 to 84.7 85.0 to 91.5 88.5 to 89 90.6 to 100
Pearson symbol cF4 tI12 oP16 or oC16 mC20 hP42 (a) (b) hP4 (c) (d) cP52 (d) cI2 (e) cF4
Space group Fm¯3m I4/mcm Pban or Cmmm C2/m P6/mmm – – P63/mmc R¯3m – P¯43m – Im¯3m – Fm¯3m
– – 61 to 70
tP6 cF16 hp5
– Fm¯3m P¯3m1
(a) Monoclinic? (b) Cubic? (c) Rhombohedral. (d) Unknown. (e) D022-type long-period superlattice.
0
Atomic Percent Carbon 30 20
10 L
2000
(δFe)
L + C(graphite)
1500 1394°C
t/°C
(γFe), austenite
1153°C 2.1
4.2
1000 912°C
740°C 0.65 500 (αFe), ferrite
0
Figure 15.
0
2
4
6 8 Mass Percent Carbon
10
12
Fe-C system.
Phase (δFe) (γFe) (αFe) (C) Metastable/high-pressure phases (εFe) Martensite Fe4C Fe3C (θ) Fe5C2 (χ) Fe7C3 Fe7C3 Fe2C (η) Fe2C (ε) Fe2C (C)
Composition, mass % C 0 to 0.09 0 to 2.1 0 to 0.021 100
Pearson symbol cI2 cF4 cI2 hP4
Space group Im¯3m Fm¯3m Im¯3m P63/mmc
0 < 2.1 5.1 6.7 7.9 8.4 8.4 9.7 9.7 9.7 100
hP2 tI4 cP5 oP16 mC28 hP20 oP40 oP6 hP* hP* cF8
P63/mmc I4/mmm P¯43m Pnma C2/c P63mc Pnma Pnnm P6322 P¯3m1 Fd¯3m
Phase Diagrams
12-192 Atomic Percent Chromium 10
0
1900
20
30
40
50
60
70
80
90
100 1863°C
L 1700 1538°C 1500
1513°C 19.8
1394°C
t/°C
1300 (γFe) 1100 11.2 846°C
912°C 900
13.4 (αFe,δFe)
830°C 45
6.5 T C
770°C
σ
700
(Cr)
500 47.2 300
0
10
20
30
F Figure 16.
40
50
60
70
80
90
100
r
Mass Percent Chromium
Fe-Cr system. Composition,
Pearson
Space
Phase
mass % Cr
symbol
group
(aFe, Cr)
0 to 100
cI2
(γFe)
0 to 11.2
cF4
Fm¯3m
σ
42.7 to 48.2
tP30
P42/mnm
1200 0
10
1100
20
Im¯3m
Atomic Percent Tin 30 40 50
60
70
80 90 100
1084.87°C
1000 900 800
t/°C
L
755°C 13.5
796°C 22
700
β
25.6 30.6 676°C
γ ζ 586°C 24.6 520°C 15.8 27.0
(Cu)
600 500
ε δ
640°C
58.6
582°C 59
400
415°C
11
300
32.55
η 60.9
200 100
Cu-Sn system.
189°C
1.3
0 Cu
Figure 17.
92.4
~350°C
227°C 186°C
60.3
η´
10
20
30
40 50 60 Mass Percent Tin
70
80
99.3
231.9681°C
(Sn) 90 100 Sn
Phase Diagrams
12-193 Phase α β γ δ ζ ε η η´ (βSn) (αSn)
Composition, mass % Sn 0 to 15.8 22.0 to 27.0 25.5 to 41.5 32 to 33 32.2 to 35.2 27.7 to 39.5 59.0 to 60.9 44.8 to 60.9 ~100 100
Pearson symbol cF4 cI2 cF16 cF416 hP26 oC80 hP4 (a) tI4 cF8
Space group Fm¯3m Im¯3m Fm¯3m F¯43m P63 Cmcm P63/mmc – I41/amd Fd¯3m
(a) Hexagonal; superlattice based on NiAs-type structure.
Figure 18.
Cu-Ni system.
Phase (Cu, Ni) (above 354.5°C)
Composition, mass % Ni
Pearson symbol
0 to 100
cF4
Space group – Fm3 m
Phase Diagrams
12-194 Atomic Percent Tin 350
0
10
20
30
40
50
60
70
80
90
100
327.502°C
L
300
250 231.9681°C (Pb)
200
t/°C
183°C 18.3
97.8
61.9
150
100
(βSn)
50
0
0
10
20
Pb Figure 19.
30
40
50
60
70
80
90
Mass Percent Tin
Pb-Sn system. Phase (Pb) (βSn) (αSn) High-pressure phases ε(a) ε´(b)
100
Sn
Composition, mass % Sn 0 to 18.3 97.8 to 100 100
Pearson symbol cF4 tI4 cF8
Space group Fm¯3m I41/amd Fd¯3m
52 to 74 52
hP1 hP2
P6/mmm P63/mmc
(a) From phase diagram calculated at 2500 MPa. (b) This phase was claimed for alloys at 350°C and 5500 MPa.
Phase Diagrams
12-195
1100
0
10
20
Mass Percent Zinc 40 50 60
30
70
80
90
100
1064.62°C A
1000 D 36.8
900
31.9 902 B
L H 834°C
36.1 C
55.8 G
800
59.1
β 69.2 L
t/°C
700 600
γ
α or (Cu)
500
454°C X 468 57 38.27 48.2 Y 44.8 E F
400
N 700°C 79.8 M 72.45
Q δ 76 P 87.9 O 598°C S 78 70 T 78 98.25 R 73.5 560°C 88
ε U
β´
425°C 97.17 W 419.58°C V
η or (Zn)
300 200 100
0 Cu
Figure 20.
10
20
30
40 50 60 Atomic Percent Zinc
70
Cu-Zn system. Phase
Composition, mass % Zn
Pearson symbol
α or (Cu)
0 to 38.95
cF4
β
36.8 to 56.5
cI2
Space group
Fm¯3m Im¯3m
Pm¯3m
β´
45.5 to 50.7
cP2
γ
57.7 to 70.6
cI52
δ
73.02 to 76.5
hP3
P¯6
ε
78.5 to 88.3
hP2
P63/mmc
η or (Zn)
97.25 to 100
hP2
P63/mmc
I¯43m
80
90
100 Zn
Phase Diagrams
12-196 Atomic Percent Samarium 20 30 40 50
10
1495°C 1325°C
1260°C
βCo7Sm2
L
1200°C 1074°C
1074°C (γSm) 922°C
Co3Sm
(βSm) Co3Sm
αCo7Sm2
β → α
600
Co5-xSm
800 αCo17Sm2
t/°C
1000
1100°C Co19Sm5
(αCo)
βCo17Sm2
1240°C
1200
575°C
0 Co
Figure 21.
10
734°C 595°C
Co4Sm9
(εCo)
0
695°C 605
20
30
40
50
~93
~82
400 200
70 80 90100
60
70
CoSm3
1400
60
Co5+xSm
1600
0
80
(αSm)
90
Mass Percent Samarium
Co-Sm system. Phase
Composition, mass % Sm
Pearson symbol
(αCo)
0 to ~3.7
cF4
Fm¯3m
(εCo)
~0
hP2
P63/mmc
βCo17Sm2
~23.0
hP38
P63/mmc
αCo17Sm2
~23.0
hR19
Co5 + xSm
~33 to 34
Space group
R¯3m
hP8
P6/mmm
–
–
Co5 - xSm
~34 to 35
–
Co19Sm5
~40.1
hR24
αCo7Sm2
~42.1
hR18
R¯3m
βCo7Sm2
~42.1
hP36
P63/mmc
Co3Sm
46
hR12
Co2Sm
56.0
hR4
hP48
–
R¯3m P63/mmc
R¯3m R¯3m
cF24
Fd¯3m
Co4Sm9
~85.1
o**
–
CoSm3
88
oP16
Pnma
(γSm)
~100
cI2
Im¯3m
(βSm)
~100
hP2
P63/mmc
(αSm)
~100
hR3
R¯3m
Other reported phases Co5Sm
~33.8
hP6
P6/mmm
Co2Sm5
~86.4
mC28
C2/c
100 Sm
Phase Diagrams
12-197 Atomic Percent Molybdenum 10
0
20
30
40
50
60
70
80
90 100 2623°
2600
L
2400 2200 2000 1800
t/°C
1600 1670°C 1400
(βTi,Mo)
1200 1000
882°C
~650°C
800
~695°C
600 400
~21
(αTi) 0
10
20
30
Ti Figure 22.
40
50
60
70
80
90
100
Mo
Mass Percent Molybdenum
Ti-Mo system.
Phase
Composition, mass % Mo
Pearson symbol
(βTi, Mo)
0 to 100
cI2
Space group – Im3 m
(αTi)
0 to 0.8
hP2
P63/mmc
α´
(a)
hP2
P63/mmc
α˝
(a)
oC4
Cmcm
ω
(a)
hP3
P6/mmm
(a) Metastable.
to 800 Sta
β
rt
700
sh Fini
t/°C
β + α´ (β + α)eqm
600
MS
500
400
β + α´ 0.1
1.0
10 Time in Minutes
100
1000
Experimental time–temperature–transformation (TTT) diagram for Ti-Mo. The start and finish times of the isothermal precipitation reaction vary with temperature as a result of the temperature dependence of the nucleation and growth processes. Precipitation is complete, at any temperature, when the equilibrium fraction of α is established in accordance with the lever rule. The solid horizontal line represents the athermal (or nonthermally activated) martensitic transformation that occurs when the β phase is quenched.
Phase Diagrams
12-198 Cr
10
90
20
80
(Cr) + σ (Cr) + (γFe,Ni)
50
50
σ
60
40
σ + (γFe,Ni)
70
um mi
Ma ss P
60
hro tC
erc en
(Cr)
en erc
t Ir
40
70 P ss Ma
on
30
30
) Ni
e,
80
r)
γF +(
20
(C
18-8 Stainless steel
90
Fe
10
20
30
(γFe,Ni)
40 50 60 Mass Percent Nickel
10
70
80
90
Ni
Figure 23. The isothermal section at 900°C (1652°F) of the iron-chromium-nickel ternary phase diagram, showing the nominal composition of 18-8 stainless steel.
HEAT CAPACITY OF SELECTED SOLIDS This table gives the molar heat capacity at constant pressure of representative metals, semiconductors, and other crystalline solids as a function of temperature in the range 200 to 600 K.
References
2. Garvin, D., Parker, V. B., and White, H. J., CODATA Thermodynamic Tables, Hemisphere Press, New York, 1987. 3. DIPPR Database of Pure Compound Properties, Design Institute for Physical Properties Data, American Institute of Chemical Engineers, New York, 1987.
1. Chase, M. W., et al., JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, 14, Suppl. 1, 1985. Cp in J/mol K Name Aluminum Aluminum oxide Anthracene Benzoic acid Beryllium Biphenyl Boron Calcium Calcium carbonate Calcium oxide Cesium chloride Chromium Cobalt Copper Copper oxide Copper sulfate Germanium Gold Graphite Hexachlorobenzene Iodine Iron Lead Lithium Lithium chloride Magnesium Magnesium oxide Manganese Naphthalene Potassium Potassium chloride Silicon Silicon dioxide Silver Sodium Sodium chloride Tantalum Titanium Tungsten Vanadium Zinc Zirconium
200 K
250 K
300 K
21.33 51.12 138.6 102.7 9.98 131.0 5.99 24.54 66.50 33.64 50.13 19.86 22.23 22.63 34.80 77.01
23.08 67.05 173.9 123.5 13.58 162.5 8.82 25.41 75.66 38.59 51.34 22.30 23.98 23.77
5.01 162.7 51.57 21.59 25.87 21.57 43.35 22.72
6.82 183.6 53.24 23.74 26.36 23.42 46.08 24.02
23.05 105.8 27.00 48.44 15.64 32.64
24.95 134.1 28.01 50.10 18.22 39.21
22.45 46.89 24.08 22.37 22.49 21.88 24.05 23.87
27.01 48.85 24.86 24.07 23.69 23.70 25.02 24.69
24.25 79.45 210.7 147.4 16.46 197.2 11.40 25.94 83.82 42.18 52.48 23.47 24.83 24.48 42.41 99.25 23.25 25.41 8.58 202.4 54.51 25.15 26.85 24.64 48.10 24.90 37.38 26.35 167.8 29.60 51.37 20.04 44.77 25.36 28.20 50.21 25.31 25.28 24.30 24.93 25.45 25.22
89.25
350 K
400 K
500 K
600 K
25.11 88.91 248.8 172.0 18.53
25.78 96.14 288.4
26.84 106.17
27.89 112.55
19.95
21.94
23.34
13.65 26.32 91.51 45.07 53.58 24.39 25.68 24.95 44.95 107.65 23.85 25.37 10.24
15.69 26.87 96.97 46.98 54.68 25.23 26.53 25.33 46.78 114.93 24.31 25.51 11.81
18.72 28.49 104.52 49.33 56.90 26.63 28.20 25.91 49.19 127.19 24.96 26.06 14.62
20.78 30.38 109.86 50.72 59.10 27.72 29.66 26.48 50.83 136.31 25.45 26.65 16.84
58.60 26.28 27.30 25.96 49.66 25.57 40.59 27.52 204.1
27.39 27.72 27.60 50.97 26.14 42.77 28.53
29.70 28.55 29.28 53.34 27.17 45.56 30.29
32.05 29.40 55.59 28.18 47.30 31.90
53.08 22.14 53.43 25.79
54.71 23.33 59.64 26.36
56.35 24.15 64.42 26.99
52.14 25.84 26.86 24.92 26.23 26.35 25.93
53.96 26.35 27.88 25.36 26.94 27.39 26.56
55.81 26.84 28.60 25.79 27.49 28.59 27.28
52.31 21.28 49.47 25.55 30.14 51.25 25.60 26.17 24.65 25.68 25.88 25.61
12-195
Section 12.indb 195
4/28/05 2:00:31 PM
Thermal and Physical Properties of Pure Metals This table gives the following properties for the metallic elements: tm: tb:
Melting point in °C Normal boiling point in °C, at a pressure of 101.325 kPa (760 Torr) ∆fusH: Enthalpy of fusion at the melting point in J/g ρ25: Density at 25°C in g/cm3 α: Coefficient of linear expansion at 25°C in K-1 (the quantity listed is 106 × α) cp: Specific heat capacity at constant pressure at 25°C in J/g K λ: Thermal conductivity at 27°C in W/cm K
References 1. Dinsdale, A. T., CALPHAD, 15, 317, 1991 (melting points, enthalpy of fusion). 2. Touloukian, Y. S., Thermophysical Properties of Matter, Vol. 12, Thermal Expansion, IFI/Plenum, New York, 1975 (coefficient of expansion, density). Metal (symbol) Actinium (Ac) Aluminum (Al) Antimony (Sb) Barium (Ba) Beryllium (Be) Bismuth (Bi) Cadmium (Cd) Calcium (Ca) Cerium (Ce) Cesium (Cs) Chromium (Cr) Cobalt (Co) Copper (Cu) Dysprosium (Dy) Erbium (Er) Europium (Eu) Gadolinium (Gd) Gallium (Ga) Gold (Au) Hafnium (Hf ) Holmium (Ho) Indium (In) Iridium (Ir) Iron (Fe) Lanthanum (La) Lead (Pb) Lithium (Li) Lutetium (Lu) Magnesium (Mg) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Neodymium (Nd) Neptunium (Np) Nickel (Ni)
Atomic weight 26.98 121.76 137.33 9.01 208.98 112.41 40.08 140.11 132.91 52.00 58.93 63.55 162.50 167.26 151.96 157.25 69.72 196.97 178.49 164.93 114.82 192.22 55.85 138.91 207.20 6.94 174.97 24.30 54.94 200.59 95.94 144.24 58.69
tb °C
tm °C 1050 660.32 630.628 727 1287 271.406 321.069 842 799 28.44 1907 1495 1084.62 1412 1529 822 1313 29.7666 1064.18 2233 1472 156.60 2446 1538 920 327.462 180.5 1663 650 1246 –38.8290 2623 1016 644 1455
3198 2519 1587 1897 2471 1564 767 1484 3443 671 2671 2927 2562 2567 2868 1529 3273 2204 2856 4603 2700 2072 4428 2861 3464 1749 1342 3402 1090 2061 356.62 4639 3074 2913
3. Ho, C. Y., Powell, R. W., and Liley, P. E., J. Phys. Chem. Ref. Data, 3, Suppl. 1, 1974 (thermal conductivity). 4. Cox, J. D., Wagman, D. D., and Medvedev, V. A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1989 (heat capacity). 5. Glushko, V. P., Ed., Thermal Constants of Substances, VINITI, Moscow, (enthalpy of fusion, heat capacity). 6. Wagman, D. D., et. al., The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, 11, Suppl. 2, 1982 (heat capacity). 7. Chase, M. W., et. al., JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, 14, Suppl. 1, 1985 (heat capacity, enthalpy of fusion). 8. Gschneidner, K. A., Bull. Alloy Phase Diagrams, 11, 216–224, 1990 (various properties of the rare earth metals). 9. Hellwege, K. H., Ed., Landolt Börnstein, Numerical Values and Functions in Physics, Chemistry, Astronomy, Geophysics, and Technology, Vol. 2, Part 1, Mechanical-Thermal Properties of State, 1971 (density). 10. Physical Encyclopedic Dictionary, Vol. 1–5, Encyclopedy Publishing House, Moscow, 1960–66.
∆fus H J/g 399.9 162.5 51.8 876.0 53.3 55.2 213.1 39.0 15.7 404 272.5 203.5 68.1 119 60.6 63.6 80.0 64.6 152.4 103a 28.6 213.9 247.3 44.6 23.1 432 126a 348.9 235.0 11.4 390.7 49.5 13.5 290.3
ρ25 g/cm3 10 2.70 6.68 3.62 1.85 9.79 8.69 1.54 6.77 1.93 7.15 8.86 8.96 8.55 9.07 5.24 7.90 5.91 19.3 13.3 8.80 7.31 22.5 7.87 6.15 11.3 0.534 9.84 1.74 7.3 13.5336 10.2 7.01 20.2 8.90
α × 106 K-1
cp J/g K
23.1 11.0 20.6 11.3 13.4 30.8 22.3 6.3 97 4.9 13.0 16.5 9.9 12.2 35.0 9.4b 18 14.2 5.9 11.2 32.1 6.4 11.8 12.1 28.9 46 9.9 24.8 21.7 60.4 4.8 9.6
0.12 0.897 0.207 0.205 1.82 0.122 0.231 0.646 0.192 0.242 0.450 0.421 0.384 0.170 0.168 0.182 0.235 0.374 0.129 0.144 0.165 0.233 0.131 0.449 0.195 0.127 3.57 0.154 1.024 0.479 0.139 0.251 0.191
13.4
0.445
λ W/cm K 2.37 0.243 0.184 2.00 0.0787 0.968 2.00 0.113 0.359 0.937 1.00 4.01 0.107 0.145 0.139a 0.105 0.406 3.17 0.230 0.162 0.816 1.47 0.802 0.134 0.353 0.847 0.164 1.56 0.0782 0.0834 1.38 0.165 0.063 0.907
12-196
487_S12.indb 196
3/24/06 10:15:43 AM
Thermal and Physical Properties of Pure Metals Metal (symbol) Niobium (Nb) Osmium (Os) Palladium (Pd) Platinum (Pt) Plutonium (Pu) Polonium (Po) Potassium (K) Praseodymium (Pr) Promethium (Pm) Protactinium (Pa) Radium (Ra) Rhenium (Re) Rhodium (Rh) Rubidium (Rb) Ruthenium (Ru) Samarium (Sm) Scandium (Sc) Silver (Ag) Sodium (Na) Strontium (Sr) Tantalum (Ta) Technetium (Tc) Terbium (Tb) Thallium (Tl) Thorium (Th) Thulium (Tm) Tin (Sn) Titanium (Ti) Tungsten (W ) Uranium (U) Vanadium (V) Ytterbium (Yb) Yttrium (Y) Zinc (Zn) Zirconium (Zr) a
Estimated.
b
At 100°C.
487_S12.indb 197
Atomic weight 92.91 190.23 106.42 195.08
39.10 140.91 231.04 186.21 102.91 85.47 101.07 150.36 44.96 107.87 22.99 87.62 180.95 158.93 204.38 232.04 168.93 118.71 47.88 183.84 238.03 50.94 173.04 88.91 65.39 91.22
tm °C 2477 3033 1554.8 1768.2 640 254 63.38 931 1042 1572 696 3185 1964 39.30 2334 1072 1541 961.78 97.794 777 3017 2157 1359 304 1750 1545 231.93 1668 3422 1135 1910 824 1522 419.53 1854.7
tb °C
12-197 ∆fus H J/g
4744 5012 2963 3825 3228 962 759 3520 3000a
323 304.1 157.3 113.6 11.6
5596 3695 688 4150 1794 2836 2162 882.94 1382 5458 4265 3230 1473 4788 1950 2602 3287 5555 4131 3407 1196 3345 907 4409
324.5 258.4 25.6 381.8 57.3 314 104.6 113.1 84.8 202.1 339.7 67.9 20.3 59.5 99.7 60.4 295.6 284.5 38.4 422 44.3 128 108.1 230.2
59.6 48.9 53.4
ρ25 g/cm3 8.57 22.59 12.0 21.5 19.7 9.20 0.89 6.77 7.26 15.4 5 20.8 12.4 1.53 12.1 7.52 2.99 10.5 0.97 2.64 16.4 11 8.23 11.8 11.7 9.32 7.26 4.51 19.3 19.1 6.0 6.90 4.47 7.14 6.52
α × 106 K-1 7.3 5.1 11.8 8.8 46.7 23.5 83.3 6.7 11a
6.2 8.2
cp J/g K 0.265 0.130 0.244 0.133
0.757 0.193 0.19a
6.4 12.7 10.2 18.9 71 22.5 6.3
0.137 0.243 0.364 0.238 0.196 0.567 0.235 1.225 0.306 0.140
10.3 29.9 11.0 13.3 22.0 8.6 4.5 13.9 8.4 26.3 10.6 30.2 5.7
0.182 0.129 0.118 0.160 0.227 0.522 0.132 0.116 0.489 0.154 0.298 0.388 0.278
λ W/cm K 0.537 0.876 0.718 0.716 0.0674 0.20 1.024 0.125 0.15a
0.479 1.50 0.582 1.17 0.133 0.158 4.29 1.41 0.353 0.575 0.506 0.111 0.461 0.540 0.169 0.666 0.219 1.74 0.276 0.307 0.385 0.172 1.16 0.227
3/24/06 10:15:44 AM
THERMAL CONDUCTIVITY OF METALS AND SEMICONDUCTORS AS A FUNCTION OF TEMPERATURE This table gives the temperature dependence of the thermal conductivity of several metals and of carbon, germanium, and silicon. For graphite, separate entries are given for the thermal conductivity parallel (||) and perpendicular (â&#x160;Ľ) to the layer planes. The thermal conductivity of all these materials is very sensitive to impurities at low temperatures, especially below 100 K. Therefore, the values given here should be regarded as typical values for a highly purified specimen; the thermal conductivity of different specimens can vary by more than an order of magnitude in the low-temperature range. See Reference 2 for details.
T/K 1 2 3 4 5 6 7 8 9 10 15 20 30 40 50 60 70 80 90 100 150 200 250 300 350 400 500 600 800 1000 1200 1400 1600 1800 2000
Ag 39.4 78.3 115 147 172 187 193 190 181 168 96.0 51.0 19.3 10.5 7.0 5.5 4.97 4.71 4.60 4.50 4.32 4.30 4.29 4.29 4.27 4.25 4.19 4.12 3.96 3.79 3.61*
Al 41.1 81.8 121 157 188 213 229 237 239 235 176 117 49.5 24.0 13.5 8.5 5.85 4.32 3.42 3.02 2.48 2.37 2.35 2.37 2.40 2.40 2.36 2.31 2.18
Au 5.46 10.9 16.1 20.9 25.2 28.5 30.9 32.3 32.7 32.4 24.6 15.8 7.55 5.15 4.21 3.74 3.48 3.32 3.28 3.27 3.25 3.23 3.21 3.17 3.14 3.11 3.04 2.98 2.84 2.70 2.55
I 0.0138* 0.0461 0.108 0.206 0.344 0.523 0.762 1.05 1.40 3.96 7.87 18.8 29.4 35.3 37.4 36.9 35.1 32.7 30.0 19.5 14.1 11.0 8.95 7.55* 6.5*
References 1. Ho, C. Y., Powell, R. W., and Liley, P. E., J. Phys. Chem. Ref. Data, 1, 279, 1972. 2. White, G. K., and Minges, M. L., Thermophysical Properties of Some Key Solids, CODATA Bulletin No. 59, 1985.
Thermal Conductivity in W/cm K Carbon (C) Pyrolytic Diamond (type) graphite IIa IIb || â&#x160;Ľ 0.033* 0.111 0.261 0.494 0.820 1.24 1.77 2.41 3.17 8.65 16.8 38.9 65.9 92.1 112 119 117 109 100 60.2 40.3 29.7 23.0 18.5* 15.4*
0.0200* 0.0676 0.160 0.307 0.510 0.778 1.12 1.53 2.03 5.66 11.2 26.5 44.0 59.1 67.5 69.1 65.7 60.0 54.2 32.5 22.6 17.0 13.5 11.1* 9.32*
0.811
0.0116
4.20 9.86 16.4 23.1 29.8 36.6 42.8 47.5 49.7 45.1 32.3 24.4 19.5 16.2 13.9 10.8 8.92 6.67 5.34 4.48 3.84 3.33 2.93 2.62
0.0397 0.0786 0.120 0.152 0.173 0.181 0.181 0.176 0.168 0.125 0.0923 0.0711 0.0570 0.0477 0.0409 0.0322 0.0268 0.0201 0.0160 0.0134 0.0116 0.0100 0.00895 0.00807
Cr 0.402* 0.803 1.20 1.60 2.00 2.39 2.27 3.14 3.50 3.85 5.24 5.93 5.49 4.25 3.17 2.48 2.07 1.84 1.69 1.59 1.29 1.11 1.00 0.937 0.929 0.909 0.860 0.807 0.713 0.654 0.619 0.588 0.556 0.526* 0.494*
Cu 42.2 84.0 125 162 195 222 239 248 249 243 171 108 44.5 21.7 12.5 8.29 6.47 5.57 5.08 4.82 4.29 4.13 4.06 4.01 3.96 3.93 3.86 3.79 3.66 3.52 3.39
12-198
Section 12.indb 198
4/28/05 2:00:40 PM
Thermal Conductivity of Metals and Semiconductors as a Function of Temperature T/K 1 2 3 4 5 6 7 8 9 10 15 20 30 40 50 60 70 80 90 100 150 200 250 300 350 400 500 600 800 1000 1200 1400 1600 1800 2000 a
Fe 1.71 3.42 5.11 6.77 8.39 9.93 11.4 12.7 13.9 14.8 17.0 15.4 10.0 6.23 4.05 2.85 2.16 1.75 1.50 1.34 1.04 0.94 0.865 0.802 0.744 0.695 0.613 0.547 0.433 0.323 0.283 0.312 0.330 0.345*
Gea 0.274 2.06 5.35 8.77 11.6 13.9 15.5 16.6 17.3 17.7 17.3 14.9 10.8 7.98 6.15 4.87 3.93 3.25 2.70 2.32 1.32 0.968 0.749 0.599 0.495 0.432 0.338 0.273 0.198 0.174 0.174
Mg 9.86 19.6 29.0 37.6 45.0 50.8 54.7 56.7 57.0 55.8 41.1 27.2 12.9 7.19 4.65 3.27 2.49 2.02 1.78 1.69 1.61 1.59 1.57 1.56 1.55 1.53 1.51 1.49 1.46*
Ni 2.17 4.34 6.49 8.59 10.6 12.5 14.2 15.8 17.1 18.1 19.5 16.5 9.56 5.82 4.00 3.08 2.50 2.10 1.83 1.64 1.22 1.07 0.975 0.907 0.850 0.802 0.722 0.656 0.676 0.718 0.762 0.804
Pb 27.9 44.6 35.8 22.2 13.8 8.10 4.86 3.20 2.30 1.78 0.845 0.591 0.477 0.451 0.436 0.425 0.416 0.409 0.403 0.397 0.379 0.367 0.360 0.353 0.347 0.340 0.328 0.314
Pt
Sia
2.31 4.60 6.79 8.8 10.5 11.8 12.6 12.9 12.8 12.3 8.41 4.95 2.15 1.39 1.09 0.947 0.862 0.815 0.789 0.775 0.740 0.726 0.718 0.716 0.717 0.718 0.723 0.732 0.756 0.787 0.826 0.871 0.919 0.961 0.994*
0.0693* 0.454 1.38 2.97 5.27 8.23 11.7 15.5 19.5 23.3 41.6 49.8 48.1 35.3 26.8 21.1 16.8 13.4 10.8 8.84 4.09 2.64 1.91 1.48 1.19 0.989 0.762 0.619 0.422 0.312 0.257 0.235 0.221
12-199 Sn
183 323 297 181 117 76 52 36 26 19.3 6.3 3.2 1.79 1.33 1.15 1.04 0.96 0.915 0.880 0.853 0.779 0.733 0.696 0.666 0.642 0.622 0.596
Ti 0.0144* 0.0288* 0.0432 0.0575 0.0719 0.0863 0.101 0.115 0.129 0.143 0.212 0.275 0.365 0.390 0.374 0.355 0.340 0.326 0.315 0.305 0.270 0.245 0.229 0.219 0.210 0.204 0.197 0.194 0.197 0.207 0.220 0.236 0.253 0.270*
W 14.4 28.7 42.8 56.3 68.7 79.5 88.0 93.8 96.8 97.1 72.0 40.5 14.4 6.92 4.27 3.14 2.58 2.29 2.17 2.08 1.92 1.85 1.80 1.74 1.67 1.59 1.46 1.37 1.25 1.18 1.12 1.08 1.04 1.01 0.98
Values below 300 K are typical values.
* Extrapolated.
Section 12.indb 199
4/28/05 2:00:43 PM
THERMAL CONDUCTIVITY OF ALLOYS AS A FUNCTION OF TEMPERATURE This table lists the thermal conductivity of selected alloys at various temperatures. The indicated compositions refer to weight percent. Since the thermal conductivity is sensitive to exact composition and processing history, especially at low temperatures, these values should be considered approximate.
References 1. Powell, R. L., and Childs, G. E., in American Institute of Physics Handbook, 3rd Edition, Gray, D. E., Ed., McGraw-Hill, New York, 1972. 2. Ho, C. Y., et al., J. Phys. Chem. Ref. Data, 7, 959, 1978.
Thermal conductivity in W/m K Alloy Aluminum:
Bismuth: Copper:
Ferrous:
Gold: Indium: Lead: Nickel:
Platinum: Silver: Tin: Titanium:
1100 2024 3003 5052 5083, 5086 Duralumin Rose metal Woodâ&#x20AC;&#x2122;s metal electrolytic tough pitch free cutting, leaded phosphorus, deoxidized brass, leaded bronze, 68% Cu; 32% Zn beryllium german silver silicon bronze A manganin constantan commercial pure iron plain carbon steel(AISI 1020) plain carbon steel(AISI 1095) 3% Ni; 0.7% Cr; 0.6% Mo 4% Si stainless steel 27% Ni; 15% Cr colbalt thermocouple 65% Au; 35% Ag 85.5% In; 14.5% Pb 60% Pb; 40% Sn (soft solder) 64.35% Pb; 35.65% In 80% Ni; 20% Cr contracid inconel monel 90% Pt; 10% Ir 90% Pt; 10% Rh silver solder normal Ag thermocouple 60% Sn; 40% Pb 5.5% Al; 2.5% Sn;0.2% Fe 4.7% Mn; 3.99% Al; 0.14% C
4K
20 K
77 K
50 3.2 11 4.8 3 5.5
240 17 58 25 17 30 5.5 17 1300 800 42 12 16 17 7.5 3.4 3.2 8.6 72 20 8.5 6
270 56 140 77 55 91 8.3 23 550 460 120 39 48 36 17 11 14 17 106 58 31 22
220 95 150 120 95 140 14
220 130 160 140 120 160 16
400 380 190 70 92 70 20 23 17 19 82 65 41
8 55 20 24 24 44 9.1
13
0.8
2 1.7 8.6 12 7.8 28 3.26
390 380 220 120 110 90 23 30 22 22 76 65 45 33 20 14 11
0.2 0.5 0.9
2 4.2 7.1
7.3 12.5 15
9.5 13 20
12 230 55 1.8 1.7
34 310 51 4.3 4.5
4 330 200 7.5 2.3 2.3 2 0.75 0.48 0.9 15 13
0.3 1.2 1.9
48 16
194 K
41
58
6.4 6.5
273 K
61
20.2 12 13 15 21 31 30.1
7.8 8.5
373 K
573 K
973 K
180
380
370
350
113 25
172 30
40
66
54
34
35 24 16 12
36 28 19 16
30 26 25 21
14
17
23
16 24 31.4 30.5
19 30
26 43
89
8.4
10.8
12-200
Section 12.indb 200
4/28/05 2:00:48 PM
THERMAL CONDUCTIVITY OF CRYSTALLINE DIELECTRICS This table lists the thermal conductivity of a number of crystalline dielectrics, including some which find use as optical materials. Values are given at temperatures for which data are available.
Ther. cond. W/m K
Material
T/K
AgCl
223 273 323 373 398 540 723 315 315 358 417 315 358 377
1.3 1.2 1.1 1.1 2.9 3.2 3.5 6.4 17.7 15.6 13.3 35.8 35.4 35.6
4.2 20 35 77 373 523 773 4.2 20 77 194 273 373 973 8 10 20 77 283 323 373 1047 1475 1928 2111 225 260 305 370 5 30 40 100 250 300 4.2
110 3500 6000 1100 2.6 3.9 5.8 0.5 23 150 48 35 26 8 6.0 3.7 1.4 0.31 0.16 0.21 0.27 36.2 22.7 21.9 18.5 20 13.4 10.9 10.5 4.2 24.0 25.0 12.0 4.8 6.2 0.3
Al,B silicate (tourmaline) || to c axis Al,Be silicate (beryl) Al,F silicate (topaz) || to c axis Al,Fe silicate (garnet)
Al2O3 (sapphire): 36° to c axis
⊥ to c axis
Al2O3 (sintered)
Ar
As2S3 (glass) BN
BaF2
BaTiO3
BeO
Reference Powell, R. L., and Childs, G. E., in American Institute of Physics Handbook, 3rd Edition, Gray, D. E., Ed., McGraw-Hill, New York, 1972.
Material
Bi2Te3
C (diamond) type I
CaCO3 || to c axis ⊥ to c axis
CaF2
CaWO4 (scheelite) CdTe
CsBr
CsI
Cu2O (cuprite)
Fe3O4 (magnetite)
Glass: phoenix
plastic perspex
T/K 20 77 373 573 1273 80 204 303 370 4.2 20 77 194 273 83 273 83 194 273 373 83 223 273 323 373 422 160 297 422 223 273 323 373 223 273 323 373 102 163 299 360 4.5 20.5 126.5 304 4.2 20 77 4.2
Ther. cond. W/m K 16 270 210 120 29 6.4 2.8 3.6 4.6 13 800 3550 1450 1000 25 5.5 17 6.5 4.6 3.6 39 18 10 9.2 9 11.3 7.0 3.6 2.9 1.2 0.94 0.81 0.77 1.4 1.2 1 0.95 3.74 7.76 5.58 4.86 27.4 293.0 7.4 7.0 0.095 0.13 0.37 0.058
12-201
Section 12.indb 201
4/28/05 2:00:52 PM
Thermal Conductivity of Crystalline Dielectrics
12-202 Material pyrex
H2 (para + 0.5% ortho)
H2O (ice) He3 (high pressure)
He4 (high pressure)
I2 KBr
KCl
KI
Kr
LaF3 LiF
MgO·Al2O3 (spinel) MnO
Section 12.indb 202
T/K
Ther. cond. W/m K
20 77 194 273 2.5 3 4 6 10 173 223 273 0.6 1 1.5 2 0.5 0.8 1 2 300 325 350 2 4.2 100 273 323 373 4.2 25 80 194 273 323 373 4.2 80 194 273 4.2 10 20 77 78 197 274 4.2 20 77 373 773 4.2 40 120 573
0.074 0.44 0.88 1 100 150 200 30 3 3.5 2.8 2.2 25 2 0.57 0.21 42 120 24 0.18 0.45 0.42 0.4 150 360 12 5 4.8 4.8 500 140 35 10 7.0 6.5 6.3 700 13 4.6 3.1 0.48 1.7 1.2 0.36 7.8 5.0 5.4 620 1800 150 13 8.5 0.25 55 8 3.5
Material
T/K
Ther. cond. W/m K
NaCl
4.2 20 77 273 323 373 5 50 100 2 3 4.2 10 20 77 194 230 273
440 300 30 6.4 5.6 5.4 1100 250 90 3.0 4.6 4.2 0.8 0.3 17 23 38 27
NaF
Ne
NH4Cl
NH4H2PO4 || to optic axis ⊥ to optic axis NiO
SiO2 (quartz) || to c axis
⊥ to c axis
SiO2 (fused silica)
SrTiO3
TlBr TlCl TiO2 (rutile) || to optic axis
⊥ to optic axis
315 339 313 342 4.2 40 194
0.71 0.71 1.26 1.34 5.9 400 82
20 194 273 20 194 273 4.2 20 77 194 273 373 673 5 30 40 100 250 300 316 311
720 20 12 370 10 6.8 0.25 0.7 0.8 1.2 1.4 1.6 1.8 2.4 21.0 19.2 18.5 12.5 11.2 0.59 0.75
4.2 20 273 4.2 20 273
200 1000 13 160 690 9
4/28/05 2:00:55 PM
THERMAL CONDUCTIVITY OF CERAMICS AND OTHER INSULATING MATERIALS Thermal conductivity values for ceramics, refractory oxides, and miscellaneous insulating materials are given here. The thermal conductivity refers to samples with density indicated in the second column. Since most of these materials are highly variable, the values should only be considered as a rough guide.
Material Alumina (Al2O3)
Dens. g/cm3
t °C
3.8
100 400 1300 1800 100 800 100 400 1000 –100 0 100 30 20 100 400 1000 1800 50 200 600 0
3.5 Al2O3 + MgO Asbestos
0.4
Asbestos + 85% MgO Asphalt Beryllia (BeO)
0.3 2.1 2.8
1.85
Brick, dry Brick, refractory: alosite aluminous diatomaceous
1.54
1.99 0.77 0.4
fireclay
2
silicon carbide
2
vermiculite
0.77
Calcium oxide
Cement mortar Charcoal Coal Concrete Cork
2 0.2 1.35 1.6 0.05 0.35
Cotton wool Diatomite
0.08 0.2
1000 400 1000 100 500 100 500 400 1000 200 600 200 600 100 400 1000 90 20 20 0 0 100 0 100 30 0
References 1. Powell, R. L., and Childs, G. E., in American Institute of Physics Handbook, 3rd Edition, Gray, D. E., Ed., McGraw-Hill, New York, 1972. 2. Perry, R. H., and Green, D., Perry’s Chemical Engineers’ Handbook, Sixth Edition, McGraw-Hill, New York, 1984.
Ther. cond. W/m K 30 13 6 7.4 17 7.6 15 10 5.6 0.07 0.09 0.10 0.08 0.06 210 90 20 15 64 40 23 0.04 1.3 1.2 1.3 0.2 0.24 0.08 0.1 1 1.2 2 2.4 0.26 0.31 16 9 7.5 0.55 0.055 0.26 0.8 0.03 0.04 0.06 0.08 0.04 0.05
Material
Dens. g/cm3 0.5
Ebonite Felt, flax Fuller’s earth Glass wool
Graphite 100 mesh 20-40 mesh Linoleum cork Magnesia (MgO)
1.2 0.2 0.3 0.53 0.2
0.48 0.7 0.54
MgO + SiO2 Mica: muscovite
phlogopite Canadian Micanite Mineral wool Perlite, expanded Plastics: bakelite celluloid polystyrene foam mylar foil nylon
0.15 0.1 1.3 1.4 0.05 0.05
polytetrafluoroethylene
urethane foam Porcelain Rock: basalt chalk
0.07
t °C 400 0 400 0 30 30 30 –200 to 20 50 100 300
Ther. cond. W/m K 0.09 0.09 0.16 0.16 0.05 0.04 0.1 0.005 0.04 0.05 0.08
40 40 20 100 400 1200 1700 100 400 1500
0.18 1.29 0.08 36 18 5.8 9.2 5.3 3.5 2.3
100 300 600 100 300
0.72 0.65 0.69 0.66 0.19
600 30 30 –200 to 20
0.2 0.3 0.04 0.002
20 30 –200 to 20 –200 to 20 –253 –193 25 –253 –193 25 230 20 90
1.4 0.02 0.033 0.0001 0.10 0.23 0.30 0.13 0.16 0.26 2.5 0.06 1
20 20
2 0.92
12-203
Section 12.indb 203
4/28/05 2:00:57 PM
Thermal Conductivity of Ceramics and Other Insulating Materials
12-204 Material granite limestone sandstone slate, ⊥ slate, || Rubber: sponge 92 percent Sand, dry Sawdust Shellac Silica aerogel Snow Steel wool Thoria (ThO2) Titanium dioxide
Section 12.indb 204
Dens. g/cm3
t °C
Ther. cond. W/m K
2.8 2 2.2
20 20 20 95 95
2.2 1 1.3 1.4 2.5
20 25 20 30 20 –200 to 20 0 55 100 400 1500 100 400 1200
0.05 0.16 0.33 0.06 0.23 0.003 0.16 0.09 10 5.8 2.4 6.5 3.8 3.3
0.2 1.5 0.2 0.1 0.25 0.1
Material
Dens. g/cm3
Uranium dioxide
Wood: balsa, ⊥ fir, ⊥ fir, || oak plywood pine, ⊥ pine, || walnut, ⊥ Wool Zinc oxide Zirconia (ZrO2) Zirconia + silica
0.11 0.54 0.54
0.45 0.45 0.65 0.09
t °C
Ther. cond. W/m K
100 400 1000
9.8 5.5 3.4
30 20 20 20 20 60 60 20 30 200 800 100 400 1500 200 600 1500
0.04 0.14 0.35 0.16 0.11 0.11 0.26 0.14 0.04 17 5.3 2 2 2.5 5.6 4.6 3.7
4/28/05 2:00:59 PM
THERMAL CONDUCTIVITY OF GLASSES This table gives the composition of various types of glasses and the thermal conductivity k as a function of temperature. Because
Vitreous silica
Type of glass
SiO2 (wt%) 100
of the variability of glasses, the data should be regarded as only approximate. Composition Other oxides (wt%)
t °C –150 –100 –50 0 50 100
k W/m K 0.85 1.05 1.20 1.30 1.40 1.50
96
B2O3
3
–100 0 100
1.00 1.25 1.40
Pyrex type chemicallyresistant borosilicate glasses
80–81
B2O3 Na2O Al
12–13 4 2
–100 0 100
0.90 1.10 1.25
Borosilicate crown glasses
60–65
B2O3
15–20
–100 0 100
0.65–0.75 0.90–0.95 1.00–1.05
65–70
B2O3
10–15
–100 0 100
0.75–0.80 0.95–1.00 1.05–1.15
70–75
B3O3
5–10
–100 0 100
0.80–0.85 1.05–1.10 1.15–1.20
55–65
ZnO Remainder: B2O3, Al2O3
5–15
–100 0 100
0.88–0.92 1.10–1.15 1.15–1.25
ZnO Remainder: Na2O, K2O
5–15
–100 0 100
0.60–0.70 0.70–0.90 0.85–0.95
ZnO Remainder: B2O3, Al2O3
15–25
–100 0 100
0.88–0.92 1.10–1.15 1.15–1.20
ZnO Remainder: Na2O, K2O
15–25
–100 0 100
0.65–0.80 0.85–0.95 0.90–1.05
ZnO Remainder: B2O3, Al2O3
5–15
–100 0 100
0.88–0.92 1.15–1.15 1.20–1.30
ZnO Remainder: Na2O, K2O
5–15
–100 0 100
0.70–0.85 0.90–1.05 1.00–1.15
ZnO
15–25
–100
0.90–0.95
Vycor glass
Zinc crown glasses (i)
Zinc crown glasses (ii)
65–75
12-205
Section 12.indb 205
4/28/05 2:01:01 PM
Thermal Conductivity of Glasses
12-206
Type of glass
SiO2 (wt%)
Composition Other oxides (wt%) Remainder: B2O3, Al2O3 ZnO Remainder: Na2O, K2O
k W/m K 1.15–1.15 1.20–1.25
15–25
–100 0 100
0.65–0.85 0.85–1.00 1.05–1.20
31
B2O3 Al2O3 BaO
12 8 48
–100 0 100
0.55 0.70 0.80
41
B2O3 Al2O3 ZnO BaO
6 2 8 43
–100 0 100
0.60 0.75 0.85
47
B2O3 Na2O K2O ZnO BaO
4 1 7 8 32
–100 0 100
0.65 0.75 0.90
65
B2O3 Na2O K2O ZnO BaO
2 5 15 2 10
–100 0 100
0.70 0.90 1.00
Borate glasses Borate flint glass
9
B2O3 Na2O K2O PbO Al2O3 ZnO
36 1 2 36 10 6
–100 0 100
0.55 0.65 0.80
Borate flint glass
0
B2O3 Al2O3 PbO
56 12 32
–100 0 100
0.50 0.65 0.85
Borate flint glass
0
B2O3 Al2O3 PbO
43 5 52
–100 0 100
0.40 0.55 0.70
Borate glass
4
B2O3 Al2O3 PbO K2O ZnO
55 14 11 4 12
–100 0 100
0.65 0.80 0.90
Borate crown glass
0
B2O3 Na2O K2O BaO PbO Al2O3
64 8 3 4 3 18
–100 0 100
0.50 0.65 0.85
Light borate crown glass
0
B2O3 Na2O
69 8
–100 0
0.55 0.70
Barium crown glasses
Section 12.indb 206
t °C 0 100
4/28/05 2:01:03 PM
Thermal Conductivity of Glasses
Type of glass
SiO2 (wt%)
Composition Other oxides (wt%) BaO 5 18 Al2O3
t °C 100
k W/m K 0.90
0
B2O3 ZnO
40 60
–100 0 100
0.65 0.75 0.85
Phosphate crown glasses Potash phosphate glass
0
P2O5 B2O3 K2O Al2O3 MgO
70 3 12 10 4
0 100
0.75 0.85
Baryta phosphate glass
0
P2O5 B2O3 Al2O3 BaO
60 3 8 28
45
0.75
Soda-lime glasses
75
Na2O CaO
17 8
–100 0 100
0.75 0.95 1.10
75
Na2O CaO
12 13
–100 0 100
0.90 1.10 1.15
72
Na2O CaO Al2O3
15 11 2
–100 0 100
0.80 1.00 1.15
65
Na2O CaO
25 10
–100 0 100
0.65 0.85 0.95
65
Na2O CaO
15 20
–100 0 100
0.85 1.00 1.10
60
Na2O CaO
20 20
–100 0 100
0.75 0.90 1.00
75
Na2O K2O CaO
9 11 5
–100 0 100
0.80 1.00 1.10
68
Na2O ZnO PbO
16 3 13
–100 0 100
0.65 0.85 1.00
65
PbO Others
25 10
–100 0 100
0.65–0.70 0.88–0.92 1.00–1.05
55
PbO
35
–100
0.60–0.65
Zinc borate glass
Other crown glasses Crown glass
High dispersion crown glass
Miscellaneous flint glasses (i) Silicate flint glasses Light flint glasses
Section 12.indb 207
12-207
4/28/05 2:01:04 PM
Thermal Conductivity of Glasses
12-208
Type of glass
SiO2 (wt%)
Composition Other oxides (wt%) Others 10
t °C 0 100
k W/m K 0.75–0.85 0.88–0.92
Ordinary flint glass
45
PbO Others
45 10
–100 0 100
0.50–0.60 0.65–0.75 0.80–0.85
Heavy flint glass
35
PbO Others
60 5
–100 0 100
0.45–0.50 0.60–0.65 0.70–0.75
Very heavy flint glasses
25
PbO Others
73 2
–100 0 100
0.40–0.45 0.55–0.60 0.63–0.67
20
PbO
80
–100 0 100
0.40 0.50 0.60
(ii) Borosilicate flint glass
33
B2O3 PbO Al2O3 K2O Na2O
31 25 7 3 1
–100 0 100
0.65 0.85 0.95
(iii) Barium flint glass
50
BaO PbO K2O Na2O ZnO Sb2O3
24 6 8 3 8 1
–100 0 100
0.60 0.70 0.85
59
K2O CaO
33 8
50
63
Fe2O3 Na2O MgO CaO Al2O3
10 17 4 3 2
–100 0 100
67
Fe2O3 Na2O3
15 18
0 100
0.88–0.92 1.00–1.05
62
Fe2O3 Na2O
20 18
0 100
0.85–0.90 0.95–1.00
Other glasses Potassium glass
Iron glasses
0.88–0.92
0.80 0.95 1.05
Rock glasses Obsidian Artificial diabase
Section 12.indb 208
0
1.35
100
1.25
4/28/05 2:01:06 PM
COMMERCIAL METALS AND ALLOYS This table gives typical values of mechanical, thermal, and electrical properties of several common commercial metals and alloys. Values refer to ambient temperature (0 to 25°C). All values should be regarded as typical, since these properties are dependent on the particular type of alloy, heat treatment, and other factors. Values for individual specimens can vary widely.
Common name Ingot iron Plain carbon steel AISI-SAE 1020 Stainless steel type 304 Cast gray iron Malleable iron Hastelloy C Inconel Aluminum alloy 3003, rolled Aluminum alloy 2014, annealed Aluminum alloy 360 Copper, electrolytic (ETP) Yellow brass (high brass) Aluminum bronze Beryllium copper 25 Cupronickel 30% Red brass, 85% Chemical lead Antimonial lead (hard lead) Solder 50-50 Magnesium alloy AZ31B Monel Nickel (commercial) Cupronickel 55-45 (constantan) Titanium (commercial) Zinc (commercial) Zirconium (commercial)
Thermal conductivity W/cm K
Density g/cm3
References 1. ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, OH, 1983. 2. Lynch, C. T., CRC Practical Handbook of Materials Science, CRC Press, Boca Raton, FL, 1989. 3. Shackelford, J. F., and Alexander, W., CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, FL, 1991.
Coeff. of linear expansion 10–6/°C
Electrical resistivity µΩ cm
0.7 0.52
7.86 7.86
11.7 11.7
9.7 18
0.15 0.47
7.9 7.2 7.3 8.94 8.25 2.73 2.8 2.64 8.94 8.47 7.8 8.23 8.94 8.75 11.34 10.9 8.89 1.77 8.84 8.89 8.9 4.5 7.14 6.5
17.3 10.5 12 11.3 11.5 23.2 23.0 21.0 16.5 20.3 16.4 17.8 16.2 18.7 29.3 26.5 23.4 26 14.0 13.3 18.8 8.5 32.5 5.85
72 67 30 125 103 3.7 3.4 7.5 1.7 6.4 12 7
0.12 0.15 1.9 1.9 1.5 3.9 1.2 0.7 0.8 0.3 1.6 0.35 0.3 0.5 1.0 0.3 0.9 0.2 1.8 1.1 0.2
11 21 23 15 9 58 10 49 43 6 41
Modulus of elasticity GPa 205 205 195 90 170 200 200 70 70 70 120 100 120 130 150 90 13 20 – 45 180 200 160 110 – 95
Tensile strength MPa
Approx. melting point °C
–
1540 1515
550 180 345 780 800 110 185 325 300 300-800 400-600 500-1400 400-600 300-700 17 47 42 260 545 460 – 330-500 130 450
1425 1175 1230 1350 1370 650 650 565 1080 930 1050 925 1200 1000 327 290 215 620 1330 1440 1260 1670 419 1855
450
12-211
Section 12.indb 211
4/28/05 2:01:12 PM
HARDNESS OF MINERALS AND CERAMICS There are several hardness scales for describing the resistance of a material to indentation or scratching. This table lists a number of common materials in order of increasing hardness. Values are given, when available, on three different hardness scales: the original Mohs Scale (range 1 to 10); the modified Mohs Scale (range 1 Material Graphite Talc Alabaster Gypsum Halite (rock salt) Stibnite (antimonite) Galena Mica Calcite Barite Marble Aragonite Dolomite Fluorite Magnesia Apatite Opal Feldspar (orthoclase) Augite Hematite Magnetite Rutile Pyrite Agate Uranium dioxide Silica (fused) Quartz Flint Silicon Andalusite Zircon Zirconia Aluminum nitride Beryl Beryllia Topaz Garnet Emery Zirconium nitride Zirconium boride Titanium nitride Zirconia (fused) Tantalum carbide Tungsten carbide Corundum (alumina) Zirconium carbide Alumina (fused) Beryllium carbide Titanium carbide Carborundum (silicon carbide) Aluminum boride Tantalum boride Boron carbide Boron Titanium boride Diamond
Formula C 3MgO·4SiO2·H2O CaSO4·2H2O CaSO4·2H2O NaCl Sb2S3 PbS CaCO3 BaSO4 CaCO3 CaMg(CO3)2 CaF2 MgO CaF2·3Ca3(PO4)2 K2O·Al2O·6SiO2 Fe2O3 Fe3O4 TiO2 FeS2 SiO2 UO2 SiO2 SiO2 Si Al2OSiO4 ZrSiO4 ZrO2 AlN Be3Al2Si6O18 BeO Al2SiO4(OH,F)2 Al2O3·3FeO·3SiO2 Al2O3 (impure) ZrN ZrB2 TiN ZrO2 TaC WC Al2O3 ZrC Al2O3 Be2C TiC SiC AlB TaB2 B4C B TiB2 C
to 15), and the Knoop Hardness Scale. In the last case, a load of 100 g is assumed.
Reference
Shackelford, J. F. and Alexander, W., CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, FL, 1991. Mohs 0.5 1 1.7 2 2 2.0 2.5 2.8 3 3.3 3.5 3.5 3.5 4 5 5 5 6 6 6 6 6.2 6.3 6.5 6.7 7 7 7 7.5 7.5
Modified mohs 1 2
32
3
135
4 5
163 370 430
6
560 750
7 8
8 8+ 9
9 10
11
9 12 9.3
9.5 10
600 820
1200 1225
7.8 8
Knoop
1300 1340 1360 1510 1560 1770 1800 1880 2025 2150
14
2400 2470 2500 2500 2600 2800
15
2850 7000
13
12-212
Section 12.indb 212
4/28/05 2:01:14 PM
ORGANIC MAGNETS J.S. Miller Magnetic ordering, e.g., ferromagnetism, like superconductivity, is a property of a solid, not of an individual molecule or ion, and very rarely occurs for organic compounds. In contrast to superconductivity, where all electron spins pair to form a perfect diamagnetic material, magnetic ordering requires unpaired electron spins; hence, superconductivity and ferromagnetism are mutually exclusive. The vast majority of organic compounds are diamagnetic (i.e., all electron spins are paired), and a relative few possess unpaired electrons (designated by an arrow, â&#x2020;&#x2018;) and are paramagnetic (PM), i.e., they are oriented in random directions. A few organic solids, however, exhibit strong magnetic behavior and magnetically order as ferromagnets (FO) with all spins aligned in the same direc-
tion. In some cases the spins align in the opposite direction and compensate to form an antiferromagnet (AF). In some cases these spins are not opposed to each other and do not compensate and lead to a canted antiferromagnet or weak ferromagnet (WF). If the number of spins that align in one direction differs from the number of spins that align in the opposite direction, the spins cannot compensate and a ferrimagnet (FI) results. Metamagnets (MM) are antiferromagnets in which all the spins become aligned like a ferromagnet in an applied magnetic field. Above the ordering or critical temperature, Tc, all magnets are paramagnets (PM). Organic magnets all possess electron spins in p-orbitals, but these may be in conjunction with metal ion-based spins.
Paramagnet (PM) (random) arrangement of spins
Ferromagnetic (FO) ordering of spins
Antiferromagnetic (AF) ordering of spins
Ferrimagnetic (FI) ordering of spins
Canted antiferromagnet or weak ferromagnet (WF) ordering of spins
FIGURE 1.
Schematic illustration of the different types of magnetic behavior.
12-109
Section 12.indb 109
4/28/05 1:57:41 PM
Organic Magnets
12-110
Summary of the Critical Temperature, Tc, Saturation Magnetization, Ms, Coercive Field, Hcr, and Remanent Magnetization, Mr, for Selected Organic-Based Magnets Magnet α-1,3,5,7-Tetramethyl-2,6-diazaadamantane-N,N’-doxyl β-2-(4'-Nitrophenyl)-4,4,5,5-tetramethyl-4,5dihydro-1H-imidazol-1-oxyl-3-N-oxide {FeIII[C5(CH3)5]2}[TCNE] {MnIII[C5(CH3)5]2}[TCNE] {CrIII[C5(CH3)5]2}[TCNE] α-{FeIII[C5(CH3)5]2}[TCNQ] β-{FeIII[C5(CH3)5]2}[TCNQ] Tanol subarate NCC6F4CN2S2 MnII(hfac)2NITC2H5 MnII(hfac)2NIT(i-C3H8) [Mn(hfac)2]3[{ON[C6H3(t-C(CH3)3]2NO]2} [MnTPP][TCNE].2C6H5CH3 V[TCNE]x.yCH2Cl2 (x ~ 2; y ~ 0.5) Mn[TCNE]x.yCH2Cl2 (x ~ 2; y ~ 0.5) Fe[TCNE]x.yCH2Cl2 (x ~ 2; y ~ 0.5) Co[TCNE]x.yCH2Cl2 (x ~ 2; y ~ 0.5)
Type FO
Tc/K 1.48
FO FO FO FO MM FO MM WF FI FI FI FI FI FI FI FI
0.6 4.8 8.8 3.65 2.55 3.0 0.38 35.5 7.8 7.6 46 13 ~400 75 97 44
Ms/A m-1 48,300
Hcr/T <0.00001
Mr/A m-1 —
22,300 37,600 58,200 46,300 34,200 21,600 20,700 45 39,400 42,400 24,400 18,400 28,200 52,000 46,300 22,000
0.00008 0.10 0.12 — — — — 0.00009 0.03 <0.0005 — 2.4 0.0015 - 0.006 0.002 0.23 0.65
<200 2,300 3,700 — — — — — 27,600 <420 — 10,300 1,650 270 3 —
List of Symbols and Abbreviations Ms Hcr Tc Mr TCNE TCNQ
Saturation magnetization at 2 K Coercive Field Critical Temperature Remanent magnetization at 2 K Tetracyanoethylene 7,7,8,8-Tetracyano-p-quinodimethane
hfac NIT FO FI MM WF
2-(4’-Nitrophyenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1Himidazol-1-oxyl-3-N-oxide
1,3,5,7-Tetramethyl-2,6-diazaadamantane-N,N’-doxyl
M[C5(CH3)5]2(M = Cr, Mn, Fe)
Section 12.indb 110
Hexafluoroacetonate Nitronyl nitroxide Ferromagnet Ferrimagnet Metamagnet Weak ferromagnet
TCNE
TCNQ
4/28/05 1:57:47 PM
Organic Magnets
12-111
Mn(hfac)2
Tanol subarate
NITR (R = C2H5, i-C3H8, n-C3H8)
MnTPP
References 1. Miller, J. S. and Epstein, A. J., Angew. Chem. Internat. Ed., 33, 385, 1994. 2. Chiarelli, R., Rassat, A., Dromzee, Y., Jeannin, Y., Novak, M. A., and Tholence, J. L., Phys. Scrip., T49, 706, 1993. 3. Kinoshita, M., Jap. J. Appl. Phys., 33, 5718, 1994. 4. Gatteschi, D., Adv. Mat., 6, 635, 1994.
Section 12.indb 111
{ON[C6H3(t-C(CH3)3]2NO]2}
NCC6F4CN2S2 5. Miller, J. S. and Epstein, A. J., J. Chem. Soc., Chem. Commun., 1319, 1998. 6. Broderick, W. E., Eichorn, D. M., Lu, X., Toscano, P. J., Owens, S. M. and Hoffman, B. M., J. Am. Chem. Soc., 117, 3641, 1995. 7. Banister, A. J., Bricklebank, N., Lavander, I., Rawson, J., Gregory, C. I., Tanner, B. K., Clegg, W. J., Elsegood, M. R., and Palacio, F., Angew. Chem. Internat. Ed., 35, 2533, 1996.
4/28/05 1:57:52 PM
OPTICAL PROPERTIES OF SELECTED INORGANIC AND ORGANIC SOLIDS L. I. Berger Optical properties of materials are closely related to their dielectric properties. The complex dielectric function (relative permittivity) of a material is equal to ε ( ω ) = ε′ ( ω ) – jε″ ( ω ),
where ε′(ω) and ε″(ω) are its real and imaginary parts, respectively, and ω is the angular frequency of the applied electric field. For a non-absorbing medium, the index of refraction is n = (εµ)1/2, where µ is the relative magnetic permeability of the medium (material); in the majority of dielectrics, µ ≅ 1. For many applications, the most important optical properties of materials are the index of refraction, the extinction coefficient, k , and the reflectivity, R. The common index of refraction of a material is equal to the ratio of the phase velocity of propagation of an electromagnetic wave of a given frequency in vacuum to that in the material. Hence, n 1. The optical properties of highly conductive materials like metals and semiconductors (at photon energy range above the energy gap) differ from those of optically transparent media. Free electrons absorb the incident electromagnetic wave in a thin surface layer (a few hundred nanometers thick) and then release the absorbed energy in the form of secondary waves reflected from the surface. Thus, the light reflection becomes very strong; for example, highly conductive sodium reflects 99.8% of the incident wave (at 589 nm). Introduction of the effective index of refraction, neff = (ε′)1/2 = n – jk , where ε′ = ε – jδ/ω εo, δ is the electrical conductivity of the material in S/m, and εo = 8.8542·10-12 F/m is the permittivity of vacuum, allows one to apply the expressions of the optics of transparent media to the conductive materials. It is clear that the effective index of refraction may be smaller than 1. For example, n = 0.05 for pure sodium and n = 0.18 for pure silver (at 589.3 nm). At very high photon energies, the quantum effects, such as the internal photoeffect, start playing a greater role, and the optical properties of these materials become similar to those of insulators (low reflectance, existence of Brewster’s angle, etc.). The extinction coefficient characterizes absorption of the electromagnetic wave energy in the process of propagation of a wave through a material. The wave intensity, I, after it passes a distance x in an isotropic medium is equal to I = I 0 exp ( – αx ),
where I0 is the intensity at x = 0 and α is called the absorption coefficient. For many applications, the extinction coefficient, k , which is equal to
12-141
λ k = α ------, 4π
where λ is the wavelength of the wave in the medium, is more commonly used for characterization of the electromagnetic losses in materials. Reflection of an electromagnetic wave from the interface between two media depends on the media indices of refraction and on the angle of incidence. It is characterized by the reflectivity, which is equal to the ratio of the intensity of the wave reflected back into the first medium to the intensity of the wave approaching the interface. For polarized light and two non-absorbing media, ( N1 – N2 ) -2 , R = ------------------------( N1 + N2 ) 2
where N1 = n1/cosθ1 and N2 = n2/cosθ2 for the wave polarized in the plane of incidence, and N1 = n1cosθ1 and N2 = n2cosθ2 for the wave polarized normal to the plane of incidence; θ1 and θ2 are the angles between the normal to the interface in the point of incidence and the directions of the beams in the first and second medium, respectively. The reflectivity at normal incidence in this case is R = [ ( n1 – n2 ) ⁄ ( n1 + n2 ) ]
2
For any two opaque (absorbing) media, the normal incidence reflectivity is ( n1 – n2 ) + k2 -. R = --------------------------------2 2 ( n1 + n2 ) + k2 2
2
In the majority of experiments, the first medium is air (n ≈ 1) , and hence, ( 1 – n ) + k. R = ----------------------------2 2 (1 + n) + k 2
2
The data on n and k in the following table are abridged from the sources listed in the references. The reflectivity at normal incidence, R, has been calculated from the last equation. For convenience, the energy E, wavenumber ν , and wavelength λ are given for the incidence radiation.
12-142
Optical Properties of Selected Inorganic and Organic Solids E/eV
2.194 2.168 2.141 2.123 2.098 2.094 2.091 2.073 2.060 2.049 2.036 2.023 2.013 2.009 2.000 1.987 1.977 1.974 1.962 1.953 1.949 1.937 1.925 1.922 1.905 1.893 1.881 1.859 1.848 1.845 1.842 1.831 1.826 1.821 1.818 1.815 1.807 1.802 0.06199 0.05904 0.05636 0.05391 0.04592 0.04428 0.04275 0.04133 0.03542 0.03100 0.03061 0.03024 0.02883 0.02850 0.02818 0.02755 0.02480 0.02254 0.02066 0.01907 0.01771
ν /cm–1
λ/µm
17700 17480 17270 17120 16920 16890 16860 16720 16610 16530 16420 16310 16230 16210 16130 16030 15940 15920 15820 15750 15720 15630 15530 15500 15360 15270 15170 14990 14900 14880 14860 14770 14730 14680 14660 14640 14580 14530 500.0 476.2 454.5 434.8 370.4 357.1 344.8 333.3 285.7 250.0 247.0 244.0 232.6 229.9 227.3 222.2 200.0 181.8 166.7 153.8 142.9
0.565 0.572 0.579 0.584 0.591 0.592 0.593 0.598 0.602 0.605 0.609 0.613 0.616 0.617 0.620 0.624 0.627 0.628 0.632 0.635 0.636 0.640 0.644 0.645 0.651 0.655 0.659 0.667 0.671 0.672 0.673 0.677 0.679 0.681 0.682 0.683 0.686 0.688 20.0 21.0 22.0 23.0 27.0 28.0 29.0 30.0 35.0 40.0 40.5 41.0 43.0 43.5 44.0 45.0 50.0 55.0 60.0 65.0 70.0
n
na
nc
k
ka
kc
R
Ra
Rc
0.27 0.26 0.26
0.24 0.24 0.24
0.25 0.25 0.25 0.25 0.21 0.19 0.12 0.088 0.50 0.56 0.58 0.50 0.62 0.40 0.36 0.34 0.32
0.22 0.22 0.22 0.21 0.18 0.18 0.25 0.18 0.16 0.29 0.48 0.60 0.36 0.31 0.27 0.26 0.25
Crystalline Arsenic Selenide (As2Se3) [Ref. 1]* 0.30 0.25 0.20 0.17 0.13
0.10 0.079
0.26 0.26 0.23 0.20 0.17 0.15 0.12
0.050 0.097 0.082 0.063 0.031 0.051 0.038 0.030 0.020 0.022 0.017 0.012 8.6·10–3 6.4 5.2 3.1 1.7·10–3 2.0 1.3·10
–3
1.2·10–3 9.0·10–4 6.4 4.7
8.6·10–4 3.4
3.2 3.1 3.1 3.1 3.0 3.0 3.0 3.0 2.7 1.9 2.0 1.7 1.2 1.6 2.3 4.2 6.5 4.5 4.0 3.8 3.6
2.9 2.9 2.9 2.9 2.8 2.8 2.8 2.7 2.5 1.7 2.6 2.4 1.3 1.2 1.2 2.0 4.0 3.5 3.2 3.1 3.0
5.5 4.1 1.7·10–3 2.1·10–3 2.5·10–3 3.0·10–3 6.3·10–3 7.6·10–3 0.0092 0.011
3.3 2.5 3.6 0.17 0.089 0.097 0.19
1.8·10–3 2.2·10–3 2.6·10–3 3.1·10–3 6.4·10–3 7.7·10–3 0.0093 0.011 0.037 0.38 0.33 0.41 2.2 2.8 2.0 3.3 0.26 0.10 0.10 0.16 0.30
0.034 1.0 0.95 0.46 0.94 1.4
Optical Properties of Selected Inorganic and Organic Solids µm E/eV ν /cm–1 λ/µ n na nc k ka kc 0.01653 133.3 75.0 3.7 3.0 0.41 0.44 0.01550 125.0 80.0 3.8 3.1 0.29 0.40 0.01459 117.6 85.0 3.6 2.9 0.20 0.34 0.01378 111.1 90.0 3.2 2.6 0.43 0.49 0.01305 105.3 95.0 4.7 3.0 1.5 1.5 0.01240 100.0 100.0 4.4 2.7 0.22 0.81 0.01181 95.24 105.0 4.2 3.0 0.094 3.9 0.01127 90.91 110.0 4.1 5.3 0.059 0.70 0.01033 83.33 120.0 3.9 4.2 0.034 0.13 0.009537 76.92 130.0 3.9 4.0 0.024 0.069 0.008856 71.43 140.0 3.9 3.8 0.019 0.048 0.007749 63.50 160.0 3.8 3.7 0.014 0.032 0.006888 55.55 180.0 3.8 3.7 0.011 0.024 0.006199 50.0 200.0 3.8 3.6 0.0091 0.019 *Indices a and c relate to the radiation electric field parallel to the a and c axes of the crystal, respectively.
2.056 2.026 2.006 1.990 1.925 1.826 1.810 1.794 1.771 1.715 1.701 1.647 1.629 1.596 1.579 1.562 1.544 1.529 1.512 1.494 1.476 1.378 1.240 1.127 1.051 1.033 0.2555 0.2380 0.2344 0.1345 0.1339 0.1333 0.1308 0.1215 0.1203 0.1196 0.1178 0.1116 0.1004 0.09919 0.09795 0.09671 0.09299 0.08555
16580 16340 16180 16050 15530 14730 14600 14470 14290 13830 13720 13280 13140 12870 12740 12590 12450 12330 12200 12050 11910 11110 10000 9091 8475 8333 1980 1919 1890 1085 1080 1075 1055 980 970 965 950 900 810 800 790 780 750 690
0.603 0.612 0.618 0.623 0.644 0.679 0.685 0.691 0.700 0.723 0.729 0.753 0.761 0.777 0.785 0.794 0.803 0.811 0.820 0.830 0.840 0.90 1.00 1.10 1.18 1.20 5.05 5.21 5.29 9.22 9.26 9.30 9.48 10.20 10.31 10.36 10.53 11.11 12.35 12.50 12.66 12.82 13.33 14.49
Vitreous Arsenic Selenide (As2Se3) [Ref. 1] 0.12 0.11 0.099 9.0 5.6 1.4 0.012 0.0089 6.2 2.6 0.0022 0.00046 3.07 4.0 3.06 2.7 3.05 1.9 3.05 0.00013 3.04 0.000094 3.03 6.3 3.03 4.2 3.02 2.8 3.01 1.8 2.98 2.93 2.90 2.89 2.88 1.6·10–7 9.9·10–8 1.1·10–7 4.4 3.7 4.4 4.5 8.9 9.9·10–7 1.0·10–6 1.1 1.8 4.9 7.0·10–6 1.0·10–5 1.5 3.7 6.9
12-143 R
0.62 0.49 0.39 0.26 0.25 0.78 0.64 0.50 0.38
Ra 0.34 0.34 0.32 0.28 0.46 0.40 0.38 0.37 0.35 0.35 0.35 0.34 0.34 0.34
Rc 0.26 0.27 0.24 0.21 0.34 0.25 0.62 0.47 0.38 0.36 0.34 0.33 0.33 0.32
12-144
Optical Properties of Selected Inorganic and Organic Solids E/eV 0.08431 0.08059 0.07811 0.07687 0.07563 0.07439 0.07315 0.07191 0.07067 0.06943 0.06633 0.06571 0.06509 0.06447 0.06075 0.06024 0.05331 0.05269 0.05207 0.05145 0.05083 0.05021 0.04959 0.04862 0.04679 0.04592 0.04509 0.04428 0.03875 0.03815 0.03757 0.02988 0.02952 0.02725 0.02362 0.01937 0.01922 0.01907 0.01734 0.01653 0.01642 0.01494 0.01246 0.007606 0.006199 0.004592 0.002799 0.001826 0.001273 0.0006491 0.0004376 0.0002903 0.0001716 0.00009047 0.00005621 0.00002774 0.00001439
ν /cm–1 680 650 630 620 610 600 590 580 570 560 535 530 525 520 490 485.9 430 425 420 415 410 405 400 392.2 377.4 370.4 363.6 357.1 312.5 307.7 303.0 241.0 238.1 219.8 190.5 156.2 155.0 153.8 139.9 133.3 132.5 120.5 100.5 61.35 50.00 37.04 22.57 14.73 10.27 5.236 3.530 2.341 1.384 0.7297 0.4534 0.2237 0.1161
λ/µ µm 14.71 15.38 15.87 16.13 16.39 16.67 16.95 17.24 17.54 17.86 18.69 18.87 19.05 19.23 20.41 20.58 23.26 23.53 23.81 24.10 24.39 24.69 25.0 25.5 26.5 27.0 27.5 28.0 32.0 32.5 33.0 41.5 42.0 45.5 52.5 64.0 64.5 65.0 71.5 75.0 75.5 83.0 99.5 163.0 200.0 270.0 443.0 679.0 974.0 1910.0 2833.0 4271.0 7224.0 13704 22056 44699 86153
2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.4 2.2 2.2 3.2 3.6 3.2 3.2 3.2 3.1 3.1 3.1 3.0 3.2 3.3 3.2 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
4.959 3.100
40000 25000
0.2500 0.40
Vitreous Arsenic Sulfide (As2S3) - [Ref. 2] 2.48 1.21 3.09 0.34
n
na
nc
k 5.9 6.1 6.3 7.7 7.8 9.3·10–5 1.2·10–4 1.4 1.8 2.8 5.2 7.2·10–4 1.2·10–3 1.7 4.9 5.2 1.4 1.1·10–3 8.5·10–4 7.3 8.3 9.4·10–4 1.2·10–3 1.6 5.0 8.0·10–3 1.2·10–2 1.7 8.2 9.3·10–3 0.11 0.89 1.0 1.8 0.30 0.10 9.6·10–2 9.4 8.7 9.4 0.096 0.15 0.60 0.12
ka
0.072 4.5 2.8 2.1 1.1·10–2 7.5·10–3 5.0 3.1 1.6·10–3 9.9·10–4 5.2 2.6
kc
R
0.22 0.32 0.37 0.50 0.73 0.22 0.22 0.35 0.71 0.73 0.31 0.21 0.21 0.84 0.87 0.21 0.21 0.33 0.73 0.20 0.20 0.34 0.87 0.18 0.17 0.20 0.22 0.39 0.32 0.27 0.27 0.88 0.87 0.88 0.26 0.25 0.26 0.29 0.26 0.67 0.50 0.41 0.25 0.25 0.71 0.53 0.25 0.25 0.72 0.47
0.27 0.27
Ra
Rc
Optical Properties of Selected Inorganic and Organic Solids E/eV 2.48 1.879 1.240 0.6199 0.3100 0.2480 0.1736 0.1240 0.09299 0.07439 0.04959 0.03757 0.03100 0.02480 0.02066 0.01771 0.01550 0.01378 0.01240 0.008183 0.004029 0.002418 0.001984 0.001048 0.0001033 4.129·10–12
4.9 4.1 3.9 3.5 3.1 3.0 2.755 2.75 2.610 2.5 2.25 1.771 1.512 1.50 1.475 1.47 1.465 1.46 1.459 1.455 1.45 1.445 1.442 1.44 1.43 1.30 1.24 1.20 1.10 1.00 0.90 0.80 0.70
ν /cm–1 20000 15150 10000 5000 2500 2000 1400 1000 750 600 400.0 303.0 250.0 200.0 166.7 142.9 125.0 111.1 100 66 32.5 19.5 16 8.45 0.833 3.33·10–8
λ/µ µm 0.4999 0.66 1.0 2.0 4.0 5.0 7.143 10.00 13.33 16.67 25.0 33.0 40.0 50 60 70 80 90 100 152 308 513 625 1180 12000 3·1011
39520 33070 31460 28230 25000 24200 22220 22180 21050 20160 18150 14290 12200 12100 11900 11860 11820 11780 11760 11740 11690 11650 11630 11610 11530 10490 10000 9679 8872 8065 7259 6452 5646
0.2530 0.3024 0.3179 0.3542 0.4000 0.4133 0.45 0.4509 0.475 0.4959 0.5510 0.70 0.82 0.8266 0.840 0.8434 0.8463 0.8492 0.850 0.8521 0.8551 0.8580 0.860 0.8610 0.8670 0.9537 1.0 1.033 1.127 1.240 1.378 1.550 1.771
n 2.83 2.59 2.48 2.43 2.41 2.41 2.40 2.38 2.35 2.31 1.79 3.59 2.98 2.66 2.64 2.99 2.89 2.84 2.81 2.76 2.74 2.74 2.74 2.73 2.73 2.73
na
nc
12-145 k 0.013 1.7·10–6 2.4·10–7
7.4·10–7 1.3·10–4 3.0·10–3 4.6·10–4 0.2 1.4 0.15 0.11 0.57 0.17 0.14 0.12 0.10 0.072 0.044 0.031 0.025 8.8·10–3 1.3·10–3
Cadmium Telluride (CdTe) - [Ref. 3] 2.48 2.04 2.33 1.59 2.57 1.90 2.89 1.52 3.43 1.02 3.37 0.861 3.080 0.485 3.23 0.636 3.045 3.14 0.525 3.05 0.411 2.861 0.210 2.880 0.040 2.98 0.319 2.905 0.00134 0.000671 3.37 1.89 2.948 1.08·10–4 2.9565 5.10·10–5 2.73 2.952 2.9479 1.37 2.9402 2.8720 2.840 2.8353 2.8050 2.7793 2.7537 2.7384 2.7223
ka
kc
R 0.23 0.20 0.18 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.085 0.38 0.25 0.21 0.22 0.25 0.24 0.23 0.23 0.22 0.22 0.22 0.22 0.22 0.22 0.22
0.39 0.32 0.37 0.34 0.34 0.32 0.27 0.29 0.28 0.26 0.23 0.23 0.25 0.24
0.24 0.24 0.24 0.32 0.24 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.21
Ra
Rc
12-146
E/eV 0.60 0.50 0.40 0.30 0.20 0.10 0.09 0.06819 0.0573 0.05 0.0469 0.04592 0.04133 0.04092 0.03720 0.03647 0.03596 0.03493 0.03472 0.03100 0.02917 0.02852 0.02728 0.02604 0.02480 0.02384 0.01798 0.01736 0.01550 0.01364 0.01240 0.009919 0.008679 0.007439 0.006199 0.004959 0.003720 0.023015 0.001550
155 145 130 110 90 70 40 23 7.0 6.0 5.00 4.00 3.00
Optical Properties of Selected Inorganic and Organic Solids
ν /cm–1 4839 4033 3226 2420 1613 806.5 725.9 550 462 403.3 378 370.3 333.3 330 300 294.1 290 281.7 280 250 235.3 230 220 210 200 192.3 145 140 125 110 100 80 70 60 50 40 30 18.563 12.50
48390 40330 32260 24200
λ/µ µm 2.066 2.480 3.100 4.133 6.199 12.40 13.78 18.18 21.6 24.80 26.5 27 30 30.30 33.33 34.00 34.48 35.5 35.71 40 42.5 43.48 45.45 47.62 50.00 52.0 68.97 71.43 80.0 90.91 100 125 142.9 166.7 200 250 333.3 800
0.007999 0.008551 0.009537 0.01127 0.01378 0.01771 0.03100 0.05391 0.1771 0.2066 0.2480 0.3100 0.4133
n 2.7086 2.6972 2.6878 2.6800 2.6722 2.6535 2.6482 2.623
na
nc
k
ka
kc
R 0.21 0.21 0.21 0.21 0.21 0.20 0.20 0.20
3.8·10–6 2.5801
2.55916 2.531 2.494 2.478 2.459 2.378 2.289 2.224 2.137 2.013 1.8 6.778 4.598 3.868 3.649 3.415 3.348 3.299 3.263 3.236 3.217 538.71
0.19 8.0·10–5 9.88·10–5 2.86·10–4 3.34 4.97 8.93 5.77·10–3 7.91 6.76 1.18·10–2 6.93 1.87 2.47·10–2 3.4·10–2 4.97·10–2 6.21 5.2 4.50 0.294 9.47·10–2 5.68·10–2 0.0262 0.0189 1.39 1.03 7.52·10–3 3.2096 6.18
Gallium Arsenide (GaAs) - [Ref. 4] 0.0181 0.0203 0.0224 0.0278 0.0323 0.0376 0.0426 1.037 0.228 1.063 1.838 1.264 2.472 2.273 4.084 3.601 1.920 4.509 1.948
0.19 0.57 0.73 0.18 0.83 0.17 0.36 0.14 0.13 0.11 0.79 0.66 0.41 0.35 0.32 0.30 0.29 0.35 0.32 0.28 0.28 0.28
0.61 0.67 0.42 0.47
Ra
Rc
Optical Properties of Selected Inorganic and Organic Solids
E/eV 2.50 2.00 1.80 1.60 1.50 1.40 1.20 1.00 0.80 0.50 0.25 0.15 0.100 0.090 0.070 0.060 0.0495 0.03968 0.03496 0.02976 0.02066 0.01550 0.008266 0.002480 0.001240
154.0 110.0 100.0 80.0 50.0 27.0 25.0 20.0 15.0 5.5 4.68 3.50 3.00 2.78 2.621 2.480 2.18 2.000 1.6 1.240 0.6888 0.4769 0.1907 0.1550 0.1240 0.06199 0.03100
ν /cm–1 20160 16130 14520 12900 12100 11290 9679 8065 6452 4033 2016 1210 806.5 725.9 564.6 483.9 399.2 320 282 240 166.7 125 66.67 20 10
λ/µ µm 0.4959 0.6199 0.8888 0.7749 0.8266 0.8856 1.033 1.240 1.550 2.480 4.959 8.266 12.40 13.78 17.71 20.66 25.05 31.25 35.46 41.67 60 80 150 500 1000
n 4.333 3.878 3.785 3.700 3.666 3.6140 3.4920 3.4232 3.3737 3.3240 3.2978 3.2831 3.2597 3.2493 3.2081 3.1609 3.058 2.495 0.307 4.57 3.77 3.681 3.62 3.607 3.606
44360 37750 28230 24200 22420 21140 20000 17580 16130 12900 10000 5556 3846 1538 1250 1000 500 250
0.00805 0.0113 0.0124 0.0155 0.0248 0.0459 0.0496 0.0620 0.0826 0.2254 0.2649 0.3542 0.4133 0.4460 0.473 0.500 0.5687 0.62 0.7749 1.0 1.8 2.6 6.5 8.0 10 20 40
Gallium Phosphide (GaP) - [Ref. 5] 1.7·10–2 2.15·10–2 215·10–2 3.0·10–2 4.7·10–2 9.3·10–2 0.122 0.180 0.748 0.628 1.543 3.556 4.181 2.634 5.050 0.819 4.081 0.224 3.904 0.103 3.73 6.37·10–3 3.590 2.47·10–3 3.411 2.8·10–7 3.3254 3.209 3.1192 3.0439 3.0271 2.995 4.29·10–4 2.984 2.964 2.615 7.16·10–3 3.594 1.81·10–2
na
nc
k 0.441 0.211 0.151 0.091 0.080 1.69·10–3
4.93·10–6 1.64·10–5 2.32·10–4 3.45·10–3 2.07·10–3 2.43·10–2 294·10–2 4.26·10–2 3.89·10–3 1.84·10–3 2.14·10–3 1.3·10–3
12-147
ka
kc
R 0.39 0.35 0.34 0.33 0.33 0.32 0.31 0.30 0.29 0.29 0.29 0.28 0.28 0.28 0.28 0.27 0.26 0.18 0.41 0.34 0.33 0.32 0.32 0.32
0.68 0.50 0.46 0.37 0.35 0.33 0.32 0.30 0.29 0.28 0.26 0.26 0.25 0.25 0.25 0.25 0.20 0.32
Ra
Rc
12-148
Optical Properties of Selected Inorganic and Organic Solids E/eV 0.02480 0.01727 0.01168 0.006199 0.004133 0.001240
155 60 25 24 15 10 5.00 4.50 4.00 3.34 2.84 1.80 1.50 0.6 0.2480 0.1907 0.1653 0.06199 0.03100 0.02480 0.02244 0.02207 0.02033 0.01054 0.005579 0.001860 0.001240
25 20 15 10 6 5.0 4.0 3.5 3.0 2.5 2.44 1.86 1.8 1.7 1.6 1.5 1.2 1.0 0.6 0.35 0.32 0.20 0.1240 0.06199 0.04959
ν /cm–1 200 139.27 94.21 50.00 33.33 10.00
λ/µ µm 50 71.80 106.1 200 300 1000
40330 36290 32260 26940 22910 14520 12100 4839 2000 1538 1333 500 250 200 181 178 164 85 45 15 10
0.007999 0.02066 0.04959 0.05166 0.08266 0.1240 0.2480 0.2755 0.3100 0.3712 0.4366 0.6888 0.8266 2.066 5.0 6.5 7.5 20.00 40.00 50.00 55.25 56.18 60.98 117.6 222.2 666.7 1000
Indium Antimonide (InSb) - [Ref. 6] 4.77·10–3 7.30·10–2 1.15 .015 1.15 0.18 0.97 0.230 0.74 0.88 1.307 2.441 1.443 2.894 2.632 3.694 3.528 2.280 3.340 2.021 4.909 1.396 4.418 0.643 4.03 4.14 9.1·10–2 4.30 6.3·10–2 4.18 2.7·10–2 3.869 2.0·10–3 2.98 2.6·10–3 2.22 0.165 3.05 7.59 9.61 4.20 4.94 0.140 2.12 0.423 1.02 5.59 6.03 17.9 10.7 24.0
48390 40330 32260 28230 24200 20160 19680 15000 14520 13710 12900 12100 9679 8065 4839 2823 2581 1613 1000 500 400
0.04959 0.06199 0.08266 0.1240 0.2066 0.2480 0.3100 0.3542 0.4133 0.4959 0.5081 0.6666 0.6888 0.7293 0.7749 0.8266 1.033 1.240 2.066 3.542 3.875 6.199 10.00 20.00 25.00
Indium Arsenide (InAs) - [Ref. 7] 1.139 1.125 0.894 0.835 1.434 2.112 1.524 2.871 3.313 1.799 3.008 1.754 3.197 2.034 4.364 1.786 4.489 1.446 3.889 0.554 3.851 0.530 3.798 0.493 3.755 0.463 3.714 0.432 3.613 3.548 0.161 3.608 9.58·10–3 3.512 1.23·10–4 3.427 3.402 3.334 3.264
n 3.461 3.3922 3.3621 3.3447 3.3413 3.3319
na
nc
k 5.77·10–3 4.34·10–3 4.26·10–3 1.3·10–4
ka
kc
R 0.30 0.30 0.29 0.29 0.29 0.29
0.53 0.60 0.61 0.45 0.45 0.47 0.41 0.36 0.37 0.39 0.38 0.35 0.25 0.14 0.84 0.70 0.44 0.14 0.88 0.93 0.94
0.168 0.225 0.336 1.071 0.45 0.58 0.39 0.37 0.41 0.45 0.44 0.36 0.35 0.35 0.34 0.34 0.32 0.31 0.32 0.31 0.30 0.30 0.29 0.28
Ra
Rc
Optical Properties of Selected Inorganic and Organic Solids E/eV 0.04339 0.03720 0.03100 0.02765 0.02480 0.01984 0.01860 0.01736 0.01488 0.01240 0.009919 0.007439 0.004959 0.002480 0.001240
20 15 10 5.5 5.0 4.0 3.0 2.0 1.5 1.25 1.00 0.50 0.30 0.10 0.075 0.060 0.050 0.03992 0.03496 0.03100 0.02728 0.02480 0.02418 0.02232 0.01860 0.01240 0.009919 0.007439 0.004959 0.002480 0.001240
14.5 10 5 2.0 1.65 1.5 1.0 0.75 0.62 0.48 0.40 0.32
ν /cm–1 350 300 250 222 200 160 150 140 120 100 80 60 40 20 10
λ/µ µm 28.57 33.33 40.00 44.84 50.00 62.50 66.67 71.43 83.33 100.0 125.0 166.7 250.0 500 1000
n 3.182 2.988 1.970 5.90 6.91 5.27 5.27 3.99 3.91 3.85 3.817 3.793 3.778 3.769 3.766
44360 40330 32260 24200 16130 12100 10085 8068 4034 2420 806.8 605.1 484.1 403.4 322 282 250 220 200 195 180 150 100 80 60 40 20 10
0.06199 0.08266 0.1240 0.2254 0.2480 0.3100 0.4133 0.6199 0.8266 0.9915 1.239 2.479 4.131 12.39 16.53 20.66 24.79 31.06 35.46 40.00 45.45 50.0 51.28 55.56 66.67 100 125.0 166.7 250.0 500 1000.0
0.793 0.695 0.806 1.426 2.131 3.141 4.395 3.549 3.456 3.324 3.220 3.114 3.089 3.012 2.932 2.780 2.429 0.307 3.89 4.27 3.93 3.81 3.19 3.19 3.65 3.57 3.551 3.538 3.529 3.523 3.522
40330 16130 13310 12100 8065 6049 5001 3871 3226 2581
0.08551 0.1240 0.2480 0.6199 0.7514 0.8266 1.240 1.653 2.000 2.583 3.100 3.875
0.72 0.68 0.54 3.65 4.51 4.64 4.65 4.59 4.90 4.91 4.98
na
nc
12-149
k 5.46·10–3 6.37·10–2 6.53 0.30 0.41 0.51 1.1·10–2 6.6·10–3 4.3·10–3
Indium Phosphide (InP) - [Ref. 8] 0.494 0.574 1.154 2.562 3.495 1.730 1.247 0.317 0.203
1.46·10–2 3.35·10–2 3.57 0.282 3.0·10–2 1.3·10–2 8.7·10–3
Lead Selenide (PbSe) - [Ref. 9] 0.20 0.50 1.2 2.9 1.73 2.64 1.1 0.269 0.770
0.173
ka
kc
R 0.27 0.25 0.11 0.74 0.56 0.47 0.47 0.36 0.35 0.35 0.34 0.34 0.34 0.37 0.34
0.79 0.61 0.38 0.43 0.32 0.31 0.29 0.28 0.26 0.26 0.25 0.24 0.22 0.17 0.35 0.39 0.35 0.34 0.27 0.27 0.32 0.32 0.31 0.31 0.31 0.31 0.31
0.51 0.46 0.52 0.44 0.42 0.44 0.44 0.44
Ra
Rc
12-150
Optical Properties of Selected Inorganic and Organic Solids E/eV 0.20 0.1190 0.09919 0.07935 0.05951 0.04959 0.03968 0.02976 0.01984 0.009919 0.007935 0.004959 0.002480 0.001736 0.001240
150 125 100 80 60 25 18.0 14.0 10.0 4.95 4.0 3.00 2.90 2.75 2.55 2.00 1.60 1.24 1.03 0.650 0.496 0.400 0.3100 0.2480 0.1240 0.1033 0.08059 0.06819 0.04959 0.03720 0.02480 0.01378 0.01240 0.008856 0.006199 0.003100 0.001653 0.001240 0.0006199
150 125 100 75
ν /cm–1 1613 960 800 640 480 400 320 240 160 80 64 40 20 14 10
λ/µ µm 6.199 10.42 12.50 15.63 20.83 25.00 31.25 41.67 62.50 125.0 156.3 250.0 500.0 714.3 1000
39920 32260 24200 23390 22180 20570 16130 12910 10000 8333 5263 4000 3226 2500 2000 1000 833.3 650 550 400 300 200.0 111.1 100.0 71.43 50.0 25.00 13.33 10.00 5.000
0.008266 0.009919 0.01240 0.01550 0.02066 0.04959 0.06888 0.08856 0.1240 0.2505 0.3100 0.4133 0.4275 0.4509 0.4862 0.6199 0.7749 1.00 1.2 1.9 2.5 3.1 4.0 5 10 12 15.38 18.18 25.00 33.33 50 90 100 140 200 400 750 1000 2000
0.008266 0.009919 0.01240 0.01653
n 4.82 4.74 4.72 4.68 4.59 4.49 4.31 3.89 2.34 1.73 2.91 11.2 12.6 14.1 17.4
0.845 0.846 0.651 0.879 1.52 1.73 3.88 4.12 4.25 4.35 4.29 4.62 4.43 4.30 4.24 4.30 4.30 4.16 4.115 4.01 3.90 3.90 3.81 3.53 2.99 0.514 1.175 1.79 17.41 16.27 12.96 12.44 12.35 12.27
na
nc
k 1.20·10–3 2.09·10–3 4.12·10–3 1.00·10–2 1.77·10–2 3.62·10–2 9.61·10–2 0.56 7.38 10.1 14.6 12.2 16.6 21.1
Lead Sulfide (PbS) - [Ref. 10] 3.86·10–3 5.59·10–3 1.54·10–2 2.88·10–2 6.17·10–2 0.171 0.294 0.665 1.050 2.10 2.83 3.00 2.70 2.33 2.00 1.48 0.94 0.597 0.458 0.318 0.235 2.27·10–2 6.38·10–4 9.25·10–4 6.32·10–3 1.14·10–2
1.59 8.48 10.51 17.94 2.20 0.495 0.228 0.167 0.0815 Lead Telluride (PbTe) - [Ref. 11] 2.37·10–3 9.71·10–3 4.39·10–2 6.43·10–2
ka
kc
R 0.43 0.42 0.42 0.42 0.41 0.40 0.39 0.24 0.18 0.88 0.90 0.88
0.43 0.55 0.53 0.51 0.48 0.47 0.43 0.43 0.41 0.39 0.39 0.39 0.39 0.38 0.37 0.36 0.35 0.35 0.34 0.31 0.25 0.94 0.94 0.89 0.79 0.73 0.72 0.72 0.72
Ra
Rc
Optical Properties of Selected Inorganic and Organic Solids E/eV 50 30 15 10 7.5 5.0 3.0 2.5 1.5 1.0 0.80 0.60 0.40 0.30 0.20 0.15 0.1017 0.08927 0.06943 0.04959 0.03968 0.02976 0.009919 0.007439 0.006199 0.004959 0.003720 0.002480 0.001240
2000 1496 1016 725 504 303 250 200 150 100 75 50 25 20 15.1 13 12.0 11.0 10.00 9 7 4.959 4.000 2.952 2.000 0.9919 0.7999 0.4959 0.4000 0.3100
ν /cm–1
40330 24200 20160 12100 8065 6452 4839 3226 2420 1613 1210 820 720 560 400 320 240 80 60 50 40 30 20 10
λ/µ µm 0.02480 0.04133 0.08266 0.1240 0.1653 0.2480 0.4133 0.4959 0.8266 1.240 1.550 2.066 3.100 4.133 6.199 8.266 12.20 13.89 17.86 25.00 31.25 41.67 125.0 166.7 200.0 250.0 333.3 500.0 1000
40000 32260 23810 16130 8000 6452 4000 3226 2500
6.199·10–4 8.287·10–4 1.220·10–3 1.710·10–3 2.460·10–3 4.092·10–3 4.959·10–3 6.199·10–3 8.265·10–3 1.240·10–2 1.653·10–2 2.480·10–2 4.959·10–2 6.199·10–2 8.211·10–2 9.537·10–2 0.1033 0.1127 0.12398 0.1375 0.1771 0.250 0.31 0.42 0.62 1.25 1.55 2.5 3.1 4.0
n
0.72 0.66 0.8 0.72 1.0 1.35 3.8 4.55 6.25 6.10 6.075 5.95 5.77 5.76 5.47 5.38 5.13 4.50 3.58 1.01 2.95 4.9 6.9 11.6 27.7 27.6 45.1
na
nc
k 6.87·10–2 7.77·10–2 0.17 0.60 0.92 1.0 2.2 2.86 3.1 2.2 0.71 0.521 0.331 3.55·10–2
9.16·10–3 1.37·10–2 3.06·10–2 9.6·10–2 0.23 1.9 16.6 22.5 27.2 34.8 35.7 39.1 57.8
Lithium Fluoride (LiF) - [Ref. 12] 0.9999347 4.33·10–6 0.999883 1.28·10–5 0.999757 5.18·10–5 0.999643 1.62·10–4 0.999162 4.96·10–5 0.99752 3.12·10–4 0.99632 6.17·10–5 2.12·10–3 0.9899 3.54·10–3 0.9801 1.32·10–2 2.63·10–2 7.89·10–2 0.558 0.521 1.20 0.58 1.08 0.68 1.04 1.64 2.28 0.11 1.77 8.07·10–7 1.606 7.70·10–7 1.53 1.46 1.4189 1.4073 1.3978 1.3915 1.3851 1.3858 1.3731 1.3650 1.3493
12-151 ka
kc
R
0.61 0.53 0.49 0.53 0.52 0.52 0.51 0.50 0.50 0.48 0.47 0.45 0.40 0.32 0.96 0.96 0.97 0.97 0.95 0.95 0.97
0.10 0.10 0.15 0.08 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.02
Ra
Rc
12-152
Optical Properties of Selected Inorganic and Organic Solids E/eV 0.2480 0.2000 0.1698 0.1494 0.1240 0.1127 0.1033 0.09537 0.08679 0.07439 0.06199 0.05579 0.04959 0.03720 0.03100 0.02480 0.01240 0.06199 0.04959 0.02480 0.01378 4.798·10–4 1.464·10–4 4.053·10–5 1.861·10–7 3.718·10–8
2860.3 2855.3 2849.3 2835.8 2832.3 2829.8 2828.3 219 215 212.5 211 185.1 109.7 43 40 29.9 20.1 15.1 10.0 9.0 8.0 7.0 6.199 4.959 3.999 2.952 2.695 2.616 2.384 2.066 1.550 1.033 0.5166
ν /cm–1 2000 1613 1370 1205 1000 909.1 833.3 769.2 700 600 500 450 400 300 250 200 100.0 50.0 40.00 20.00 11.11 3.870 1.181 0.3269 1.501·10–3 2.999·10–4
λ/µ µm 5.0 6.2 7.3 8.3 10.0 11.0 12.0 13.0 14.29 16.67 20.00 22.22 25.00 33.33 40.00 50.00 100 200 250 500 900 2584 8469 30590 6.662·106 3.335·107
50000 40000 32260 23810 21740 21100 19230 16670 12500 8333 4167
4.3347·10–4 4.3423·10–4 4.3514·10–4 4.3721·10–4 4.3775·10–4 4.3814·10–4 4.3837·10–4 5.661·10–3 5.767·10–3 5.834·10–3 5.876·10–3 6.7·10–3 1.13·10–2 0.02883 0.03179 0.04147 0.06168 0.08211 0.1240 0.1378 0.1550 0.1771 0.20 0.25 0.31 0.42 0.46 0.474 0.52 0.60 0.80 1.2 2.4
n 1.3266 1.2912 1.2499 1.2036 1.1005 1.0208
0.508 0.124 0.306 0.191 0.208 8.76 4.64 3.69 3.067 3.067 3.067 3.067 3.023 3.023 3.023 3.018 3.018
na
nc
k 1.8·10–6
2.6·10–3 8.0·10–3 1.9·10–2 3.7·10–2 7.74·10–2 0.804 1.47 1.88 2.71 3.91 0.287 0.102 0.106 4.0·10–2 2.2·10–2 6.3·10–3 3.1·10–3 1.19·10–3 6.20·10–4 2.63·10–4 1.6·10–5 1.6·10–5
Potassium Chloride (KCl) - [Ref. 13] 3.93·10–6 3.39·10–6 4.61·10–6 5.85·10–6 5.85·10–6 1.57·10–6 4.19·10–7 1.82·10–3 1.84·10–3 2.19·10–3 1.82·10–3 0.99874 0.99578 0.96 3.0·10–2 0.925 1.8·10–2 0.756 0.145 0.910 0.495 0.965 0.344 1.16 0.38 1.99 0.50 1.15 0.46 2.0 8.46·10–7 1.71739 1.58972 1.54005 1.50701 1.50115 7.6·10–11 1.49501 1.48969 1.48291 1.47813 1.47464
ka
kc
R 0.02
0.68 0.85 0.91 0.68 0.42 0.33 0.26 0.26 0.26
0.25 0.25 0.25
1.01·10–3 4.22·10–3
0.035 0.13 0.048 0.11 0.070
0.040
0.039 0.038 0.037 0.037
Ra
Rc
Optical Properties of Selected Inorganic and Organic Solids E/eV 0.2480 0.2000 0.1512 0.09999 0.07560 0.04959 0.03999 0.02976 0.02728 0.02232 0.01860 0.01612 0.01240 0.008679 0.006199 0.001240 0.0006199 0.0004133
2000 1860 1609 1496 1204 1093 1016 798 597 396 303 201 151.2 99.99 49.59 40.00 31.00 25.00 20.00 15.00 13.00 11.00 10.00 9.00 7.00 6.00 4.9939 4.1034 3.0640 2.5504 2.4379 2.2705 2.1489 2.1411 2.1102 2.1041 1.9257 1.8892 1.8566 1.7549 1.4550
ν /cm–1 2000 1.613 1220 806.5 609.8 400.0 322.6 240 220 180 150 130 100 70 50 10.00 5.000 3.333
λ/µ µm 5.0 6.2 8.2 12.4 16.4 25.0 31.0 41.67 45.45 55.56 66.67 76.92 100.0 142.9 200.0 1000 2000 3000
48390 40278.4 33096.1 24712.3 20570.5 19662.5 18312.5 17332.3 17269.2 17019.5 16970.4 15531.6 15237.6 14974.2 14153.9 11735.6
6.199·10–4 6.665·10–4 7.705·10–4 8.287·10–4 1.030·10–3 1.134·10–3 1.220·10–3 1.554·10–3 2.077·10–3 3.131·10–3 4.092·10–3 6.168·10–3 8.2·10–3 1.24·10–2 2.50·10–2 3.10·10–2 4.00·10–2 0.04959 0.06199 0.08266 0.09537 0.1127 0.1240 0.1378 0.1771 0.2066 0.248272 0.302150 0.404656 0.486133 0.508582 0.546074 0.576959 0.579065 0.587561 0.589262 0.643847 0.656272 0.667815 0.706519 0.852111
n 1.47048 1.46796 1.46260 1.44611 1.42295 1.34059 1.2431 0.85 0.53 0.31 0.44 4.1 2.7 2.4 2.2
na
nc
12-153 k
6.57·10–4 0.16 0.35 1.05 4.0 0.32 0.11 9.2·10–2
ka
kc
R 0.036 0.036 0.035 0.033 0.030 0.021 0.012
0.37 0.21 0.17 0.14
9.0·10–3 3.7·10–3 2.0·10–3 Silicon Dioxide (Glass) - [Ref. 14] 0.99993 1.503·10–5 0.99991 1.936·10–5 0.99989 9.941·10–6 0.99987 1.308·10–5 0.99980 2.916·10–5 0.99975 4.155·10–5 0.99971 5.423·10–5 0.99954 1.289·10–4 0.99917 3.560·10–4 0.99812 4.04·10–4 0.99678 9.91·10–4 0.99269 3.63·10–3 0.9871 7.3·10–3 0.9813 7.0·10–3 0.9164 6.5·10–2 0.907 9.2·10–2 0.851 0.156 0.733 0.325 0.859 0.585 1.168 0.711 1.368 0.747 1.739 0.569 2.330 0.323 1.904 1.89·10–2 1.600 1.543 1.50841 1.48719 1.46961 1.46313 1.46187 1.46008 1.45885 1.45877 1.45847 1.45841 1.45671 1.45637 1.45608 1.45515 1.45248
0.10 0.11 0.11 0.17 0.097 0.053 0.046 0.041 0.038 0.036 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.034 0.034 0.034
Ra
Rc
12-154
Optical Properties of Selected Inorganic and Organic Solids E/eV 1.0985 0.60243 0.35354 0.2976 0.2728 0.2480 0.2232 0.1984 0.1736 0.1674 0.1612 0.1500 0.1401 0.1302 0.1209 0.1091 0.09919 0.08989 0.06943 0.06199 0.04959 0.03720 0.01240 0.007439 0.002480
25 20 17.5 15 12.5 10 7.5 5 4 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.240 0.6199 0.3100 0.2480 0.2066 0.1771 0.1653 0.1459 0.1305 0.1240 0.1181 0.1153 0.1127 0.1078 0.1033 0.09537 0.08856
ν /cm–1 8860.06 4858.9 2851.4 2400 2200 2000 1800 1600 1400 1350 1300 1210 1130 1050 975 880 800 725 560 500 400 300 100 60 20
λ/µ µm 1.12866 2.0581 3.5070 4.176 4.545 5.000 5.556 6.250 7.143 7.407 7.692 8.265 8.850 9.524 10.26 11.36 12.50 13.79 17.86 20.00 25.0 33.33 100.0 166.7 500.0
n 1.44888 1.43722 1.40568 1.383 1.365 1.342 1.306 1.239 1.053 0.9488 0.7719 0.4530 0.3563 2.760 2.448 1.784 1.753 1.698 1.337 0.6616 2.739 2.210 1.967 1.959 1.955
40330 32260 24200 22580 20970 19360 17740 16130 14520 12900 10000 5000 2500 2000 1667 1492 1333 1176 1053 1000 952.4 930.2 909.1 869.6 833.3 769.2 714.3
0.04959 0.06199 0.07085 0.08266 0.09919 0.1240 0.1653 0.2480 0.3100 0.4133 0.4428 0.4769 0.5166 0.5636 0.6199 0.6888 0.7749 1.000 2.000 4.000 5.000 6.000 7.000 7.500 8.500 9.500 10.00 10.50 10.75 11.00 11.50 12.00 13.00 14.00
Silicon Monoxide (Noncrystalline) - [Ref. 15] 0.8690 0.2717 0.8853 0.4919 0.9825 0.5961 1.132 0.6651 1.283 0.6523 1.378 0.6843 1.593 0.7473 2.001 0.6052 2.141 0.4006 2.116 0.1211 2.085 0.08374 2.053 0.05544 2.021 0.03533 1.994 0.02153 1.969 0.01175 1.948 0.00523 1.929 0.00151 1.87 1.84 1.80 1.75 1.70 1.60 1.42 0.90 0.18 1.20 1.20 2.00 1.38 2.85 0.90 2.86 0.58 2.82 0.40 2.50 0.20 2.13 0.14 2.04 0.20 2.01 0.30
na
nc
k
ka
1.07·10–4 2.56·10–4 3.98·10–3 5.63·10–3 6.52·10–3 1.06·10–2 1.48·10–2 3.72·10–2 0.704 1.53 1.65 0.231 7.75·10–2 0.343 0.175 0.298 0.397 6.7·10–2 1.59·10–2 8.62·10–3 7.96·10–3
kc
R 0.034 0.032 0.028 0.026 0.024 0.021
0.30 0.66 0.35 0.18 0.079 0.089 0.071 0.036 0.882 0.23 0.14 0.11 0.11 0.10
0.092 0.090 0.10 0.12 0.15 0.15 0.13 0.12 0.12 0.11 0.11 0.11 0.10 0.10 0.092 0.087 0.082 0.074 0.067 0.053
0.024 0.27 0.27 0.25 0.24 0.19 0.13 0.12 0.12
Ra
Rc
Optical Properties of Selected Inorganic and Organic Solids E/eV 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10.5 10 9.5 9 8 7 6 5 4.75 4.5 4 3.5 3 2.5 2 1.5 1
209.5 206 203 200 26.0 25.0 22.0 20.0 18.0 16.1 14.0 12.0 10.0 8.00 6.00 5.00 2.952 2.480 2.214 2.000 1.771 1.675 1.550 1.240 1.033 0.6888 0.4959
ν /cm–1
λ/µ µm
96790 88720 84690 80650 76620 72590 64520 56460 48390 40330 38310 36290 32260 28230 24200 20160 16130 12100 8065
0.05166 0.05391 0.05636 0.05904 0.06199 0.06526 0.06888 0.07293 0.07749 0.08266 0.08856 0.09537 0.1033 0.1127 0.1181 0.1240 0.1305 0.1378 0.1550 0.1771 0.2066 0.2480 0.2610 0.2755 0.3100 0.3542 0.4133 0.4959 0.6199 0.8266 1.240
48390 40330 23810 20000 17860 16130 14290 13510 12500 10000 8333 5556 4000
5.918·10–3 6.019·10–3 6.107·10–3 6.199·10–3 0.04769 0.04959 0.05636 0.06199 0.06888 0.07700 0.08856 0.1033 0.1240 0.1550 0.2066 0.2480 0.42 0.50 0.56 0.62 0.70 0.74 0.80 1.00 1.2 1.8 2.5
n na nc k ka Noncrystalline Silicon Nitride (Si3N4) - [Ref. 16] 0.655 0.420 0.625 0.481 0.611 0.560 0.617 0.647 0.635 0.743 0.676 0.841 0.735 0.936 0.810 1.03 0.902 1.11 1.001 1.18 1.111 1.26 1.247 1.35 1.417 1.43 1.657 1.52 1.827 1.53 2.000 1.49 2.162 1.44 2.326 1.32 2.651 0.962 2.752 0.493 2.541 0.102 2.278 4.9·10–3 2.234 1.2·10–3 2.198 2.2·10–4 2.141 2.099 2.066 2.041 2.022 2.008 1.998 Sodium Chloride (NaCl) - [Ref. 17] 2.54·10–3 2.62·10–3 2.08·10–3 1.92·10–3 0.83 0.15 0.83 0.18 0.83 0.31 0.88 0.34 0.89 0.33 0.74 0.45 0.98 0.89 1.22 0.79 1.55 0.71 1.38 1.10 1.75 1.65 1.56324 1.55157 1.54613 1.54228 1.53865 1.53728 1.53560 1.53200 1.53000 1.52712 1.52531
12-155 kc
R 0.28 0.22 0.16 0.19 0.21 0.23 0.26 0.25 0.26 0.26 0.26 0.27 0.28 0.29 0.29 0.29 0.28 0.27 0.26 0.23 0.19 0.15 0.15 0.14 0.13 0.13 0.12 0.12 0.11 0.11 0.11
0.015 0.018 0.057 0.036 0.033 0.084 0.17 0.12 0.12 0.20 0.074 0.060 0.048 0.047 0.046 0.045 0.045 0.045 0.045 0.044 0.044 0.043 0.043
Ra
Rc
12-156
Optical Properties of Selected Inorganic and Organic Solids E/eV 0.4000 0.3263
ν /cm–1 3226 2632
λ/µ µm 3.1 3.8
n 1.52395 1.52226
0.2952 0.2755 0.2480 0.1240 0.1033 0.08856 0.07749 0.06888 0.06199 0.04959 0.04215 0.03720 0.03410 0.03286 0.03224 0.02480 0.02108 0.01984 0.01922 0.01860 0.01736 0.01612 0.01488 0.01240 0.009919 0.07439 0.04959 0.002480 0.001240 0.001033 0.0006888 0.0006199 0.0004959 0.0004797 0.0003875 0.0001464 0.00004053
2381 2222 2000 1000 833.3 714.3 625.0 555.5 500.0 400 340 300 275 265 260 200 170 160 155 150 140 130 120 100 80 60 40 20 10 8.333 5.556 5.000 4.000 3.869 3.125 1.181 0.3269
4.2 4.5 5.0 10.0 12.0 14.0 16.0 18.0 20.0 25.0 29.41 33.33 36.36 37.74 38.46 50.00 58.82 62.50 64.52 66.67 71.43 76.92 83.33 100.0 125.0 166.7 250.00 500.0 1000 1200 1800 2000 2500 2584 3200 8469 30590
1.52121 1.52036 1.51883 1.49473 1.48000 1.46188 1.4399 1.41364 1.3822 1.27 1.12 0.85 0.59 0.42 0.45 0.14 1.35 6.92 5.50 4.52 3.72 3.31 3.02 2.74 2.57 2.48 2.44 2.43 2.43
2000 1204 1016 901 798 707 597 377 201 100 61.99 41.33 31.00 24.80 17.71 13.78 12.40 9.919 8.266
6.199·10–4 1.030·10–3 1.220·10–3 1.376·10–3 1.554·10–3 1.754·10–3 2.077·10–3 9.50·10–3 6.168·10–3 1.240·10–2 2.000·10–2 3.000·10–2 4.000·10–2 5.000·10–2 7.000·10–2 9.000·10–2 0.1000 0.125 0.150
na
nc
k (1.8±0.2) ·10–9
3.5·10–3 1.7·10–2 0.85 0.22 0.50 0.45 1.99 6.03 2.14 0.87 0.380 0.219 0.135 0.110 0.087 0.077 0.055 0.041 0.024 0.006 8.8·10–3 5.4·10–3
2.43 2.43 2.43 2.43
ka
kc
R 0.043 0.043 0.043 0.043 0.042 0.039 0.037 0.035 0.033 0.029 0.026 0.014 0.0032 0.18 0.084 0.26 0.22 0.89 0.87 0.59 0.49 0.41 0.33 0.29 0.25 0.22 0.19 0.18 0.18 0.17 0.17
0.17 4.4·10–3 2.1·10–3 3.3·10–3 5.8·10–4 2.5·10–4
Cubic Zinc Sulfide (ZnS) - [Ref. 18] 0.999904 1.76·10–5 0.999777 1.00·10–4 0.999838 3.61·10–5 0.999647 5.42·10–5 0.999520 8.28·10–5 0.999372 1.25·10–4 0.999160 2.19·10–4 0.99789 9.50·10–4 0.99553 4.82·10–3 0.99061 1.17·10–2 0.964 3.32·10–2 0.941 5.10·10–2 0.847 9.95·10–2 0.796 0.171 0.747 0.431 0.758 0.824 0.862 0.876 1.02 1.36 1.41 1.47
0.17 0.17
6.2·10–4
2.2·10–2 7.7·10–2 0.20 0.19 0.31 0.29
Ra
Rc
Optical Properties of Selected Inorganic and Organic Solids E/eV 6.199 6.00 4.00 3.00 2.50 2.30 2.00 1.75 1.55 1.40 1.240 1.00 0.80 0.6199 0.45 0.30 0.20 0.1550 0.1240 0.100 0.09 0.07999 0.07 0.06075 0.05 0.03546 0.03472 0.02480 0.01240 0.004955 0.004339 0.003720 0.003100 0.002480 0.001860
ν /cm–1 48390 32260 24200 20160 18550 16130 14110 12500 11290 10000 8065 6452 5000 3629 2420 1613 1250 1000 806.5 725.9 645.2 564.6 490 403.3 286 280 200 100 40 35 30 25 20 15
λ/µ µm 0.200 0.2066 0.3100 0.4133 0.4959 0.5391 0.6199 0.7085 0.7999 0.8856 1.000 1.240 1.550 2.000 2.755 4.133 6.199 8.0 10.00 12.4 13.78 15.5 17.71 20.41 24.80 34.97 35.71 50.00 100.0 250.0 285.7 333.3 400.0 500.0 666.7
4.960 4.769 4.593 4.426 4.276 4.133 4.000 3.875 3.758 3.647 3.543 3.444 3.351 2.255 2.067 1.378 1.305 1.078 1.033 0.9920 0.9538 0.9185 0.8857 0.8552
40000 38462 37037 35714 34483 33333 32258 31250 30303 29412 28571 27778 27027 18182 16667 11111 10526 8696 8333 8000 7692 7407 7143 6897
0.250 0.260 0.270 0.280 0.290 0.300 0.310 0.320 0.330 0.340 0.350 0.360 0.370 0.550 0.600 0.900 0.950 1.150 1.200 1.250 1.300 1.350 1.400 1.450
n 2.32 2.24 2.70 2.54 2.42 2.3950 2.3576 2.3319 2.3146 2.3033 2.2907 2.2795 2.2706 2.2631 2.2587 2.2529 2.2443 2.2213 2.1986 2.1969 2.1793 2.1518 2.1040 2.03 1.6866 3.29 9.54 3.48 3.06 2.903 2.899 2.896 2.894 2.892 2.890
na
nc
12-157 k 1.62 1.65 0.44 4·10–2 3·10–2
ka
3.50·10–6 3.02·10–6
6.2·10–6
4.5·10–6 8.8·10–6
3.82·10–3 8.0·10–3 8.3·10–2 5.2·10–2 3.1·10–2 5.8·10–3 6.2·10–3 7.0·10–3
kc
R 0.32 0.59 0.22 0.19 0.17 0.17 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.13 0.12 0.065 0.28 0.66 0.31 0.26 0.24 0.24 0.24 0.24 0.24 0.24
Polytetrafluoroethylene (Teflon) - [Ref. 19] 0.970 0.972 0.975 0.978 0.980 0.983 0.986 0.988 0.990 0.991 0.992 0.992 0.993 0.993 0.992 0.992 0.991 0.991 0.990 0.990 0.989 0.988 0.988 0.989
Ra
Rc
12-158
Optical Properties of Selected Inorganic and Organic Solids E/eV 0.8267 0.8000 0.7750 0.7515 0.7294 0.7086 0.6889 0.6703 0.6526 0.6359 0.6200 0.6049 0.5905 0.5767 0.5636 0.5511 0.5487 0.5439 0.5415 0.5368 0.5345 0.5322 0.5299 0.5277 0.5232 0.5188 0.5167 0.5061 0.4960
ν /cm–1 6667 6452 6250 6061 5882 5714 5556 5405 5263 51282 5000 4878 4762 4651 4545 44444 44247 4386 4367 4329 4310 4292 4274 4255 4219 4184 4167 4082 4000
λ/µ µm 1.500 1.550 1.600 1.650 1.700 1.750 1.800 1.850 1.900 1.950 2.000 2.050 2.100 2.150 2.200 2.250 2.260 2.280 2.290 2.310 2.320 2.330 2.340 2.350 2.370 2.390 2.400 2.450 2.500
n
na
nc
References 1. Arsenic Selenide D. J. Treacy in Handbook of Optical Constants of Solids, E. D. Palik, Editor, Academic Press, 1985, p. 623. (Hereafter abbreviated as HOCS.) R. Zallen, R. E. Drews, R. L. Emerald, and M. L. Slade, Phys. Rev. Lett. 26, 1564 (1971) R. Zallen, M. L. Slade, and A. T. Ward, Phys. Rev. B 3, 4257 (1971). U. Strom and P. C. Taylor, Phys. Rev. B 16, 5512 (1977). G. Lucovsky, Phys. Rev. B 6, 1480 (1972). C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, J. Non-Cryst. Solids, 17, 369 (1975). Y. Ohmachi, J. Opt. Soc. Am. 63, 630 (1973). 2. Arsenic Sulfide D. J. Treacy in HOCS, 1985, p. 641. P. A. Young, J. Phys. C 4, 93 (1971). W. S. Rodny, I. H. Malitson, and T. A. King, J. Opt. Soc. Am. 48, 633 (1958). R. Zallen, R.E. Drew, R. L. Emerald, and M.L. Slade, Phys. Rev. Lett. 26, 1564 (1971). M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, Solid State Commun. 15, 855 (1974). P. B. Klein, P. C. Taylor, and D. J. Treacy, Phys. Rev. B16, 4511 (1977). G. Lucovsky, Phys. Rev. B 6, 1480 (1972). 3. Cadmium Telluride E. D. Palik in HOCS, 1985, p. 409. D. T. F. Marple and H. Ehrenreich, Phys. Lett. 8, 87 (1962). T. H. Myers, S. W. Edwards, and J. F. Schetzina, J. Appl. Phys. 52, 4231 (1981). D. T. F. Marple, Phys. Rev. 150, 728 (1966). A. N. Pikhtin and A. D. Yas’kov, Sov. Phys. Semicond. 12, 622 (1978). L. S. Ladd, Infrared Phys. 6, 145 (1966). J. E. Harvey and W. L. Wolfe, J. Opt. Soc. Am. 65, 1267 (1975).
k
ka
kc
R 0.989 0.988 0.988 0.987 0.986 0.986 0.985 0.980 0.978 0.978 0.970 0.959 0.951 0.946 0.966 0.965 0.964 0.963 0.961 0.959 0.957 0.956 0.954 0.951 0.950 0.949 0.947 0.946 0.945
Ra
Rc
A. Manabe, A. Mitsuishi, and H. Yoshinaga, Jpn. J. Appl. Phys. 6, 593 (1967). A. Manabe, A. Mitsuishi, H. Oshinaga, Y. Ueda, and H. Sei, Technol. Rep. Osaka Univ. Jpn. 17, 263 (1967). J. R. Birch and D. K. Murrey, Infrared Phys. 18, 283 (1978). 4. Gallium Arsenide E. D. Palik in HOCS, 1985, p. 429. M. Cardona, W. Gudat, B. Sonntag, and P. Y. Yu, in Proc. Intl. Conf. Phys. Semicond., 10th. Cambridge, 1970, p. 208. US Atom. Energy Commission, Oak Ridge, TN, 1970. H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963). J. B. Theeten, D. E. Aspnes, and R. P. H. Chang, J. Appl. Phys. 49, 6097 (1978). H. C. Casey, D. D. Sell, and K. W. Wecht, J. Appl. Phys. 46, 250 (1975). A. H. Kachare, W. G. Spitzer, F. K. Euler, and A. Kahan, J. Appl. Phys. 45, 2938 (1974). R. T. Holm, J. W. Gibson, and E. D. Palik, J. Appl. Phys. 48, 212 (1977). W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, J. Appl. Phys. Suppl. 32, 2102 (1961). C. P. Christensen, R. Joiner, S. K. T. Nieh, and W. H. Steier, J. Appl. Phys. 45, 4957 (1974). R. H. Stolen, Phys. Rev. B 11, 767 (1975); Appl. Phys. Lett. 15, 74 (1969). 5. Gallium Phosphide A. Borghesi and G. Guizzetti in HOCS, 1985, p. 445. M. Cardona, W. Gudat, B. Sonntag, and P. Y. Yu, Proc. Intl. Conf. Phys. Semicond. Cambridge, 1970, p. 208. US Atom. Energy Commission, Oak Ridge, TN, 1970. M. Cardona, W. Gudat, E. E. Koch, M. Skibowski, B. Sonntag, and P. Yu. Phys. Rev. Lett. 25, 659 (1970). S. E. Stokowski and D. D. Sell, Phys. Rev. B 5, 1636 (1972). S. A. Abagyan, G. A. Ivanov, Y. E. Shanurin, and V. I. Amosov, Sov. Phys. Semicond. 5, 889 (1971). P. G. Dean, G. Kaminsky, and R. B. Zetterstorm, J. Appl. Phys. 38, 3551 (1967).
Optical Properties of Selected Inorganic and Organic Solids D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983). 6. Indium Antimonide R. T. Holm in HOCS, 1985, p. 491. M. Cardona, W. Gudat, B. Sonntag, and P. Y. Yu, Proc. Int. Conf. Phys. Semicond., 10th. Cambridge, 1970, p. 208. US Atom. Comm., Oak Ridge, TN, 1970. H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963). D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983). T. S. Moss, S. D. Smith, and T. D. F. Hawkins, Proc. Phys. Soc. London 70B, 776 (1957). H. Yoshinaga and R. A. Oetjen, Phys. Rev. 101, 526 (1956). R. B. Sanderson, J. Phys. Chem. Solids 26, 803 (1965). 7. Indium Arsenide E. D. Palick and R. T. Holm in HOCS, 1985, p. 479. H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963). B. O. Seraphin and H. E. Bennett in Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, Eds.), vol. 3, Academic, 1967, p. 499. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983). J. R. Dixon and J. M. Ellis, Phys. Rev. 123, 1560 (1961). A. Memon, T. J. Parker, and J. R. Birch, Proc. SPIE, 289, 20 (1981). 8. Indium Phosphide O. J. Glembocki and H. Piller in HOCS, 1985, p. 503. M. Cardona, J. Appl. Phys. 32, 958 (1961); 36, 2181 (1965). D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983). G. D. Pettit and W. J. Turner, J. Appl. Phys. 36, 2081 (1965). R. Newman, Phys. Rev. 111, 1518 (1958). W. N. Reynolds, M. T. Lilburne, and R. M. Dell, Proc. Phys. Soc. London 71, 416 (1958). H. Jamshidi and T. J. Parker, Int. Meet. Infrared Mm. Waves, 7th., Marseilles, 1983. 9. Lead Selenide G. Bauer and H. Krenn in HOCS, 1985, p. 517. M. Cardona and D. L. Greenaway, Phys. Rev. A 133, 1685 (1964). T. S. Moss, Optical Properties of Semiconductors, Butterworth, 1959, p. 189. J. N. Zemel, J. D. Jensen, and R. B. Schoolar, Phys. Rev. A 140, 330 (1965). W. W. Scanlon, J. Phys. Chem. Solids, 8, 423 (1959). K. V. Vyatkin and A. P. Shotov, Sov. Phys. Semicond. 14, 785 (1980); Fiz. Tekh. Poluprovodn. 14, 1331 (1980). 10. Lead Sulfide G. Guizzetti and A. Borghesi in HOCS, 1985, p. 525. M. Cardona and R. Haensel, Phys. Rev. B 1, 2605 (1970). M. Cardona and D. L. Greenaway, Phys. Rev. A 133, 1685 (1964). M. Cardona, C. M. Penchina, E. E. Koch, and P. Y. Yu, Phys. Status Solidi B 53, 327 (1972). P. R. Wessel, Phys. Rev. 153, 836 (1967). C. E. Rossi and W. Paul, J. Appl. Phys. 38, 1803 (1967). J. N. Zemel, J. D. Jensen, and R. B. Schoolar, Phys. Rev. A 140, 330 (1965). 11. Lead Telluride G. Bauer and H. Krenn in HOCS, 1985, p. 535. M. Cardona and R. Haensel, Phys. Rev. B 1, 2605 (1970). M. Cardona and D. L. Greenaway, Phys. Rev. 133, A1685 (1964). D. M. Korn and R. Braunstein, Phys. Rev. B 5, 4837 (1972). W. W. Scanlon, J. Phys. Chem. Solids 8, 423 (1959). J. N. Zemel, J. D. Jensen, and R. B. Schoolar, Phys. Rev. 140, A330 (1965). 12. Lithium Fluoride E. D. Palik and W. R. Hunter in HOCS, 1985, p. 675. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, Low Energy X-ray Diagnostics-1981 (D. T. Attwood and B. L. Henke, Eds.), AIP Conf. Proc. No. 75, 1981. A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Y. F. Shepelev, Opt. Spektrosk. 16, 168 (1964); 16, 310 (1964). F. C. Brown, C. Gahwiller, A. B. Kunz, and N. O. Lipari, Phys. Rev. Lett. 25, 927 (1970). A. Milgram and M. P. Givens, Phys. Rev. 125, 1506 (1962). T. Tomiki and T. Miyata, J. Phys. Soc. Jpn. 27, 658 (1969).
13.
14.
15.
16.
17.
18.
19.
12-159 A. Kachare, G. Andermann, and L. R. Brantley, J. Phys. Chem. Solids 33, 467 (1972). Potassium Chloride E. D. Palik in HOCS, 1985, p. 703. O. Aita, I. Nagakura, and T. Sagawa, J. Phys. Soc. Jpn. 30, 1414 (1971). A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Y. F. Shepelev, Opt. Spectrosc. 16, 168 (1964); Opt. Spektrosk. 16, 310 (1964). T. Tomika, J. Phys. Soc. Jpn. 22, 463 (1967). M. Antinori, A. Balzarotti, and M. Piacentini, Phys. Rev. B 7, 1541 (1973). H. H. Li, J. Phys. Chem. Ref. Data 5, 329 (1976). S. D. Allen and J. A. Harrington, Appl. Opt. 17, 1679 (1978). K. W. Johnson and E. E. Bell, Phys. Rev. 139A, 1295 (1965). Silicon Dioxide H. R. Philipp in HOCS, 1985, p. 749. J. Rife and J. Osantowski, J. Opt. Soc. Am. 70, 1513 (1980). B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, Low Energy X-ray Diagnostics-1981 (D. T. Attwood and B. L. Henke, Eds.), AIP Conf. Proc. No. 75, 1981. H. R. Philipp, Solid State Commun. 4, 73 (1966); J. Phys. Chem. Solids, 32, 1935 (1971). P. L. Lamy, Appl. Opt. 16, 2212 (1977). H. R. Philipp, J. Appl. Phys. 50 1053 (1979). D. G. Drummond, Proc. Roy. Soc. London, 153, 328 (1935). Silicon Monoxide H. R. Philipp in HOCS, 1985, p. 765. H. R. Philipp, J. Phys. Chem. Solids, 32, 1935 (1971). G. Hass and C. D. Salzberg, J. Opt. Soc. Am. 44, 181 (1954). E. Cremer, T. Kraus, and E. Ritter, Zs. Electrochem. 62, 939 (1958). A. P. Bradford, G. Hass, M. McFarland, and E. Ritter, Appl. Opt. 4, 971 (1965). Silicon Nitride H. R. Philipp in HOCS, 1985, p. 771. H. R. Philipp, J. Electrochem. Soc. 120, 295 (1973). J. B. Theeten, D. E. Aspnes, F. Simondet, M. Errman, and P. C. Mürau, J. Appl. Phys. 52, 6788 (1981). J. Bauer, Phys. Status Solidi, A 39, 411 (1977). Sodium Chloride J. E. Eldridge and E. D. Palik in HOCS, p. 775. J. A. Harrington, C. J. Duthler, F. W. Patten, and M. Hass, Solid State Commun. 18, 1043 (1976). T. Miyata and T. Tomiki, J. Phys. Soc. Jpn. 24, 1286 (1968); ibid., 22, 209 (1967). D. M. Roessler and W. C. Walker, J. Opt. Soc. Am. 58, 279 (1968). D. M. Roessler and W. C. Walker, Phys. Rev. 166, 599 (1968). S. Allen and J. A. Harrington, Appl. Opt. 17, 1679 (1978). O. Aita, I. Nagakura, and T. Sagawa, J. Phys. Soc. Jpn. 30, 1414 (1971). Zinc Sulfide E. D. Palik and A. Addamiano in HOCS, 1985, p. 597. B. L. Henke, P. L. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. F. Fujikawa, Low Energy X-ray Diagnostics-1981 (D. T. Attwood and B. L. Henke, Eds.), AIP Conf. Proc. No. 75, 1981. M. Cardona and G. Harbeke, Phys. Rev. 137, A1467 (1965). Eastman Kodak, Publ. No. U-72, Rochester, New York (1981). C. A. Klein and R. N. Donadio, J. Appl. Phys. 51, 797 (1980). T. Deutsch, Proc. Int. Conf. Phys. Semicond., 6th Exeter 1962, p. 505. The Inst. of Physics and the Physical Soc., London, 1962. A. Manabe, A. Mitsuishi, and H. Yoshinaga, Jpn. J. Appl. Phys. 6, 593 (1967). W. W. Piper, D. T. F. Marple, and P. D. Johnson, Phys. Rev. 110, 323 (1958). Polytetrafluoroethylene J. W. L. Thomas (NIST), Private communication. NIST Certificate, STM 2044. P. Y. Barnes, E. A. Early, and A. C. Parr, NIST Special Publ. 250-48, NIST Measurement Services: Spectral Reflectance. Diffuse Reflectance Coatings and Materials Sections, Labsphere Catalog, 1996. A. Arecchi and C. Ryder (Labsphere, North Sutten, NJ), private communication.
FERMI ENERGY AND RELATED PROPERTIES OF METALS Lev. I. Berger In the classical Drude theory of metals, the Maxwell-Boltzmann velocity distribution of electrons is used. It states that the number of electrons per unit volume with velocities in the range of d v about any magnitude v at temperature T is
EF =
where kF is the Fermi momentum or the Fermi wave vector
Ê m ˆ Ê mv 2 ˆ f B (v )dv = nÁ ˜ expÁ ˜ dv Ë 2 pk B T ¯ Ë 2kB T ¯
kF = (3p2n)1/3
where n is the total number of conduction electrons in a unit volume of a metal, m is the free electron mass, and kB is the Boltzmann constant. In an attempt to explain a substantial discrepancy between the experimental data on the specific heat of metals and the values calculated on the basis of the Drude model, Sommerfeld suggested a model of the metal in which the Pauli exclusion principle is applied to free electrons. In this case, the Maxwell-Boltzmann distribution is replaced by the Fermi-Dirac distribution: 3 ˘ ¸Ô ˆ Ê m ˆ ÔÏ ÈÊ mv 2 f (v )dv = 2 dv Ìexp ÍÁ - k B T0 ˜ k B T ˙ + 1˝ Ë h¯ ¯ ÔÓ ÎË 2 ˚ Ô˛
-1
e is the electron charge, and rB is the Bohr radius rB = 2/me2 = 0.529 ◊ 10–10 m
Another, more common expression for the Fermi energy is EF = 1 2 mv F2
where vF = kF/m is the Fermi velocity which can be expressed using the concept of the electron radius, rs. It is equal to radius of a sphere occupied by one free electron. If the total volume of a metal sample is V and the number of conduction electrons in this volume is N, then the volume per electron is equal to V 1 4 3 = = prS N n 3
Here h is the Planck constant and T0 is a characteristic temperature which is determined by the normalization condition n=
2 k F2 Ê e 2 ˆ 2 =Á ˜ (k F rB ) 2m Ë 2kB ¯
and
Ú dv ◊ f ( v )
The magnitude of T0 is quite high; usually, T0 > 104 K. So, at common temperatures (T < 103 K), the free electron density of a metal is much smaller than in the case of the Maxwell-Boltzmann distribution. This allows us to explain why the experimental data on specific heat for metals are close to those for insulators. The maximum kinetic energy the electrons of a metal may possess at T = 0 K is called the Fermi energy, e.g.,
rS =
Ê 3 ˆ Ë 4 pn ¯
1/ 3
The following table contains information pertinent to the Sommerfeld model for some metals. The magnitudes of T0 are calculated using the expression T0 =
EF 58.2 ◊ 10 4 = K kB (rS / rB ) 2
Ground State Properties of the Electron Gas in Some Metals Metal Lia Nab Kb Rbb Csb Cu Ag Au Be Mg Ca Sr Ba Nb Fe Mnc Zn Cd
12-209
Valency 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 2 2 2
n/1028 m–3 4.70 2.65 1.40 1.15 0.91 8.47 5.86 5.90 24.7 8.61 4.61 3.55 3.15 5.56 17.0 16.5 13.2 9.27
rS/pm 172 208 257 275 298 141 160 159 99 141 173 189 196 163 112 113 122 137
rS/rB 3.25 3.93 4.86 5.20 5.62 2.67 3.02 3.01 1.87 2.66 3.27 3.57 3.71 3.07 2.12 2.14 2.30 2.59
EF/eV 4.74 3.24 2.12 1.85 1.59 7.00 5.49 5.53 14.3 7.08 4.69 3.93 3.64 5.32 11.1 10.9 9.47 7.47
T0/104 K 5.51 3.77 2.46 2.15 1.84 8.16 6.38 6.42 16.6 8.23 5.44 4.57 4.23 6.18 13.0 12.7 11.0 8.68
kF/1010 m–1 1.12 0.92 0.75 0.70 0.65 1.36 1.20 1.21 1.94 1.36 1.11 1.02 0.98 1.18 1.71 1.70 1.58 1.40
vF/106 m s-1 1.29 1.07 0.86 0.81 0.75 1.57 1.39 1.40 2.25 1.58 1.28 1.18 1.13 1.37 1.98 1.96 1.83 1.62
Fermi Energy and Related Properties of Metals
12-210
Ground State Properties of the Electron Gas in Some Metals Metal Hga Al Ga In Tl Sn Pb Bi Sb
Valency 2 3 3 3 3 4 4 5 5
n/1028 mâ&#x20AC;&#x201C;3 8.65 18.1 15.4 11.5 10.5 14.8 13.2 14.1 16.5
rS/pm 140 110 116 127 131 117 122 119 113
rS/rB 2.65 2.07 2.19 2.41 2.48 2.22 2.30 2.25 2.14
EF/eV 7.13 11.7 10.4 8.63 8.15 10.2 9.47 9.90 10.9
T0/104 K 8.29 13.6 12.1 10.0 9.46 11.8 11.0 11.5 12.7
kF/1010 mâ&#x20AC;&#x201C;1 1.37 1.75 1.66 1.51 1.46 1.64 1.58 1.61 1.70
vF/106 m s-1 1.58 2.03 1.92 1.74 1.69 1.90 1.83 1.87 1.96
a
At 78 K. At 5 K. a-phase. The data in the table are for atmospheric pressure and room temperature unless otherwise noted. b c
References 1. Drude, P., Ann. Physik, 1, 566, 1900; ibid., 3, 369, 1900. 2. Sommerfeld, A. and Bethe, H., Handbuch der Physik, Chapter 3, Springer, 1933.
3. Wyckoff, R. W. G., Crystal Structures, 2nd. ed., Interscience, 1963. 4. Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Holt, Rinehart and Winston, 1976.
ELECTRON INELASTIC MEAN FREE PATHS Cedric J. Powell The inelastic mean free path (IMFP) of electrons is defined as the average of distances, measured along the trajectories, that electrons with a given energy travel between inelastic collisions in the substance. It is an important parameter in analyzing results from surface-characterization techniques such as Auger electron spectroscopy, x-ray photoelectron spectroscopy, low-energy electron diffraction, and others. IMFPs can be measured by the elastic-peak electron spectroscopy technique and other methods, and they can be calculated from optical data. A detailed analysis of the experimental and theoretical considerations in obtaining reliable IMPF values can be found in reference 4. The table below gives recommended IMFP values for several elements, simple inorganic compounds, and organic materials. Values are given in Ångström units (1 Å = 10-10 m) for a range of
electron energies. Substances are given in alphabetical order by name, with elements and inorganic compounds listed before the organic materials.
References 1. Tanuma, S., Powell, C. J., and Penn, D. R., Surf. Interface Anal. 17, 911, 1991. 2. Tanuma, S., Powell, C. J., and Penn, D. R., Surf. Interface Anal. 17, 927, 1991. 3. Tanuma, S., Powell, C. J., and Penn, D. R., Surf. Interface Anal. 21, 165, 1994. 4. Powell, C. J., and Jablonski, A., J. Phys. Chem. Ref. Data 28, 19, 1999. 5. Tanuma, S., Powell, C. J., and Penn, D. R., Surf. Interface Anal., 37, 1, 2005.
Electron Inelastic Mean Free Path in Å Electron Energy in eV Substance Aluminum Bismuth Carbon Chromium Copper Gallium phosphide Gold Hafnium Indium phosphide Iridium Iron Lead(II) sulfide Lead(II) telluride Magnesium Molybdenum Nickel Niobium Osmium Palladium Platinum Potassium chloride Rhenium Rhodium Ruthenium Silicon Silicon carbide Silicon dioxide (vitreous) Silver Tantalum Titanium Tungsten Vanadium Yttrium Zinc sulfide Zirconium Adenine Bovine plasma albumin β-Carotene
Formula Al Bi C Cr Cu GaP Au Hf InP Ir Fe PbS PbTe Mg Mo Ni Nb Os Pd Pt KCl Re Rh Ru Si SiC SiO2 Ag Ta Ti W V Y ZnS Zr C5H5N5 C40H56
50 3.5 4.9 5.9 4.4 5.2 5.6 6.3 5.8 4.8 5.3 4.3 4.8 4.3 4.0 5.1 4.9 6.0 5.5 4.8 5.0 7.5 5.2 4.8 4.9 4.1 4.7 8.0 6.4 4.8 4.5 5.0 4.2 5.0 5.8 4.4 6.4 7.3 6.4
100 4.6 5.5 6.4 4.3 5.0 6.5 4.7 6.2 4.9 4.3 4.4 5.6 5.5 5.4 4.5 4.5 6.0 4.3 4.8 4.2 7.8 3.8 4.1 4.2 5.3 4.9 7.7 4.7 4.5 5.1 4.1 4.9 5.5 6.5 4.8 6.6 7.2 7.0
150 5.7 6.3 7.5 5.0 5.4 7.8 4.7 7.1 5.6 4.7 5.1 6.7 6.6 6.8 5.0 4.9 6.7 4.5 5.4 4.5 9.3 3.9 4.5 4.6 6.5 5.8 8.8 4.8 5.0 6.2 4.5 5.9 6.4 7.7 5.7 7.8 8.5 8.5
200 6.8 7.2 8.8 5.7 6.0 9.0 5.1 8.0 6.4 5.2 5.8 7.8 7.7 8.2 5.6 5.4 7.7 5.0 6.2 4.9 10.9 4.3 5.0 5.2 7.8 6.8 10.0 5.2 5.5 7.3 5.0 6.8 7.5 8.9 6.6 9.2 9.9 10.0
300 8.9 8.8 11.2 7.2 7.3 11.4 6.1 10.2 8.1 6.4 7.2 10.0 9.8 10.7 7.1 6.5 9.7 6.0 7.8 6.0 14.2 5.1 6.1 6.5 10.3 8.7 12.6 6.4 6.8 9.5 6.1 8.8 9.8 11.3 8.6 11.8 12.7 13.0
400 10.9 10.6 13.7 8.6 8.6 13.7 7.2 12.0 9.7 7.5 8.5 12.1 11.9 13.0 8.5 7.7 11.7 7.1 9.4 7.1 17.3 6.0 7.3 7.8 12.5 10.5 15.2 7.7 8.0 11.6 7.3 10.7 11.9 13.6 10.5 14.4 15.4 15.9
600 14.5 14.0 18.4 11.4 11.3 18.1 9.5 15.6 12.8 9.7 11.2 16.1 15.8 17.5 11.3 10.1 15.6 9.1 12.5 9.2 23.2 7.7 9.7 10.4 16.6 13.9 20.0 10.2 10.4 15.6 9.4 14.3 16.0 17.9 14.1 19.2 20.7 21.4
800 1000 1200 1400 1600 1800 2000 18.0 21.3 24.6 27.8 31.0 34.1 37.2 17.2 20.2 23.2 26.1 28.9 31.6 34.4 22.8 27.0 31.1 35.2 39.1 43.0 46.8 14.0 16.6 19.1 21.6 24.0 26.3 28.6 13.9 16.5 18.9 21.3 23.7 26.0 28.3 22.3 26.3 30.2 34.1 37.8 41.5 45.2 11.7 13.8 15.8 17.8 19.7 21.6 23.4 19.0 22.2 25.3 28.4 31.4 34.4 37.3 15.7 18.7 21.4 24.2 26.8 29.4 32.0 11.8 13.8 15.7 17.6 19.4 21.2 22.9 13.7 16.2 18.6 20.9 23.2 25.5 27.7 19.8 23.6 27.1 30.6 33.9 37.2 40.5 19.6 23.4 26.9 30.3 33.7 37.0 40.2 21.7 25.9 29.9 33.9 37.7 41.6 45.3 14.0 16.5 18.9 21.2 23.5 25.8 28.0 12.4 14.6 16.7 18.8 20.8 22.8 24.7 19.2 22.6 25.9 29.1 32.3 35.3 38.4 11.1 12.9 14.7 16.4 18.1 19.8 21.5 15.4 18.2 20.9 23.5 26.0 28.4 30.9 11.2 13.1 14.9 16.7 18.5 20.2 21.9 28.7 34.0 39.2 44.2 49.1 54.0 58.8 9.4 10.9 12.5 14.0 15.4 16.9 18.3 12.0 14.1 16.2 18.2 20.1 22.0 23.9 12.8 15.1 17.4 19.5 21.6 23.7 25.7 20.6 24.4 28.2 31.8 35.4 39.0 42.5 17.1 20.3 23.3 26.3 29.2 32.1 35.0 24.7 29.3 33.7 38.0 42.2 46.4 50.5 12.6 14.9 17.2 19.3 21.4 23.5 25.5 12.7 14.8 16.9 19.0 21.0 22.9 24.9 19.5 23.2 26.8 30.2 33.6 36.9 40.2 11.4 13.4 15.2 17.1 18.9 20.6 22.4 17.7 21.0 24.3 27.4 30.5 33.5 36.4 19.8 23.4 27.0 30.4 33.8 37.1 40.4 22.0 26.0 29.8 33.6 37.3 40.9 44.5 17.5 20.7 23.8 26.9 29.9 32.8 35.7 24.1 28.6 33.1 37.4 41.6 45.8 49.9 25.8 30.8 35.6 40.2 44.8 49.4 53.8 26.9 32.0 37.0 41.9 46.6 51.3 56.0
Ref. 5 1 1 1 4 2 4 1 2 1 1 2 2 1 1 4 1 1 1 1 2 1 1 1 1 2 2 4 1 1 1 1 1 2 1 3 3 3
12-112
Section 12.indb 112
4/28/05 1:57:55 PM
Electron Inelastic Mean Free Paths Substance Deoxyribonucleic acid (DNA) 1,6-Diphenyl-1,3,5hexatriene Guanine Hexacosane Kapton Polyacetylene Poly(butene-1-sulfone) Polyethylene Poly(methyl methacrylate) Polystyrene Poly(2-vinylpyridine)
Section 12.indb 113
Formula
C18H16 C5H5N5O C26H54
50
12-113 100
150
200
300
400
600
800
1000 1200 1400 1600 1800 2000
Ref.
7.3
7.3
8.5
9.8
12.6
15.4
20.7
25.9
30.8
35.6
40.3
44.9
49.4
53.8
3
6.4 6.2 7.0 7.0 5.3 7.1 6.9 7.8 6.9 6.9
7.0 6.2 7.6 6.8 5.7 7.2 7.2 7.9 7.3 7.3
8.4 7.2 9.2 7.9 6.8 8.5 8.6 9.3 8.7 8.7
9.9 8.4 10.9 9.2 7.9 9.9 10.1 10.8 10.2 10.3
12.9 10.8 14.1 11.7 10.2 12.7 13.0 13.9 13.2 13.3
15.8 13.1 17.2 14.2 12.5 15.4 15.9 16.9 16.1 16.2
21.3 17.5 23.2 19.0 16.9 20.7 21.4 22.7 21.6 21.8
26.7 21.8 29.2 23.7 21.1 25.8 26.8 28.3 27.1 27.3
31.8 25.9 34.7 28.2 25.1 30.6 31.8 33.7 32.2 32.5
36.8 29.9 40.1 32.5 29.0 35.3 36.8 38.8 37.2 37.5
41.7 33.8 45.4 36.7 32.8 39.9 41.6 43.9 42.1 42.4
46.4 37.6 50.6 40.9 36.5 44.4 46.3 48.9 46.9 47.3
51.1 41.4 55.7 44.9 40.2 48.8 51.0 53.8 51.6 52.0
55.7 45.1 60.7 49.0 43.8 53.2 55.6 58.6 56.2 56.7
3 3 3 3 3 3 3 3 3 3
4/28/05 1:57:57 PM
SELECTED PROPERTIES OF SEMICONDUCTOR SOLID SOLUTIONS L.I. Berger Alloy system
SixGe1-x
Limits of solubility
Energy gap in eV (300 K)
Adamantine Semiconductors IV-IV 0.8941+0.0421x+0.1691x2 0≤x≤1 0.7596+1.0860x+0.3306x2
Remarks, references Transition Γ - X [Ref.1] Trans. Γ - L [Ref. 1]
Adamantine Semiconductors III-V/III-V Common Anion AlxGa1-xN AlxGa1-xP AlxIn1-xP AlxGa1-xAs AlxIn1-xAs AlxGa1-xSb AlxIn1-xSb GaxIn1-xN GaxIn1-xP GaxIn1-xAs GaxIn1-xSb Common Cation GaNxAs1-x GaPxAs1-x GaPxAs1-x GaAsxSb1-x InPxAs1-x
0≤x≤1 0≤x≤0.5 0≤x≤0.44 0≤x≤0.5 0≤x≤1 0≤x<≤1 0≤x≤1 0≤x≤1 0≤x≤1 0≤x≤1 0<x<1 0≤x≤0.05 0<x<1 0≤x≤0.05 0≤x≤0.45, 0.6≤x≤1 0<x<1
2.28+0.16x at Γ: 134+2.23x; at X: 2.24+0.18x 1.42=0.75x [Ref.3]; 1.424+1.429x-0.14x2 [Ref.4] at Γ: 0.37+1.91x+0.74x2; at X: 1.8+0.4x 0.73+1.10x+0.47x2
Wurtzite Structure [Ref. 2 & 3] [Ref. 2] [Ref. 2]
0.360+0.629x+0.436x2 0.235+0.1653x+0.413x2
[Ref. 2 and 6] Trans. Γ8v- Γ6c [Ref. 2] [Ref. 6] Wurtzite [Ref. 8 and 10] [Ref. 2] [Ref. 5] [Ref. 2, see also Ref. 9]
1.42-9.9x 2.270-0.846x 1.515+1.172x+0.186x2 1.9715+0.144x+0.211x2 1.43-1.9x+1.2x2 0.356+0.675x+0.32x2
[Ref. 2] [Ref. 2] (at 2K, Γ−Γ) [Ref. 7] [Ref. 2] [Ref. 5] [Ref. 2]
1.950+1.487x-1.000x(1-x)
Adamantine Binary Semiconductors II-VI/II-VI [Ref. 3 and 6] Common Anion ZnxCd1-xS ZnxHg1-xS CdxHg1-xS ZnxCd1-xSe ZnxHg1-xSe CdxHg1-xSe ZnxCd1-xTe ZnxHg1-xTe CdxHg1-xTe
0≤x≤1 0≤x≤1 0≤x≤1 0.7≤x≤1 0≤x≤1 0≤x≤0.7 and 0.75≤x*≤1 0≤x≤1 0≤x≤1 0≤x≤1
Common Cation ZnSxSe1-x ZnSxTe1-x ZnSexTe1-x CdSxSe1-x CdSxTe1-x CdSexTe1-x HgSxSe1-x HgSxTe1-x HgSexTe1-x
0≤x≤1 0≤x≤0.1 and 0.9≤x*≤1 0≤x≤1 0≤x≤1 0≤x≤0.25 and 0.8≤x*≤1 0≤x≤0.4 and 0.6≤x*≤1 0≤x≤1 0≤x≤1 0≤x≤1
(ZnS)x(AlP)1-x (ZnSe)x(GaAs)1-x (CdTe)x(InAs)1-x (CdTe)x(AlSb)1-x (HgTe)x(InAs)1-x
Wurtzite Structure Wurtzite Structure at x<0.6
x*- Wurtzite Structure
x*- Wurtzite Structure Wurtzite Structure x*- Wurtzite Structure x*- Wurtzite Structure
Quaternary Adamantine Semiconductors II-VI/III-V [Ref. 6] 0.99≤x≤1 0≤x<1 0<x≤0.2 and 0.7≤x≤1 0≤x≤1 0≤x≤1
12-90
Section 12.indb 90
4/28/05 1:57:14 PM
Selected Properties of Semiconductor Solid Solutions Alloy system
Limits of solubility
12-91 Energy gap in eV (300 K)
Remarks, references
GaxIn1-xAsyP1-y
Quaternary Adamantine Semiconductors IIIx-III1-x-Vy - V1-y 0≤x≤1, 0≤x≤1 1.35+0.668x-1.068y+0.758x2+0.078y20.069xy-0.322x2y+0.03xy2
[Ref. 2 and 6]
AlxGayIn1-x-ySb
Quaternary Adamantine Semiconductors III1-x-y-IIIx-IIIy-V 0≤x≤1, 0≤y≤1 0.095+1.76x+0.28y+0.345(x2+y2)+0.085( 1-x-y)2 +xy (1-x-y)(23-28y)
[Ref. 2 and 6]
References 1. Krishnamurti, S., Sher, A., and Chen, A. Appl. Phys. Lett. 47, 160, 1985. 2. Madelung, O., Ed., Semiconductors Group IV Elements and III-V Compounds, Springer, 1991; Semiconductors Other than Group IV Elements and III-V Compounds, Springer, 1992. 3. Goryunova, N. A., Kesamanly, F.P., and Nasledov, D.N., Semiconductors and Semimetals, Vol. 4, 1968, p. 413. 4. El Allali, M., Sorensen, C. B., Veje, E., and Tideman-Peterson, P., Phys. Rev. B, 48, 4398, 1993.
Section 12.indb 91
5. Nahorny, R. E., Pollack, M. A., Johnson, W. D., and Barns, R. L. Appl. Phys. Lett. 33, 695, 1978. 6. Goryunova, N. A. Multicomponent Diamond-Like Semiconductors, Sov. Radio, Moscow, 1968 (in Russian). 7. Capizzi, M., Modesti, S., Martelli, F., and Frova, A., Solid State Comm. 39, 333, 1981. 8. Nakamura, S., Pearton, S., and Fasol, G., The Blue Laser Diode, 2nd ed., Springer, 2000. 9. Roth, A. P., Keeler, W. J., and Fortin, E. Canad. J. Phys. 58, 560, 1980. 10. Wu, J., Walukiewicz, Yu, K. M., Ager, J. W., Haller, E. E., Lu, H., and Schaff, W.J., Appl. Phys. Lett. 80, 4741, 2002.
4/28/05 1:57:14 PM
PROPERTIES OF ORGANIC SEMICONDUCTORS L. I. Berger
Substance Metal-Free Molecular Crystals 3-Acetylamino-N-methylphthalimide 3-Acetylamino-N-phenylphthalimide 4-Amino-N-cyclomethylphthalimide 4-Aminophthalimide Acridine Anthanthrene Anthanthrene Anthanthrone Anthracene Anthracene Anthracene 1,2-Benzanthracene Benzanthrone Benzene (liquid) Benzene (amorphous) Benzene (cryst.) Benzimidazole Benzophenone Benzo[f]quinoline Benzo[h]quinoline 3-Benzoylamino-N-methylphthalimide Benzpentacene Biphenyl Biphenyl o-Chloranil p-Chloranil Chlorpromazine Chrysene Chrysene Circumanthracene Coronene Coronene Cyananthrone 1,6-Diaminopyrene Dibenzpentacene Dinaphthopyrene 1,8-Diphenyl-1,3,5,7-octatetraene Diphenylpentacene 4,4′-Diphenylstilbene 4,4′-Diphenylstilbene Ferrocene Flavanthrone Fluorene Fluorene Fluoridine Hexacene Hexacene Hexamethylbenzene 3-Hydroxy-N-methylphthalimide Imidazole
12-92
Energy Gap, E, (in E/2 kT) eV 3.46 3.50 2.90 2.78 3.90 1.67 0.84 1.70 0.83 2.50 3.88 to 4.1 1.04 3.12 0.41 0.84 7 3.0 to 4.0 3.34 2.77 2.72 3.28 1.72 1.46 1.45 3.0 0.61 2.1 1.1 2.20 1.8 1.7 0.85 0.20 0.6 1.50 1.60 1.7 1.60 1.56 0.80 1.22 0.70 2.7 1.4 1.6 0.57 1.3 1.86 3.80 2.6
Room Temperature Electrical Resistivity, ohm · cm
Mobility, μ, cm2/V · s
Sign of Majority Carriers
Temperature Range, ºC 67 to 100 54 to 124 73 to 100 123 to 151
1.5 · 1019 1.5 · 1019 (15ºC) 7.7 · 1018 1.3 ∙ 1014 (15ºC) 1.5 ∙ 1011 >1015 1016 (30ºC) 1.6 · 1016 1015 5 · 1013
40 to 105 20 to 150 2.3 1.74(n), 2.07(p)
2
+ +&–
–
–14 to 5 –23 84 to 144 –23 to 14 30 to 50 84 to 112 0 to 150
1.7 · 1015 (50ºC)
20 to 70
1015 1012 (32ºC) 4 · 1019 (15ºC) 4 · 1019 6 · 1012 1.7 · 1017 1.7 · 1017 (15ºC) 1.2 · 107 108
20 to 130
+&–
32 to 80 25 to 90 60 to 80 30 to 125 0 to 150 25 to 90 72 to 191 0 to 150 160 to 280
1014 1.4 · 1011
+
6 · 1013 3.8 · 1010 (50ºC)
+
20 to 140
+
20 to 140 60 to 91 28 to 68
1011
Ref. 1 1 1 1 1 1 2 1 2 1 4 2 1 2 1 4 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 2 1 1 2 2 1 2 1 1 1 1
Properties of Organic Semiconductors
Substance Indanthrazine Indanthrone Indanthrone (black) Mesitylene (liquid) Mesonaphthodianthracene Mesonaphthodianthrene Mesonaphthodianthrone 3-Methoxy-N-methyl-phthalimide Naphthacene Naphthalene Naphthalene Naphthalene m-Naphthodianthrene m-Naphthodianthrone β-Naphthol β-Naphthoquinoline 1-Naphthylamine 1-Naphthylamine picrate 2-Naphthylphenyl sulphone 1-Nitronaphthalene Ovalene Pentacene Pentacene Perylene Perylene Phenanthrene Phenanthrene 1,10-Phenanthroline Phenazine Phenazine Phenothiazine Phenothiazine Phenylanthranilic acid 4-Phenylstilbene 4-Phenylstilbene Phosphonitrilic chloride trimer Phthalocyanine, PcH2 Phthalocyanine, PcH2 Pyranthrene Pyranthrene Pyranthrone Pyrene Pyrene 5,6-N-Pyridine-1,9-benzanthrone p-Quaterphenyl Quaterrylene p-Quinquiphenyl α-Resorcin β-Resorcin Salanil p-Sexiphenyl cis-Stilbene trans-Stilbene trans-Stilbene trans-Stilbene o-Terphenyl m-Terphenyl p-Terphenyl p-Terphenyl
12-93 Energy Gap, E, (in E/2 kT) eV 0.66 0.64 0.56 0.19 0.6 1.48 0.86 3.18 1.7 3.5 1.15 4.9 to 5.1 1.20 1.30 2.36 2.77 2.2 2.7 3.5 2.5 1.13 0.58 1.5 2.1 3.10 1.15 0.65 2.73 2.1 1.1 1.6 3.30 1.74 0.86 1.68 1.66 2 1.11 0.51 1.06 2.02 1.60 0.89 0.6 0.91 2.10 3.27 4.1 0.91 2.4 1.80 0.91 1.4
0.6 1.2
Room Temperature Electrical Resistivity, ohm · cm 1.4 · 1015 7.5 · 1014 2.5 · 108
Mobility, μ, cm2/V · s
Sign of Majority Carriers
4.0 · 1018 (15ºC)
1 · 1015 1014 2.8 · 1014 (50ºC) 4 · 1018 1.5 · 1018 2 · 105
2.3 · 1015 2.4 · 109 (50ºC) 6 · 1013 4.1 · 1013 1.3 · 1014
45 to 250 5 to 110 54 to 78 27 to 47 0.64(n), 1.50(p)
1015 1013 107 1 · 1015 4.5 · 1016 (15ºC) 3.9 · 1015 5 · 1017
5.53(n), 87.4(p)
1014 (25ºC)
+&–
– 2.45(n), 0.02(p)
+&–
0.1 to 0.4 1.2(n), 1.1(p)
+ +&–
0.50
1.0 · 1015 (50ºC) 105 2.0 · 1015 (50ºC) 2 · 1016 2 · 1018 104 7.0 · 1014 (50ºC)
3 · 10–5
+&–
40 to 150 40 to 150 60 to 110 25 to 42 28 to 98 67 to 102 25 to 44
7 · 1014 (100ºC) 1011
Temperature Range, ºC 30 to 125 30 to 125 30 to 125
– +
20 to 140 40 to 100 –213 12 to 72 50 to 90 98 to 143 50 to 150 87 to 119 140 to 220
26 to 350 100
40 to 150
– 30 to 94 30 to 94 20 to 40
2.4
+ +
10-5
+ + +
0.025
+
at 20 70 to 120
Ref. 1 1 1 2 2 1 1 1 1 1 2 4 1 1 1 1 1 1 1 1 1 2 1 1 4 1 2 1 1 4 1 4 1 1 2 1 1 4 1 2 1 1 4 2 2 1 2 1 1 1 2 1 1 2 4 1 1 2 1
Properties of Organic Semiconductors
12-94
Substance p-Terphenyl Tetracene Tetracene Tetracene 1,1,10,10-Tetracyanodecapentaene 1,1,6,6-Tetracyanohexatriene Tetracyanoethylene 7,7,8,8-Tetracyanoquinodimethane 1,1,8,8-Tetracyanooctatetraene Tetraphenylpentacene Tetrathiotetracene Triphenodioxazine Triphenyldiamine Violanthrene Isoviolanthrene Violanthrone Isoviolanthrone o-Xylene (liquid) m-Xylene (liquid) p-Xylene (liquid)
Energy Gap, E, (in E/2 kT) eV 0.66 1.7 3.4 2.24 1.54
3.2 · 1012 (50ºC)
1.42 1.62 0.46 1.65
1012
0.85 0.82 0.78 0.76 0.45 0.41 0.41
Long-Chain Compounds and Polymers Acrylic acid-amylproparylaniline copolymers Acrylic acid-methylproparylaniline copolymers Acrylic acid-octylproparylaniline copolymers Anthrone polymers [CH(AsF5)0.1]x [CH ∙ I0.22]x 1,6-Diacetylenes (cyclopolymerized) Ionene elastomers 1,3,4-Oxydiazole polymers Oxypyrrole polymer films Phenylformaldehyde polymeric pyrolysates a) Pyrolysis Temperature 600ºC b) 1200ºC Phenylthiocyanate polymers Polyacetylene (undoped) Polyacetylene (I2 doped) Polyacetylene (cis-rich, undoped) trans-Polyacetylene (I2 doped, 0.22 mole %) Polyacrylonitrile (heat treated 700ºC) Poly-5,5′-biisatyl thiophene-indophene Poly bis(amino)-phosphazenes Poly-5,5′-diisatylmetane-thiophene-indophenine Polyethylene Polyethylene (low density) Polyimide Polymalonitrile Poly(metalphthalocyanines) :Cu :Fe :Ni :Sb :Zn Poly-N-methylpyrrole Polyoxypyrrole (black) Polyphthalocyanines Polypyrrole
Room Temperature Electrical Resistivity, ohm · cm
1.9
0.81
0.5 to 0.8
air 0.84 vacuum 1.0 1.75 0.45 2.74 0.17 2.84 1.72 0.12 0.15 0.46 0.12 0.044 0.01 0.01
1013 1014
104 5 · 1014 2.1 · 1014 8.4 · 1013 2.3 · 1010 5.7 · 109
Mobility, μ, cm2/V · s 1.2(n), 0.80(p)
0.85
+
0.26(max) 0.65
– + – –
2 · 10–2
109–1010 109–1010 109–1010 0.28 ≥100 at 1.8 kbar ≥2 at 33 kbar 0.0005 trans 105, cis 109 1010–1014 2.7 ∙ 107 to 2.2 ∙ 108 3 ∙ 1012 0.125 27 0.0044 105–108 1010 0.04 107
air 2.6 ∙ 109 vacuum 3.1 ∙ 109 1.8 ∙ 1011 7.3 ∙ 104
Sign of Majority Carriers +&–
–
>68
0 to 150 20 to 140 at 20 40 to 105 40 to 150 40 to 150 40 to 150
Ref. 4 2 1 4 1 1 4 4 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3
+
–80 to 60 20 to 140
0.0014 7.84
– +
0.01
+ – +
+
4 ∙ 109
7 ∙ 106 1.1 ∙ 106 100 3.1 ∙ 106 5.3 ∙ 103 2 ∙ 106 1790 7 to 58
Temperature Range, ºC
–100 to 100 20 to 140 20 to 180 20 to 140 20 to 70 above Tg
–
–173 to 27 –193 to 250
3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Properties of Organic Semiconductors
Substance Polypyrroline II Polyselenomethylene Poly(2-vinylpyridine):I2 (1:2) PVC (commercial) PVC (commercial) PVC (pure) Salicylal-N-alkyliminate-Cu TTF-acetylacetonate polymers TTF-metal polymers
12-95 Energy Gap, E, Room Temperature (in E/2 kT) Electrical Resistivity, eV ohm · cm 1.74 0.7 to 2.62 >1013 0.12 1000 2.84–3.04 1.24–1.96 1.0±0.1 1.62 1.7 ∙ 1014 1.6 ∙ 104 1.6 ∙ 104
Mobility, μ, cm2/V · s
Sign of Majority Carriers
Temperature Range, ºC 20 to 120 –73 to 27 T<Tg T>Tg 0 to 30
References
1. F. Gutman and L. E. Lyons, Organic Semiconductors, John Wiley & Sons, New York, 1967. 2. Y. Okamoto and W. Brenner, Organic Semiconductors, Reinhold Publ. Corp., New York, 1964. 3. F. Gutman, H. Keyzer, L. E. Lyons, and R. B. Somoano, Organic Semiconductors, Part B, R. E. Krieger Publ. Co., Melbourne, FL, 1983. 4.. L. I. Berger, Semiconductor Materials, CRC Press, Boca Raton, FL, 1997.
Ref. 3 3 3 3 3 3 4 3 3
NOMENCLATURE FOR ORGANIC POLYMERS Robert B. Fox and Edward S. Wilks Organic polymers have traditionally been named on the basis of the monomer used, a hypothetical monomer, or a semi-systematic structure. Alternatively, they may be named in the same way as organic compounds, i.e., on the basis of a structure as drawn. The former method, often called “source-based nomenclature” or “monomer-based nomenclature”, sometimes results in ambiguity and multiple names for a single material. The latter method, termed “structure-based nomenclature”, generates a sometimes cumbersome unique name for a given polymer, independent of its source. Within their limitations, both types of names are acceptable and well-documented.1 The use of stereochemical descriptors with both types of polymer nomenclature has been published.2
Traditional Polymer Names Monomer-Based Names “Polystyrene” is the name of a homopolymer made from the single monomer styrene. When the name of a monomer comprises two or more words, the name should be enclosed in parentheses, as in “poly(methyl methacrylate)” or “poly(4bromostyrene)” to identify the monomer more clearly. This method can result in several names for a given polymer: thus, “poly(ethylene glycol)”, “poly(ethylene oxide)”, and “poly(oxirane)” describe the same polymer. Sometimes, the name of a hypothetical monomer is used, as in “poly(vinyl alcohol)”. Even though a name like “polyethylene” covers a multitude of materials, the system does provide understandable names when a single monomer is involved in the synthesis of a single polymer. When one monomer can yield more than one polymer, e.g. 1,3-butadiene or acrolein, some sort of structural notation must be used to identify the product, and one is not far from a formal structure-based name. Copolymers, Block Polymers, and Graft Polymers. When more than one monomer is involved, monomer-based names are more complex. Some common polymers have been given names based on an apparent structure, as with “poly(ethylene terephthalate)”. A better system has been approved by the IUPAC.1 With this method, the arrangement of the monomeric units is introduced through use of an italicized connective placed between the names of the monomers. For monomer names represented by A, B, and C, the various types of arrangements are shown in Table 1. Table 2 contains examples of common or semi-systematic names of copolymers. The systematic names of comonomers may also be used; thus, the polyacrylonitrile-block-polybutadieneblock-polystyrene polymer in Table 2 may also be named poly(prop-2-enenitrile)-block-polybuta-1,3-diene-blockpoly(ethenylbenzene). IUPAC does not require alphabetized names of comonomers within a polymer name; many names are thus possible for some copolymers. These connectives may be used in combination and with small, non-repeating (i.e. non-polymeric) junction units; see, for example, Table 2, line 8. A long dash may be used in place of the con-
13-1
nective -block-; thus, in Table 2, the polymers of lines 7 and 8 may also be written as shown on lines 9 and 10. IUPAC also recommends an alternative scheme for naming copolymers that comprises use of “copoly” as a prefix followed by the names of the comonomers, a solidus (an oblique stroke) to separate comonomer names, and addition before “copoly” of any applicable connectives listed in Table 2 except -co-. Table 3 gives the same examples shown in Table 2 but with the alternative format. Comonomer names need not be parenthesized. TABLE 1. IUPAC Source-Based Copolymer Classification No.
Copolymer type
Connective
Example
1
Unspecified or unknown
-co-
poly(A-co-B)
2
Random (obeys Bernoullian distribution)
-ran-
poly(A-ran-B)
3
Statistical (obeys known statistical laws)
-stat-
poly(A-stat-B)
4
Alternating (for two monomeric units)
-alt-
poly(A-alt-B)
5
Periodic (ordered sequence for 2 or more monomeric units)
-per-
poly(A-per-B-perC)
6
Block (linear block arrangement)
-block-
polyA-block-polyB
7
Graft (side chains connected to main chains)
-graft-
polyA-graft-polyB
TABLE 2. Examples of Source-Based Copolymer Nomenclature No. 1 2 3 4 5
Copolymer name poly(propene-co-methacrylonitrile) poly[(acrylic acid)-ran-(ethyl acrylate)] poly(butene-stat-ethylene-stat-styrene) poly[(sebacic acid)-alt-butanediol] poly[(ethylene oxide)-per-(ethylene oxide)-pertetrahydrofuran] polyisoprene-graft-poly(methacrylic acid) polyacrylonitrile-block-polybutadiene-block-polystyrene polystyrene-block-dimethylsilylene-block-polybutadiene polyacrylonitrile—polybutadiene—polystyrene polystyrene—dimethylsilylene—polybutadiene
6 7 8 9 10
TABLE 3. Examples of Source-Based Copolymer Nomenclature (Alternative Format) No. 1 2 3 4 5 6 7
Polymer name copoly(propene/methacrylonitrile) ran-copoly(acrylic acid/ethyl acrylate) stat-copoly(butene/ethylene/styrene) alt-copoly(sebacic acid/butanediol) block-copoly(acrylonitrile/butadiene/styrene) per-copoly(ethylene oxide/ethylene oxide/tetrahydrofuran) graft-copoly(isoprene/methacrylic acid)
13-2
Nomenclature for Organic Polymers
Source-based nomenclature for non-linear macromolecules and macromolecular assemblies is covered by a 1997 IUPAC document.11 The types of polymers in these classes, together with their connectives, are given in Table 4; the terms shown may be used as connectives, prefixes, or both to designate the features present.
poly(methacrylic acid)-blend-poly(ethyl acrylate) net-poly(4-methylstyrene-i-divinylbenzene)
TABLE 4. Connectives for Non-Linear Macromolecules and Macromolecular Assemblies
4
net-poly[styrene-alt-(maleic anhydride)]-i-(polyethylene glycol; polypropylene glycol)
No.
5
net-poly(ethyl methacrylate)-sipn-polyethylene
6
[net-poly(butadiene-stat-styrene)]-ipn-[net-poly(4methylstyrene-i-divinylbenzene)]
Type
Connective
1
Branched (type unspecified)
branch
2
Branched with branch point of functionality f
f-branch
3
Comb
comb
4
Cross-link
i (Greek iota)
5
Cyclic
cyclo
6
Interpenetrating polymer network
ipn
7
Long-chain branched
l-branch
8
Network
net
9
Polymer blend
blend
10
Polymer-polymer complex
compl
11
Semi-interpenetrating polymer network
sipn
12
Short-chain branched
sh-branch
13
Star
star
14
Star with f arms
f-star
TABLE 5. Non-Linear Macromolecules
4
5
6 7 8
Polymer name polyethylene-blend-polypropene
2
No. Polymer name 1 poly(methacrylic acid)comb-polyacrylonitrile
3
No. 1 3
Non-linear polymers are named by using the italicized connective as a prefix to the source-based name of the polymer component or components to which the prefix applies; some examples are listed in Table 5.
2
TABLE 6. Examples of Polymer Blends and Nets
Polymer structural features Comb polymer with a poly(methacrylic acid) backbone and polyacrylonitrile side chains comb-poly[ethylene-statComb polymer with unspecified (vinyl chloride)] backbone composition and statistical ethylene/vinyl chloride copolymer side chains polybutadiene-combComb polymer with butadiene (polyethylene; polypropene) backbone and side chains of polyethylene and polypropene star-(polyA; polyB; polyC; Star polymer with arms derived from polyD; polyE) monomers A, B, C, D, and E, respectively star-(polyA-block-polyBStar polymer with every arm block-polyC) comprising a tri-block segment derived from comonomers A, B, and C star-poly(propylene oxide) A star polymer prepared from propylene oxide 5-star-poly(propylene oxide) A 5-arm star polymer prepared from propylene oxide star-(polyacrylonitrile; A star polymer containing polypropylene) polyacrylonitrile arms of MW 10000 (Mr 10000: 25000) and polypropylene arms of MW 25000
Macromolecular assemblies held together by forces other than covalent bonds are named by inserting the appropriate italicized connective between names of individual components; Table 6 gives examples.
Structure-Based Polymer Nomenclature Regular Single-Strand Polymers Structure-based nomenclature has been approved by the IUPAC4 and is currently being updated; it is used by Chemical Abstracts.5 Monomer names are not used. To the extent that a polymer chain can be described by a repeating unit in the chain, it can be named “poly(repeating unit)”. For regular single-strand polymers, “repeating unit” is a bivalent group; for regular doublestrand (ladder and spiro) polymers, “repeating unit” is usually a tetravalent group.9 Since there are usually many possible repeating units in a given chain, it is necessary to select one, called the “constitutional repeating unit” (CRU) to provide a unique and unambiguous name, “poly(CRU)”, where “CRU” is a recitation of the names of successive units as one proceeds through the CRU from left to right. For this purpose, a portion of the main chain structure that includes at least two repeating sequences is written out. These sequences will typically be composed of bivalent subunits such as -CH2-, -O-, and groups from ring systems, each of which can be named by the usual nomenclature rules.6,7 Where a chain is simply one long sequence comprising repetition of a single subunit, that subunit is itself the CRU, as in “poly(methylene)” or “poly(1,4-phenylene)”. In chains having more than one kind of subunit, a seniority system is used to determine the beginning of the CRU and the direction in which to move along the main chain atoms (following the shortest path in rings) to complete the CRU. Determination of the first, most senior, subunit, is based on a descending order of seniority: (1) heterocyclic rings, (2) hetero atoms, (3) carbocyclic rings, and, lowest, (4) acyclic carbon chains. Within each of these classes, there is a further order of seniority that follows the usual rules of nomenclature. Heterocycles: A nitrogen-containing ring system is senior to a ring system not containing nitrogen.4,9 Further descending order of seniority is determined by: (i) the highest number of rings in the ring system (ii) the largest individual ring in the ring system (iii) the largest number of hetero atoms (iv) the greatest variety of hetero atoms Hetero atoms: The senior bivalent subunit is the one nearest the top, right-hand corner of the Periodic Table; the order of seniority is: O, S, Se, Te, N, P, As, Sb, Bi, Si, Ge, Sn, Pb, B, Hg. Carbocycles: Seniority4 is determined by: (i) the highest number of rings in the ring system (ii) the largest individual ring in the ring system (iii) degree of ring saturation; an unsaturated ring is senior to a saturated ring of the same size
Nomenclature for Organic Polymers
13-3
Carbon chains: Descending order of seniority is determined by: (i) chain length (longer is senior to shorter) (ii) highest degree of unsaturation (iii) number of substituents (higher number is senior to lower number) (iv) ascending order of locants (v) alphabetical order of names of substituent groups Among equivalent ring systems, preference is given to the one having lowest locants for the free valences in the subunit, and among otherwise identical ring systems, the one having least hydrogenation is senior. Lowest locants in unsaturated chains are also given preference. Lowest locants for substituents are the final determinant of seniority. Direction within the repeating unit depends upon the shortest path, which is determined by counting main chain atoms, both cyclic and acyclic, from the most senior subunit to another subunit of the same kind or to a subunit next lower in seniority. When identification and orientation of the CRU have been accomplished, the CRU is named by writing, in sequence, the names of the largest possible subunits within the CRU from left to right. For example, the main chain of the polymer traditionally named “poly(ethylene terephthalate)” has the structure shown in Figure 1. O ...
CH2 CH2
number of which are minimized. The constitutional units may include regular or irregular blocks as well as atoms or atomic groupings, and each is named by the method described above or by the rules of organic nomenclature. The solidus denotes an unspecified arrangement of the units within the main chain.10 For example, a statistical copolymer derived from styrene and vinyl chloride with the monomeric units joined head-to-tail is named “poly(l-chloroethylene/l-phenylethylene)”. A polymer obtained by 1,4-polymerization and both headto-head and head-to-tail 1,2- polymerization of 1,3-butadiene would be named “poly(but-1-ene-l,4-diyl/l-vinylethylene/2-vinylethylene)”.12 In graphic representations of these polymers, shown in Figure 2, the hyphens or dashes at each end of each CRU depiction are shown completely within the enclosing parentheses; this indicates that they are not necessarily the terminal bonds of the macromolecule.
Figure 2. Graphic representations of copolymers.
O C
*
C O
O
O CH2 CH2
O
C C
O
CH 2
O CH2
O
O
C O ... C O
Figure 1. Structure-based name: poly(oxyethyleneoxyterephthaloyl); traditional name: poly(ethylene terephthalate).
The CRU in Figure 1 is enclosed in brackets and read from left to right. It is selected because (1) either backbone oxygen atom qualifies as the “most senior subunit”, (2) the shortest path length from either -O- to the other -O- is via the ethylene subunit. Orientation of the CRU is thus defined by (1) beginning at the -Omarked with an asterisk, and (2) reading in the direction of the arrow. The structure-based name of this polymer is therefore “poly(oxyethyleneoxyterephthaloyl)”, not much longer than the traditional name and much more adaptable to the complexities of substitution. As organic nomenclature evolves, more systematic names may be used for subunits, e.g. “ethane-1,2-diyl” instead of “ethylene”. IUPAC still prefers “ethylene” for the -CH2-CH2- unit, however, but also accepts “ethane-1,2-diyl”. Structure-based nomenclature can also be used when the CRU backbone has no carbon atoms. An example is the polymer traditionally named “poly(dimethylsiloxane)”, which on the basis of structure would be named “poly(oxydimethylsilylene)” or “poly(oxydimethylsilanediyl)”. This nomenclature method has also been applied to inorganic and coordination polymers8 and to double-strand (ladder and spiro) organic polymers.9
Irregular Single-Strand Polymers Polymers that cannot be described by the repetition of a single CRU or comprise units not all connected identically in a directional sense can also be named on a structure basis.10 These include copolymers, block and graft polymers, and star polymers. They are given names of the type “poly(A/B/C...)”, where A, B, C, etc. are the names of the component constitutional units, the
A long hyphen is used to separate components in names of block polymers, as in “poly(A)—poly(B)—poly(C)”, or “poly(A) —X—poly(B)” in which X is a non-polymeric junction unit, e.g. dimethylsilylene. In graphic representations of these polymers, the blocks are shown connected when the bonding is known (Figure 3, for example); when the bonding between the blocks is unknown, the blocks are separated by solidi and are shown completely within the outer set of enclosing parentheses (Figure 4, for example).10,13
Figure 3. polystyrene—polyethylene—polystyrene.
Figure 4. poly[poly(methyl methacrylate)—polystyrene—poly(methyl acrylate)].
Graft polymers are named in the same way as a substituted polymer but without the ending “yl” for the grafted chain; the name of a regular polymer, comprising Z units in which some have grafts of “poly(A)”, is “poly[Z/poly(A)Z]”. Star polymers are treated as a central unit with substituent blocks, as in “tetrakis(polymethylene)silane”.10,13
Other Nomenclature Articles and Publications In addition to the Chemical Abstracts and IUPAC documents cited above and listed below, other articles on polymer nomenclature are available. A 1999 article lists significant documents on polymer nomenclature published during the last 50 years in books, encyclopedias, and journals by Chemical Abstracts,
13-4
Nomenclature for Organic Polymers
IUPAC, and individual authors.14 A comprehensive review of source-based and structure-based nomenclature for all of the major classes of polymers,15 and a short tutorial on the correct identification, orientation, and naming of most commonly encountered constitutional repeating units were both published in 2000.16
References and Notes 1. International Union of Pure and Applied Chemistry, Compendium of Macromolecular Nomenclature, Blackwell Scientific Publications, Oxford, 1991. 2. International Union of Pure and Applied Chemistry, Stereochemical Definitions and Notations Relating to Polymers (Recommendations 1980), Pure Appl. Chem., 53, 733-752 (1981). 3. International Union of Pure and Applied Chemistry, Source-Based Nomenclature for Copolymers (Recommendations 1985), Pure Appl. Chem., 57, 1427-1440 (1985). 4. International Union of Pure and Applied Chemistry, Nomenclature of Regular Single-Strand Organic Polymers (Recommendations 1975, Pure Appl. Chem., 48, 373-385 (1976). 5. Chemical Abstracts Service, Naming and Indexing of Chemical Substances for Chemical Abstracts, Appendix IV, Chemical Abstracts 1999 Index Guide. 6. International Union of Pure and Applied Chemistry, A Guide to IUPAC Nomenclature of Organic Compounds (1993), Blackwell Scientific Publications, Oxford, 1993. 7. International Union of Pure and Applied Chemistry, Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H, Pergamon Press, Oxford, 1979. 8. International Union of Pure and Applied Chemistry, Nomenclature of Regular Double-Strand and Quasi-Single-Strand Inorganic and
9.
10.
11.
12.
13.
14.
15.
16.
Coordination Polymers (Recommendations 1984), Pure Appl. Chem., 57, 149-168 (1985). International Union of Pure and Applied Chemistry, Nomenclature of Regular Double-Strand (Ladder and Spiro) Organic Polymers (Recommendations 1993), Pure Appl. Chem., 65, 1561-1580 (1993). International Union of Pure and Applied Chemistry, Structure-Based Nomenclature for Irregular Single-Strand Organic Polymers (Recommendations 1994), Pure Appl. Chem., 66, 873-889 (1994). International Union of Pure and Applied Chemistry, “Source-Based Nomenclature for Non-Linear Macromolecules and Macromolecular Assemblies (Recommendations 1997).” Pure Appl. Chem., 69, 25112521 (1997). Poly(1,3-butadiene) obtained by polymerization of 1,3-butadiene in the so-called 1,4- mode is frequently drawn incorrectly in publications as -(CH2-CH=CH-CH2)n-; the double bond should be assigned the lowest locant possible, i.e. the structure should be drawn as –(CH=CH-CH2-CH2)n-. International Union of Pure and Applied Chemistry, “Graphic Representations (Chemical Formulae) of Macromolecules (Recommendations 1994).” Pure Appl. Chem., 66, 2469-2482 (1994). Wilks, E. S. Macromolecular Nomenclature Note No. 17: “Whither Nomenclature?” Polym. Prepr. 40(2), 6-11 (1999); also available at www.chem.umr.edu/~poly/nomenclature.html. Wilks, E. S. “Polymer Nomenclature: The Controversy Between Source-Based and Structure-Based Representations (A Personal Perspective).” Prog. Polym. Sci. 25, 9-100 (2000). Wilks, E. S. Macromolecular Nomenclature Note No. 18: “SRUs: Using the Rules.” Polym. Prepr. 41(1), 6a-11a (2000); also available at www.chem.umr.edu/~poly/nomenclature.html; a .pdf format version is also available.
SOLVENTS FOR COMMON POLYMERS Abbreviations: HC: hydrocarbons MEK: methyl ethyl ketone
Polyethylene (HDPE) Polypropylene (atactic) Polybutadiene Polystyrene Polyacrylates Polymethacrylates Polyacrylamide Poly(vinyl ethers) Poly(vinyl alcohol) Poly(vinyl acetate) Poly(vinyl chloride) Poly(vinylidene chloride) Poly(vinyl fluoride) Polyacrylonitrile Poly(oxyethylene) Poly(2,6-dimethylphenylene oxide) Poly(ethylene terephthalate) Polyurethanes (linear) Polyureas Polysiloxanes Poly[bis(2,2,2-trifluoroethoxy)-phosphazene]
THF: tetrahydrofuran DMF: dimethylformamide DMSO: dimethylsulfoxide
HC and halogenated HC HC and halogenated HC HC, THF, ketones ethylbenzene, CHCl3, CCl4, THF, MEK aromatic HC, chlorinated HC, THF, esters, ketones aromatic HC, chlorinated HC, THF, esters, MEK water halogenated HC, MEK, butanol glycols (hot), DMF aromatic HC, chlorinated HC, THF, esters, DMF THF, DMF, DMSO THF (hot), dioxane, DMF DMF, DMSO (hot) DMF, DMSO aromatic HC, CHCl3, alcohols, esters, DMF aromatic HC, halogenated HC phenol, DMSO (hot) aromatic HC, THF, DMF phenol, formic acid HC, THF, DMF THF, ketones, ethyl acetate
13-5
Section 13.indb 5
4/30/05 9:55:16 AM
GLASS TRANSITION TEMPERATURE FOR SELECTED POLYMERS Robert B. Fox Polymer names are based on the IUPAC structure-based nomenclature system described in the table “Naming Organic Polymers”. Within each category, names are listed in alphabetical order. Source-based and trivial names are also given (in italics) for the most common polymers. The table does not include polymers for which Tg is not clearly defined because of variability of structure or because of reactions taking place near the glass transition.
All values of Tg cited in this table have been determined by differential scanning calorimetry (DSC) except those values indicated by:
Polymer name ACYCLIC CARBON CHAINS Polyalkadienes Poly(alkenylene) Polyalkadiene –[CH=CHCH2CH2]– Poly(cis-1-butenylene) cis-1,3-polybutadiene [PBD] Poly(trans-1-butenylene) trans-1,3-polybutadiene [PBD] Poly(1-chloro-cis-1-butenylene) cis-1,3-polychloroprene Poly(1-chloro-trans-1-butenylene) trans-1,3-polychloroprene Poly(1-methyl-cis-1-butenylene) cis-1,3-polyisoprene Poly(1-methyl-trans-1-butenylene) trans-1,3-polyisoprene Poly(1,4,4-trifluoro-1-butenylene)
(D) (Dil) (M)
dynamic method dilatometry mechanical method Glass transition temperature (Tg/K)
171 215 253 233 200 207 238
Polyalkenes Poly(alkylethylene) Poly(alkylethylene) -[RCHCH2]Poly(1-benzylethylene) Poly(1-butylethylene) Poly(1-cyclohexylethylene) (atactic) Poly(1-cyclohexylethylene) (isotactic) Poly(1,1-dimethylethylene) Polyisobutylene [PIB] Poly(ethylene) Poly(methylene) Poly(1-phenethylethylene) Poly(propylene) (isotactic) Poly(propylene) (syndiotactic) Poly[1-(2-pyridyl)ethylene] Poly[1-(4-pyridyl)ethylene] Poly(1-vinylethylene)
333 223 393 406 (D) 200 148 155 283 272 ca. 265 377 415 273
Polyacrylics Poly[1-(alkoxycarbonyl)ethylene) Poly(alkyl acrylate) –[(ROCO)CHCH2]– Poly[1-(benzyloxycarbonyl)ethylene] Poly[1-(butoxycarbonyl)ethylene] Poly(butyl acrylate) [PBA] Poly[1-(sec-butoxycarbonyl)ethylene] Poly[1-(butoxycarbonyl)-1-cyanoethylene] Poly[1-(butylcarbamoyl)ethylene] Poly(1-carbamoylethylene) Polyacrylamide [PAM] Poly(1-carboxyethylene)
279 219 (M) 251 358 319 (M) 438 379
13-6
Section 13.indb 6
4/30/05 9:55:17 AM
Glass Transition Temperature for Selected Polymers Polymer name Poly(acrylic acid) [PAA] Poly[1-(2-chlorophenoxycarbonyl)ethylene] Poly[1-(4-chlorophenoxycarbonyl)ethylene] Poly[1-(4-cyanobenzyloxycarbonyl)ethylene] Poly[1-(2-cyanoethoxycarbonyl)ethylene] Poly[1-(cyanomethoxycarbonyl)ethylene)] Poly[1-(4-cyanophenoxycarbonyl)ethylene] Poly[1-(cyclohexyloxycarbonyl)ethylene] Poly[1-(2,4-dichlorophenoxycarbonyl)ethylene] Poly[1-(dimethylcarbamoyl)ethylene] Poly[1-(ethoxycarbonyl)ethylene] Poly(ethyl acrylate) [PEA] Poly[1-(ethoxycarbonyl)-1-fluoroethylene] Poly[1-(2-ethoxycarbonylphenoxycarbonyl)ethylene] Poly[1-(3-ethoxycarbonylphenoxycarbonyl)ethylene] Poly[1-(4-ethoxycarbonylphenoxycarbonyl)ethylene] Poly[1-(2-ethoxyethoxycarbonyl)ethylene] Poly[1-(3-ethoxypropoxycarbonyl)ethylene] Poly[1-(isopropoxycarbonyl)ethylene] Poly[1-(methoxycarbonyl)ethylene] Poly(methyl acrylate) [PMA] Poly[1-(2-methoxycarbonylphenoxycarbonyl)ethylene] Poly[1-(3-methoxycarbonylphenoxycarbonyl)ethylene] Poly[1-(4-methoxycarbonylphenoxycarbonyl)ethylene] Poly[1-(2-methoxyethoxycarbonyl)ethylene] Poly[1-(4-methoxyphenoxycarbonyl)ethylene] Poly[1-(3-methoxypropoxycarbonyl)ethylene] Poly[1-(2-naphthyloxycarbonyl)ethylene] Poly[1-(pentachlorophenoxycarbonyl)ethylene] Poly[1-(phenethoxycarbonyl)ethylene] Poly[1-(phenoxycarbonyl)ethylene] Poly[1-(m-tolyloxycarbonyl)ethylene] Poly[1-(o-tolyloxycarbonyl)ethylene] Poly[1-(p-tolyloxycarbonyl)ethylene] Poly[1-(2,2,2-trifluorethoxycarbonyl)ethylene]
13-7 Glass transition temperature (Tg/K) 326 331 317 277 433 Dil 363 292 333 362 249 316 303 297 310 223 218 267-270 283 319 311 340 223 324 198 358 420 270 330 298 325 316 263
Polymethacrylics Poly[1-(alkoxycarbonyl)-1-methylethylene] Poly(alkyl methacrylate) –[(ROCO)(Me)CCH2]– Poly[1-(benzyloxycarbonyl)-1-methylethylene] Poly[1-(2-bromoethoxycarbonyl)-1-methylethylene] Poly[(1-(butoxycarbonyl)-1-methylethylene] Poly(butyl methacrylate) [PBMA] Poly[1-(sec-butoxycarbonyl)-1-methylethylene] Poly[1-(tert-butoxycarbonyl)-1-methylethylene)] Poly[1-(2-chloroethoxycarbonyl)-1-methylethylene] Poly[1-(2-cyanoethoxycarbonyl)-1-methylethylene] Poly[1-(4-cyanophenoxycarbonyl)-1-methylethylene] Poly[1-(cyclohexyloxycarbonyl)-1-methylethylene] (atactic) Poly[1-(cyclohexyloxycarbonyl)-1-methylethylene)] (isotactic) Poly[1-(dimethylaminoethoxycarbonyl)-1-methylethylene] Poly[1-(ethoxycarbonyl)-1-ethylethylene] Poly[1-(ethoxycarbonyl)-1-methylethylene] (atactic) Poly(ethyl methacrylate) [PEMA] Poly[1-(ethoxycarbonyl)-1-methylethylene] (isotactic) Poly[1-(ethoxycarbonyl)-1-methylethylene)] (syndiotactic) Poly[1-(hexyloxycarbonyl)-1-methylethylene] Poly[1-(isobutoxycarbonyl)-1-methylethylene] Poly[1-(isopropoxycarbonyl)-1-methylethylene] Poly[1-(methoxycarbonyl)-1-methylethylene] (atactic) Poly(methyl methacrylate) [PMMA] Poly[1-(methoxycarbonyl)-1-methylethylene)] (isotactic) Poly[1-(methoxycarbonyl)-1-methylethylene)] (syndiotactic) Poly[1-(4-methoxycarbonylphenoxy)-1-methylethylene]
Section 13.indb 7
327 325 293 333 391 ca 315 364 428 356 324 292 300 338 285 339 268 326 354 378 311 378 379
4/30/05 9:55:17 AM
13-8 Polymer name Poly[1-(methoxycarbonyl)-1-phenylethylene)] (atactic) Poly[1-(methoxycarbonyl)-1-phenylethylene)] (isotactic) Poly[1-methyl-1-(phenethoxycarbonyl)ethylene] Poly[1-methyl-1-(phenoxycarbonyl)ethylene]
Glass Transition Temperature for Selected Polymers Glass transition temperature (Tg/K) 391 397 299 383
Polyvinyl ethers, alcohols, and ketones Poly(1-alkoxyethylene) Poly(alkyl vinyl ether) –[ROCHCH2]– Poly(1-hydroxyethylene) Poly(vinyl alcohol) –[HOCHCH2]– Poly(1-alkanoylethylene) Poly(alkyl vinyl ketone) –[RCOCHCH2]– Poly(1-butoxyethylene) Poly(1-sec-butoxyethylene) Poly(1-tert-butoxyethylene) Poly[1-(butylthio)ethylene] Poly(1-ethoxyethylene) Poly[1-(4-ethylbenzoyl)ethylene] Poly(1-hydroxyethylene) Poly(vinyl alcohol) [PVA] Poly(hydroxymethylene) Poly(1-isopropoxyethylene) Poly[1-(4-methoxybenzoyl)ethylene] Poly(1-methoxyethylene) Poly(methyl vinyl ether) [PMVE] Poly[1-(methylthio)ethylene] Poly(1-propoxyethylene) Poly[1-(trifluoromethoxy)trifluoroethylene]
218 253 361 253 230 325 358 (D) 407 270 319 (M) 242 272 224 268
Polyvinyl halides and nitriles Poly(1-haloethylene) Poly(vinyl halide) –[XCHCH2]– Poly(1-cyanoethylene) Poly(acrylonitrile) –[NCCHCH2]– Poly(1-chloroethylene) Poly(vinyl chloride) [PVC] Poly(chlorotrifluoroethylene) Poly(1-cyanoethylene) Polyacrylonitrile [PAN] Poly(1-cyano-1-methylethylene) Polymethacrylonitrile Poly(1,1-dichloroethylene) Poly(vinylidene chloride) Poly(1,1-difluoroethylene) Poly(vinylidene fluoride) Poly(1-fluoroethylene) Poly(vinyl fluoride) Poly(1-hexafluoropropylene) Poly[1-(2-iodoethyl)ethylene] Poly(tetrafluoroethylene) Poly[1-(trifluoromethyl)ethylene]
354 373 370 393 255 ca 233 314 (M) 425 343 (160) 300
Polyvinyl esters Poly[1-(alkanoyloxy)ethylene] Poly(vinyl alkanoate) –[RCOOCHCH2]– Poly(1-acetoxyethylene) Poly(vinyl acetate) [PVAc] Poly[1-(benzoyloxy)ethylene] Poly[1-(4-bromobenzoyloxy)ethylene] Poly[1-(2-chlorobenzoyloxy)ethylene] Poly[1-(3-chlorobenzoyloxy)ethylene] Poly[1-(4-chlorobenzoyloxy)ethylene] Poly[1-(cyclohexanoyloxy)ethylene] Poly[1-(4-ethoxybenzoyloxy)ethylene] Poly[1-(4-ethylbenzoyloxy)ethylene]
Section 13.indb 8
305 344 365 335 338 357 349 (M) 343 326
4/30/05 9:55:18 AM
Glass Transition Temperature for Selected Polymers Polymer name Poly[1-(4-isopropylbenzoyloxy)ethylene] Poly[1-(2-methoxybenzoyloxy)ethylene] Poly[1-(3-methoxybenzoyloxy)ethylene] Poly[1-(4-methoxybenzoyloxy)ethylene] Poly[1-(4-methylbenzoyloxy)ethylene] Poly[1-(4-nitrobenzoyloxy)ethylene] Poly[1-(propionoyloxy)ethylene] Polystyrenes Poly(1-phenylethylene) Polystyrene –[C6H5CHCH2]– Poly[1-(4-acetylphenyl)ethylene] Poly[1-(4-benzoylphenyl)ethylene] Poly[1-(4-bromophenyl)ethylene] Poly[1-(4-butoxyphenyl)ethylene] Poly[1-(4-butoxycarbonylphenyl)ethylene] Pol[(1-(4-butylphenyl)ethylene] Poly[1-(4-carboxyphenyl)ethylene] Poly[1-(2-chlorophenyl)ethylene] Poly[1-(3-chlorophenyl)ethylene] Poly[1-(4-chlorophenyl)ethylene] Poly[1-(2,4-dichlorophenyl)ethylene] Poly[1-(2,5-dichlorophenyl)ethylene] Poly[1-(2,6-dichlorophenyl)ethylene] Poly[1-(3,4-dichlorophenyl)ethylene] Poly[1-(2,4-dimethylphenyl)ethylene] Poly[1-(4-(dimethylamino)phenyl)ethylene] Poly[1-(4-ethoxyphenyl)ethylene] Poly[1-(4-ethoxycarbonylphenyl)ethylene] Poly[1-(4-fluorophenyl)ethylene] Poly[1-(4-iodophenyl)ethylene] Poly[1-(4-methoxyphenyl)ethylene] Poly[1-(4-methoxycarbonylphenyl)ethylene] Poly(1-methyl-1-phenylethylene) Poly(α-methylstyrene) Poly[1-(2-(methylamino)phenyl)ethylene] Poly(1-phenylethylene) Polystyrene [PS] Poly[1-(4-propoxyphenyl)ethylene] Poly[1-(4-propoxycarbonylphenyl)ethylene] Poly(1-o-tolylethylene)
13-9 Glass transition temperature (Tg/K) 342 338 ca 317 360 343 395 283 (M)
389 (M) 371 (M) 391 ca 320 (M) 349 (M) 279 386 (M) 392 363 383 406 379 440 401 385 398 (M) ca 359 (M) 367 (M) 368 429 386 386 (M) 373 462 (M) 373 343 (M) 365 (M) 409
CHAINS WITH CARBOCYCLIC UNITS Poly(arylenealkylene) –[–Ar–(CH2)n]– Poly[1-(2-bromo-1,4-phenylene)ethylene] Poly[1-(2-chloro-1,4-phenylene)ethylene] Poly[1-(2-cyano-1,4-phenylene)ethylene] Poly[1-(2,5-dimethyl-1,4-phenylene)ethylene] Poly[1-(2-ethyl-1,4-phenylene)ethylene] Poly[1-(1,4-naphthylene)ethylene] Poly[1-(1,4-phenylene)ethylene]
353 (M) 343 (M) 363 (M) 373 (M) 298 (M) 433 (M) ca 353 (M)
CHAINS WITH HETEROATOM UNITS Main chain oxide units Poly(oxyalkylene) Poly(alkylene oxide) –[O(CH2)n]– Poly[oxy(1,1-bis(chloromethyl)trimethylene)] Poly[oxy(1-(bromomethyl)ethylene)] Poly[oxy(1-(butoxymethyl)ethylene)] Poly[oxy(1-butylethylene)] Poly[oxy(1-tert-butylethylene)] Poly[oxy(1-(chloromethyl)ethylene)]
Section 13.indb 9
265 259 194 203 308 251
4/30/05 9:55:18 AM
13-10
Glass Transition Temperature for Selected Polymers
Polymer name Poly(epichlorohydrin) Poly[oxy(2,6-dimethoxy-1,4-phenylene)] Poly[oxy(1,1-dimethylethylene)] Poly[oxy(2,6-dimethyl-1,4-phenylene)] Poly[oxy(2,6-diphenyl-1,4-phenylene)] Poly[oxy(1-ethylethylene)] Poly(oxyethylidene) Polyacetaldehyde Poly[oxy(1-(methoxymethyl)ethylene)] Poly[oxy(2-methyl-6-phenyl-1,4-phenylene)] Poly[oxy(1-methyltrimethylene)] Poly[oxy(2-methyltrimethylene)] Poly(oxy-1,4-phenylene) Poly(phenylene oxide) [PPO] Poly[oxy(1-phenylethylene)] Poly(oxytetramethylene) Poly(tetrahydrofuran) [PTMO] Poly(oxytrimethylene)
Glass transition temperature (Tg/K) 440 264 482 493 203 243 211 428 223 (D) 218 358 313 189 195
Main-chain ester or anhydride units Poly(oxyalkyleneoxyalkanedioyl) Poly(alkylene alkanedioate)-–[O(CH2)mOCO(CH2)nCO]– Poly(oxyadipoyloxydecamethylene) Poly(oxyadipoyloxy-1,4-phenyleneisopropylidene-1,4-phenylene) Poly(oxycarbonyloxy-1,4-phenylene-isopropylidene-1,4-phenylene) Bisphenol A polycarbonate Poly(oxycarbonylpentamethylene) Poly(oxycarbonyl-1,4-phenylenemethylene-1,4-phenylene) Poly(oxycarbonyl-1,4-phenyleneisopropylidene-1,4-phenylene) Poly[oxy(2,6-dimethyl-1,4-phenyleneisopropylidene-3,5-dimethyl-1,4-phenylene)oxysebacoyl] Poly(oxyethylenecarbonyl-1,4-cyclohexylenecarbonyl) (trans) Poly(oxyethyleneoxycarbonyl-1,4-naphthylenecarbonyl) Poly(oxyethyleneoxycarbonyl-1,5-naphthylenecarbonyl) Poly(oxyethyleneoxycarbonyl-2,6-naphthylenecarbonyl) Poly(oxyethyleneoxycarbonyl-2,7-naphthylenecarbonyl) Poly(oxyethyleneoxyterephthaloyl) Poly(ethylene terephthalate) [PET] Poly(oxyisophthaloyl) Poly(oxy(1-oxo-2,2-dimethyltrimethylene)) Poly(pivalolactone) Poly(oxy-1,4-phenyleneisopropylidene-1,4-phenyleneoxysebacoyl) Poly(oxy-1,4-phenyleneoxy-1,4-phenyleneoxy-carbonyl-1,4-phenylene) [PEEK] Poly(oxypropyleneoxyterephthaloyl) Poly[oxyterephthaloyloxy(2,6-dimethyl-1,4-phenyleneisopropylidene-3,5-dimethyl-1,4-(D)phenylene)] Poly(oxyterephthaloyloxyoctamethylene) Poly(oxyterephthaloyloxy-1,4-phenyleneisopropylidene-1,4-phenylene) Poly(bisphenol A terephthalate) Poly(oxytetramethyleneoxyterephthaloyl) Poly(butylene terephthalate) [PBT]
217 341 422 213 395 333 318 291 337 344 386 392 342 403 (D) 263 280 416 341 498 318 (D) 478 323
Main-chain amide units Poly(iminoalkyleneiminoalkanedioyl) Poly(alkylene alkanediamide)–[NH(CH2)mNHCO(CH2)nCO]– Poly(iminoadipoyliminodecamethylene) Nylon 10,6 Poly(iminoadipoyliminohexamethylene) Nylon 6,6 Poly(iminoadipoyliminooctamethylene) Nylon 8,6 Poly[iminoadipoyliminotrimethylene(methylimino)trimethylene] Poly(iminocarbonyl-1,4-cyclohexylenemethylene) Poly[iminocarbonyl-1,4-phenylene(2-oxoethylene)iminohexamethylene] Poly(iminoethylene-1,4-phenyleneethyleneiminosebacoyl)
Section 13.indb 10
313 ca 323 318 278 466 377 378 (D)
4/30/05 9:55:19 AM
Glass Transition Temperature for Selected Polymers Polymer name Poly(iminohexamethyleneiminoazelaoyl) Nylon 6,9 Poly(iminohexamethyleneiminododecanedioyl) Nylon 6, 12 Poly(iminohexamethyleneiminopimeloyl) Nylon 6,7 Poly(iminohexamethyleneiminosebacoyl) Nylon 6,10 Poly(iminohexamethyleneiminosuberoyl) Nylon 6,8 Poly(iminoisophthaloylimino-4,4′-biphenylylene) Poly(iminoisophthaloyliminohexamethylene) Poly(iminoisophthaloyliminomethylene-1,4-cyclohexylenemethylene) Poly(iminoisophthaloyliminomethylene-1,3-phenylenemethylene) Poly[iminomethylene(2,5-dimethyl-1,4-phenylene)methyleneiminosuberoyl] Poly(imino-1,5-naphthyleneiminoisophthaloyl) Poly(imino-1,5-naphthyleneiminoterephthaloyl) Poly(iminooctamethyleneiminodecanedioyl) Nylon 8,10 Poly(iminooxalyliminohexamethylene) Nylon 6,2 Poly[imino(1-oxohexamethylene)] Nylon 6 Poly[imino(1-oxodecamethylene)] Nylon 10 Poly[imino(1-oxoheptamethylene)] Nylon 7 Poly[imino(1-oxo-3-methyltrimethylene] Poly[imino(1-oxononamethylene)] Nylon 9 Poly[imino(1-oxooctamethylene)] Nylon 8 Poly[imino(1-oxotrimethylene)] Nylon 3 Poly(iminopentamethyleneiminoadipoyl) Nylon 5,6 Poly[iminopentamethyleneiminocarbonyl-1,4-phenylene(2-oxoethylene)] Poly(imino-1,3-phenyleneiminoisophthaloyl) Poly(imino-1,4-phenyleneiminoterephthaloyl) Poly(iminopimeloyliminoheptamethylene) Nylon 7,7 Poly(iminoterephthaloylimino-4,4′-biphenylylene) Poly(iminotetramethyleneiminoadipoyl) Nylon 4,6 Poly[iminotetramethyleneiminocarbonyl-1,4-phenylene(2-oxoethylene)] Poly(iminotrimethyleneiminoadipoyliminotrimethylene) Poly[iminotrimethyleneiminocarbonyl-1,4-phenylene(2-oxoethylene)] Poly(oxy-1,4-phenyleneiminoterephthaloyl-imino-1,4-phenylene) Poly(sulfonylimino-1,4-phenyleneiminoadipoylimino-1,4-phenylene)
13-11 Glass transition temperature (Tg/K) 331 319 331 323 330 558 390 481 438 (M) 351 598 578 333 430 326 315 325 369 319 323 384 318 376 553 (M) 618 328 613 316 357 307 382 613 467
Main-chain urethane units Poly(oxyalkyleneoxycarbonyliminoalkyleneiminocarbonyl)–[O(CH2)mOCONH(CH2)nNHCO]– Poly(oxyethyleneoxycarbonyliminohexamethyleneiminocarbonyl) Poly[oxyethyleneoxycarbonylimino(6-methyl-1,3-phenylene)iminocarbonyl] Poly(oxyethyleneoxycarbonylimino-1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxyhexamethyleneoxycarbonyliminohexamethyleneiminocarbonyl) Poly[oxyhexamethyleneoxycarbonylimino(6-methyl-1,3-phenylene)iminocarbonyl] Poly(oxyhexamethyleneoxycarbonylimino-1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxyoctamethyleneoxycarbonyliminohexamethyleneiminocarbonyl) Poly[oxyoctamethyleneoxycarbonylimino(6-methyl-1,3-phenylene)iminocarbonyl] Poly(oxyoctamethyleneoxycarbonylimino-1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl)
Section 13.indb 11
329 325 412 332 305 364 331 337 352
4/30/05 9:55:19 AM
13-12
Glass Transition Temperature for Selected Polymers
Polymer name Poly(oxytetramethyleneoxycarbonyliminohexamethyleneiminocarbonyl) Poly[oxytetramethyleneoxycarbonylimino(6-methyl-1,3-phenylene)iminocarbonyl] Poly(oxytetramethyleneoxycarbonylimino-1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl)
Glass transition temperature (Tg/K) 332 315 382
Main-chain siloxanes Poly[oxy(dialkylsilylene)] Poly(dialkylsiloxane) –[O(R2Si)]– Poly[oxy(dimethylsilylene)] Poly(dimethylsiloxane) [PDMS] Poly[oxy(dimethylsilylene)oxy-1,4-phenylene] Poly[oxy(dimethylsilylene)oxy-1,4-phenyleneisopropylidene-1,4-phenylene] Poly[oxy(diphenylsilylene)] Poly(diphenylsiloxane) Poly[oxy(diphenylsilylene)-1,3-phenylene] Poly[oxy((methyl)phenylsilylene)] Poly[oxy((methyl)-3,3,3-trifluoropropylsilylene] Main-chain sulfur-containing units Poly(dithioethylene) Poly(dithiomethylene-1,4-phenylenemethylene) Poly(oxy-4,4′-biphenylylene-1,4-phenylenesulfonyl-1,4-phenylene) Poly(oxycarbonyloxy-1,4-phenylenethio-1,4-phenylene) Poly(oxyethylenedithioethylene) Poly[oxy(2-hydroxytrimethylene)oxy-1,4-phenylenesulfonyl-1,4-phenylene] Poly(oxymethyleneoxyethylenedithioethylene) Poly(oxy-1,4-phenylenesulfinyl-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) Poly(oxy-1,4-phenylenesulfinyl-1,4-phenyleneoxy-1,4-phenyleneisopropylidene-1,4-phenylene) Poly(oxy-1,4-phenylenesulfonyl-1,4-phenylene) Poly(oxy-1,4-phenylenesulfonyl-4,4′-biphenylylenesulfonyl-1,4-phenylene) Poly[oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy(2,6-dimethyl-1,4-phenylene)isopropylidene (3,5-dimethyl-1,4-phenylene)] Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) Poly[oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenylene(hexafluoroisopropylidene)1,4-phenylene] Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenyleneisopropylidene-1,4-phenylene) Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1.4-phenylenemethylene-1,4-phenylene) Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1.4-phenylenethio-1,4-phenylene) Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxyterephthaloyl) Poly(oxytetramethylenedithiotetramethylene) Poly(sulfonyl-1,2-cyclohexylene) Poly(sulfonyl-1,3-cyclohexylene) Poly(sulfonyl-1,4-phenylenemethylene-1,4-phenylene) Poly(thio-1,3-cyclohexylene) Poly[thio(difluoromethylene)] Poly(thioethylene) Poly[thio(1-ethylethylene] Poly[thio(1-methyl-3-oxotrimethylene)] Poly[thio(1-methyltrimethylene)] Pol[(thio(1-oxohexamethylene)] Poly(thio-1,4-phenylene) Poly(thiopropylene) Main-chain heterocyclic units Poly(1,3-dioxa-4,6-cyclohexylenemethylene) Poly(vinyl formal) Poly[(2,6-dioxopiperidine-1,4-diyl)trimethylene] Poly[(2-methyl-1,3-dioxa-4,6-cyclohexylene)methylene] Poly(vinyl acetal) Poly(1,4-piperazinediylcarbonyloxyethyleneoxycarbonyl) Poly(1,4-piperazinediylisophthaloyl) Poly[(2-propyl-1,3-dioxa-4,6-cyclohexylene)methylene] Poly(vinyl butyral) Poly(3,6-pyridazinediyloxy-1,4-phenyleneisopropylidene-1,4-phenyleneoxy) Poly(2,5-pyridinediylcarbonyliminohexamethyleneiminocarbonyl)
Section 13.indb 12
148 363 (M) 318 (M) 238 ca 331 187 <193 223 296 503 (M) ca 383 220 (M) 428 214 478 (M) 438 (M) 487 533 508 (M) 478 (M) 478 (M) 449 453 (M) 448 (M) 522 197 401 381 497 221 155 223 218 285 214 292 370 226 378 363 355 333 465 (M) 322 453 (M) 322
4/30/05 9:55:20 AM
DIELECTRIC CONSTANT OF SELECTED POLYMERS This table lists typical values of the dielectric constant (more properly called relative permittivity) of some important polymers. Values are given for frequencies of 1 kHz, 1 MHz, and 1 GHz; in most cases the dielectric constant at frequencies below 1 kHz does not differ significantly from the value at 1 kHz. Since the dielectric constant of a polymeric material can vary with density, degree of crystallinity, and other details of a particular sample, the values given here should be regarded only as typical or average values.
Name Polyacrylonitrile Polyamides (nylons) Polybutadiene Polycarbonate Polychloroprene (neoprene) Polychlorotrifluoroethylene Polyethylene Poly(ethylene terephthalate) (Mylar) Polyisoprene (natural rubber) Poly(methyl methacrylate) Polyoxymethylene (polyformaldehyde) Poly(phenylene oxide) Polypropylene Polystyrene Polysulfones Polytetrafluoroethylene (teflon) Poly(vinyl acetate) Poly(vinyl chloride) Poly(vinylidene chloride) Poly(vinylidene fluoride)
References 1. Gray, D. E., Ed., American Institute of Physics Handbook, Third Edition, p. 5-132, McGraw Hill, New York, 1972. 2. Anderson, H. L., Ed., A Physicistâ&#x20AC;&#x2122;s Desk Reference, American Institute of Physics, New York, 1989. 3. Brandrup, J., and Immergut, E. H., Polymer Handbook, Third Edition, John Wiley & Sons, New York, 1989.
t/°C 25 25 84 25 23 25 23 23 23 27 27 80 25 23 25 25 25 25 50 150 25 100 23 23
1 kHz 5.5 3.50 11 2.5 2.92 6.6 2.65 2.3 3.25 2.6 3.12 3.80 3.8 2.59 2.3 2.6 3.13 2.1
3.39 5.3 4.6 12.2
1 MHz 4.2 3.14 4.4
1 GHz 2.8 2.8
2.8 6.3 2.46
4.2 2.39
3.0 2.5 2.76 2.7
2.8 2.4 2.6 2.6
2.59 2.3 2.6 2.10 2.1 3.5 8.3 2.9 3.3 3.2 8.9
2.3 2.6 2.1
2.8 2.7 2.7 4.7
13-13
Section 13.indb 13
4/30/05 9:55:21 AM
PRESSURE-VOLUME-TEMPERATURE RELATIONSHIP FOR POLYMER MELTS Christian Wohlfarth Numerous theoretical equations of state for polymer liquids have been developed. These, at the minimum, have to provide accurate fitting functions to experimental data. However, for the purpose of this table, the empirical Tait equation along with a polynomial expression for the zero pressure isobar is used. This equation is able to represent the experimental data for the melt state within the limits of experimental errors, i.e., the maximum deviations between measured and calculated specific volumes are about 0.001-0.002 cm3/g. The general form of the Tait equation is: V(P,T) = V(0,T){1 – C ln[1 + P/B(T)]}
(1)
where the coefficient C is usually taken to be a universal constant equal to 0.0894. T is the absolute temperature in K and P the pressure in MPa. The volume V is the specific volume in cm3/g. The Tait parameter B(T) has the very simple meaning that it is inversely proportional to the compressibility κ at constant temperature and zero pressure: κ(0,T) = –[1/V(0,T)](dV/dP) = C/B(T)
(2)
The B(T) function is usually given by: B(T) = B0 exp[–B1(T-273.15)]
(3)
but, sometimes a polynomial expression is used: B(T) = b0 + b1(T-273.15) + b2(T-273.15)2
(4)
The zero-pressure isobar V(0,T) is usually given by: V(0,T) = A0 + A1(T-273.15) + A2(T-273.15)2
(5)
where A0, A1, A2 are specific constants for a given polymer (the expression T-273.15 is used because fitting to the zero-pressure isobar is usually done in terms of Celsius temperature). Other forms for V(0,T) are also found in the literature, such as V(0,T) = A3 exp[A4(T-273.15)]
(6)
V(0,T) = A5 exp(A6T1.5)
(7)
or
The Tait equation is particularly useful to calculate derivative quantities, such as the isothermal compressibility and the thermal expansivity coefficients. The isothermal compressibility κ(P,T) is derived from equation (1) as: κ(P,T) = –(1/V)(dV/dP) = 1/{[P + B(T)][1/C - ln(1 + P/B(T))]} (8) and the thermal expansivity α(P,T) as: α(P,T) = (1/V)(dV/dT) = α(0,T) – PB1κ(P,T)
(9)
where α(0,T) represents the thermal expansivity at zero (atmospheric) pressure and is calculated from any suitable fit for the zero-pressure volume, such as equations (5) through (7) above. Because polymer melt PVT-behavior depends only slightly on polymer molar mass above the oligomeric region, usually no information is given in the original literature for the average molar mass of the polymers. Table 1 summarizes the polymers or copolymers considered here and the experimental ranges of pressure and temperature over which data are available. In Table 2 the Tait-equation functions, with parameters obtained from the fit, are given for 90 polymer or copolymer melts.
References 1. Zoller, P., J. Appl. Polym. Sci., 23, 1051-1056, 1979. 2. Starkweather, H. W., Jones, G. A., and Zoller, P., J. Polym. Sci., Pt. B Polym. Phys., 26, 257-266,1988. 3. Fakhreddine, Y. A., and Zoller, P., J. Polym. Sci., Pt. B Polym. Phys., 29, 1141-1146, 1991. 4. Rodgers, P. A., J. Appl. Polym. Sci., 48, 1061-1080, 1993. 5. Rodgers, P. A., J. Appl. Polym. Sci., 48, 2075-2083, 1993. 6. Yi, Y. X., and Zoller, P., J. Polym. Sci., Pt. B Polym. Phys., 31, 779-788, 1993. 7. Callaghan, T. A., and Paul, D. R., Macromolecules, 26, 2439–2450, 1993. 8. Wang, Y. Z., Hsieh, K. H., Chen, L. W.,and Tseng, H. C., J. Appl. Polym. Sci., 53, 1191-1201, 1994. 9. Privalko, V. P., Arbuzova, A. P., Korskanov, V. V., and Zagdanskaya, N. E., Polym. Intern., 35, 161-169, 1994. 10. Sachdev, V. K., Yashi, U., and Jain, R. K., J. Polym. Sci., Pt. B Polym. Phys., 36, 841-850, 1998.
where A3 and A4 or A5 and A6 are again specific constants for a given polymer.
13-14
S13_05.indd 14
5/2/05 1:36:56 PM
Pressure-Volume-Temperature Relationship for Polymer Melts
13-15
TABLE 1. Names of the Polymers, Abbreviation Used, and Range of Experimental Data Applied in the Determination
of the Equation Constants
Polymer Ethylene/propylene copolymer (50 wt%) Ethylene/vinyl acetate copolymer 18 wt% vinyl acetate 25 wt% vinyl acetate 28 wt% vinyl acetate 40 wt% vinyl acetate Polyamide-6 Polyamide-11 Polyamide-66 cis-1,4-Polybutadiene Polybutadiene, 8% 1,2-content Polybutadiene, 24% 1,2-content Polybutadiene, 40% 1,2-content Polybutadiene, 50% 1,2-content Polybutadiene, 87% 1,2-content Poly(1-butene), isotactic Poly(butyl methacrylate) Poly(butylene terephthalate) Poly(ε-caprolactone) Polycarbonate-bisphenol-A Polycarbonate-bisphenol-chloral Polycarbonate-hexafluorobisphenol-A Polycarbonate-tetramethylbisphenol-A Poly(cyclohexyl methacrylate) Poly(2,5-dimethylphenylene oxide) Poly(dimethyl siloxane) Poly(dimethyl siloxane) Mn = 1000 Poly(dimethyl siloxane) Mn = 4000 Poly(dimethyl siloxane) Mn = 6000 Poly(epichlorohydrin) Poly(ether ether ketone) Poly(ethyl acrylate) Poly(ethyl methacrylate) Polyethylene, high density Polyethylene, linear Polyethylene, linear, high MW Polyethylene, branched Polyethylene, low density Polyethylene, low density, type A Polyethylene, low density, type B Polyethylene, low density, type C Poly(ethylene oxide) Poly(ethylene terephthalate) Poly(4-hexylstyrene) Polyisobutylene Polyisoprene, 8% 3,4-content Polyisoprene, 14% 3,4-content Polyisoprene, 41% 3,4-content Polyisoprene, 56% 3,4-content Poly(methyl acrylate) Poly(methyl methacrylate) Poly(4-methyl-1-pentene) Poly(α-methylstyrene) Poly(o-methylstyrene) Polyoxymethylene Phenoxya Polysulfoneb Polyarylatec Polypropylene, atactic
S13_05.indd 15
EP50
Symbol
EVA18 EVA25 EVA28 EVA40 PA6 PA11 PA66 cPBD PBD-8 PBD-24 PBD-40 PBD-50 PBD-87 iPB PnBMA PBT PCL PC BCPC HFPC TMPC PcHMA PPO PDMS PDMS-10 PDMS-40 PDMS-60 PECH PEEK PEA PEMA HDPE LPE HMLPE BPE LDPE LDPE-A LDPE-B LDPE-C PEO PET P4HS PIB PI-8 PI-14 PI-41 PI-56 PMA PMMA P4MP PαMS PoMS POM PH PSF PAr aPP
T/K 413-523
P/MPa 0.1-63
Ref. 4
385-491 367-506 367-508 348-508 509-569 478-542 519-571 277-328 298-473 298-473 298-473 298-473 298-473 406-519 307-473 508-576 373-421 424-613 428-557 432-553 491-563 396-471 473-593 298-343 304-420 298-418 291-423 333-413 619-671 310-490 386-434 413-476 415-473 410-473 398-471 394-448 385-498 385-498 385-498 361-497 547-615 303-403 326-383 298-473 298-473 298-473 298-473 310-493 387-432 514-592 473-533 412-471 463-493 341-573 475-644 450-583 353-393
0.1-177 0.1-177 0.1-177 0.1-177 0.1-196 0.1-200 0.1-196 0.1-284 0.1-200 0.1-200 0.1-200 0.1-200 0.1-200 0.1-196 0.1-200 0.1-200 0.1-200 0.1-177 0.1-200 0.1-200 0.1-160 0.1-200 0.1-177 0.1-100 0.1-250 0.1-250 0.1-250 0.1-200 0.1-200 0.1-196 0.1-196 0.1-196 0.1-200 0.1-200 0.1-200 0.1-196 0.1-196 0.1-196 0.1-196 0.1- 68 0.1-196 30-100 0.1-100 0.1-200 0.1-200 0.1-200 0.1-200 0.1-196 0.1-200 0.1-196 0.1-170 0.1-180 0.1-196 0.1-177 0.1-196 0.1-177 0.1-100
4 4 4 4 4 5 4 4 6 6 6 6 6 4 4 3 4 4 4 4 4 4 4 4 10 10 10 4 4 4 4 4 4 4 4 4 1 1 1 4 4 4 4 6 6 6 6 4 4 4 7 4 2 4 4 4 4
5/2/05 1:36:56 PM
13-16 Polymer Polypropylene, isotactic Polystyrene Poly(tetrafluoroethylene) Poly(tetrahydrofuran) Poly(vinyl acetate) Poly(vinyl chloride) Poly(vinyl methyl ether) Poly(vinylidene fluoride) Styrene/acrylonitrile copolymer 2.7 wt% acrylonitrile 5.7 wt% acrylonitrile 15.3 wt% acrylonitrile 18.0 wt% acrylonitrile 40 wt% acrylonitrile 70 wt% acrylonitrile Styrene/butadiene copolymer 10 wt% styrene 23.5 wt% styrene 60 wt% styrene 85 wt% styrene Styrene/methyl methacrylate copolymer 20 wt% methyl methacrylate 60 wt% methyl methacrylate N-Vinylcarbazole/4-ethylstyrene copolymer 50 mol% ethylstyrene N-Vinylcarbazole/4-hexylstyrene copolymer 80 mol% hexylstyrene 67 mol% hexylstyrene 60 mol% hexylstyrene 50 mol% hexylstyrene 40 mol% hexylstyrene 33 mol% hexylstyrene 20 mol% hexylstyrene N-Vinylcarbazole/4-octylstyrene copolymer 50 mol% octylstyrene N-Vinylcarbazole/4-pentylstyrene copolymer 50 mol% pentylstyrene a b c
S13_05.indd 16
Pressure-Volume-Temperature Relationship for Polymer Melts Symbol iPP PS PTFE PTHF PVAc PVC PVME PVdF
T/K 443-570 388-469 603-645 335-439 308-373 373-423 303-471 451-521
P/MPa 0.1-196 0.1-200 0.1- 39 0.1- 78 0.1- 80 0.1-200 0.1-200 0.1-200
Ref. 4 4 4 4 4 4 4 5
SAN3 SAN6 SAN15 SAN18 SAN40 SAN70
378-539 370-540 405-531 377-528 373-543 373-544
0.1-200 0.1-200 0.1-200 0.1-200 0.1-200 0.1-200
4 4 4 4 4 4
SBR10 SBR23 SBR60 SBR85
393-533 393-533 393-533 393-533
0.1-196 0.1-196 0.1-196 0.1-196
8 8 8 8
SMMA20 SMMA60
383-543 383-543
0.1-200 0.1-200
4 4
VCES50
393-443
30-100
9
VCHS80 VCHS67 VCHS60 VCHS50 VCHS40 VCHS33 VCHS20
313-423 333-423 383-453 373-443 423-493 463-523 473-523
30-100 30-100 30-100 30-100 30-100 30-100 30-100
9 9 9 9 9 9 9
VCOS50
403-453
30-100
9
VCPS50
383-443
30-100
9
Phenoxy = Poly(oxy-2-hydroxytrimethyleneoxy-1,4-phenyleneisopropylidene-1,4-phenylene) Polysulfone = Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenyleneisopropylidene-1,4-phenylene) Polyarylate = Poly(oxyterephthaloyl/isophthaloyl T/I=50/50)oxy-1,4-phenyleneisopropylidene-1,4-phenylene
5/2/05 1:36:57 PM
Pressure-Volume-Temperature Relationship for Polymer Melts
13-17
TABLE 2. Tait Equation Parameter Functions for Polymer Melts
S13_05.indd 17
Polymer EP50 EVA18 EVA25 EVA28 EVA40 PA6 PA11 PA66 cPBD PBD-8 PBD-24 PBD-40 PBD-50 PBD-87 iPB PnBMA PBT PCL PC BCPC HFPC TMPC PcHMA PPO PDMS PDMS-10 PDMS-40 PDMS-60 PECH PEEK PEA PEMA HDPE LPE HMLPE BPE LDPE LDPE-A LDPE-B LDPE-C PEO PET P4HS PIB PI-8 PI-14 PI-41 PI-56 PMA PMMA P4MP
V(0,T)/cm3g–1 1.2291 + 5.799·10–5(T–273.15) + 1.964·10–6(T–273.15)2 1.02391 exp(2.173·10–5T1.5) 1.00416 exp(2.244·10–5T1.5) 1.00832 exp(2.241·10–5T1.5) 1.06332 exp(2.288·10–5T1.5) 0.7597 exp[4.701·10–4(T–273.15)] 0.9581 exp[6.664·10–4(T–273.15)] 0.7657 exp[6.600·10–4(T–273.15)] 1.0970 exp[6.600·10–4(T–273.15)] 1.1004 + 6.718·10–4(T–273.15) + 6.584·10–7(T–273.15)2 1.1049 + 6.489·10–4(T–273.15) + 7.099·10–7(T–273.15)2 1.1013 + 6.593·10–4(T–273.15) + 5.776·10–7(T–273.15)2 1.1037 + 5.955·10–4(T–273.15) + 7.789·10–7(T–273.15)2 1.1094 + 6.729·10–4(T–273.15) + 4.470·10–7(T–273.15)2 1.1417 exp[6.751·10–4(T–273.15)] 0.9341 + 5.5254·10–4(T–273.15) + 6.5803·10–6(T–273.15)2 + 1.5691·10–10(T–273.15)3 0.9640 – 1.017·10–3(T–273.15) + 3.065·10–6(T–273.15)2 0.9049 exp[6.392·10–4(T–273.15)] 0.73565 exp(1.859·10–5T1.5) 0.6737 + 3.634·10–4(T–273.15) + 2.370·10–7(T–273.15)2 0.6111 + 4.898·10–4(T–273.15) + 1.730·10–7(T–273.15)2 0.8497 + 5.073·10–4(T–273.15) + 3.832·10–7(T–273.15)2 0.8793 + 4.0504·10–4(T–273.15) + 7.774·10–7(T–273.15)2 – 7.7534·10–10(T–273.15)3 0.78075 exp(2.151·10–5T1.5) 1.0079 exp[9.121·10–4(T–273.15)] 0.8343 + 5.991·10–4(T–273.15) + 5.734·10–7(T–273.15)2 0.8018 + 7.072·10–4(T–273.15) + 3.635·10–7(T–273.15)2 0.8146 + 5.578·10–4(T–273.15) + 5.774·10–7(T–273.15)2 0.7216 exp[5.825·10–4(T–273.15)] 0.7158 exp[6.690·10–4(T–273.15)] 0.8756 exp[7.241·10–4(T–273.15)] 0.8614 exp[7.468·10–4(T–273.15)] 1.1595 + 8.0394·10–4(T–273.15) 0.9172 exp[7.806·10–4(T–273.15)] 0.8992 exp[8.502·10–4(T–273.15)] 0.9399 exp[7.341·10–4(T–273.15)] 1.1944 + 2.841·10–4(T–273.15) + 1.872·10–6(T–273.15)2 1.1484 exp[6.950·10–4(T–273.15)] 1.1524 exp[6.700·10–4(T–273.15)] 1.1516 exp[6.730·10–4(T–273.15)] 0.8766 exp[7.087·10–4(T–273.15)] 0.6883 + 5.90·10–4(T–273.15) 0.8251 + 6.77·10–4T 1.0750 exp[5.651·10–4(T–273.15)] 1.1030 + 6.488·10–4(T–273.15) + 5.125·10–7(T–273.15)2 1.0943 + 6.293·10–4(T–273.15) + 6.231·10–7(T–273.15)2 1.0951 + 6.188·10–4(T–273.15) + 6.629·10–7(T–273.15)2 1.0957 + 6.655·10–4(T–273.15) + 5.661·10–7(T–273.15)2 0.8365 exp[6.795·10–4(T–273.15)] 0.8254 + 2.8383·10–4(T–273.15) + 7.792·10–7(T–273.15)2 1.4075 – 9.095·10–4(T–273.15) + 3.497·10–6(T–273.15)2
PαMS PoMS POM PH PSF PAr aPP iPP
0.89365 + 3.4864·10–4(T–273.15) + 5.0184·10–7(T–273.15)2 0.9396 exp[5.306·10–4(T–273.15)] 0.7484 exp[6.770·10–4(T–273.15)] 0.76644 exp(1.921·10–5T1.5) 0.7644 + 3.419·10–4(T–273.15) + 3.126·10–7(T–273.15)2 0.73381 exp(1.626·10–5T1.5) 1.1841 – 1.091·10–4(T–273.15) + 5.286·10–6(T–273.15)2 1.1606 exp[6.700·10–4(T–273.15)]
B(T)/MPa 487.0 exp[–8.103·10–3(T–273.15)] 188.2 exp[–4.537·10–3(T–273.15)] 184.4 exp[–4.734·10–3(T–273.15)] 183.5 exp[–4.457·10–3(T–273.15)] 205.1 exp[–4.989·10–3(T–273.15)] 376.7 exp[–4.660·10–3(T–273.15)] 254.7 exp[–4.178·10–3(T–273.15)] 316.4 exp[–5.040·10–3(T–273.15)] 177.7 exp[–3.593·10–3(T–273.15)] 200.0 exp[–4.606·10–3(T–273.15)] 193.0 exp[–4.519·10–3(T–273.15)] 188.0 exp[–4.437·10–3(T–273.15)] 183.0 exp[–4.425·10–3(T–273.15)] 175.0 exp[–4.538·10–3(T–273.15)] 167.5 exp[–4.533·10–3(T–273.15)] 226.7 exp[–5.344·10–3(T–273.15)] 263.0 exp[–3.444·10–3(T–273.15)] 189.0 exp[–3.931·10–3(T–273.15)] 310.0 exp[–4.078·10–3(T–273.15)] 363.4 exp[–4.921·10–3(T–273.15)] 236.6 exp[–5.156·10–3(T–273.15)] 231.4 exp[–4.242·10–3(T–273.15)] 295.2 exp[–5.220·10–3(T–273.15)] 227.8 exp[–4.290·10–3(T–273.15)] 89.4 exp[–5.701·10–3(T–273.15)] 542.63 exp[–6.69·10–3(T–273.15)] 482.73 exp[–6.09·10–3(T–273.15)] 482.73 exp[–6.09·10–3(T–273.15)] 238.3 exp[–4.171·10–3(T–273.15)] 388.0 exp[–4.124·10–3(T–273.15)] 193.2 exp[–4.839·10–3(T–273.15)] 260.9 exp[–5.356·10–3(T–273.15)] 179.9 exp[–4.739·10–3(T–273.15)] 176.7 exp[–4.661·10–3(T–273.15)] 168.3 exp[–4.292·10–3(T–273.15)] 177.1 exp[–4.699·10–3(T–273.15)] 202.2 exp[–5.243·10–3(T–273.15)] 192.9 exp[–4.701·10–3(T–273.15)] 196.6 exp[–4.601·10–3(T–273.15)] 186.7 exp[–4.391·10–3(T–273.15)] 207.7 exp[–3.947·10–3(T–273.15)] 369.7 exp[–4.150·10–3(T–273.15)] 103.1 exp[–2.417·10–3(T–273.15)] 200.3 exp[–4.329·10–3(T–273.15)] 188.0 exp[–4.541·10–3(T–273.15)] 202.0 exp[–4.653·10–3(T–273.15)] 199.0 exp[–4.622·10–3(T–273.15)] 200.0 exp[–4.644·10–3(T–273.15)] 235.8 exp[–4.493·10–3(T–273.15)] 287.5 exp[–4.146·10–3(T–273.15)] 37.67 + 0.2134(T–273.15)] – 7.0445·10–4(T–273.15)2 297.7 exp[–4.074·10–3(T–273.15)] 261.9 exp[–4.114·10–3(T–273.15)] 305.6 exp[–4.326·10–3(T–273.15)] 359.9 exp[–4.378·10–3(T–273.15)] 365.9 exp[–3.757·10–3(T–273.15)] 296.9 exp[–3.375·10–3(T–273.15)] 162.1 exp[–6.604·10–3(T–273.15)] 149.1 exp[–4.177·10–3(T–273.15)]
5/2/05 1:36:57 PM
Pressure-Volume-Temperature Relationship for Polymer Melts
13-18 Polymer
PS PTFE PTHF PVAc PVC PVME PVdF SAN3 SAN6 SAN15 SAN18 SAN40 SAN70 SBR10 SBR23 SBR60 SBR85 SMMA20 SMMA60 VCES50 VCHS80 VCHS67 VCHS60 VCHS50 VCHS40 VCHS33 VCHS20 VCOS50 VCPS50
S13_05.indd 18
V(0,T)/cm3g–1
0.9287 exp[5.131·10 (T–273.15)] 0.3200 + 9.5862·10–4(T–273.15) 1.0043 exp[6.691·10–4(T–273.15)] 0.82496 + 5.820·10–4(T–273.15) + 2.940·10–7(T–273.15)2 0.7196 + 5.581·10–5(T–273.15) + 1.468·10–6(T–273.15)2 0.9585 exp[6.653·10–4(T–273.15)] 0.5790 exp[8.051·10–4(T–273.15)] 0.9233 + 3.936·10–4(T–273.15) + 5.685·10–7(T–273.15)2 0.9211 + 4.370·10–4(T–273.15) + 5.846·10–7(T–273.15)2 0.9044 + 4.207·10–4(T–273.15) + 4.077·10–7(T–273.15)2 0.9016 + 4.036·10–4(T–273.15) + 4.206·10–7(T–273.15)2 0.8871 + 3.406·10–4(T–273.15) + 4.938·10–7(T–273.15)2 0.8528 + 3.616·10–4(T–273.15) + 2.634·10–7(T–273.15)2 0.9053 exp(2.437·10–5T1.5) 0.8986 exp(2.317·10–5T1.5) 0.8812 exp(2.031·10–5T1.5) 0.8704 exp(1.846·10–5T1.5) 0.9063 + 3.570·10–4(T–273.15) + 6.532·10–7(T–273.15)2 0.8610 + 3.350·10–4(T–273.15) + 6.980·10–7(T–273.15)2 0.6676 + 6.63·10–4T 0.7753 + 6.17·10–4T 0.8028 + 6.50·10–4T 0.8213 + 6.23·10–4T 0.7827 + 5.05·10–4T 0.7805 + 4.92·10–4T 0.7710 + 4.86·10–4T 0.6416 + 5.42·10–4T 0.7081 + 7.40·10–4T 0.7814 + 4.36·10–4T –4
B(T)/MPa 216.9 exp[–3.319·10–3(T–273.15)] 425.2 exp[–9.380·10–3(T–273.15)] 178.6 exp[–4.223·10–3(T–273.15)] 204.9 exp[–4.346·10–3(T–273.15)] 294.2 exp[–5.321·10–3(T–273.15)] 215.8 exp[–4.588·10–3(T–273.15)] 244.0 exp[–5.210·10–3(T–273.15)] 239.8 exp[–4.376·10–3(T–273.15)] 226.9 exp[–4.286·10–3(T–273.15)] 238.4 exp[–3.943·10–3(T–273.15)] 240.4 exp[–3.858·10–3(T –273.15)] 289.3 exp[–4.431·10–3(T–273.15)] 335.4 exp[–3.923·10–3(T–273.15)] 530.3 exp[–3.99·10–3(T–273.15)] 551.6 exp[–4.17·10–3(T–273.15)] 486.0 exp[–4.34·10–3(T–273.15)] 356.7 exp[–4.24·10–3(T–273.15)] 232.0 exp[–4.143·10–3(T–273.15)] 261.0 exp[–4.611·10–3(T–273.15)] 5281.7 exp[–9.264·10–3(T–273.15)] 247.6 exp[–2.604·10–3(T–273.15)] 581.7 exp[–4.553·10–3(T–273.15)] 229.1 exp[–2.133·10–3(T–273.15)] 136.0 exp[–1.083·10–3(T–273.15)] 155.0 exp[–1.605·10–3(T–273.15)] 460.4 exp[–3.453·10–3(T–273.15)] 489.8 exp[–3.193·10–3(T–273.15)] 666.5 exp[–4.503·10–3(T–273.15)] 880.1 exp[–4.393·10–3(T–273.15)]
5/2/05 1:36:58 PM
UPPER CRITICAL (UCST) AND LOWER CRITICAL (LCST) SOLUTION TEMPERATURES OF BINAR Y POLYMER SOLUTIONS Christian Wohlfarth Liquid-liquid demixing in solutions of polymers in low molar mass solvents is not a rare phenomenon. Demixing depends on concentration, temperature, pressure, molar mass and molar mass distribution function of the polymer, chain branching and end groups of the polymer, the chemical nature of the solvent, isotope substitution in solvents or polymers, chemical composition of copolymers and its distributions, and other variables. Phase diagrams of polymer solutions can therefore show a quite complicated behavior when they have to be considered in detail (see Ref. 1a). Polymer solutions can undergo demixing when cooling a homogeneous solution as well as when heating such a solution. The corresponding cloud-point curves show a maximum (UCST behavior) or a minimum (LCST behavior). For common polymer solutions, the LCST region is at higher temperatures (in many cases near the critical temperature of the solvent) than the UCST region. The temperature range between both extrema provides the essential information where the one-phase region of a polymer solution can be found. In the case of monodisperse polymers the extrema are equal to the critical points. However, in the case of polydisperse polymers with distribution functions, these extrema are threshold temperatures whereas the critical point shifts to higher concentrations on the shoulder of the cloud-point curve. Usually, the critical concentration is much more strongly influenced than the critical temperature. Thus, the table below does not distinguish between threshold and critical temperatures. UCST and LCST values depend somewhat on pressure. LCST values in the table are usually given at the vapor pressure of the solvent at this temperature. UCST values are measured in most cases at normal pressure; data at higher pressures are neglected here. The interested reader can find such information, for example, in Refs. 76, 84, 104, 157, 165, 177, 185-187, or 192.
1 1È 1 ˆ˘ Ê 1 = Í1 + const.Á - ˜˙ Ë Tcrit q Î r 2r ¯ ˚
(1)
where r denotes the number of segments of a polymer (being proportional to the degree of polymerization or to the molar mass or molar volume of the polymer). Extrapolation to r Æ •, i.e., to infinite molar mass, leads to the value of the q-temperature. This qtemperature is the highest temperature for UCST behavior or the lowest temperature for LCST behavior and a given polymer/solvent pair. In the case of polydisperse polymers, the segment number in equation (1) is to be replaced by its weight average, rw (related to Mw). The constant in equation (1) reflects further thermodynamic properties of the given polymer/solvent pair, but should not depend on molar mass. A detailed discussion can be found in Ref. 1b. The printed table in the Handbook provides only one data line for a given polymer/solvent pair and does not show the molar mass dependence of UCST or LCST data. The entire table with all data at different molar masses for many of the systems is given in the electronic version, however. Nevertheless, the necessary molar mass information for a system is always provided in the table by the corresponding number average, Mn, mass average, Mw, or viscosity average, Mh, values of the polymer as given in the original sources. Mh/g mol-1
Solvent
(18% Acrylonitrile)
840000
Ethyl acetate
427
220
(26% Acrylonitrile)
1000000
Ethyl acetate
412
220
100000
Ethyl acetate
393
220
453
159
Polymer
Mn/g mol-1 Mw/g mol-1
However, UCST and LCST values of a given polymer/solvent pair depend strongly on the molar mass of the polymer. In the case of monodisperse polymers, this dependency can be described in good approximation by the so-called Shultz-Flory plot (see Refs. 6 and 8):
UCST/K LCST/K Ref
Acrylonitrile/butadiene copolymer
Butadiene/a-methylstyrene copolymer (10% a-Methylstyrene)
387
Carbon monoxide/ethylene copolymer (1:1, alternating) 1000000 Cellulose diacetate
1,1,1,3,3,3-Hexafluoro-2propanol 120000
59900
Benzyl alcohol
372
2-Butanone
279.7
471.5
111
2-Propanone
216.2
438.2
42
750000
N,N-Dimethylformamide
262
399
106
750000
Tetrahydrofuran
363
106
182
148
75500
59300
86
Cellulose diacetate/styrene graft copolymer (77.4 wt% grafted polystyrene)
Cellulose nitrate (13.3 wt% N) unknown
13-19
2-Propanone
328
13-20
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binar y Polymer Solutions
Polymer
Mn/g mol-1 Mw/g mol-1
Mh/g mol-1
Solvent
UCST/K LCST/K Ref
20000
Benzyl alcohol
322
2-Propanone
290.0
infinite
N,N-Dimethylformamide
413
5
infinite
3-Phenyl-1-propanol
321
5
310.69
Tetradecafluorohexane
332.59
195
Cellulose triacetate 100500
86 472.0
42
Cellulose tricaprylate
Decamethyltetrasiloxane N,N-Dimethylacrylamide/2-butoxyethyl acrylate copolymer (50 wt% 2-butoxyethyl acrylate) Water
<273.2
164
(15 wt% Butyl acrylate)
Water
346.2
164
(20 wt% Butyl acrylate)
Water
323.2
164
(30 wt% Butyl acrylate)
Water
294.2
164
(35 wt% Butyl acrylate)
Water
281.2
164
(50 wt% 2-Ethoxyethyl acrylate)
Water
319.2
164
(75 wt% 2-Ethoxyethyl acrylate)
Water
285.2
164
N,N-Dimethylacrylamide/butyl acrylate copolymer
N,N-Dimethylacrylamide/2-ethoxyethyl acrylate copolymer
N,N-Dimethylacrylamide/ethyl acrylate copolymer (25 wt% Ethyl acrylate)
Water
347.2
164
(30 wt% Ethyl acrylate)
Water
334.2
164
(50 wt% Ethyl acrylate)
Water
287.2
164
(55 wt% Ethyl acrylate)
Water
<273.2
164
(38 mol% 2-Methoxyethyl acrylate)
Water
353
184
(45 mol% 2-Methoxyethyl acrylate)
Water
333
184
(55 mol% 2-Methoxyethyl acrylate)
Water
315
184
(68 mol% 2-Methoxyethyl acrylate)
Water
305
184
(82 mol% 2-Methoxyethyl acrylate)
Water
288
184
(92 mol% 2-Methoxyethyl acrylate)
Water
283
184
(30 wt% Methyl acrylate)
Water
371.2
164
(40 wt% Methyl acrylate)
Water
338.2
164
(50 wt% Methyl acrylate)
Water
314.2
164
(55 wt% Methyl acrylate)
Water
294.2
164
(60 wt% Methyl acrylate)
Water
279.2
164
(70 wt% Methyl acrylate)
Water
<273.2
164
(20 wt% Propyl acrylate)
Water
353.2
164
(30 wt% Propyl acrylate)
Water
337.2
164
(40 wt% Propyl acrylate)
Water
294.2
164
(50 wt% Propyl acrylate)
Water
281.2
164
N,N-Dimethylacrylamide/2-methoxyethyl acrylate copolymer
N,N-Dimethylacrylamide/methyl acrylate copolymer
N,N-Dimethylacrylamide/propyl acrylate copolymer
Dimethylsiloxane/methylphenylsiloxane copolymer (15 wt% methylphenylsiloxane) 9100
41200
Anisole
291.45
198
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binar y Polymer Solutions Polymer
Mn/g mol-1 Mw/g mol-1 9100
Mh/g mol-1
41200
13-21
Solvent
UCST/K LCST/K Ref
2-Propanone
282.45
198
Ethylene/propylene copolymer (33 mol% ethylene) 145000
Cyclohexane
534
101
145000
Cyclopentane
490
101
145000
2,2-Dimethylbutane
428
101
145000
2,3-Dimethylbutane
452
101
145000
3,4-Dimethylhexane
541
101
145000
2,2-Dimethylpentane
472
101
145000
2,3-Dimethylpentane
500
101
145000
2,4-Dimethylpentane
464
101
145000
3-Ethylpentane
511
101
145000
Heptane
502
101
145000
Hexane
455
101
145000
2-Methylbutane
396
101
145000
Methylcyclohexane
558
101
145000
Methylcyclopentane
512
101
145000
2-Methylhexane
486
101
145000
Nonane
558
101
145000
Octane
528
101
145000
Pentane
409
101
145000
2,2,4,4-Tetramethylpentane
539
101
145000
2,2,3-Trimethylbutane
500
101
145000
2,2,4-Trimethylpentane
503
101
Ethylene/propylene copolymer (43 mol% ethylene) 70000
140000
Hexane
436
127
70000
140000
2-Methylpentane
474
127
70000
140000
Pentane
441
127
154000
2,2-Dimethylbutane
407
101
154000
2,3-Dimethylbutane
437
101
154000
2,2-Dimethylpentane
453
101
154000
2,3-Dimethylpentane
488
101
154000
2,4-Dimethylpentane
445
101
154000
3-Ethylpentane
500
101
154000
Heptane
493
101
154000
Hexane
443
101
154000
Pentane
395
101
154000
2,2,3-Trimethylbutane
488
101
154000
2,3,4-Trimethylhexane
565
101
154000
2,2,4-Trimethylpentane
484
101
236000
Cyclohexane
526
101
236000
Cyclopentane
481
101
236000
2,3-Dimethylbutane
429
101
236000
3,4-Dimethylhexane
530
101
236000
2,2-Dimethylpentane
444
101
236000
2,3-Dimethylpentane
482
101
236000
2,4-Dimethylpentane
434
101
Ethylene/propylene copolymer (53 mol% ethylene)
Ethylene/propylene copolymer (63 mol% ethylene)
13-22
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binar y Polymer Solutions
Polymer
Mn/g mol-1 Mw/g mol-1
Mh/g mol-1
Solvent
236000
3-Ethylpentane
492
101
236000
Heptane
485
101
236000
Hexane
436
101
236000
2-Methylbutane
348
101
236000
Methylcyclopentane
498
101
236000
Nonane
547
101
236000
Octane
512
101
236000
Pentane
387
101
236000
2,2,4,4-Tetramethylpentane
528
101
236000
2,2,3-Trimethylbutane
479
101
236000
2,2,4-Trimethylpentane
479
101
109000
2,2-Dimethylpentane
431
101
109000
2,4-Dimethylpentane
425
101
109000
Heptane
475
101
109000
Hexane
427
101
109000
Nonane
542
101
109000
Octane
509
101
109000
Pentane
378
101
109000
2,2,4,4-Tetramethylpentane
523
101
109000
2,2,4-Trimethylpentane
469
101
195000
Cyclohexane
522
101
195000
Cyclopentane
474
101
195000
2,2-Dimethylbutane
381
101
195000
2,3-Dimethylbutane
413
101
195000
2,4-Dimethylhexane
478
101
195000
2,5-Dimethylhexane
466
101
195000
3,4-Dimethylhexane
522
101
195000
2,2-Dimethylpentane
425
101
195000
2,3-Dimethylpentane
471
101
195000
2,4-Dimethylpentane
420
101
195000
3-Ethylpentane
478
101
195000
Heptane
468
101
195000
Hexane
425
101
195000
2-Methylbutane
327
101
195000
Methylcyclohexane
541
101
195000
Methylcyclopentane
493
101
195000
2-Methylhexane
453
101
195000
3-Methylhexane
459
101
195000
Nonane
540
101
195000
Octane
506
101
195000
Pentane
370
101
195000
2,2,4,4-Tetramethylpentane
519
101
195000
2,2,3-Trimethylbutane
461
101
195000
2,2,4-Trimethylpentane
460
101
UCST/K LCST/K Ref
Ethylene/propylene copolymer (75 mol% ethylene)
Ethylene/propylene copolymer (81 mol% ethylene)
Ethylene/vinyl acetate copolymer ( 2.3 wt% Vinyl acetate)
52000
465000
Diphenyl ether
404.2
143
( 4.0 wt% Vinyl acetate)
47000
280000
Diphenyl ether
392.5
143
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions Mh/g mol-1
13-23
Polymer
Mn/g mol-1 Mw/g mol-1
Solvent
UCST/K LCST/K Ref
( 7.1 wt% Vinyl acetate)
34000
460000
Diphenyl ether
378.2
143
( 9.5 wt% Vinyl acetate)
53000
350000
Diphenyl ether
367.3
143
( 9.7 wt% Vinyl acetate)
55000
490000
Diphenyl ether
370.8
143
(12.1 wt% Vinyl acetate)
66000
300000
Diphenyl ether
360.4
143
(42.6 mol% Vinyl acetate)
14800
41500
Methyl acetate
307.0
130
Ethylene/vinyl alcohol copolymer (87.2 mol% Vinyl alcohol)
infinite
Water
463.55
285.65
44
(88.9 mol% Vinyl alcohol)
infinite
Water
449.15
290.75
44
(91.0 mol% Vinyl alcohol)
infinite
Water
428.45
302.95
44
(94.1 mol% Vinyl alcohol)
infinite
Water
389.25
324.45
44
Ethylene oxide/propylene oxide copolymer (20.0 mol% Ethylene oxide)
3400
Water
303
211
(27.0 mol% Ethylene oxide)
3000
Water
309
210
(30.0 mol% Ethylene oxide)
5400
Water
313
211
(38.5 mol% Ethylene oxide)
5000
Water
309
210
(50.0 mol% Ethylene oxide)
3900
Water
323
211
(58.8 mol% Ethylene oxide)
3000
Water
326.65
210 153
(72.4 mol% Ethylene oxide)
36000
Water
333
(79.5 mol% Ethylene oxide)
30800
Water
345
153
(86.6 mol% Ethylene oxide)
30100
Water
355.5
153
Gutta Percha 194000
Propyl acetate
318.95
7
Hydroxypropylcellulose 75000
Water
318.45
43
300000
Water
331.25
43
3100000
Water
315.15
172
N-Isopropylacrylamide/acrylamide copolymer (15 mol% Acrylamide) (30 mol% Acrylamide)
4500000
Water
326.15
172
(45 mol% Acrylamide)
3900000
Water
347.15
172
218
N-Isopropylacrylamide/1-deoxy-1methacrylamido-D-glucitol (12.9 mol% Glucitol)
78000
170000
Water
311.3
(13.7 mol% Glucitol)
51600
110000
Water
314.9
218
(14.0 mol% Glucitol)
145000
432000
Water
307.5
218
(10.56 mol% N-Isopropylmethacrylamide)
55300
177000
Water
307.15
212
N-Isopropylacrylamide/Nisopropylmethacrylamide copolymer (30.00 mol% N-Isopropylmethacrylamide)
28800
92000
Water
309.75
212
(39.99 mol% N-Isopropylmethacrylamide)
23100
74000
Water
311.05
212
(59.89 mol% N-Isopropylmethacrylamide)
23100
74000
Water
314.65
212
(79.81 mol% N-Isopropylmethacrylamide)
16600
53000
Water
317.35
212
(89.99 mol% N-Isopropylmethacrylamide)
14700
47000
Water
318.75
212
70000
Water
324.75
47
80000
Water
340.15
63
Pentane
403
10
Methylcellulose (about 30 mol% methyl subsitution) Methylcellulose/hydroxypropylcellulose copolymer (25 mol% methyl, 8 mol% hydroxypropyl subsitution) Natural rubber 300000 74500
2-Pentanone
274.45
7
13-24
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions
Polymer
Mn/g mol-1 Mw/g mol-1
Mh/g mol-1
Phenol-formaldehyde resin (acetylated) Poly(acrylic acid)
Solvent
UCST/K LCST/K Ref
2-Ethoxyethanol
378.2
200
120000
Tetrahydrofuran
268.3
189
1070000
1500000
Water
317.15
183
667000
1000000
Water
338.15
183
714000
1000000
Water
311.15
183
1420000
1700000
Water
322.65
183
857000
1200000
Water
334.65
183
Poly[bis(2,3-dimethoxypropanoxy) phosphazene] Poly[bis(2-(2’-methoxyethoxy)ethoxy) phosphazene] Poly[bis(2,3-bis(2-methoxyethoxy) propanoxy)phosphazene] Poly[bis(2,3-bis(2-(2’-methoxyethoxy) ethoxy)propanoxy)phosphazene] Poly[bis(2,3-bis(2-(2’-(2’’-dimethoxyethoxy) ethoxy)ethoxy)propanoxy)phosphazene] Poly(1-butene) (atactic) infinite
Anisole
359.4
11
infinite
Toluene
356.2
28
Anisole
362.3
Poly(1-butene) (isotactic) infinite
11
530000
Cyclopentane
498
102
530000
2,2-Dimethylbutane
444
102
530000
2,5-Dimethylhexane
519
102
530000
3,4-Dimethylhexane
559
102
530000
2,3-Dimethylpentane
517
102
530000
2,4-Dimethylpentane
480
102
530000
3-Ethylpentane
523
102
530000
Heptane
509
102
Hexane
464
102
2-Methylbutane
416
102
Nonane
564
102
Octane
540
102
Pentane
421
102
2,2,3-Trimethylbutane
507
102
infinite 530000 infinite 530000 infinite 530000 Poly(butyl methacrylate) 278000
470000
1-Butanol
287.15
132
278000
470000
Decane
357.25
132
278000
470000
Ethanol
315.25
132
278000
470000
Heptane
342.55
132
278000
470000
Octane
345.80
132
278000
470000
1-Pentanol
286.30
132
278000
470000
2-Propanol
294.90
132
278000
470000
2,2,4-Trimethylpentane
347.50
132
Poly(2-chlorostyrene) infinite
Benzene
298
40
infinite
Benzene
infinite
2-(Butoxyethoxy)ethanol
323.25
46
infinite
Butyl acetate
502.4
22
infinite
tert-Butyl acetate
338.55
46
Poly(4-chlorostyrene) 274.0
22
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions Polymer
Mn/g mol-1 Mw/g mol-1
Mh/g mol-1
13-25
Solvent
UCST/K LCST/K Ref
infinite
Chlorobenzene
128.8
infinite
2-(Ethoxyethoxy)ethanol
300.95
46
infinite
Ethyl acetate
613.2
22
infinite
Ethylbenzene
283.2
22
infinite
Ethylbenzene
258.45
46
271.35
22
infinite
Ethyl chloroacetate
infinite
Isopropyl acetate
46
infinite
Isopropylbenzene
332.15
46
infinite
Isopropyl chloroacetate
264.95
46
337.75
348.65
46
infinite
Methyl chloroacetate
infinite
Propyl acetate
46
infinite
Tetrachloroethene
317.55
46
infinite
Tetrachloromethane
323.85
46
infinite
Toluene
236.8
22
908.7
22
Poly(decyl methacrylate) 390000
468000
1-Butanol
304.85
113
390000
468000
1-Pentanol
278.40
113
220000
252000
2-Propanol
346.85
132
Polydimethylsiloxane (cyclic) 9810
10300
2,2-Dimethylpropane
433
133
9810
10300
Tetramethylsilane
448
133, 171
Butane
392.95
53
Decane
603
30
2,2-Dimethylpropane
428
133 30
Polydimethylsiloxane 626000 infinite 14750
16370
infinite
Dodecane
643
626000
Ethane
259.65
100000
Ethoxybenzene
341.99
53 108
infinite
Heptane
528
30
infinite
Hexadecane
708
30
infinite
Hexane
493
30
infinite
Octane
553
30
infinite
Pentane
453
30
203000 14750
16370
Propane
340.15
53
Tetramethylsilane
443
133, 171
Poly(ethyl acrylate) 48000
1-Butanol
310.05
27
48000
Ethanol
301.15
27
380000
Methanol
287.25
27
48000
1-Propanol
305.15
27
Polyethylene (branched) 8400
32000
Diphenyl ether
384.7
95, 98
24000
123000
Diphenyl ether
396.7
95, 98
65000
425000
Diphenyl ether
415.3
95, 98
Polyethylene (linear) 20000
Anisole
368.15
24
20000
Benzyl acetate
459.65
24
20000
Benzyl phenyl ether
437.15
24
20000
Benzyl propionate
436.15
24
50900
Biphenyl
383.55
61100
Butyl acetate
448
25 497
70
13-26
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions
Polymer
Mn/g mol-1 Mw/g mol-1
Mh/g mol-1
Solvent
UCST/K LCST/K Ref
20000
4-tert-Butylphenol
466.15
134000
Cyclohexane
20000
Cyclohexanone
134000 36700
12000
49300
472
101
563.75
91
1-Decanol
400.15
Dibenzyl ether
448.65
134000
3,4-Dimethylhexane
515
101
134000
2,2-Dimethylpentane
399
101
134000
2,3-Dimethylpentane
463
101
134000
2,4-Dimethylpentane
395
101 95, 98
Diphenylmethane
400.25
25
1-Dodecanol
49300
7900
92000
20000
610.85 405.15
141 471
101
Heptane
464.70
91
414.65
91
1-Heptanol
440.15
24
1-Hexanol
458.15
154
20000
2-Methoxynaphthalene
427.65
24
20000
3-Methylbutyl acetate
407.15
134000
Methylcyclohexane
537
101
Methylcyclopentane
488
101
Nonane
531.90
91
82600
24
20000
1-Nonanol
431.15
24
20000
4-Nonylphenol
410.15
24
36700
49300
Octane
7900
92000
1-Octanol
426.65
20000
4-Octylphenol
424.65
134000
Pentane
20000
1-Pentanol
445.15
175000
Pentyl acetate
421
502.40
91 154 24
353
101 24
528
70
20000
4-tert-Pentylphenol
443.65
24
20000
Phenetole
366.65
24
134000
97700
91
3-Ethylpentane
Hexane
134000
60400
24
416.2
Dodecane
36700
24
Diphenyl ether
218000 134000
60400
Cyclopentane Decane
82600
49300
101 24
20000
150000
36700
518 389.65
20000
97200 60400
24
2,2,4,4-Tetramethylpentane
513
101
Tridecane
639.30
91
134000
2,2,3-Trimethylbutane
444
101
134000
2,3,4-Trimethylhexane
545
101
134000
2,2,4-Trimethylpentane
495
101
Undecane
583.95
91
82600
135900
Poly(ethylene glycol) 8000
tert-Butyl acetate
321.2
464.2
83
21200
tert-Butyl acetate
353.2
431.2
83
6100
6200
Water
404.79
185
10457
11615
Water
394.33
205
40800
151000
Water
378.25
205
22000
31500
Water
338
222
Poly(ethylene oxide)-bpoly[bis(methoxyethoxyethoxy)phosphazene] block copolymer (about 67 mol% Ethylene oxide)
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions Polymer
Mn/g mol-1 Mw/g mol-1
Mh/g mol-1
Solvent
13-27
UCST/K LCST/K Ref
Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer (about 30 mol% Ethylene oxide) 4400
Water
286.65
209
52000
Diphenyl ether
411.2
95, 98
2-Butanone
302.6
135
77400
1-Butanol
337.25
35
233600
2-Butanol
287
35
233600
2-Metyl-1-propanol
342
35
77400
1,2,3-Propanetriol
345
35
77400
1-Propanol
311
35
Anisole
377
Polyethylethylene 48000 Poly(p-hexylstyrene) infinite Poly(2-hydroxyethyl methacrylate)
Polyisobutylene infinite
3
72000
Benzene
703000
Butane
264.75
53
Cycloheptane
572
34
Cyclohexane
412
10
Cyclooctane
637
34
Cyclopentane
344
10
Decane
535
34
1500000
2,2-Dimethylbutane
376
10
1500000
2,3-Dimethylbutane
404
10
infinite
2,2-Dimethylhexane
454
34
infinite
2,4-Dimethylhexane
458
34
infinite
2,5-Dimethylhexane
446
34
infinite
3,4-Dimethylhexane
497
34
infinite
2,2-Dimethylpentane
404
34
infinite
2,3-Dimethylpentane
451
34
infinite
2,4-Dimethylpentane
403
34
infinite
3,3-Dimethylpentane
451
34
infinite
Diphenyl ether
infinite
Decane
infinite
Dodecane
infinite
Ethylbenzene
infinite
Ethylcyclopentane
infinite
Ethyl heptanoate
306
infinite
Ethyl hexanoate
330
infinite
3-Ethylpentane
458
infinite
Heptane
442
34
72000
Hexane
428.5
39
6030
infinite 1500000 infinite 1500000 infinite
540.5
306
39
3 585 582
249
30 34 3
524
34 3 3 34
2-Methylbutane
357.85
53
infinite
Methylcyclohexane
526
34
infinite
Methylcyclopentane
478
34
infinite
2-Methylheptane
466
34
infinite
3-Methylheptane
478
34
infinite
2-Methylhexane
426
34
infinite
3-Methylhexane
446
34
infinite
2-Methylpentane
376
34
13-28
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions
Polymer
Mn/g mol-1 Mw/g mol-1
Mh/g mol-1
infinite
Solvent
UCST/K LCST/K Ref
3-Methylpentane
405
34
470
2-Methylpropane
387
10
72000
Octane
506.0
39
6030
Pentane
403.55
53
72000
Pentane
373.5
39
470
Propane
358
10
infinite
Propylcyclopentane
547
34
infinite
Toluene
infinite
2,2,3-Trimethylbutane
445
34
infinite
2,2,4-Trimethylpentane
435
34
780000
2,5-Dimethylhexane
474.15
140
780000
3,4-Dimethylhexane
520.15
140
780000
2,2-Dimethylpentane
445.15
140
780000
2,3-Dimethylpentane
484.15
140
780000
2,4-Dimethylpentane
442.15
140
780000
3-Methylpentane
483.15
140
780000
Heptane
488.15
140
780000
Hexane
434.15
140
780000
Nonane
541.15
140
780000
Octane
509.15
140
780000
2,2,4,4-Tetramethylpentane
518.15
140
780000
2,3,4-Trimethylhexane
548.15
140
780000
2,2,4-Trimethylpentane
471.15
140
180000
2,5-Dimethylhexane
451.15
140
180000
3,4-Dimethylhexane
521.15
140
180000
2,2-Dimethylpentane
405.15
140
180000
2,3-Dimethylpentane
460.15
140
180000
2,4-Dimethylpentane
404.15
140
180000
3-Methylpentane
473.15
140
180000
Heptane
467.15
140
180000
Hexane
407.15
140
180000
Nonane
540.15
140
180000
Octane
503.15
140
180000
2,2,4,4-Tetramethylpentane
519.15
140
180000
2,3,4-Trimethylhexane
548.15
140
infinite
Phenetole
357
3
260
3
1,4-cis-Polyisoprene
1,4-trans-Polyisoprene
Poly(N-isopropylacrylamide) 5400
14000
Water
307.45
146
146000
530000
Water
305.85
146
5500
Water
306.2
223
6030
Water
306.2
223
Water
319.95
212
Poly(N-isopropylacrylamide)-poly[(Nacetylimino)ethylene] block copolymer (80 wt% N-Isopropylacrylamide) Poly(N-isopropylacrylamide)-poly[(Nacetylimino)ethylene] graft copolymer (75 wt% N-Isopropylacrylamide) Poly(N-isopropylmethacrylamide) 6250 Poly(methyl methacrylate)
20000
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions Polymer
Mn/g mol-1 Mw/g mol-1
13-29
Mh/g mol-1
Solvent
UCST/K LCST/K Ref
127000
Acetonitrile
267.15
16
970000
Acetonitrile
303.15
16
50000
1-Butanol
353.25
2
infinite
2-Butanone
infinite
1-Chlorobutane
320
970000
2,2-Dimethyl-3-pentanone
301.55
16
127000
2,4-Dimethyl-3-pentanone
280.15
16
264000
2-Ethoxyethanol
312.15
77000
Ethyl acetate
290
2-Ethylbutanal
264.65
16
3-Heptanone
307.7
126
4-Heptanone
299.95
200000
127000 infinite 970000 infinite
3-Hexanone
infinite
Methyl acetate 50000 1400000
572400
595300
infinite infinite
80
196 533
190
16 522
80
451
80 2
2-Octanone
321.15
16
3-Octanone
329.88
166
1-Propanol
506 349.95
2-Propanone Tetra(ethylene glycol)
264000
80
463
400.15
3-Pentanone 50000
200000
1-Methyl-4isopropylbenzene
482
80 2
439 390.15
80 196
400000
Toluene
225.35
2
50000
Trichloromethane
231.15
2
Tri(ethylene glycol)
407.15
196
infinite
Acetonitrile
301
infinite
2-Butanone
infinite
1-Chlorobutane
infinite
4-Heptanone
infinite
3-Hexanone
infinite
Methyl acetate
200000
264000
Poly(methyl methacrylate) (isotactic) 461
80
464
80
309
454
80
319
522
80
279
511
80
441
80
infinite
3-Pentanone
497
80
infinite
2-Propanone
428
80
Butane
388
102
Poly(4-methyl-1-pentene) (isotactic) 152000 152000
Cyclopentane
505
102
152000
2,2-Dimethylbutane
462
102
152000
2,2-Dimethylpentane
499
102
152000
2,4-Dimethylpentane
499
102
infinite
Diphenyl
467.8
62
infinite
Diphenyl ether
483.2
62
Diphenylmethane
449.8
infinite
62
152000
3-Ethylpentane
532
102
152000
Heptane
522
102
152000
Hexane
487
102
152000
2-Methylbutane
431
102
152000
Nonane
579
102
152000
Octane
553
102
152000
Pentane
441
102
152000
2,2,3-Trimethylbutane
521
102
13-30
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions
Polymer
Mn/g mol-1 Mw/g mol-1
Mh/g mol-1
Solvent
UCST/K LCST/K Ref
Poly(a-methylstyrene) 58500
61400
Butyl acetate
262.05
99100
113000
Cyclohexane
293.55
26000
31200
Cyclopentane
276.7
289000
transDecahydronaphthalene
273
69500
76500
Hexyl acetate
285.05
72000
75600
Methylcyclohexane
328.9
58500
61400
Pentyl acetate
287.1
457.15
181
435.95
181
152 181 508.15
181 203
484.6
181
Poly(2-methyl-5-vinylpyridine) 600000
Butyl acetate
287.95
20
263000
Ethyl butyrate
319.05
20
335000
Ethyl propionate
293.55
20
275000
3-Methylbutyl acetate
314.75
20
335000
4-Methyl-2-pentanone
299.95
20
170000
2-Methylpropyl acetate
312.35
20
165000
Pentyl acetate
316.95
20
284000
Propionitrile
262.35
20
152000
Propyl acetate
282.65
20
181000
Propyl propionate
312.15
20
233000
Tetrahydronaphthalene
316.95
20
Poly(1-pentene) (isotactic) 4500000
Cyclopentane
502
102
4500000
2,2-Dimethylbutane
457
102
4500000
3,4-Dimethylhexane
>569
102
4500000
2,2-Dimethylpentane
502
102
4500000
2,3-Dimethylpentane
529
102
4500000
2,4-Dimethylpentane
493
102
4500000
3-Ethylpentane
537
102
4500000
Heptane
522
102
4500000
Hexane
482
102
4500000
2-Methylbutane
422
102
4500000
Octane
556
102
4500000
Pentane
433
102
4500000
2,2,4-Trimethylpentane
527
102
Polypropylene (atactic) infinite
Diphenyl ether
infinite
Diethyl ether
383
68
Heptane
511
101
Hexane
441
68
242000 infinite
426.5
9
242000
2-Methylbutane
413
101
242000
Methylcyclohexane
564
101
Pentane
397
68
infinite Polypropylene (isotactic) 28000
Benzyl phenyl ether
429.2
31
28000
Benzyl propionate
405.2
31
28000
1-Butanol
395.2
31
28000
4-tert-Butylphenol
413.2
31
242000
Cyclohexane
540
101
242000
Cyclopentane
495
101
28000
Dibenzyl ether
433.2
31
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions Polymer
Mn/g mol-1 Mw/g mol-1
13-31
Mh/g mol-1
Solvent
242000
2,2-Dimethylbutane
441
101
242000
2,3-Dimethylbutane
465
101
242000
3,4-Dimethylhexane
553
101
242000
2,2-Dimethylpentane
489
101
242000
2,3-Dimethylpentane
513
101
242000
2,4-Dimethylpentane
481
101
28000
Diphenyl
388.2
31
28000
Diphenyl ether
395.2
31
28000
Diphenylmethane
389.7
31
242000
3-Ethylpentane
28000
4-Ethylphenol
242000
Heptane
511
101
242000
Hexane
470
101
242000
2-Methylbutane
413
28000
3-Methylbutyl benzyl ether 384.2
UCST/K LCST/K Ref
520 457.2
101 31
101 31
242000
Methylcyclohexane
564
101
242000
Methylcyclopentane
518
101
28000
4-Methylphenol
479.2
31
28000
2-Methyl-1-propanol
395.2
31
242000
Nonane
571
101
242000
Octane
542
101
28000
4-Octylphenol
379.2
28000
4-Isooctylphenol
383.2
242000
Pentane
422
101
242000
2,2,4,4-Tetramethylpentane
548
101
242000
2,2,3-Trimethylbutane
511
101
242000
2,3,4-Trimethylhexane
585
101
242000
2,2,4-Trimethylpentane
510
101
31 31
Poly(propylene glycol) 1000
Hexane
575
Water
288.15 318.2
88 65
Benzene
538.7
61
Polystyrene 34900
37000 62600
3700
4000
Butanedioic acid dimethyl ester
335.15
2
1-Butanol
383.45
154
91700
97200
2-Butanone
448.8
61
545500
600000
Butyl acetate
489
181
104000
110000
tert-Butyl acetate
250.0
Butyl stearate
387.15
62600
417.9
74 2
18400
19200
1-Chlorododecane
274.65
154
18400
19200
1-Chlorohexadecane
337.05
154
18400
19200
1-Chlorooctadecane
365.55
154
18400
19200
1-Chlorotetradecane
309.35
154
46400
51000
Cyclodecane
278.9
128
46400
51000
Cycloheptane
276.2
128
34900
37000
Cyclohexane
285.6
Cyclohexanol
353.5
236000 46400
51000
Cyclooctane
275.2
91700
97200
Cyclopentane
275.2
510.9
60 8 128
445.5
61
13-32 Polymer
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions Mn/g mol-1 Mw/g mol-1
Mh/g mol-1
Solvent
UCST/K LCST/K Ref
transDecahydronaphthalene
281.95
91500
97000 4800
Decane
360.95
154
3700
4000
1-Decanol
375.15
154 650
64
18700
19800
Diethyl ether
235.6
314.5
51
187000
200000
Diethyl malonate
285.8
589.6
74
47200
50000
Diethyl oxalate
280.05
151000
160000
Dimethoxymethane
240000
1,4-Dimethylcyclohexane
387
62600
Dimethyl malonate
409.15
2
62600
Dimethyl oxalate
453.15
2
570000
116000
Decyl acetate
81
131 401.2
51
482
116
123000
Dodecadeuterocyclohexane 298.10
224
25000
Dodecadeuteromethylcyclopentane
180
310.07
4800
Dodecane
368.65
154
4000
1-Dodecanol
379.75
154
Dodecyl acetate
285.2
104000
110000
Ethyl acetate
213.9
104000
110000
Ethyl butanoate
221000
239000
Ethylcyclohexane
330.52
9440
10000
Ethyl formate
272
900000
Bis(2-ethylhexyl) phthalate
283.05
4530
4800
Heptane
359
3700
4000
1-Dexadecanol
386.25
5500
5770
1,1,1,3,3,3-Hexadeutero-2propanone
270
436
157
1920
2030
Hexane
318
470
112
Hexanoic acid
448.15
2
1-Hexanol
372.15
154
62600
3-Hexanol
396.65
90000
Hexyl acetate
3700 infinite
62600 3700
4000
206 435.4
72
490.8
74 18
451
74 136
477
112 154
2 578
64
104000
110000
Methyl acetate
284.2
415.7
72
104000
110000
3-Methyl-1-butyl acetate
210.1
510.1
72
91700
97200
Methylcyclohexane
321.8
505.9
60
10750
11500
Methylcyclopentane
295
480
157
104000
110000
2-Methyl-1-propyl acetate
210.4
468.5
72
48000
Nitroethane
303.1
151
4800
Octadecane
403.55
154
3700
4000
1-Octadecanol
390.55
154
4530
4800
Octane
353
3700
4000
1-Octanol
372.35
62600 4800
527
112 154
1-Octene
355.15
2
Pentadecane
385.25
154
1100
Pentane
292
137
3700
4000
1-Pentanol
375.05
154
219800
233000
Pentyl acetate
100000
1-Phenyldecane
283.60
5500
5770
2-Propanone
251
12750
13500
Propionitrile
312
519
181 105
452
157 187
104000
110000
Propyl acetate
183.7
469.0
72
104000
110000
2-Propyl acetate
220.9
414.2
72
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions Polymer
Mn/g mol-1 Mw/g mol-1 3700
4000
34900
37000
Mh/g mol-1
Solvent
UCST/K LCST/K Ref
1-Tetradecanol
383.25
Toluene 62600
13-33
154 567.2
60
Vinyl acetate
384.15
2
230000
Cyclohexane
297.1
155000
Cyclohexane
294.13
199
infinite
Cyclohexane
300
79
40000
Water
514
45
150000
Water
306.45
217
Polystyrene (three-arm star) 496.8
93
Polystyrene (four-arm star) Poly(trimethylene oxide) Poly(vinyl alcohol) Poly(N-vinyl caprolactam) Poly(vinyl chloride) 55000
Dibutyl phthalate
353
114
55000
Tricresyl phosphate
383
114
Dimethyl phthalate
355
219
85000 Poly(N-vinylisobutyramide) 66000
105600
Water
313.25
208
46500
98600
Deuterium oxide
307.2
173
83000
155000
Water
306.95
146
Water
313.5
176
Poly(vinyl methyl ether)
Poly(N-vinyl-N-propylacetamide) 30000 Styrene/acrylonitrile copolymer (21.1 wt% acrylonitrile)
infinite
Toluene
325.4
(23.2 wt% Acrylonitrile)
infinite
Toluene
355.1
52
(25.0 wt% Acrylonitrile)
90000
147000
Toluene
313.15
198
347000
Ethyl acetate
infinite
Cyclohexanol
334.65
114000
Butyl acetate
288.85
453.05
181
(51.0 wt% Acrylonitrile)
52
344.15
107
Styrene/methyl methacrylate copolymer (52.0 mol% Styrene) 38
Styrene/a-methylstyrene copolymer (20.0 mol% Styrene) 100000 100000
114000
Cyclohexane
285.85
484.85
181
100000
114000
Cyclopentane
290.95
421.05
181
100000
114000
transDecahydronaphthalene
264.15
181
100000
114000
Hexyl acetate
288.55
514.15
181
100000
114000
Pentyl acetate
303.15
480.65
181
1,1,2-Trichloro-1,2,2trifluoroethane
301.6
Trifluoronitrosomethane/ tetrafluoroethylene copolymer (1:1) alternating infinite
12
N-Vinylacetamide/vinyl acetate copolymer (58 mol% Vinyl acetate)
30000
57000
Water
340.15
(63 mol% Vinyl acetate)
27000
48600
Water
323.15
225 225
(78 mol% Vinyl acetate)
26000
46800
Water
282.15
225
298.25
121
Vinyl alcohol/vinyl butyrate copolymer (7.5 mol% Butyralized PVA)
infinite
Water
408.0
13-34
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions Mn/g mol-1 Mw/g mol-1
Polymer
Mh/g mol-1
Solvent
160000
Water
UCST/K LCST/K Ref
N-Vinylcaprolactam/N-vinylamine copolymer (3.8 mol% Vinyl amine) 308.8
176 225
N-Vinylformamide/vinyl acetate copolymer (60 mol% Vinyl acetate)
24000
45600
Water
310.15
(66 mol% Vinyl acetate)
25000
47500
Water
291.15
225
(73 mol% Vinyl acetate)
23000
50600
Water
277.15
225
References 1a. Koningsveld, R., Stockmayer, W.H., and Nies, E., Polymer Phase Diagrams, Oxford University Press, Oxford, 2001. 1b. Kamide, K., Thermodynamics of Polymer Solutions, Elsevier, Amsterdam, 1990. 2. Jenckel, E. and Gorke, K., Z. Naturforsch., 5a, 317, 556, 1950. 3. Fox, T.G. and Flory, P.J., J. Amer. Chem. Soc., 73, 1909, 1951. 4. Fox, T.G. and Flory, P.J., J. Amer. Chem. Soc., 73, 1915, 1951. 5. Mandelkern, L. and Flory, P.J., J. Amer. Chem. Soc., 74, 2517, 1952. 6. Shultz, A.R. and Flory, P.J., J. Amer. Chem. Soc., 74, 4760, 1952. 7. Wagner, H.L. and Flory, P.J., J. Amer. Chem. Soc., 74, 195, 1952. 8. Shultz, A.R.and Flory, P.J., J. Amer. Chem. Soc., 75, 3888, 1953. 9. Kinsinger, J.B. and Wessling, R.A., J. Amer. Chem. Soc., 81, 2908, 1959. 10. Freeman, P.I. and Rowlinson, J.S., Polymer, 1, 20, 1960. 11. Krigbaum, W.R., Kurz, J.E., and Smith, P., J. Phys. Chem., 65, 1984, 1961. 12. Morneau, G.A., Roth, P.I., and Shultz, A.R., J. Polym. Sci., 55, 609, 1961. 13. Debye, P., Coll, H., and Woermann, D., J. Chem. Phys., 32, 939, 1960. 14. Debye, P., Coll, H., and Woermann, D., J. Chem. Phys., 33, 1746, 1960. 15. Debye, P., Chu, B., and Woermann, D., J. Chem. Phys., 36, 1803, 1962. 16. Fox, T.G., Polymer, 3, 111, 1962. 17. Ham, J.S., Bolen, M.C., and Hughes, J.K., J. Polym. Sci., 57, 25, 1962. 18. Debye, P., Woermann, D., and Chu, B., J. Polym. Sci.: Part A, 1, 255, 1963. 19. Allen, G. and Baker, C.H., Polymer, 6, 181, 1965. 20. Gechele, G.B., Crescentini, L., J. Polym. Sci.: Part A, 3, 3599, 1965. 21. Myrat, C.D. and Rowlinson, J.S., Polymer, 6, 645, 1965. 22. Kubo, K. and Ogino, K., Sci. Pap. Coll. Art. Sci. Univ. Tokyo, 16, 193, 1966. 23. Rehage, G., Moeller, D., and Ernst, O., Makromol.Chem., 88, 232, 1965. 24. Nakajima, A., Fujiwara, H., and Hamada, F., J. Polym. Sci.: Part A-2, 4, 507, 1966. 25. Nakajima, A., Hamada, F., and Hayashi, S., J. Polym. Sci.: Part C, 15, 285, 1966. 26. Koningsveld, R., Proefschrift Univ. Leiden, Heerlen, 1967. 27. Llopis, J., Albert, A., and Usobinaga P., Eur. Polym. J., 3, 259, 1967. 28. Moraglio, G., Gianotti, G., and Danusso, F., Eur. Polym. J., 3, 251, 1967. 29. Orwoll, R.A. and Flory, P.J., J. Amer. Chem. Soc., 89, 6822, 1967. 30. Patterson, D., Delmas, G., and Somcynsky, T., Polymer, 8, 503, 1967. 31. Nakajima, A. and Fujiwara, H., J. Polym. Sci.: Part A-2, 6, 723, 1968. 32. Rehage, G. and Koningsveld, R., J. Polym. Sci.: Polym. Lett., 6, 421, 1968. 33. Andreeva, V. M., et al., Vysokomol. Soedin., Ser. B, 11, 555, 1969. 34. Bardin, J.-M. and Patterson, D., Polymer, 10, 247, 1969. 35. Dusek, K., Coll. Czech. Chem. Commun., 34, 3309, 1969. 36. Delmas, G. and Patterson, D., J. Polym. Sci.: Part C, 30, 1, 1970. 37. Koningsveld, R., Kleintjens, L.A., and Shultz, A.R., J. Polym. Sci.: Part A-2, 8, 1261, 1970. 38. Kotaka, T., et al., Polym. J., 1, 245, 1970. 39. Liddell, A.H. and Swinton, F.L., Discuss. Faraday Soc., 49, 115, 1970. 40. Matsumura, K., Polym. J., 1, 322, 1970.
41. Nakayama, H., Bull. Chem. Soc. Japan, 43, 1683, 1970. 42. Cowie, J.M.G., Maconnachie, A., and Ranson, R.J., Macromolecules, 4, 57, 1971. 43. Kagemoto, A. and Baba, Y., Kobunshi Kagaku, 28, 784, 1971. 44. Shibatani, K. and Oyanagi, Y., Kobunshi Kagaku, 28 (1971) 361-367 45. Tager, A.A., et al., Vysokomol. Soedin., Ser. A, 13, 659, 1971. 46. Izumi, Y. and Miyake, Y., Polym. J., 3, 647, 1972. 47. Kagemoto, A., Baba, Y., and Fujishiro, R., Makromol. Chem., 154, 105, 1972. 48. Kennedy, J.W., Gordon, M., and Koningsveld, R., J. Polym. Sci.: Part C, 39, 43, 1972. 49. Lirova, B.I., et al., Vysokomol. Soedin., Ser. B, 14,265, 1972. 50. Nakayama, H., Bull.Chem.Soc.Japan, 45, 1371, 1972. 51. Siow, K.S., Delmas, G., and Patterson, D., Macromolecules, 5, 29, 1972. 52. Teramachi, S. and Fujikawa, T., J. Macromol. Sci.-Chem. A, 6, 1393, 1972. 53. Zeman, L., Biros, J., Delmas, G., and Patterson, D., J. Phys. Chem., 76, 1206, 1972. 54. Zeman, L. and Patterson, D., J. Phys. Chem., 76, 1214, 1972. 55. Baba, Y., Fujita, Y., and Kagemoto, A., Makromol. Chem., 164, 349, 1973. 56. Candau, F., Strazielle, C., and Benoit, H., Makromol. Chem., 170, 165, 1973. 57. Hamada, F., Fujisawa, K., and Nakajima, A., Polym. J., 4, 316, 1973. 58. Kuwahara, N., Nakata, M., and Kaneko, M., Polymer, 14, 415, 1973. 59. Kuwahara, N., Kojima, J., and Kaneko, M., J. Polym. Sci.: Polym. Phys. Ed., 11, 2307, 1973. 60. Saeki, S., Kuwahara, N., Konno, S., and Kaneko, M., Macromolecules, 6, 246, 1973. 61. Saeki, S., Kuwahara, N., Konno, S., and Kaneko, M., Macromolecules, 6, 589, 1973. 62. Tani, S., Hamada, F., and Nakajima, A., Polym.J., 5, 86, 1973. 63. Baba, Y. and Kagemoto, A., Kobunshi Ronbunshu, 31, 446, 1974. 64. Bataille, P., J. Chem. Eng. Data, 19, 224, 1974. 65. Bessonov, Yu.S. and Tager, A.A., Trud. Khim. Khim. Tekhnol., 1, 150, 1974. 66. Cowie, J.M.G. and McEwen, L.J., J. Chem. Soc., Faraday Trans. I, 70, 171, 1974. 67. Cowie, J.M.G. and McEwen, I.J., Macromolecules, 7, 291, 1974. 68. Cowie, J.M.G. and McEwen, I.J., J. Polym. Sci.: Polym. Phys. Ed., 12, 441, 1974. 69. Derham, K.W., Goldsbrough, J., and Gordon, M., Pure Appl. Chem., 38, 97, 1974. 70. Kuwahara, N., Saeki, S., Chiba, T., and Kaneko, M., Polymer, 15, 777, 1974. 71. Nakajima, A., et al., Makromol. Chem., 175, 197, 1974. 72. Saeki, S., Konno, S., Kuwahara, N., Nakata, M., and Kaneko, M., Macromolecules, 7, 521, 1974. 73. Ver Strate, G. and Philippoff, W., J. Polym. Sci.: Polym. Lett. Ed., 12, 267, 1974. 74. Konno, S., et al., Macromolecules, 8, 799, 1975. 75. Nakata, M., Kuwahara, N., and Kaneko, M., J. Chem. Phys., 62, 4278, 1975. 76. Saeki, S., Kuwahara, N., Nakata, M., and Kaneko, M., Polymer, 16, 445, 1975.
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions 77. 78. 79. 80.
Strazielle, C. and Benoit, H., Macromolecules, 8, 203, 1975. Tager, A. A., et al., Vysokomol. Soedin., Ser. B, 17, 61, 1975. Chiu, D.S., Takahashi, Y., and Mark, J.E., Polymer, 17, 670, 1976. Cowie, J.M.G. and McEwen, I.J., J. Chem. Soc., Faraday Trans. I, 72, 526, 1976. 81. Nakata, M., et al., J. Chem. Phys., 64, 1022, 1976. 82. Nose, T. and Tan, T.V., J. Polym. Sci.: Polym. Lett. Ed., 14, 705, 1976. 83. Saeki, S., Kuwahara, N., Nakata, M., and Kaneko, M., Polymer, 17, 685, 1976. 84. Saeki, S., Kuwahara, N., and Kaneko, M., Macromolecules, 101, 1976. 85. Slagowski, E., Tsai, B., and McIntyre, D., Macromolecules, 9, 687, 1976. 86. Panina, N.I., Lozgacheva, V.P., and Aver’yanova, V.M., Vysokomol. Soedin., Ser. B, 19, 786,.1977. 87. Rigler, J.K., Wolf, B.A., and Breitenbach, J.W., Angew. Makromol. Chem., 57, 15, 1977. 88. Vshivkov, S.A., et al., Prots. Studneobras. Polimern. Sistem., (2), 3, 1977. 89. Wolf, B.A. and Jend, R., Makromol. Chem., 178, 1811, 1977. 90. Wolf, B.A. and Sezen, M.C., Macromolecules, 10, 1010, 1977. 91. Kodama, Y. and Swinton, F.L., Brit. Polym. J., 10, 191, 1978. 92. Nakata, M., Dobashi, T., Kuwahara, N., Kaneko, M., and Chu, B., Phys. Rev. A, 18, 2683, 1978. 93. Cowie, J.M.G., Horta, A., McEwen, I.J., and Prochazka, K., Polym. Bull., 1, 329, 1979. 94. Hamano, K., Kuwahara, N., and Kaneko, M., Phys.Rev. A, 20, 1135, 1979. 95. Kleintjens, L.A.L., Ph.D. Thesis, Univ. Essex, U.K., 1979. 96. Dobashi, T., Nakata, M., and Kaneko, M., J. Chem. Phys., 72, 6685, 1980. 97. Irvine, P. and Gordon, M., Macromolecules, 13, 761, 1980. 98. Kleintjens, L.A., Koningsveld, R., and Gordon, M., Macromolecules, 13, 303, 1980. 99. Lang, J.C. and Morgan, R.D., J. Chem. Phys., 73, 5849, 1980. 100. Richards, R.W., Polymer, 21, 715, 1980. 101. Charlet, G. and Delmas, G., Polymer, 22, 1181, 1981. 102. Charlet, G., Ducasse, R., and Delmas, G., Polymer, 22, 1190, 1981. 103. Hashizume, J., Teramoto, A., and Fujita, H., J. Polym. Sci.: Polym. Phys. Ed., 19, 1405, 1981. 104. Wolf, B.A. and Geerissen, H., Colloid Polym. Sci., 259, 1214, 1981. 105. Geerissen, H. and Wolf, B.A., Makromol. Chem., Rapid Commun., 3, 17, 1982. 106. Goloborod’ko, V.I., Valatin, S.M., and Tashmukhamedov, I.P., Uzb. Khim. Zh., (3), 33, 1982. 107. Mangalam, P. V. and Kalpagam, V., J. Polym. Sci.: Polym. Phys. Ed., 20, 773, 1982. 108. Shinozaki, K., Abe, M., and Nose, T., Polymer, 23, 722, 1982. 109. Shinozaki, K., Van Tan, T., Saito, Y., and Nose, T., Polymer, 23, 728, 1982. 110. Suzuki, H., Kamide, K., and Saitoh, M., Eur. Polym. J., 18, 123, 1982. 111. Suzuki, H., Muraoka, Y., Saitoh, M., and Kamide, K., Brit. Polym. J., 14, 23, 1982. 112. Cowie, J.M.G. and McEwen, I.J., Polymer, 24, 1445, 1983. 113. Herold, F.K., Schulz, G.V., and Wolf, B.A., Materials Chem. Phys., 8, 243, 1983. 114. Tager, A.A., et al., Vysokomol. Soedin., Ser. A, 25, 1444, 1983. 115. Corti, M., Minero, C., and Degiorgio, V., J. Phys. Chem., 88, 309, 1984. 116. Cowie, J.M.G. and McEwen, I.J., Polymer, 25, 1107, 1984. 117. Dobashi, T., Nakata, M., and Kaneko, M., J. Chem. Phys., 80, 948, 1984. 118. Florin, E., Kjellander, R., and Eriksson, J.C., J. Chem. Soc., Faraday Trans. I, 80, 2889, 1984. 119. Gilluck, M., Dissertation, TH Leuna-Merseburg, 1984. 120. Rangel-Nafaile, C., Metzner, A.B., and Wissbrun, K.F., Macromolecules, 17, 1187, 1984. 121. Shiomi, T., et al., J. Polym. Sci.: Polym. Phys. Ed., 22, 1305, 1984. 122. Tsuyumoto, M., Einaga, Y., and Fujita, H., Polym. J., 16, 229, 1984.
13-35
123. Varennes, S., Charlet, G., and Delmas, G., Polym. Eng. Sci., 24, 98, 1984. 124. Hamano, K., Kuwahara, N., Koyama, T., and Harada, S., Phys. Rev. A, 32, 3168, 1985. 125. Kraemer, H. and Wolf, B.A., Makromol. Chem., Rapid Commun., 6, 21, 1985. 126. Herold, F.K. and Wolf, B.A., Mater. Chem. Phys., 14, 311, 1986. 127. Irani, C.A. and Cozewith, C., J. Appl. Polym. Sci., 31, 1879, 1986. 128. Cowie, J.M.G. and McEwen, I.J., Brit. Polym. J., 18, 387, 1986. 129. Krüger, B., Dissertation, TH Leuna-Merseburg, 1986. 130. Rätzsch, M.T., et al., J. Macromol. Sci.-Chem. A, 23, 1349, 1986. 131. Saeki, S., et al., Macromolecules, 19, 2353, 1986. 132. Sander, U. and Wolf, B.A., Angew. Makromol. Chem., 139, 149, 1986. 133. Barbarin-Castillo, J.-M., et al., Polym.Commun., 28, 212, 1987. 134. Gruner, K. and Greer, S.C., Macromolecules, 20, 2238, 1987. 135. Magarik, S.Ya., Filippov, A.P., and D’yakonova, N.V., Vysokomol. Soedin., Ser. A, 29, 698, 1987. 136. Rangel-Nafaile, C. and Munoz-Lara, J.J., Chem. Eng. Commun., 53, 177, 1987. 137. Kiepen, F. and Borchard, W., Macromolecules, 21, 1784, 1988. 138. Schuster, R., Diploma Paper, TH Leuna-Merseburg, 1988. 139. Tveekrem, J.L., Greer, S.C., and Jacobs, D.T., Macromolecules, 21, 147, 1988. 140. Bohossian, T., Charlet, G., and Delmas, G., Polymer, 30, 1695, 1989. 141. Chiu, G. and Mandelkern, L., Macromolecules, 23, 5356, 1990. 142. Goedel, W.A., et al., Ber. Bunsenges. Phys. Chem., 94, 17, 1990. 143. Van der Haegen, R. and Van Opstal, L., Makromol. Chem., 191, 1871, 1990. 144. Iwai, Y., et al., Sekiyu Gakkaishi, 33, 117, 1990. 145. Raetzsch, M.T., Krueger, B., and Kehlen, H., J. Macromol. Sci.-Chem. A, 27, 683, 1990. 146. Schild, H.G. and Tirrell, D.A., J. Phys. Chem., 94, 4352, 1990. 147. Stafford, S.G., Ploplis, A.C., and Jacobs, D.T., Macromolecules, 23, 470, 1990. 148. Akhmadeev, I.R., et al., Vysokomol. Soedin., Ser. B, 33, 543, 1991. 149. Bae, Y.C., Lambert, S.M., Soane, D.S., and Prausnitz, J.M., Macromolecules, 24, 4403, 1991. 150. Chu, B., Linliu, K., Xie, P., Ying, Q., Wang, Z., and Shook, J.W., Rev. Sci. Instr., 62, 2252, 1991. 151. Kawate, K., Imagawa, I., and Nakata, M., Polym. J., 23, 233, 1991. 152. Lee, K.D. and Lee, D.C., Pollimo, 15, 274, 1991. 153. Louai, A., Sarazin, D., Pollet, G., Francois, J., and Moreaux, F., Polymer, 32, 703, 1991. 154. Van Opstal, L., Koningsveld, R., and Kleintjens, L.A., Macromolecules, 24, 161, 1991. 155. Schubert, K.-V., Strey, R., and Kahlweit, M., J. Colloid Interface Sci., 141, 21, 1991. 156. Shen, W., Smith, G.R., Knobler, C.M., and Scott, R.L., J. Phys. Chem., 95, 3376, 1991. 157. Szydlowski, J. and Van Hook, W.A., Macromolecules, 24, 4883, 1991. 158. Tager, A.A., et al., Vysokomol. Soedin., Ser. B, 33, 572, 1991. 159. Wakker, A., Polymer, 32, 279, 1991. 160. Yokoyama, H., Takano, A., Okada, M., and Nose, T., Polymer, 32, 3218, 1991. 161. Heinrich, M. and Wolf, B.A., Polymer, 33, 1926, 1992. 162. Heinrich, M. and Wolf, B.A., Macromolecules, 25, 3817, 1992. 163. Lecointe, J.P., Pascault, J.P., Suspene, L., and Yang, Y.S., Polymer, 33, 3226, 1992. 164. Mueller, K.F., Polymer, 33, 3470, 1992. 165. Szydlowski, J., Rebelo, L., and Van HooK, W.A., Rev. Sci. Instrum., 63, 1717, 1992. 166. Xia, K.-Q., Franck, C., and Widom, B., J. Chem. Phys., 97, 1446, 1992. 167. Arnauts, J., Berghmans, H., and Koningsveld, R., Makromol. Chem., 194, 77, 1993. 168. Iwai, Y., Shigematsu, Y., Furuya, T., Fukuda, H., Arai, Y., Polym. Eng. Sci., 33, 480, 1993. 169. Wakker, A., Van Dijk, F., and Van Dijk, M.A., Macromolecules, 26, 5088, 1993.
13-36
Upper Critical (UCST) and Lower Critical (LCST) Solution Temperatures of Binary Polymer Solutions
170. Wells, P.A., de Loos, Th.W., and Kleintjens, L.A., Fluid Phase Equil., 83, 383, 1993. 171. Barbarin-Castillo, J.-M. and McLure, I.A., Polymer, 35, 3075, 1994. 172. Mumick, P.S. and McCormick, C.L., Polym. Eng. Sci., 34, 1419, 1994. 173. Okano, K., Takada, M., Kurita, K., and Furusaka, M., Polymer, 35, 2284, 1994. 174. Sato, H., Kuwahara, N., and Kubota, K., Phys. Rev. E, 50, 1752, 1994. 175. Song, S.-W. and Torkelson, J.M., Macromolecules, 27, 6389, 1994. 176. Tager, A.A., et al., Colloid Polym. Sci., 272, 1234, 1994. 177. Vanhee, S., et al., Makromol. Chem. Phys., 195, 759, 1994. 178. Haas, C.K. and Torkelson, J.M., Phys. Rev. Lett., 75, 3134, 1995. 179. Ikier, C. and Klein, H., Macromolecules, 28, 1003, 1995. 180. Luszczyk, M., Rebelo, L.P.N., and Van Hook, W.A., Macromolecules, 28, 745, 1995. 181. Pfohl, O., Hino, T., and Prausnitz, J.M., Polymer, 36, 2065, 1995. 182. Vshivkov, S.A. and Safronov, A.P., Vysokomol. Soedin., Ser. B, 37, 1779, 1995. 183. Allcock, H.R. and Dudley, G.K., Macromolecules, 29, 1313, 1996. 184. El-Ejmi, A.A.S. and Huglin, M.B., Polym.Int. 39, 113, 1996. 185. Fischer, V., Borchard, W., and Karas, M., J. Phys. Chem., 100, 15992, 1996. 186. Imre, A. and Van Hook, W.A., J. Polym. Sci.: Part B: Polym. Sci., 34, 751, 1996. 187. Luszczyk, M. and Van Hook, W.A., Macromolecules, 29, 6612, 1996. 188. Rong, Z., Wang, H., Ying, X., and Hu, Y., J. East China Univ. Sci. Technol., 22, 754, 1996. 189. Safronov, A.P., Tager, A.A., and Koroleva, E.V., Vysokomol. Soedin., Ser. B, 38, 900, 1996. 190. Vshivkov, S.A. and Rusinova, E.V., Vysokomol. Soedin., Ser. A, 38, 1746, 1996. 191. Xia, K.-Q., An, X.-Q., and Shen, W.-G., J.Chem.Phys., 105, 6018, 1996. 192. Imre, A. and Van Hook, W.A., J. Polym. Sci.: Part B: Polym. Phys., 35, 1251, 1997. 193. Kita, R., Dobashi, T., Yamamoto, T., Nakata, M., and Kamide, K., Phys. Rev. E, 55, 3159, 1997. 194. Li, M., Zhu, Z.-Q., and Mei, L.-H., Biotechnol. Progr., 13, 105, 1997. 195. McLure, I.A., Mokhtari, A., and Bowers, J., J. Chem. Soc., Faraday Trans., 93, 249, 1997. 196. Chalykh, A.E., Dement’eva, O.V., and Gerasimov, V.K., Vysokomol. Soedin., Ser. A, 40, 815,.1998. 197. Kubota, K., Kita, R., and Dobashi, T., J. Chem. Phys., 109, 711, 1998.
198. Schneider, A., Dissertation, Johannes Gutenberg Universität Mainz. 1998. 199. Terao, K., et al., Macromolecules, 31, 6885, 1998. 200. Yamagishi, T.-A., et al., Macromol. Chem. Phys., 199, 423, 1998. 201. Lau, A.C.W. and Wu, C., Macromolecules, 32, 581, 1999. 202. Nakata, M., Dobashi, T., Inakuma, Y.-I., and Yamamura, K., J. Chem. Phys., 111, 6617, 1999. 203. Pruessner, M.D., Retzer, M.E., and Greer, S.C., J. Chem. Eng. Data, 44, 1419, 1999. 204. Shimofure, S., Kubota, K., Kita, R., and Dobashi, T., J.Chem.Phys., 111, 4199, 1999. 205. Fischer, V. and Borchard, W., J. Phys. Chem. B, 104, 4463, 2000. 206. Imre, A., and Van Hook, W.A., Macromolecules, 33, 5308, 2000. 207. Koizumi, J., et al., J. Phys. Soc. Japan, 69, 2543, 2000. 208. Kunugi, S., Tada, T., Yamazaki, Y., Yamamoto, K., and Akashi, M., Langmuir, 16, 2042, 2000. 209. La Mesa, C., J. Therm. Anal. Calorim., 61, 493, 2000. 210. Persson, J., et al., Bioseparation, 9, 105, 2000. 211. Persson, J., Kaul, A., and Tjerneld, F., J. Chromatogr. B, 743, 115, 2000. 212. Djokpe, E. and Vogt, W., Macromol. Chem. Phys., 202, 750, 2001. 213. Kujawa, P. and Winnik, F.M., Macromolecules, 34, 4130, 2001. 214. Pendyala, K.S., Greer, S.C., and Jacobs, D.T., J. Chem. Phys., 115, 9995, 2001. 215. Berlinova, I. V., Nedelcheva, A. N., Samchikov, V., and Ivanov, Ya., Polymer, 43, 7243, 2002. 216. Freitag, R. and Garret-Flaudy, F., Langmuir, 18, 3434, 2002. 217. Maeda, Y., Nakamura, T., and Ikeda, I., Macromolecules, 35, 217, 2002. 218. Rebelo, L.P.N., et al., J., Macromolecules, 35, 1887, 2002. 219. Safronov, A.P. and Somova, T.V., Vysokomol. Soedin., Ser. A, 44, 2014, 2002. 220. Vshvikov, S.A., Rusinova, E.V., and Gur’ev, A.A., Vysokomol. Soedin., Ser. B, 44, 504, 2002. 221. Zhou, C.-S., An, X.-Q., Xia, K.-Q., Yin, X.-L., and Shen, W.-G., J. Chem. Phys., 117, 4557, 2002. 222. Chang, Y., Powell, E.S., Allcock, H.R., Park, S.M., and Kim, C., Macromolecules, 36, 2568, 2003. 223. David, G., et al., Eur. Polym. J., 39, 1209, 2003. 224. Siporska, A., Szydlowski, J., and Rebelo, L.P.N., Phys. Chem. Chem. Phys., 5, 2996, 2003. 225. Yamamoto, K., Serizawa, T., and Akashi, M., Macromol. Chem. Phys., 204, 1027, 2003.
Vapor Pressures (Solvent Activities) for Binary Polymer Solutions Christian Wohlfarth
stated, even though the temperature dependence of aA is relatively small for the temperature ranges where most of the experimental data exist.
The vapor pressure of a binary polymer solution is given by the activity of the solvent A, aA. Solvent activities in polymer solutions are measured either by the isopiestic method applying a reference system whose solvent activity is precisely known or by determining the solvent partial pressure, PA, and calculating the activity of the solvent by equation (1):
(
)
B –V L P – P s AA A ( A ) aA =( PA /P ) exp RT s A
References 1. Wohlfarth, C., Methods for the measurement of solvent activity of polymer solutions, in Handbook of Solvents, Wypych, G., Ed., ChemTec Publishing, Toronto, 2000, 146. 2. Wen, H., Elbro, H. S., and Alessi, P., Polymer Solution Data Collection. I. Vapor-liquid equilibrium; II. Solvent activity coefficients at infinite dilution; III. Liquid-liquid equilibrium, Chemistry Data Series, Vol. 15, DECHEMA, Frankfurt am Main, 1992. 3. Danner, R. P. and High, M. S., Handbook of Polymer Solution Thermodynamics, American Institute of Chemical Engineers, New York, 1993. 4. Wohlfarth, C., Vapour-Liquid Equilibrium Data of Binary Polymer Solutions: Physical Science Data, 44, Elsevier, Amsterdam, 1994. 5. Wohlfarth, C., CRC Handbook of Thermodynamic Data of Copolymer Solutions, CRC Press, Boca Raton, FL, 2001. 6. Wohlfarth, C., CRC Handbook of Thermodynamic Data of Aqueous Polymer Solutions, CRC Press, Boca Raton, FL, 2003. 7. Wang, K., Hu, Y., and Wu, D. T., J. Chem. Eng. Data, 39, 916, 1994. 8. Choi, J. S., Tochigi, K., and Kojima, K., Fluid Phase Equil., 111, 143, 1995. 9. Tochigi, K., Kurita, S., Ohashi, M., and Kojima, K., Kagaku Kogaku Ronbunshu, 23, 720, 1997. 10. Wong, H. C., Campbell, S. W., and Bhethanabotla, V. R., Fluid Phase Equil., 139, 371, 1997. 11. Kim, J., Joung, K. C., Hwang, S., Huh, W., Lee, C. S., and Yoo, K.-P., Korean J. Chem. Eng., 15, 199, 1998. 12. Kim, N. H., Kim, S.J., Won, Y. S., and Choi, J. S., Korean J. Chem. Eng., 15, 141, 1998. 13. Feng, W., Wang, W., and Feng, Z., J. Chem. Ind. Eng. (China), 49, 271, 1998. 14. French, R. N. and Koplos, G. J., Fluid Phase Equil., 160, 879, 1999. 15. Striolo, A. and Praunsitz, J. M., Polymer, 41, 1109, 2000. 16. Fornasiero, F., Halim, M., and Prausnitz, J. M., Macromolecules, 33, 8435, 2000. 17. Wong, H. C., Campbell, S. W., and Bhethanabotla, V. R., Fluid Phase Equil., 179, 181, 2001. 18. Wibawa, G., Takahashi, M., Sato, Y., Takishima, S., and Masuoka, H., J. Chem. Eng. Data, 47, 518, 2002. 19. Wibawa, G., Hatano, R., Sato, Y., Takishima, S., and Masuoka, H., J. Chem. Eng. Data, 47, 1022, 2002. 20. Pfohl, O., Riebesell, C., and Dohrn, R., Fluid Phase Equil., 202, 289, 2002. 21. Jung, J. K., Joung, S. N., Shin, H.Y., Kim, S. Y., Yoo, K.-P., Huh, W., Lee, C. S., Korean J. Chem. Eng., 19, 296, 2002. 22. Kang, S., Huang, Y., Fu, J., Liu, H., and Hu, Y., J. Chem. Eng. Data, 47, 788, 2002.
(1)
where BAA is the second virial coefficient, P is the saturation vapor pressure, and VAL is the molar volume of the pure solvent A at the measuring temperature T. The exponential term is neglected in quite a lot of original papers, however, and only the reduced vapor pressures are given (such data are indicated by an asterisk in the table below). Vapor pressures of polymer solutions have been measured since the 1940s, but the amount of experimental data for polymer solutions is still relatively small in comparison to lowmolecular mixtures and solutions. The data scatter with respect to temperature, concentration, molar mass, and other polymer characterization variables. Furthermore, the concentration range for measuring vapor pressures in good thermodynamic quality is often limited to the polymer mass fraction range between 0.4 and 0.85. A recent review on methods for the measurement of vapor pressures/solvent activities of polymer solutions and on related problems is given in Ref. [1]. Experimental data have been collected in several books [2-6]. The table in this Handbook provides data for a number of polymer solutions as smoothed values over the complete range of solvent activities between 0 (polymer mass fraction = 1) and 1 (polymer mass fraction = 0). For this purpose, the data were selected from data books [4–6] as well as from a number of original sources [7–22] which are not included in these books. The appropriate data were smoothed. The final table provides then the polymer mass fractions at given fixed solvent activities between 0.1 and 0.9. Of course, the user must keep in mind that the activity vs. concentration range of the experimental data is sometimes smaller than the below given complete range, thus the smoothed data should be used with sufficient care. Generally, vapor pressures or solvent activities of binary polymer solutions depend on molar mass. However, for high molecular weight polymers (well above the oligomer region), this molar-mass dependence can be neglected in many cases. Therefore, the table below presents only data for polymer solutions where the number average molar mass, Mn, is in the order of 105 g/mol or even higher, therefore, the molar mass is not specified. The temperature is s A
Solvent Activity aA as Function of Temperature and Mass Fraction Polymer/ solvents
aA: T/K
0.1
Acrylonitrile/Styrene Copolymer (28 wt% Acrylonitrile) Benzene*) 1,2-Dimethylbenzene*) 1,3-Dimethylbenzene*) 1,4-Dimethylbenzene*) Propylbenzene*) Toluene*)
S13_07.indd 37
343.15 398.15 398.15 398.15 398.15 343.15
0.982 0.983 0.983 0.983 0.987 0.982
0.2
0.3
0.962 0.964 0.965 0.964 0.972 0.962
0.940 0.942 0.944 0.942 0.955 0.940
0.4 0.5 0.6 Mass Fraction of the Polymer 0.915 0.918 0.921 0.918 0.935 0.915
0.886 0.890 0.893 0.890 0.913 0.886
0.851 0.857 0.861 0.857 0.885 0.851
0.7
0.8
0.9
0.809 0.817 0.821 0.817 0.851 0.809
0.753 0.764 0.769 0.763 0.804 0.753
0.670 0.685 0.690 0.684 0.732 0.669
13-37
4/13/06 8:10:34 AM
Vapor Pressures (Solvent Activities) for Binary Polymer Solutions
13-38
S13_07.indd 38
Polymer/ aA: 0.1 solvents T/K Butadiene/Styrene Copolymer (41 wt% Styrene) 343.15 0.968 Benzene*) 343.15 0.978 Cyclohexane*) 398.15 0.974 Ethylbenzene*) 398.15 0.977 Mesitylene*) 343.15 0.970 Toluene*)
0.2
0.3
0.4 0.5 0.6 Mass Fraction of the Polymer
0.7
0.8
0.9
0.934 0.953 0.945 0.950 0.936
0.896 0.925 0.912 0.921 0.899
0.853 0.893 0.875 0.887 0.857
0.805 0.856 0.831 0.847 0.808
0.748 0.811 0.779 0.799 0.751
0.680 0.754 0.713 0.738 0.682
0.591 0.678 0.625 0.656 0.591
0.461 0.556 0.491 0.526 0.456
Cellulose Triacetate Dichloromethane Trichloromethane
298.15 298.15
0.979 0.978
0.956 0.953
0.930 0.924
0.899 0.892
0.863 0.853
0.819 0.806
0.762 0.747
0.683 0.665
0.554 0.533
Dextran Water
313.15
0.988
0.975
0.960
0.942
0.921
0.894
0.860
0.810
0.725
Hydroxyethylcellulose Water
368.15
0.988
0.974
0.958
0.939
0.915
0.884
0.841
0.775
0.650
Hydroxypropylstarch Water
293.15
0.989
0.977
0.963
0.947
0.927
0.903
0.872
0.827
0.749
Nitrocellulose Ethyl acetate Ethyl formate Ethyl propionate Methyl acetate 2-Propanone Propyl acetate
293.15 293.15 293.15 293.15 293.15 293.15
0.938 0.958 0.941 0.890 0.922 0.937
0.885 0.916 0.889 0.820 0.861 0.881
0.835 0.873 0.839 0.763 0.807 0.827
0.786 0.828 0.789 0.711 0.756 0.775
0.737 0.780 0.739 0.660 0.706 0.722
0.685 0.728 0.685 0.609 0.653 0.665
0.627 0.668 0.625 0.554 0.596 0.602
0.560 0.595 0.555 0.490 0.530 0.528
0.471 0.494 0.460 0.406 0.443 0.426
Polybutadiene (random cis-trans-vinyl) Benzene 298.15 Cyclohexane 298.15 Dichloromethane 298.15 Hexane 298.15 Tetrachloromethane 298.15 Toluene 298.15 Trichloromethane 298.15
0.964 0.974 0.951 0.984 0.932 0.969 0.925
0.925 0.945 0.902 0.965 0.865 0.935 0.855
0.884 0.913 0.852 0.943 0.799 0.898 0.788
0.839 0.876 0.800 0.916 0.731 0.856 0.720
0.788 0.833 0.745 0.881 0.660 0.809 0.650
0.731 0.782 0.684 0.837 0.585 0.754 0.578
0.663 0.719 0.616 0.775 0.503 0.688 0.498
0.578 0.635 0.532 0.683 0.409 0.603 0.406
0.455 0.507 0.415 0.534 0.288 0.476 0.289
1,4-cis-Polybutadiene Benzene Cyclohexane Dichloromethane Hexane Tetrachloromethane Toluene Trichloromethane
298.15 298.15 298.15 298.15 298.15 298.15 298.15
0.966 0.977 0.948 0.983 0.936 0.969 0.915
0.930 0.951 0.898 0.963 0.871 0.936 0.840
0.890 0.922 0.848 0.941 0.805 0.900 0.770
0.846 0.888 0.796 0.916 0.736 0.860 0.702
0.796 0.849 0.742 0.886 0.665 0.815 0.634
0.738 0.803 0.683 0.850 0.588 0.763 0.562
0.668 0.747 0.616 0.804 0.505 0.701 0.485
0.580 0.677 0.536 0.741 0.409 0.622 0.396
0.450 0.581 0.424 0.639 0.287 0.506 0.283
Poly(butyl acrylate) Benzene Dichloromethane Tetrachloromethane Toluene Trichloromethane
298.15 298.15 298.15 298.15 298.15
0.964 0.868 0.932 0.967 0.901
0.926 0.801 0.868 0.932 0.811
0.887 0.744 0.805 0.893 0.733
0.845 0.690 0.742 0.849 0.662
0.799 0.636 0.677 0.801 0.595
0.749 0.577 0.607 0.744 0.529
0.691 0.511 0.529 0.676 0.459
0.619 0.430 0.438 0.590 0.381
0.519 0.318 0.317 0.463 0.282
Poly(butyl methacrylate) Benzene 1-Butanol 2-Butanol 2-Butanone Butyl acetate*) Cyclohexane Cyclopentane Diethyl ether*) 1,4-Dimethylbenzene Ethylbenzene Methyl acetate
313.15 313.15 313.15 313.15 308.15 313.15 313.15 298.15 333.15 333.15 313.15
0.971 0.991 0.992 0.982 0.982 0.985 0.984 0.987 0.971 0.969 0.984
0.939 0.980 0.982 0.963 0.961 0.968 0.965 0.973 0.940 0.935 0.965
0.902 0.968 0.969 0.940 0.936 0.948 0.944 0.956 0.905 0.899 0.944
0.861 0.953 0.953 0.914 0.908 0.925 0.918 0.937 0.866 0.859 0.920
0.813 0.936 0.933 0.884 0.875 0.899 0.886 0.914 0.822 0.815 0.891
0.756 0.914 0.906 0.846 0.836 0.866 0.846 0.885 0.770 0.764 0.856
0.685 0.885 0.869 0.799 0.789 0.823 0.792 0.848 0.706 0.704 0.811
0.592 0.842 0.815 0.732 0.730 0.764 0.714 0.795 0.622 0.627 0.748
0.453 0.762 0.719 0.623 0.652 0.666 0.579 0.703 0.497 0.517 0.645
4/13/06 8:10:35 AM
Vapor Pressures (Solvent Activities) for Binary Polymer Solutions
S13_07.indd 39
Polymer/ solvents 2-Methyl-1-propanol Octane 1-Propanol 2-Propanol 2-Propanone Propyl acetate Toluene
aA: T/K 333.15 313.15 333.15 313.15 313.15 313.15 313.15
0.1
0.2
0.3
0.988 0.988 0.990 0.991 0.989 0.980 0.971
0.974 0.974 0.980 0.981 0.976 0.957 0.939
Poly(Îľ-caprolacton) Tetrachloromethane*)
338.15
0.956
Poly(dimethylsiloxane) Chlorodifluoromethane Cyclohexane Hexane Pentane Pentane
298.15 303.15 303.15 308.15 423.15
Poly(ethyl acrylate) Benzene Dichloromethane Tetrachloromethane Toluene Trichloromethane
13-39 0.7
0.8
0.9
0.958 0.959 0.967 0.970 0.961 0.932 0.903
0.4 0.5 0.6 Mass Fraction of the Polymer 0.940 0.919 0.893 0.942 0.921 0.896 0.952 0.934 0.911 0.956 0.939 0.918 0.944 0.921 0.892 0.903 0.870 0.830 0.863 0.818 0.764
0.860 0.865 0.881 0.889 0.850 0.780 0.698
0.815 0.823 0.834 0.845 0.783 0.714 0.613
0.744 0.758 0.746 0.755 0.647 0.612 0.485
0.910
0.864
0.815
0.762
0.704
0.637
0.554
0.438
0.976 0.979 0.982 0.982 0.984
0.950 0.955 0.962 0.962 0.966
0.921 0.928 0.939 0.940 0.946
0.888 0.898 0.912 0.913 0.922
0.850 0.863 0.880 0.881 0.893
0.805 0.822 0.842 0.842 0.858
0.750 0.770 0.793 0.791 0.813
0.677 0.702 0.724 0.720 0.749
0.565 0.596 0.611 0.600 0.641
298.15 298.15 298.15 298.15 298.15
0.970 0.900 0.950 0.972 0.866
0.939 0.830 0.900 0.942 0.776
0.904 0.768 0.848 0.910 0.701
0.866 0.709 0.794 0.874 0.632
0.823 0.648 0.736 0.833 0.566
0.774 0.584 0.672 0.786 0.499
0.716 0.512 0.598 0.730 0.428
0.641 0.427 0.509 0.659 0.349
0.533 0.313 0.385 0.555 0.248
Poly(ethylene oxide) Benzene 2-Butanone Cyclohexane Methanol 2-Propanone Water
323.15 353.15 353.15 303.15 353.15 293.15
0.972 0.981 0.989 0.964 0.979 0.977
0.942 0.959 0.976 0.927 0.947 0.951
0.908 0.934 0.960 0.887 0.896 0.923
0.869 0.902 0.943 0.844 0.815 0.890
0.824 0.863 0.921 0.797 0.719 0.852
0.771 0.813 0.893 0.744 0.625 0.806
0.706 0.746 0.855 0.682 0.532 0.748
0.620 0.651 0.798 0.604 0.434 0.671
0.490 0.503 0.688 0.494 0.315 0.550
Poly(ethylenimine) Water
353.15
0.975
0.947
0.917
0.883
0.845
0.801
0.748
0.680
0.581
Poly(ethyl methacrylate) Benzene Dichloromethane Tetrachloromethane Toluene Trichloromethane
298.15 298.15 298.15 298.15 298.15
0.970 0.912 0.935 0.974 0.859
0.938 0.838 0.873 0.945 0.760
0.903 0.769 0.812 0.913 0.678
0.864 0.703 0.750 0.877 0.604
0.821 0.636 0.686 0.836 0.533
0.771 0.567 0.616 0.787 0.464
0.712 0.491 0.540 0.727 0.392
0.637 0.404 0.449 0.647 0.313
0.529 0.292 0.328 0.527 0.217
Polyisobutylene Benzene Cyclohexane Cyclopentane 1,4-Dimethylbenzene 2,2-Dimethylbutane Ethylbenzene Heptane Hexane Octane Tetrachloromethane Toluene Trichloromethane 2,4,4-Trimethylpentane
313.15 313.15 313.15 313.15 298.15 313.15 298.15 298.15 298.15 298.15 313.15 298.15 298.15
0.984 0.976 0.977 0.979 0.983 0.979 0.983 0.980 0.983 0.962 0.984 0.969 0.981
0.965 0.950 0.952 0.955 0.964 0.955 0.964 0.959 0.963 0.921 0.966 0.935 0.961
0.945 0.921 0.924 0.929 0.942 0.927 0.942 0.934 0.940 0.877 0.944 0.899 0.937
0.921 0.888 0.892 0.899 0.917 0.895 0.917 0.906 0.914 0.829 0.918 0.858 0.911
0.892 0.850 0.855 0.863 0.887 0.857 0.887 0.873 0.883 0.776 0.884 0.813 0.879
0.858 0.805 0.812 0.821 0.852 0.810 0.851 0.834 0.845 0.715 0.840 0.761 0.842
0.813 0.749 0.758 0.767 0.806 0.750 0.804 0.784 0.797 0.643 0.779 0.698 0.794
0.751 0.676 0.687 0.694 0.743 0.668 0.741 0.715 0.729 0.552 0.688 0.619 0.730
0.645 0.563 0.579 0.579 0.640 0.535 0.637 0.606 0.617 0.423 0.537 0.503 0.628
1,4-cis-Polyisoprene Benzene 2-Butanone Cyclohexane Dichloromethane 1,4-Dimethylbenzene
313.15 353.15 313.15 298.15 313.15
0.982 0.986 0.978 0.969 0.977
0.962 0.970 0.954 0.935 0.951
0.937 0.953 0.928 0.898 0.923
0.908 0.933 0.899 0.857 0.892
0.873 0.910 0.865 0.811 0.857
0.827 0.883 0.825 0.757 0.816
0.766 0.850 0.778 0.693 0.767
0.679 0.808 0.716 0.610 0.704
0.537 0.746 0.625 0.488 0.613
4/13/06 8:10:37 AM
Vapor Pressures (Solvent Activities) for Binary Polymer Solutions
13-40
S13_07.indd 40
Polymer/ solvents Ethylbenzene Methyl acetate Octane Propyl acetate Tetrachloromethane Toluene Trichloromethane
aA: T/K 313.15 313.15 313.15 333.15 298.15 313.15 298.15
0.1
0.2
0.3
0.7
0.8
0.9
0.928 0.900 0.948 0.942 0.800 0.927 0.807
0.4 0.5 0.6 Mass Fraction of the Polymer 0.898 0.864 0.823 0.862 0.820 0.773 0.926 0.901 0.871 0.916 0.886 0.850 0.737 0.672 0.602 0.898 0.865 0.827 0.747 0.685 0.620
0.978 0.968 0.984 0.983 0.929 0.978 0.930
0.954 0.935 0.967 0.964 0.864 0.954 0.867
0.774 0.717 0.834 0.803 0.526 0.782 0.547
0.709 0.649 0.785 0.738 0.435 0.725 0.462
0.612 0.554 0.711 0.633 0.316 0.645 0.346
Poly(methyl acrylate) Benzene Dichloromethane Tetrachloromethane Toluene Trichloromethane
298.15 298.15 298.15 298.15 298.15
0.979 0.917 0.963 0.981 0.912
0.956 0.851 0.924 0.960 0.830
0.930 0.791 0.882 0.936 0.753
0.901 0.732 0.838 0.909 0.678
0.867 0.671 0.788 0.878 0.603
0.826 0.605 0.733 0.840 0.527
0.776 0.532 0.668 0.792 0.446
0.710 0.444 0.586 0.727 0.357
0.608 0.326 0.470 0.626 0.248
Poly(methyl methacrylate) Benzene 2-Butanone*) Cyclohexanone*) Dichloromethane Ethyl acetate*) Toluene Trichloromethane
298.15 308.15 323.15 298.15 308.15 298.15 298.15
0.982 0.989 0.978 0.939 0.986 0.981 0.924
0.961 0.976 0.954 0.882 0.969 0.959 0.848
0.938 0.961 0.928 0.825 0.950 0.935 0.771
0.912 0.945 0.899 0.766 0.928 0.908 0.694
0.881 0.925 0.866 0.704 0.902 0.877 0.616
0.843 0.900 0.827 0.637 0.869 0.841 0.536
0.795 0.869 0.781 0.560 0.826 0.795 0.451
0.729 0.825 0.723 0.468 0.763 0.736 0.358
0.622 0.751 0.640 0.343 0.649 0.646 0.246
Poly(Îą-methylstyrene) Cumene Îą-Methylstyrene
338.15 338.15
0.984 0.978
0.965 0.954
0.944 0.927
0.918 0.896
0.887 0.859
0.848 0.816
0.796 0.761
0.721 0.687
0.593 0.570
Poly(propylene oxide) Benzene Metvhanol
333.15 298.15
0.967 0.992
0.932 0.982
0.893 0.970
0.850 0.955
0.801 0.936
0.744 0.910
0.675 0.872
0.588 0.812
0.460 0.689
Polystyrene Benzene 2-Butanone*) Cyclohexane Cyclohexanone*) Dichloromethane 1,3-Dimethylbenzene*) 1,4-Dimethylbenzene Ethyl acetate*) Hexane 2-Propanone Propyl acetate Tetrachloromethane Toluene Trichloromethane
333.15 298.15 313.15 313.15 298.15 323.15 423.15 313.15 423.15 323.15 343.15 298.15 313.15 298.15
0.978 0.986 0.990 0.970 0.949 0.980 0.974 0.976 0.980 0.991 0.983 0.961 0.981 0.949
0.953 0.971 0.978 0.937 0.899 0.956 0.944 0.948 0.958 0.980 0.965 0.917 0.959 0.898
0.924 0.954 0.965 0.900 0.849 0.926 0.911 0.918 0.933 0.969 0.943 0.869 0.933 0.847
0.891 0.935 0.949 0.858 0.797 0.891 0.872 0.882 0.904 0.955 0.919 0.814 0.901 0.793
0.852 0.912 0.931 0.810 0.743 0.846 0.826 0.841 0.869 0.938 0.891 0.751 0.861 0.736
0.804 0.885 0.908 0.753 0.684 0.791 0.770 0.791 0.827 0.918 0.858 0.678 0.809 0.675
0.742 0.851 0.877 0.684 0.617 0.723 0.698 0.728 0.772 0.892 0.815 0.592 0.738 0.604
0.657 0.804 0.833 0.593 0.536 0.638 0.601 0.642 0.697 0.854 0.758 0.486 0.638 0.519
0.521 0.724 0.754 0.459 0.423 0.524 0.452 0.507 0.574 0.788 0.667 0.344 0.481 0.400
Poly(tetramethylene glycol) Methanol
303.15
0.981
0.961
0.938
0.913
0.883
0.849
0.806
0.751
0.671
Poly(vinyl acetate) Benzene 1-Butanol 2-Butanol 2-Butanone 1,2-Dichloroethane*) 1,4-Dimethylbenzene Ethylbenzene Methanol Methyl acetate 2-Methyl-1-propanol 1-Propanol 2-Propanol
313.15 313.15 313.15 313.15 300.15 313.15 313.15 333.15 313.15 353.15 353.15 353.15
0.985 0.992 0.987 0.980 0.955 0.990 0.990 0.990 0.976 0.984 0.987 0.988
0.967 0.982 0.972 0.958 0.906 0.978 0.979 0.978 0.949 0.966 0.972 0.974
0.945 0.971 0.956 0.934 0.851 0.964 0.966 0.965 0.919 0.946 0.955 0.958
0.919 0.958 0.937 0.906 0.790 0.948 0.950 0.949 0.886 0.924 0.936 0.940
0.886 0.942 0.915 0.873 0.722 0.928 0.932 0.931 0.849 0.899 0.914 0.919
0.844 0.923 0.889 0.835 0.644 0.903 0.910 0.908 0.805 0.868 0.888 0.894
0.784 0.896 0.856 0.787 0.556 0.868 0.880 0.877 0.752 0.832 0.856 0.863
0.696 0.856 0.813 0.724 0.450 0.814 0.836 0.834 0.684 0.784 0.815 0.820
0.548 0.779 0.747 0.626 0.315 0.705 0.759 0.757 0.583 0.715 0.753 0.754
4/13/06 8:10:38 AM
Vapor Pressures (Solvent Activities) for Binary Polymer Solutions Polymer/ solvents 2-Propanone Propyl acetate Tetrahydrofuran Toluene
aA: T/K 333.15 333.15 323.15 333.15
0.1
0.2
0.3
0.983 0.979 0.973 0.983
0.963 0.955 0.943 0.965
Poly(vinyl chloride) 2-Butanone*) Cyclohexanone*)
313.15 333.15
0.976 0.971
Poly(vinyl methyl ether) Benzene*) Chlorobenzene*) 1,2-Dimethylbenzene*) Ethylbenzene*) Propylbenzene*)
298.15 343.15 363.15 343.15 373.15
Poly(4-vinylpyridine) Methanol 2-Propanol
13-41 0.7
0.8
0.9
0.940 0.930 0.911 0.944
0.4 0.5 0.6 Mass Fraction of the Polymer 0.913 0.880 0.838 0.901 0.869 0.831 0.874 0.831 0.781 0.920 0.891 0.857
0.784 0.786 0.720 0.815
0.707 0.728 0.640 0.756
0.578 0.645 0.519 0.664
0.949 0.934
0.920 0.889
0.887 0.839
0.849 0.781
0.804 0.714
0.749 0.635
0.676 0.536
0.566 0.397
0.969 0.972 0.973 0.978 0.977
0.935 0.941 0.943 0.954 0.951
0.897 0.906 0.910 0.927 0.923
0.855 0.867 0.871 0.895 0.890
0.807 0.822 0.826 0.857 0.852
0.751 0.769 0.772 0.811 0.808
0.683 0.705 0.705 0.753 0.752
0.596 0.620 0.616 0.672 0.678
0.466 0.494 0.478 0.542 0.563
343.15 343.15
0.986 0.989
0.971 0.977
0.953 0.964
0.931 0.948
0.905 0.928
0.871 0.904
0.825 0.872
0.756 0.826
0.627 0.743
Poly(1-vinyl-2-pyrrolidinone) Water
368.15
0.984
0.966
0.946
0.924
0.899
0.870
0.835
0.790
0.727
Starch (amorphous) Water
383.15
0.991
0.981
0.970
0.956
0.939
0.918
0.889
0.845
0.754
Styrene/Methyl methacrylate Copolymer (41.45 wt% Styrene) 308.15 0.982 0.963 Benzene*)
0.940
0.913
0.881
0.841
0.789
0.716
0.590
Vinyl acetate/Vinyl chloride Copolymer (12 wt% Vinyl acetate) Benzene 398.15 0.976 0.949 Chlorobenzene 398.15 0.984 0.965 1,4-Dimethylbenzene 398.15 0.989 0.977 Ethylbenzene 398.15 0.989 0.976 Octane 398.15 0.992 0.982
0.918 0.944 0.963 0.961 0.971
0.883 0.920 0.946 0.944 0.958
0.841 0.891 0.926 0.924 0.942
0.791 0.856 0.899 0.899 0.922
0.728 0.810 0.863 0.866 0.893
0.643 0.746 0.807 0.818 0.847
0.509 0.638 0.692 0.735 0.739
*)Â aA = PA / PAS
S13_07.indd 41
4/13/06 8:10:38 AM
SPECIFIC ENTHALPIES OF SOLUTION OF POLYMERS AND COPOLYMERS Christian Wohlfarth
Enthalpies of solution or mixing, expressed as the enthalpy change per unit mass of polymer, are given in the table at infinite dilution, i.e., a very small amount of polymer and a large excess of solvent were mixed isothermally to form a homogeneous solution. By thermodynamics, ∆sol HB∞ or ∆M HB∞ are obtained from the following derivatives:
∆sol HB∞ = lim (∂∆ sol h / ∂mB )P ,T ,m
∆M HB∞ = lim (∂∆ M h / ∂mB ) P ,T ,m
mB →0
mB →0
j ≠B
j ≠B
(1)
(2)
with a unit of J/g. Thus, they are the partial specific enthalpies of solution or mixing of the polymer B at infinite dilution where ∆solh or ∆Mh is the extensive enthalpy of the solution or mixing process. The state of the polymer before dissolution can significantly affect the enthalpy of solution. The dissolving of a semicrystalline polymer requires an additional amount of heat associated with the disordering of crystalline regions. Consequently, its enthalpy of Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
solution is usually positive and depends on the degree of crystallinity of the given polymer sample. An amorphous polymer below its glass transition temperature, Tg (see the Tg-table of this Section), often dissolves with the release of heat. The enthalpy of solution of a glassy polymer is additionally dependent to some extent on the thermal history of the glass-forming process. An amorphous polymer above Tg can show endothermic or exothermic dissolution behavior depending on the nature of the solvent and the interaction energies involved as is the case for any enthalpy of mixing. This enthalpy of mixing is then independent of any crystalline or glassy aspects of the polymer. It can be obtained without difficulties for liquid/molten polymers mixed with a solvent. Therefore, the enthalpies given in the table are either enthalpies of solution or enthalpies of mixing, depending on the state of the polymer. The enthalpies depend on temperature and molar mass. The necessary molar mass information for a system is provided in the table (if available) by the corresponding number average, Mn, mass average, Mw, or viscosity average, Mη, values of the polymer as given in the original sources. Outside the oligomer range, specific enthalpies of solution or mixing do not remarkably depend on molar mass, however. More enthalpy data of polymer-solvent systems can be found in Ref. 106. ∆HB∞/ J/g
Solvent
T/K
Benzene Benzene Benzene
298.15 298.15 298.15
N,N-Dimethylformamide
323.15
−32
66
(13 wt% Acrylonitrile)
N,N-Dimethylformamide
293.15
−38
35
(13 wt% Acrylonitrile)
N,N-Dimethylformamide
308.15
−22
35
(13 wt% Acrylonitrile)
N,N-Dimethylformamide
323.15
−18
35
(13 wt% Acrylonitrile)
N,N-Dimethylformamide
338.15
−15
35
(13 wt% Acrylonitrile)
N,N-Dimethylformamide
353.15
−12
35
(29 wt% Acrylonitrile)
N,N-Dimethylformamide
295.15
−42
35
(29 wt% Acrylonitrile)
N,N-Dimethylformamide
308.15
−27
35
(29 wt% Acrylonitrile)
N,N-Dimethylformamide
323.15
−21
35
(29 wt% Acrylonitrile)
N,N-Dimethylformamide
338.15
−19
35
(29 wt% Acrylonitrile)
N,N-Dimethylformamide
353.15
−16
35
(40 wt% Acrylonitrile)
N,N-Dimethylformamide
295.15
−47
35
(40 wt% Acrylonitrile)
N,N-Dimethylformamide
308.15
−30
35
(40 wt% Acrylonitrile)
N,N-Dimethylformamide
323.15
−28
35
(40 wt% Acrylonitrile)
N,N-Dimethylformamide
338.15
−18
35
(40 wt% Acrylonitrile)
N,N-Dimethylformamide
353.15
−17
35
Benzene
298.15
−11
8
Cyclohexanone
298.15
−15
25
Trichloromethane
298.15
−38
25
Acrylonitrile/butadiene copolymer (18 wt% Acrylonitrile) (26 wt% Acrylonitrile) (40 wt% Acrylonitrile)
0.0 −1.9 −2.9
Ref. 18 18 18
Acrylonitrile/isoprene copolymer (15 mol% Isoprene) Acrylonitrile/vinyl chloride copolymer
Benzylcellulose
13-42
487_S13.indb 42
3/27/06 2:37:08 PM
Specific Enthalpies of Solution of Polymers and Copolymers Solvent
T/K
∆HB∞/ J/g
Ref.
(50/50 Iso/terephtaloyl chloride)
N,N-Dimethylacetamide
298.15
−56
69
(50/50 Iso/terephtaloyl chloride)
1,1,2,2-Tetrachloroethane
298.15
+72
69
(10 wt% Styrene)
Benzene
293.65
4.9
17
(30 wt% Styrene)
Benzene
293.65
3.0
17
(30 wt% Styrene)
Benzene
298.15
3.0
25
(50 wt% Styrene)
Benzene
293.65
1.8
17
(60 wt% Styrene)
Benzene
293.65
0.0
17
(70 wt% Styrene)
Benzene
293.65
0.0
17
(75 wt% Styrene)
Benzene
298.15
1.5
7
(80 wt% Styrene)
Benzene
293.65
−0.6
17
(90 wt% Styrene)
Benzene
293.65
−4.9
17
Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
13-43
Bisphenol A-isophthaloyl chloride/terephthaloyl chloride
Butadiene/styrene copolymer
Butyl methacrylate/isobutyl methacrylate copolymer (50 wt%/50 wt%) Glass
150000
Cyclohexanone
303.15
5.9
98
Liquid
150000
Cyclohexanone
303.15
14.0
98
Butyl methacrylate/methyl methacrylate copolymer (45 wt%/55 wt%) Glass
107000
250000
Cyclohexanone
304.15
−5.4
99
Liquid
107000
250000
Cyclohexanone
304.15
+9.1
99
Cellulose acetate (52.2 wt% Acetate)
Formic acid
298.15
−30
10
(55.8 wt% Acetate)
Formic acid
298.15
−44
10
(52.5 wt% Acetate)
Methyl acetate
298.15
−80
1
(48 wt% Acetate)
2-Propanone
298.15
−35
25
(52.2 wt% Acetate)
2-Propanone
298.15
−30
10
(55.8 wt% Acetate)
2-Propanone
298.15
−26
10
(56 wt% Acetate)
2-Propanone
298.15
−45
25
(56 wt% Acetate)
2-Propanone
298.15
−30
4
Cellulose triacetate 2-Propanone
298.15
−29
4
Trichloromethane
298.15
−47
4
Dextran 8200
10400
Dimethylsulfoxide
298.15
−185
75
75900
101000
Dimethylsulfoxide
298.15
−187
70
75900
101000
1,2-Ethanediol
298.15
−98
70
75900
101000
Formamide
298.15
−228
70
8200
10400
Water
298.15
−140
75
75900
101000
Water
298.15
−150
75
Water
298.15
−123
65
(33 mol% Ethylene)
Cyclohexane
298.15
1.4
74
(63 mol% Ethylene)
Cyclohexane
298.15
8.1
74
(75 mol% Ethylene)
Cyclohexane
298.15
11.8
74
(33 mol% Ethylene)
Cyclooctane
298.15
1.2
74
(amorph) Ethylene/propylene copolymer
487_S13.indb 43
3/27/06 2:37:08 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-44 Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
∆HB∞/ J/g
Solvent
T/K
(63 mol% Ethylene)
Cyclooctane
298.15
(75 mol% Ethylene)
Cyclooctane
(33 mol% Ethylene)
Cyclopentane
(63 mol% Ethylene)
Cyclopentane
298.15
1.1
74
(33 mol% Ethylene)
cis-Decahydronaphthalene
298.15
−2.4
74
(63 mol% Ethylene)
cis-Decahydronaphthalene
298.15
2.4
74
(75 mol% Ethylene)
cis-Decahydronaphthalene
298.15
3.9
74
(33 mol% Ethylene)
trans-Decahydronaphthalene
298.15
−4.8
74
(63 mol% Ethylene)
trans-Decahydronaphthalene
298.15
−1.3
74
(75 mol% Ethylene)
trans-Decahydronaphthalene
298.15
−0.3
74
(63 mol% Ethylene)
3,3-Diethylpentane
298.15
−1.4
74
(75 mol% Ethylene)
3,3-Diethylpentane
298.15
<0.1
74
(63 mol% Ethylene)
2,2-Dimethylpentane
298.15
5.3
74
(75 mol% Ethylene)
2,2-Dimethylpentane
298.15
2.3
74
(63 mol% Ethylene)
2,3-Dimethylpentane
298.15
0.7
74
(75 mol% Ethylene)
2,3-Dimethylpentane
298.15
0.4
74
(33 mol% Ethylene)
2,4-Dimethylpentane
298.15
−1.2
74
(63 mol% Ethylene)
2,4-Dimethylpentane
298.15
3.0
74
(75 mol% Ethylene)
2,4-Dimethylpentane
298.15
0.2
74
(33 mol% Ethylene)
3,3-Dimethylpentane
298.15
−2.7
74
(63 mol% Ethylene)
3,3-Dimethylpentane
298.15
0.3
74
(33 mol% Ethylene)
Dodecane
298.15
−0.1
73
(63 mol% Ethylene)
Dodecane
298.15
0.8
73
(75 mol% Ethylene)
Dodecane
298.15
−4.0
73
(63 mol% Ethylene)
3-Ethylpentane
298.15
2.6
74
(75 mol% Ethylene)
3-Ethylpentane
298.15
−0.6
74
(33 mol% Ethylene)
2,2,4,4,6,8,8Heptamethylnonane
298.15
−0.5
73
(63 mol% Ethylene)
2,2,4,4,6,8,8Heptamethylnonane
298.15
2.2
73
(75 mol% Ethylene)
2,2,4,4,6,8,8Heptamethylnonane
298.15
−0.9
73
(33 mol% Ethylene)
Hexadecane
298.15
0.7
73
(63 mol% Ethylene)
Hexadecane
298.15
−1.1
73
(75 mol% Ethylene)
Hexadecane
298.15
−4.6
73
(63 mol% Ethylene)
3-Methylhexane
298.15
0.7
74
(75 mol% Ethylene)
3-Methylhexane
298.15
1.7
74
(33 mol% Ethylene)
Octane
298.15
−1.6
73
(63 mol% Ethylene)
Octane
298.15
3.6
73
(75 mol% Ethylene)
Octane
298.15
0.3
73
(33 mol% Ethylene)
2,2,4,6,6-Pentamethylheptane 298.15
−0.3
73
(63 mol% Ethylene)
2,2,4,6,6-Pentamethylheptane 298.15
3.6
73
(75 mol% Ethylene)
2,2,4,6,6-Pentamethylheptane 298.15
0.0
73
(63 mol% Ethylene)
2,2,4,4-Tetramethylpentane
298.15
2.7
74
(75 mol% Ethylene)
2,2,4,4-Tetramethylpentane
298.15
3.1
74
(33 mol% Ethylene)
2,2,4-Trimethylpentane
298.15
−0.2
73
(63 mol% Ethylene)
2,2,4-Trimethylpentane
298.15
1.9
73
(75 mol% Ethylene)
2,2,4-Trimethylpentane
298.15
3.5
73
487_S13.indb 44
Ref.
6.9
74
298.15
8.6
74
298.15
−3.5
74
3/27/06 2:37:09 PM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
13-45 ∆HB∞/ J/g
Ref.
298.15
−0.5
104
304.65
−1.3
93
Solvent
T/K
Cyclopentanone Tetrahydrofuran
Water
293.15
−92
29
Water
323.15
−63
29
Trichloromethane
303.15
47
22
Ethylene/vinylacetate copolymer (85 wt% Vinyl acetate) (70 wt% Vinyl acetate)
220000
Gelatine
Guttapercha Isobutyl methacrylate/methyl methacrylate copolymer (51 wt%/49 wt%) Glass
150000
Cyclohexanone
303.15
−11
98
Liquid
150000
Cyclohexanone
303.15
15
98
Benzene
298.15
10
25
Benzene
298.15
12
20
Natural rubber
Nitrocellulose
487_S13.indb 45
16600
2-Butanone
298.15
−80
4
23000
2-Butanone
298.15
−81
4
40000
2-Butanone
298.15
−81
4
Butyl acetate
293.15
−75
23
Butyl acetate
298.15
−75
23
Butyl acetate
298.15
−73
26
Butyl acetate
303.15
−75
23
Butyl acetate
308.15
−71
23
Butyl acetate
313.15
−65
23
Butyl acetate
313.15
−67
26
Butyl acetate
318.15
−59
23
Butyl acetate
323.15
−54
23
Butyl acetate
328.15
−50
23
Butyl acetate
333.15
−59
26
Butyl acetate
343.15
−55
26
Butyl acetate
353.15
−47
26
Diethyl ether
295.15
−62
3
Dibutyl phthalate
273.15
−45
26
Dibutyl phthalate
298.15
−46
26
Dibutyl phthalate
313.15
−46
26
Dibutyl phthalate
333.15
−42
26
Ethanol
295.15
−46
3
Ethyl acetate
293.15
−76
23
Ethyl acetate
298.15
−75
23
Ethyl acetate
303.15
−69
23
Ethyl acetate
308.15
−61
23
Ethyl acetate
313.15
−54
23
Ethyl acetate
318.15
−50
23
Ethyl acetate
323.15
−50
23
Ethyl acetate
328.15
−50
23
Methanol
293.15
−69
23
3/27/06 2:37:10 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-46 Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
Solvent
T/K
∆HB∞/ J/g
Ref.
Methanol
298.15
−56
23
Methanol
303.15
−50
23
Methanol
308.15
−50
23
Methanol
313.15
−50
23
Methanol
318.15
−50
23
Methanol
323.15
−50
23
Methanol
328.15
−50
23
2,4-Pentanedione
298.15
−74
4
2-Pentanone
298.15
−64
4
2-Propanone
273.15
−75
26
2-Propanone
293.15
−75
23
2-Propanone
298.15
−83
2
2-Propanone
298.15
−68
4
2-Propanone
298.15
−71
8
2-Propanone
298.15
−74
23
2-Propanone
298.15
−79
25
2-Propanone
298.15
−75
26
2-Propanone
303.15
−60
23
2-Propanone
308.15
−51
23
2-Propanone
313.15
−50
23
2-Propanone
313.15
−65
26
2-Propanone
318.15
−50
23
2-Propanone
323.15
−50
23
2-Propanone
323.15
−50
26
2-Propanone
328.15
−50
23
Pyridine
298.15
−106
2
Tri(4-methylphenyl) phosphate
298.15
−16
26
Tri(4-methylphenyl) phosphate
313.15
−28
26
Tri(4-methylphenyl) phosphate
333.15
−41
26
Tri(4-methylphenyl) phosphate
343.15
−44
26
Tri(4-methylphenyl) phosphate
353.15
−47
26
Formic acid
295.15
−53
24
Tricresol
323.55
−66
22
Tricresol
345.55
−66
22
Nylon-6 (unoriented)
Poly(acrylonitrile)
487_S13.indb 46
0.0
18
Benzene
298.15
N,N-Dimethylformamide
295.15
−23
35
N,N-Dimethylformamide
298.15
−21
18
N,N-Dimethylformamide
298.15
−43
42
N,N-Dimethylformamide
308.15
−17
35
N,N-Dimethylformamide
323.15
−13
35
3/27/06 2:37:10 PM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
13-47 Solvent
T/K
∆HB∞/ J/g
Ref.
N,N-Dimethylformamide
323.15
−15
66
N,N-Dimethylformamide
338.15
−10
35
Dimethylsulfoxide
298.15
−70
42
160000
Dichloroacetic acid
303.15
−35
46
160000
1,2-Dichloroethane
303.15
−1.6
46
Poly(γ-benzyl-l-glutamate)
Polybutadiene Benzene
298.15
6.1
7
Benzene
298.15
7.1
25
Benzene
298.15
10.5
32
2,2,4-Trimethylpentane
298.15
1.1
32
1,4-cis-Polybutadiene low
Cyclohexane
298.15
5.4
74
low
Cyclooctane
298.15
5.8
74
low
Cyclopentane
298.15
<0.1
74
low
cis-Decahydronaphthalene
298.15
4.2
74
low
trans-Decahydronaphthalene
298.15
2.6
74
low
3,3-Diethylpentane
298.15
5.2
74
low
2,2-Dimethylpentane
298.15
4.1
74
low
2,3-Dimethylpentane
298.15
4.5
74
low
2,4-Dimethylpentane
298.15
3.2
74
low
3,3-Dimethylpentane
298.15
3.2
74
low
Dodecane
298.15
4.2
74
low
3-Ethylpentane
298.15
3.7
74
low
2,2,4,4,6,8,8Heptamethylnonane
298.15
4.8
74
low
Hexadecane
298.15
4.9
74
low
3-Methylhexane
298.15
3.6
74
low
Octane
298.15
4.3
74
low
2,2,4,6,6-Pentamethylheptane 298.15
5.0
74
low
2,2,4,4-Tetramethylpentane
298.15
5.8
74
low
2,3,3,4-Tetramethylpentane
298.15
5.1
74
20000
Cyclohexane
298.15
1.0
74
20000
Cyclooctane
298.15
1.8
74
20000
Cyclopentane
298.15
−2.9
74
Poly(1-butene)
487_S13.indb 47
20000
cis-Decahydronaphthalene
298.15
<0.1
74
20000
trans-Decahydronaphthalene
298.15
−2.0
74
20000
Decane
298.15
1.2
62
20000
3,3-Diethylpentane
298.15
−2.6
74
20000
2,2-Dimethylpentane
298.15
−4.0
74
20000
2,3-Dimethylpentane
298.15
−2.8
74
20000
2,4-Dimethylpentane
298.15
−2.3
74
20000
3,3-Dimethylpentane
298.15
−2.2
74
20000
Dodecane
298.15
2.1
74
3/27/06 2:37:11 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-48 Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
Solvent
T/K
∆HB∞/ J/g
20000
3-Ethylpentane
298.15
−2.8
74
20000
Heptane
298.15
0.0
73
20000
Hexadecane
298.15
3.0
62
20000
Hexane
298.15
−1.2
62
20000
3-Methylhexane
298.15
−2.1
74
20000
Nonane
298.15
0.9
73
20000
Octane
298.15
0.4
73
20000
2,2,4,6,6-Pentamethylheptane 298.15
20000
Pentane
298.15
20000
Tetradecane
20000
2,2,4,4-Tetramethylpentane
20000 20000
Ref.
0.6
73
−2.6
62
298.15
2.7
62
298.15
−1.4
74
2,3,3,4-Tetramethylpentane
298.15
−2.2
74
2,2,4-Trimethylpentane
298.15
−0.5
73
2-Propanone
298.15
0.8
25
Poly(butyl acrylate) Poly(butyl methacrylate) Glass
91300
210000
Cyclohexanone
304.15
7.7
99
Liquid
91300
210000
Cyclohexanone
304.15
8.2
99
2-Propanone
298.15
19.5
25
Benzene
298.15
0.5
7
1,2-Dichlorobenzene
303.05
55
89
Polychloroprene Poly(2,6-dimethyl phenylene oxide) 17000
46400
Poly(dimethylsiloxane) Benzene
298.15
11.2
50
20000
Benzene
298.15
13.5
61
100000
Benzene
298.15
14.2
40
170000
Bromocyclohexane
303.15
10.2
51
80000
2-Butanone
293.15
14.4
77
2-Butanone
303.15
14.2
44
170000
2-Butanone
303.15
14.7
51
80000
2-Butanone
308.15
14.3
77
80000
2-Butanone
323.15
14.3
77
80000
Butyl acetate
298.15
6.1
41
80000
Butyl propanoate
298.15
4.9
41
100000
Chlorobenzene
298.15
7.5
40
Cyclohexane
298.15
3.0
50
20000
Cyclohexane
298.15
5.2
74
100000
Cyclohexane
298.15
5.2
40
20000
Cyclooctane
298.15
6.8
74
20000
Cyclopentane
298.15
1.0
74
13000
30900
13000
487_S13.indb 48
20000
cis-Decahydronapthalene
298.15
7.1
74
20000
trans-Decahydronapthalene
298.15
4.3
74
20000
Decamethyltetrasiloxane
297.65
0.45
37
20000
Decane
298.15
3.8
37
20000
Decane
298.15
3.9
61
3/27/06 2:37:12 PM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
Solvent
T/K
80000
Decane
298.15
3.8
41
80000
Decyl acetate
298.15
4.5
41
80000
Dibutyl ether
298.15
0.6
41
80000
Diethoxymethane
298.15
1.8
41
80000
Diethyl ether
298.15
−1.3
41
20000
3,3-Diethylpentane
298.15
1.9
74
80000
Dihexyl ether
298.15
3.0
41
80000
1,2-Dimethoxyethane
298.15
12.2
41
80000
Dimethoxymethane
298.15
7.4
41
13000
1,2-Dimethylbenzene
298.15
4.3
50
13000
1,3-Dimethylbenzene
298.15
3.0
50
∆HB∞/ J/g
Ref.
1,4-Dimethylbenzene
298.15
3.2
50
20000
1,4-Dimethylbenzene
298.15
4.2
61
80000
2,6-Dimethyl-4-heptanone
293.15
6.1
77
20000
2,2-Dimethylpentane
298.15
0.8
74
20000
2,3-Dimethylpentane
298.15
1.4
74
20000
2,4-Dimethylpentane
298.15
1.6
74
20000
3,3-Dimethylpentane
298.15
0.5
74
80000
Dipentyl ether
298.15
2.1
41
80000
Dipropyl ether
298.15
−1.2
41
20000
Dodecamethylpentasiloxane
297.65
−0.3
37
20000
Dodecane
297.65
4.5
37
20000
Dodecane
298.15
4.4
73
80000
Dodecane
298.15
4.5
41
80000
Ethyl acetate
298.15
12.7
41
170000
Ethyl acetate
303.15
13.7
51
13000
Ethylbenzene
298.15
6.4
50
20000
Ethylbenzene
298.15
6.2
61
80000
Ethyl butanoate
298.15
6.0
41
80000
Ethyl decanoate
298.15
3.8
41
80000
Ethyl dodecanoate
298.15
3.8
41
80000
Ethyl heptanoate
298.15
4.1
41
80000
Ethyl hexanoate
298.15
4.3
41
80000
Ethyl nonanoate
298.15
3.7
41
80000
Ethyl octanoate
298.15
3.8
41
20000
3-Ethylpentane
298.15
0.6
74
80000
Ethyl propanoate
298.15
8.0
41
20000
2,2,4,4,6,8,8Heptamethylnonane
298.15
3.5
74
13000
Heptane
298.15
1.8
50
20000
Heptane
298.15
1.9
73
20000
Heptane
297.65
2.0
37
20000
Heptane
298.15
2.0
61
80000
Heptane
298.15
2.0
41
100000
Heptane
298.15
2.1
40
170000
Heptane
303.15
1.9
51
80000
3-Heptanone
308.15
8.8
77
80000
3-Heptanone
323.15
8.8
77
13000
487_S13.indb 49
13-49
3/27/06 2:37:12 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-50 Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
Solvent
T/K
20000
Hexadecane
297.65
20000
Hexadecane
20000
Hexamethyldisiloxane
20000 170000
Ref.
5.5
37
298.15
5.5
73
298.15
−1.2
37
Hexamethyldisiloxane
298.15
−1.6
61
Hexamethyldisiloxane
303.15
−1.5
51
20000
Hexane
297.65
0.7
37
20000
Hexane
298.15
0.7
61
80000
Hexane
298.15
0.7
41
170000
Hexane
303.15
0.3
51
80000
Hexyl acetate
298.15
5.0
41
Isopropylbenzene
298.15
4.1
50
Methyl butanoate
298.15
8.6
41
Methylcyclohexane
298.15
2.9
50
100000
Methylcyclohexane
298.15
1.9
40
80000
Methyl decanoate
298.15
4.8
41
20000
3-Methylhexane
298.15
1.3
74
80000
Methyl hexanoate
298.15
5.3
41
80000
Methyl octanoate
298.15
5.0
41
80000
4-Methyl-2-pentanone
293.15
9.9
77
80000
4-Methyl-2-pentanone
308.15
9.0
77
80000
Methyl propanoate
298.15
12.1
41
20000
Nonane
297.65
3.4
37
20000
Nonane
298.15
3.3
73
80000
Nonane
298.15
3.4
41
80000
Octamethylcyclotetrasiloxane 293.15
−0.4
78
20000
Octamethyltrisiloxane
297.65
−0.6
37
20000
Octamethyltrisiloxane
298.15
−0.8
61
170000
Octamethyltrisiloxane
303.15
−1.0
51
20000
Octane
297.65
2.6
37
20000
Octane
298.15
2.4
73
20000
Octane
298.15
2.6
61
80000
Octane
298.15
2.6
41
20000
2,2,4,6,6-Pentamethylheptane 298.15
2.7
73
20000
Pentane
298.15
−0.9
37
20000
Pentane
298.15
−0.9
61
80000
Pentane
298.15
−1.0
41
80000
Pentyl acetate
298.15
5.8
41
80000
Pentyl propanoate
298.15
3.8
41
80000
Propyl acetate
298.15
8.6
41
170000
Propyl acetate
303.15
9.9
51
80000
Propyl propanoate
298.15
5.6
41
100000
Tetrachloromethane
298.15
2.4
40
20000
Tetradecane
297.65
5.1
37
20000
Tetradecane
298.15
5.1
61
80000
Tetradecane
298.15
5.1
41
20000
2,2,4,4-Tetramethylpentane
298.15
2.1
73
20000
2,2,4,4-Tetramethylpentane
298.15
2.3
74
13000 80000 13000
487_S13.indb 50
∆HB∞/ J/g
3/27/06 2:37:13 PM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Mw/ g/mol
13-51
Mη/ g/mol
Solvent
T/K
∆HB∞/ J/g
20000
2,3,3,4-Tetramethylpentane
298.15
1.9
74
Ref.
Toluene
298.15
5.5
50
20000
Toluene
298.15
6.7
61
20000
Tridecane
297.65
4.8
37
80000
Tridecane
298.15
4.8
41
13000
1,3,5-Trimethylbenzene
298.15
3.7
50
20000
2,2,4-Trimethylpentane
298.15
1.4
73
20000
Undecane
297.65
4.2
37
80000
Undecane
298.15
4.3
41
13000
Polyethylene Semicrystalline
65000
1-Chloronaphthalene
373.15
780
47
Semicrystalline
65000
1-Chloronaphthalene
383.15
980
47
Semicrystalline
65000
1-Chloronaphthalene
393.15
800
47
Liquid
65000
1-Chloronaphthalene
403.15
49
47
Semicrystalline
144000
1-Chloronaphthalene
383.15
920
47
Semicrystalline
144000
1-Chloronaphthalene
393.15
990
47
Semicrystalline
144000
1-Chloronaphthalene
403.15
690
47
Liquid
144000
1-Chloronaphthalene
413.15
67
47
Liquid
144000
1-Chloronaphthalene
423.15
85
47
Semicrystalline
670000
1-Chloronaphthalene
363.15
380
47
Semicrystalline
670000
1-Chloronaphthalene
373.15
430
47
Semicrystalline
670000
1-Chloronaphthalene
383.15
165
47
Liquid
670000
1-Chloronaphthalene
393.15
39
47
Liquid
670000
1-Chloronaphthalene
403.15
36
47
Semicrystalline
900000
1-Chloronaphthalene
391.80
245
105
Semicrystalline
900000
Cyclohexane
379.50
205
105
Semicrystalline
900000
Cyclopentane
380.00
190
105
Alkathene
Decahydronaphthalene
349.85
142
56
Rigidex-3
Decahydronaphthalene
366.65
180
56
Rigidex-50
Decahydronaphthalene
374.05
233
56
Decahydronaphthalene
384.00
260
105
Semicrystalline
1,2-Dichloroethane
333.15
30
27
Semicrystalline
1,2-Dichloroethane
338.15
38
27
Semicrystalline
1,2-Dichloroethane
343.15
54
27
Semicrystalline
1,2-Dichloroethane
348.15
65
27
Semicrystalline
900000
Semicrystalline
10000
1,4-Dimethylbenzene
354.15
139
5
Semicrystalline
11800
1,4-Dimethylbenzene
352.15
139
5
Semicrystalline
15600
1,4-Dimethylbenzene
353.65
154
5
Semicrystalline
15600
1,4-Dimethylbenzene
363.65
113
5
15600
1,4-Dimethylbenzene
368.65
104
5
Semicrystalline
900000
2,4-Dimethylpentane
393.00
230
105
Semicrystalline
900000
2,2,4,4,6,8,8Heptamethylnonane
399.50
170
105
Semicrystalline
900000
Hexadecane
399.50
262
105
Semicrystalline
900000
2-Methylbutane
394.20
165
105
1,2,3,4Tetrahydronaphthalene
373.15
940
47
Semicrystalline
Semicrystalline
487_S13.indb 51
65000
3/27/06 2:37:14 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-52
Solvent
T/K
∆HB∞/ J/g
Ref.
65000
1,2,3,4Tetrahydronaphthalene
383.15
990
47
65000
1,2,3,4Tetrahydronaphthalene
393.15
790
47
Liquid
65000
1,2,3,4Tetrahydronaphthalene
403.15
58
47
Semicrystalline
84000
1,2,3,4Tetrahydronaphthalene
373.15
835
47
Semicrystalline
130000
1,2,3,4Tetrahydronaphthalene
353.15
630
47
Semicrystalline
130000
1,2,3,4Tetrahydronaphthalene
373.15
520
47
Liquid
130000
1,2,3,4Tetrahydronaphthalene
393.15
69
47
144000
1,2,3,4Tetrahydronaphthalene
373.15
610
47
144000
1,2,3,4Tetrahydronaphthalene
383.15
1200
47
144000
1,2,3,4Tetrahydronaphthalene
393.15
1130
47
Semicrystalline
144000
1,2,3,4Tetrahydronaphthalene
403.15
800
47
Liquid
144000
1,2,3,4Tetrahydronaphthalene
413.15
136
47
Liquid
144000
1,2,3,4Tetrahydronaphthalene
423.15
88
47
Semicrystalline
310000
1,2,3,4Tetrahydronaphthalene
343.15
485
47
Semicrystalline
670000
1,2,3,4Tetrahydronaphthalene
353.15
560
47
670000
1,2,3,4Tetrahydronaphthalene
363.15
560
47
670000
1,2,3,4Tetrahydronaphthalene
373.15
460
47
670000
1,2,3,4Tetrahydronaphthalene
383.15
155
47
Liquid
670000
1,2,3,4Tetrahydronaphthalene
393.15
67
47
Liquid
670000
1,2,3,4Tetrahydronaphthalene
403.15
39
47
Polymer
Mn/ g/mol
Semicrystalline Semicrystalline
Semicrystalline Semicrystalline Semicrystalline
Semicrystalline Semicrystalline Semicrystalline
Mw/ g/mol
Mη/ g/mol
Semicrystalline
16000
Toluene
353.15
110
22
Semicrystalline
22000
Toluene
358.35
118
22
22000
Toluene
367.35
106
22
1,2,4-Trichlorobenzene
386.50
255
105
180
Benzene
303.15
110
71
385
Benzene
303.15
60
71
560
Benzene
303.15
40
71
1050
Benzene
303.15
90
71
1610
Benzene
303.15
140
71
1940
Benzene
303.15
215
71
3200
Benzene
303.15
195
71
4330
Benzene
303.15
195
71
Semicrystalline Semicrystalline
900000
Poly(ethylene glycol)
487_S13.indb 52
3/27/06 2:37:14 PM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
5850 9950 43400
13-53 Solvent
T/K
∆HB∞/ J/g
Ref.
Benzene
303.15
190
71
Benzene
303.15
195
71
Benzene
303.15
190
71
400
420
Trichloromethane
303.15
−79
95
590
615
Trichloromethane
303.15
−88
95
180
Water
303.15
−136
71
200
Water
321.35
−125
83
355
Water
303.15
−159
71
400
Water
321.35
−150
83
560
Water
303.15
−150
71
990
Water
321.35
−101
83
1050
Water
303.15
−106
71
1460
Water
321.35
−137
83
1610
Water
303.15
−6
71
1940
Water
303.15
57
71
3200
Water
303.15
58
71
4330
Water
303.15
28
71
5850
Water
303.15
39
71
Water
303.15
30
71
14000
Water
303.15
7
55
14000
Water
313.15
27
55
20300
Water
303.15
45
71
34500
Water
303.15
34
71
43300
Water
303.15
+40
71
250
Tetrachloromethane
303.15
250
Tetrachloromethane
318.15
9950
Poly(ethylene glycol) dimethyl ether −12 −7.6
95 95
Tetrachloromethane
303.15
−12
520
550
Tetrachloromethane
303.15
−12
520
550
Tetrachloromethane
303.15
−7.6
95
Trichloromethane
303.15
−184
95
Trichloromethane
303.15
−135
95
230
Dodecane
302.15
42
68
274
Dodecane
302.15
23
68
318
Dodecane
302.15
34
68
362
Dodecane
302.15
37
68
406
Dodecane
302.15
42
68
400
250 520
550
95 95
Poly(ethylene glycol) monododecyl ether
Poly(ethylene glycol) monomethyl ether 353
377
Trichloromethane
303.15
−125
95
550
580
Trichloromethane
303.15
−117
95
Poly(ethylene oxide) Semicrystalline
6000
Dichloromethane
303.15
+84
58
Liquid
6000
Dichloromethane
303.15
−160
58
487_S13.indb 53
3/27/06 2:37:15 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-54 Polymer
Mn/ g/mol
Mw/ g/mol
Semicrystalline
6000
Liquid
6000
Quenched
1520
1720
Annealed
1520
Quenched
1520
Annealed Quenched
Mη/ g/mol
∆HB∞/ J/g
Solvent
T/K
Trichloromethane
303.15
+52
58
Trichloromethane
303.15
−186
58
Water
293.15
−403
64
1720
Water
293.15
−392
64
1720
Water
298.15
−180
64
1520
1720
Water
298.15
−150
64
1520
1720
Water
303.15
+68
64
Annealed
1520
1720
Water
303.15
+109
64
Liquid
6000
Water
303.15
−50
58
Quenched
6840
7525
Water
293.15
−28
64
Annealed
6840
7525
Water
293.15
+209
64
Quenched
6840
7525
Water
298.15
+241
64
Annealed
6840
7525
Water
298.15
+540
64
Quenched
16600
19600
Water
293.15
−160
64
Annealed
16600
19600
Water
293.15
−143
64
Quenched
16600
19600
Water
298.15
+59
64
Annealed
16600
19600
Water
298.15
+155
64
Quenched
16600
19600
Water
303.15
+353
64
Annealed
16600
19600
Water
303.15
+490
64
20000
Water
298.15
+10
84
765
1023
Anisole
299.15
2.1
102
765
1023
Benzene
299.15
−0.04
102
765
1023
Benzonitrile
299.15
−4.4
102
765
1023
Bromobenzene
299.15
−3.9
102
765
1023
2-Butanone
299.15
1.9
102
765
1023
Chlorobenzene
299.15
−3.9
102
765
1023
1-Chlorobutane
299.15
−4.0
102
765
1023
1-Chloroheptane
299.15
1.5
102
765
1023
Cyclohexane
299.15
15
102
765
1023
N,N-dimethylaniline
299.15
−8.2
102
765
1023
Ethyl acetate
299.15
4.2
102
765
1023
Ethylbenzene
299.15
−1.4
102
765
1023
Ethyl benzoate
299.15
−0.7
102
765
1023
Nitrobenzene
299.15
4.6
102
765
1023
1-Nitropropane
299.15
8.4
102
765
1023
Pyridine
299.15
−6.7
102
765
1023
1,1,2,2-Tetrachloroethane
299.15
765
1023
Tetrachloromethane
299.15
765
1023
1,1,1-Trichloroethane
299.15
765
1023
Trichloromethane
299.15
−20
102
Semicrystalline
Ref.
Polyindene
−19
102
−2.5
102
−1.8
102
Polyisobutylene
487_S13.indb 54
360
700
Benzene
298.15
30
67
1000
2000
Benzene
298.15
25
67
1300
2500
Benzene
298.15
23
67
30000
Benzene
297.65
19
38
30000
Benzene
298.15
19
40
3/27/06 2:37:16 PM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
∆HB∞/ J/g
Solvent
T/K
Benzene
303.15
16
44
48000
Benzene
303.4
19
72
50000
Benzene
303.15
16
45
72000
Benzene
300.15
19
53
72000
Benzene
323.15
18
53
72000
Benzene
343.15
16
53
72000
Benzene
375.15
13
53
72000
Benzene
394.15
9.2
53
72000
Benzene
423.15
3.5
53
72000
Benzene
437.15
−0.5
53
72000
Benzene
453.15
−4.7
53
90000
Benzene
298.15
6.7
32
160000
Benzene
303.15
16
51
560000
Benzene
298.15
18
34
Benzene
298.15
6.8
7
Benzene
298.15
6.8
10
30000
Chlorobenzene
297.65
12
38
30000
Chlorobenzene
298.15
13
40
50000
Chlorobenzene
303.15
12
45
160000
Chlorobenzene
303.15
12
51
12
34
44700
487_S13.indb 55
13-55 Ref.
560000
Chlorobenzene
298.15
360
700
Cyclohexane
298.15
3.8
67
1000
2000
Cyclohexane
298.15
1.2
67
1300
2500
Cyclohexane
298.15
1.1
67
4500
Cyclohexane
298.15
−0.6
74
30000
Cyclohexane
297.65
−0.7
38
30000
Cyclohexane
298.15
−0.6
40
50000
Cyclohexane
303.15
−0.7
45
160000
Cyclohexane
303.15
−0.6
51
1990000
Cyclohexane
298.15
−0.7
39
4500
Cyclooctane
298.15
+0.3
74
4500
Cyclopentane
298.15
−5.9
74
4500
cis-Decahydronaphthalene
298.15
0.2
74
4500
trans-Decahydronaphthalene
298.15
−0.8
74
30000
Decane
297.65
−0.5
38
50000
Decane
303.15
−0.5
45
30000
Dibutyl ether
297.65
1.2
37
30000
Diethyl ether
297.65
2.8
37
30000
Diethyl ether
297.65
2.8
38
4500
3,3-Diethylpentane
298.15
−1.4
74
30000
Dihexyl ether
297.65
0.9
37
4500
2,2-Dimethylpentane
298.15
−1.1
74
4500
2,3-Dimethylpentane
298.15
−1.9
74
4500
2,4-Dimethylpentane
298.15
−1.1
74
4500
3,3-Dimethylpentane
298.15
−1.7
74
30000
Dipentyl ether
297.65
1.0
37
30000
Dipropyl ether
297.65
1.8
37
3/27/06 2:37:16 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-56 Polymer
487_S13.indb 56
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
Solvent
T/K
∆HB∞/ J/g
360
700
Dodecane
298.15
1.9
67
1000
2000
Dodecane
298.15
0.7
67
1300
2500
Dodecane
298.15
0.5
67
4500
Dodecane
298.15
0.2
73
30000
Dodecane
297.65
−0.1
38
30000
Dodecane
298.15
−0.1
40
48000
Ethylbenzene
291.15
9.5
72
48000
Ethylbenzene
343.15
3.6
72
30000
Ethyl decanoate
297.65
3.0
37
30000
Ethyl heptanoate
297.65
5.6
37
30000
Ethyl hexadecanoate
297.65
1.3
37
30000
Ethyl hexanoate
297.65
6.7
37
30000
Ethyl nonanoate
297.65
3.7
37
30000
Ethyl octanoate
297.65
4.6
37
4500
3-Ethylpentane
298.15
−2.0
74
30000
Ethyl tetradecanoate
297.65
1.8
37
4500
2,2,4,4,6,8,8Heptamethylnonane
298.15
−0.5
74
360
700
Heptane
298.15
−0.5
67
1000
2000
Heptane
298.15
−1.0
67
1300
2500
Heptane
298.15
−1.4
67
4500
Heptane
298.15
−1.7
73
30000
Heptane
297.65
−1.8
38
30000
Heptane
298.15
−2.0
40
50000
Heptane
303.15
−1.8
45
160000
Heptane
303.15
−1.6
51
Heptane
298.15
−1.4
7
Ref.
Heptane
298.15
−1.4
10
360
700
Hexadecane
298.15
4.5
67
1000
2000
Hexadecane
298.15
2.1
67
1300
2500
Hexadecane
298.15
1.0
67
4500
Hexadecane
298.15
0.9
73
30000
Hexadecane
297.65
0.04
38
30000
Hexane
297.65
−2.5
38
30000
Hexane
298.15
−2.6
40
50000
Hexane
303.15
−2.5
45
72000
Hexane
303.15
−1.8
53
72000
Hexane
324.15
−2.3
53
72000
Hexane
348.15
−2.9
53
72000
Hexane
373.15
−3.7
53
72000
Hexane
393.15
−5.3
53
72000
Hexane
408.15
−6.7
53
72000
Hexane
423.15
−9.0
53
72000
Hexane
433.15
−9.9
53
160000
Hexane
303.15
−2.5
51
30000
2-Methylbutane
297.65
−3.1
38
30000
Methylcyclohexane
297.65
−1.2
38
50000
Methylcyclohexane
303.15
−1.2
45
3/27/06 2:37:17 PM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Mw/ g/mol
13-57
Mη/ g/mol
Solvent
T/K
∆HB∞/ J/g
160000
Methylcyclohexane
303.15
−1.2
51
4500
3-Methylhexane
298.15
−1.0
74
30000
3-Methylpentane
297.65
−2.8
38
30000
Nonane
297.65
−0.8
38
4500
Nonane
298.15
−0.8
73
4500
Octane
298.15
−1.1
73
30000
Octane
297.65
−1.2
38
72000
Octane
303.15
−0.3
53
72000
Octane
324.15
−0.8
53
72000
Octane
348.15
−0.9
53
72000
Octane
373.15
−1.1
53
72000
Octane
393.15
−1.3
53
72000
Octane
423.15
−3.6
53
4500
2,2,4,6,6-Pentamethylheptane 298.15
−0.1
73
360
700
Pentane
298.15
−1.9
67
1000
2000
Pentane
298.15
−2.9
67
1300
2500
Pentane
298.15
−3.2
67
30000
Pentane
297.65
−3.6
38
72000
Pentane
303.15
−2.8
53
72000
Pentane
333.15
−3.4
53
72000
Pentane
352.15
−4.5
53
72000
Pentane
365.15
−5.5
53
360
700
Tetrachloromethane
298.15
5.9
67
1000
2000
Tetrachloromethane
298.15
5.8
67
1300
2500
Tetrachloromethane
298.15
5.0
67
1990000
Tetrachloromethane
298.15
4.1
39
30000
Tetradecane
297.65
0.0
38
4500
2,2,4,4-Tetramethylpentane
298.15
−0.6
74
4500
2,3,3,4-Tetramethylpentane
298.15
−2.3
74
50000
Toluene
303.15
7.4
45
160000
Toluene
303.15
7.4
51
1990000
Toluene
298.15
8.8
39
Toluene
298.15
1.8
7
Ref.
Toluene
298.15
1.8
10
30000
Tridecane
297.65
−0.04
38
4500
2,2,4-Trimethylpentane
298.15
−0.4
73
30000
2,2,4-Trimethylpentane
297.65
−0.6
38
1990000
2,2,4-Trimethylpentane
298.15
0.0
39
2,2,4-Trimethylpentane
298.15
0.0
7
30000
2,2,4-Trimethylpentane
298.15
0.0
10
Undecane
297.65
−0.4
38
Poly(isobutyl methacrylate) Glass
260000
Cyclohexanone
303.15
−5.2
98
Liquid
260000
Cyclohexanone
303.15
13
98
2-Propanone
298.15
Poly(methyl acrylate)
487_S13.indb 57
0.0
25
3/27/06 2:37:18 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-58 Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
Solvent
T/K
∆HB∞/ J/g
Ref.
Poly(methyl methacrylate) Glass
73900
170000
Cyclohexanone
304.15
−14
98
Liquid
73900
170000
Cyclohexanone
304.15
17
98
1930
1,2-Dichloroethane
298.15
−20
32
240000
1,2-Dichloroethane
298.15
−27
32
53000
Ethylbenzene
298.15
−31
28
180000
Ethylbenzene
298.15
−29
28
28900
35900
4-Methyl-2-pentanone
303.15
−21
76
93940
101000
4-Methyl-2-pentanone
303.15
−24
76
137000
215000
4-Methyl-2-pentanone
303.15
−28
76
2-Propanone
298.15
−30
25
93940
101000
Toluene
303.15
−22
76
689000
782000
Toluene
303.15
−24
76
12000
Trichloromethane
298.15
−65
52
54000
Trichloromethane
298.15
−80
52
80000
Trichloromethane
298.15
−81
52
100000
Trichloromethane
298.15
−84
52
320000
Trichloromethane
298.15
−83
52
93940
101000
Trichloromethane
303.15
−71
76
689000
782000
Trichloromethane
303.15
−72
76
2320000
Trichloromethane
303.15
−73
76
Cyclohexane
303.15
30
79
−7.1
43
Poly(4-methyl-1-pentene) Semicrystalline
350000
Poly(α-methylstyrene) 1030 1820
1180
Toluene
298.15
1430
Toluene
298.15
−30
43
2230
Toluene
298.15
−34
43
Toluene
298.15
−37
43
1920
Toluene
298.15
−39
43
3280
Toluene
298.15
−46
43
5260
Toluene
298.15
−46
43
8600
Toluene
298.15
−45
43
12200
Toluene
298.15
−46
43
10500
Toluene
310.15
53000
Toluene
310.15
−13
92
55000
Toluene
333.15
−16
96
87000
Toluene
298.15
−17
90
87000
Toluene
310.15
−16
92
87000
Toluene
333.15
−11
90
Acetic acid
298.15
47
100
Acetonitrile
298.15
14
100
1,2-Dichloroethane
298.15
17
100
2700
3300
−8.4
92
Poly(2-methyl-5-vinyltetrazole)
487_S13.indb 58
N,N-Diethylacetamide
298.15
17
100
N,N-Dimethylformamide
298.15
33
100
Dimethylsulfoxide
298.15
10
100
3/27/06 2:37:18 PM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
13-59 Solvent
T/K
∆HB∞/ J/g
Ref.
Formamide
298.15
12
100
Formic acid
298.15
110
100
Nitromethane
298.15
10
100
Pyridine
298.15
16
100
7000
Benzene
298.15
20
64
7000
Benzene
303.15
22
64
7000
Benzene
308.15
25
64
Poly(octamethylene oxide)
Polypentenamer 50000
Cyclohexane
298.15
4.6
74
50000
Cyclooctane
298.15
5.1
74
50000
Cyclopentane
298.15
−2.3
74
50000
cis-Decahydronaphthalene
298.15
2.6
74
50000
trans-Decahydronaphthalene
298.15
<0.1
74
50000
3,3-Diethylpentane
298.15
2.4
74
50000
2,2-Dimethylpentane
298.15
3.3
74
50000
2,3-Dimethylpentane
298.15
2.2
74
50000
2,4-Dimethylpentane
298.15
3.3
74
50000
3,3-Dimethylpentane
298.15
2.7
74
50000
Dodecane
298.15
2.9
74
50000
3-Ethylpentane
298.15
2.1
74
50000
2,2,4,4,6,8,8Heptamethylnonane
298.15
3.2
74
50000
Hexadecane
298.15
2.6
74
50000
3-Methylhexane
298.15
2.4
74
50000
Octane
298.15
2.2
74
50000
2,2,4,6,6-Pentamethylheptane 298.15
3.8
74
50000
2,2,4,4-Tetramethylpentane
298.15
4.5
74
50000
2,3,3,4-Tetramethylpentane
298.15
2.4
74
50000
2,2,4-Trimethylpentane
298.15
4.3
74
Poly(m-phenyleneisophthalamide) Glass
N,N-Dimethylacetamide
298.15
−171
60
Semicrystalline
N,N-Dimethylacetamide
298.15
−128
60
Glass
N,N-Dimethylformamide
298.15
−149
60
Semicrystalline
N,N-Dimethylformamide
298.15
−125
60
Glass
1-Methyl-2-pyrrolidone
298.15
−177
60
Semicrystalline
1-Methyl-2-pyrrolidone
298.15
−118
60
18000
Benzene
298.15
31
80
6000
Cyclohexane
298.15
2.3
74
18000
Cyclohexane
298.15
3.9
80
6000
Cyclooctane
298.15
3.0
74
6000
Cyclopentane
298.15
−2.3
74
6000
cis-Decahydronaphthalene
298.15
0.5
74
Polypropylene (atactic)
487_S13.indb 59
3/27/06 2:37:19 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-60 Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
Solvent
T/K
6000
trans-Decahydronaphthalene
298.15
∆HB∞/ J/g −2.4
Ref. 74
18000
Decane
298.15
3.1
80
6000
3,3-Diethylpentane
298.15
−3.9
74
18000
1,2-Dimethylbenzene
298.15
13
80
18000
1,3-Dimethylbenzene
298.15
12
80
18000
1,4-Dimethylbenzene
298.15
10
80
6000
2,2-Dimethylpentane
298.15
−2.2
74
6000
2,3-Dimethylpentane
298.15
−2.5
74
6000
2,4-Dimethylpentane
298.15
−1.8
74
6000
3,3-Dimethylpentane
298.15
−3.0
74
6000
Dodecane
298.15
1.7
73
18000
Ethylbenzene
298.15
14
80
6000
3-Ethylpentane
298.15
−2.5
74
6000
2,2,4,4,6,8,8Heptamethylnonane
298.15
−0.7
73
6000
Heptane
298.15
−1.6
73
18000
Heptane
298.15
0.5
80
6000
Hexadecane
298.15
2.3
73
18000
Hexane
298.15
−1.4
80
6000
3-Methylhexane
298.15
−1.8
74
6000
Nonane
298.15
0.8
73
18000
Nonane
298.15
2.4
80
6000
Octane
298.15
−1.2
73
18000
Octane
298.15
1.0
80
6000
2,2,4,6,6-Pentamethylheptane 298.15
−0.2
73
18000
Pentane
298.15
−4.7
80
18000
Tetrachloromethane
298.15
6.6
80
6000
2,2,4,4-Tetramethylpentane
298.15
−0.8
74
6000
2,3,3,4-Tetramethylpentane
298.15
−3.1
74
18000
Toluene
298.15
17
80
18000
Trichloromethane
298.15
17
80
6000
2,2,4-Trimethylpentane
298.15
−1.0
73
1-Chloronaphthalene
383.15
26
47
1-Chloronaphthalene
393.15
170
47
1-Chloronaphthalene
403.15
245
47
1-Chloronaphthalene
423.15
275
47
1,2,3,4Tetrahydronaphthalene
373.15
140
47
1,2,3,4Tetrahydronaphthalene
383.15
215
47
1,2,3,4Tetrahydronaphthalene
393.15
330
47
1,2,3,4Tetrahydronaphthalene
403.15
330
47
1,2,3,4Tetrahydronaphthalene
413.15
335
47
1,2,3,4Tetrahydronaphthalene
423.15
290
47
Polypropylene (isotactic)
S13_08.indd 60
4/10/06 11:53:13 AM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
13-61 Solvent
T/K
∆HB∞/ J/g
Ref.
Poly(propylene glycol) 150
Benzene
321.35
200
103
425
Benzene
321.35
80
103
2025
Benzene
321.35
45
103
150
Ethanol
321.35
40
103
425
Ethanol
321.35
60
103
2025
Ethanol
321.35
65
103
396
412
Tetrachloromethane
303.15
4.7
95
396
412
Tetrachloromethane
318.15
5.2
95
1900
Tetrachloromethane
303.15
−8.2
95
1900
Tetrachloromethane
318.15
11
95
Trichloromethane
303.15
−81
95
Water
298.15
−165
97
150
Water
321.35
−90
103
425
Water
321.35
−95
103
1900 400
Polystyrene 600
Benzene
298.15
−1.3
54
600
Benzene
313.15
−2.5
54
900
Benzene
291.15
900
Benzene
318.15
2000
Benzene
291.15
2000
Benzene
318.15
5000
Benzene
291.15
−23
54
5000
Benzene
318.15
−12
54
10300
Benzene
291.15
−26
54
10300
Benzene
318.15
−18
54
Benzene
298.15
Benzene
296.15
29000
Benzene
298.15
−5.0
19
30000
Benzene
298.15
−7.5
19
59000
Benzene
298.15
−13
19
91000
Benzene
298.15
−15
19
Benzene
318.15
−21
54
142000
Benzene
298.15
−17
19
190000
Benzene
303.15
−18
51
18000 20000
97200
−5.8 −16 −6.8
−4.1 −15
54 54 54 54
19 9
Benzene
300.15
−16
85
216000
Benzene
298.15
−18
19
272000
Benzene
298.15
−21
19
300000
Benzene
298.15
−21
12
Benzene
298.15
−27
25
Benzene
298.15
−10
7
20000
Butyl acetate
296.15
−13
9
20000
2-Butanone
296.15
−15
9
142000
2-Butanone
296.15
−17
30
190000
Butylbenzene
303.15
−14
51
Chlorobenzene
293.15
−32
49
Chlorobenzene
298.15
5.4
34
214000
150000 266000
487_S13.indb 61
−10
3/27/06 2:37:20 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-62 Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
Solvent
T/K
∆HB∞/ J/g
Ref.
Chlorobenzene
293.15
−39
21
1260
Cyclohexane
298.15
10
16
1910
Cyclohexane
298.15
5.4
16
3160
Cyclohexane
298.15
−5.4
16
3980
Cyclohexane
298.15
−6.9
16
5630
Cyclohexane
298.15
−9.3
16
9070
Cyclohexane
298.15
Cyclohexane
296.15
2.5
9
Cyclohexane
303.15
−2.1
51
Cyclohexane
293.15
−14
21
Cyclohexanone
298.15
−29
25
Cyclohexene
296.15
−9.4
9
Decahydronaphthalene
303.15
3.8
51
1,2-Dichlorobenzene
303.05
26
89
20000
1,2-Dimethylbenzene
296.15
−13
9
20000
1,3-Dimethylbenzene
296.15
−12
9
20000 190000 22400 20000 190000 110000
115000
16
190000
1,3-Dimethylbenzene
303.15
−15
51
190000
1,4-Dioxane
303.15
−12
51
Ethyl acetate
296.15
−11
9
142000
Ethyl acetate
296.15
−13
30
785
Ethylbenzene
298.15
0.0
14
18000
Ethylbenzene
298.15
−3.8
14
18000
Ethylbenzene
298.15
−3.9
19
30000
Ethylbenzene
298.15
−5.7
19
35000
Ethylbenzene
298.15
−6.5
19
45000
Ethylbenzene
298.15
−8.4
19
91000
Ethylbenzene
298.15
−11
19
142000
Ethylbenzene
298.15
−13
19
216000
Ethylbenzene
298.15
−17
19
20000
Ethylbenzene
303.15
−22
57
113000
122000
Ethylbenzene
306.65
−24
63
113000
122000
Ethylbenzene
317.15
−19
63
113000
122000
Ethylbenzene
337.15
−11
63
113000
122000
Ethylbenzene
347.15
−6.4
63
113000
122000
Ethylbenzene
350.65
−4.9
63
113000
122000
Ethylbenzene
366.65
−2.3
63
113000
122000
Ethylbenzene
367.15
−2.1
63
113000
122000
Ethylbenzene
368.65
−2.6
63
113000
122000
Ethylbenzene
372.15
−4.2
63
113000
122000
Ethylbenzene
378.15
−4.6
63
113000
122000
Ethylbenzene
385.15
−5.7
63
60000
Ethylbenzene
293.15
−34
49
190000
Ethylbenzene
303.15
−15
51
272000
Ethylbenzene
298.15
−18
14
272000
Ethylbenzene
298.15
−18
19
413000
Ethylbenzene
298.15
−24
39
Ethylbenzene
293.15
−34
21
150000
487_S13.indb 62
−11
3/27/06 2:37:21 PM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
Solvent
T/K
∆HB∞/ J/g
Ref.
Ethylbenzene
298.15
−17
11
−30
28
Ethylbenzene
298.15
1260
2-Propanone
298.15
1910
2-Propanone
298.15
3160
2-Propanone
298.15
−16
16
3980
2-Propanone
298.15
−17
16
5630
2-Propanone
298.15
−19
16
9070
2-Propanone
298.15
−21
16
20000
2-Propanone
296.15
−11
9
Propylbenzene
303.15
−14
51
Styrene
296.15
−18
9
Styrene
296.15
−35
6
Tetrachloromethane
298.15
−22
600
Toluene
296.15
−2.1
16
600
Toluene
309.15
−1.8
16
600
Toluene
318.15
−1.5
16
1260
Toluene
296.15
1260
Toluene
303.15
−8.0
16
1260
Toluene
309.15
−5.9
16
1260
Toluene
318.15
−3.4
16
1260
Toluene
328.15
−2.3
16
1260
Toluene
338.15
−1.9
16
1260
Toluene
346.65
−1.3
16
1910
Toluene
298.15
1910
Toluene
318.15
−6.7
16
1910
Toluene
338.15
−3.4
16
1910
Toluene
348.15
−2.5
16
3160
Toluene
298.15
−23
16
3980
Toluene
298.15
−24
16
3980
Toluene
318.15
−17
16
3980
Toluene
338.15
−10
16
5630
Toluene
298.15
−26
16
9070
Toluene
298.15
−28
16
−33
190000 20000 413000
270000
20000
487_S13.indb 63
13-63
−0.6
16
−7.7
16
−11
−16
39
16
16
16
Toluene
298.15
600
Toluene
298.15
−1.4
54
600
Toluene
313.15
−3.2
54
900
Toluene
291.15
−7.3
54
900
Toluene
318.15
−6.6
54
2000
Toluene
291.15
2000
Toluene
318.15
5000
Toluene
291.15
−21
54
5000
Toluene
318.15
−11
54
10300
Toluene
291.15
−24
54
10300
Toluene
318.15
−15
54
97200
Toluene
318.15
−17
9000
Toluene
310.15
Toluene
296.15
−11 −7.2
−9.2 −17
54 54
54 92 9
3/27/06 2:37:22 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-64 Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
∆HB∞/ J/g
Solvent
T/K
20400
Toluene
298.15
−8.2
90
Ref.
20400
Toluene
310.15
−8.4
92
20400
Toluene
333.15
−6.4
90
47000
Toluene
310.15
−5.0
92
50000
Toluene
333.15
−6.8
96
Toluene
303.15
−21
57
113000
122000
Toluene
304.15
−29
63
113000
122000
Toluene
306.15
−27
63
113000
122000
Toluene
306.65
−26
63
113000
122000
Toluene
316.15
−23
63
113000
122000
Toluene
333.15
−15
63
113000
122000
Toluene
337.15
−12
113000
122000
Toluene
346.15
−8.3
63
113000
122000
Toluene
347.15
−7.8
63
113000
122000
Toluene
348.15
−8.2
63
113000
122000
Toluene
350.65
−6.5
63
113000
122000
Toluene
359.15
−4.3
63
113000
122000
Toluene
362.15
−2.7
63
113000
122000
Toluene
369.15
−3.3
63
113000
122000
Toluene
372.15
−2.8
63
115000
Toluene
310.15
−5.0
92
150000
Toluene
293.15
−34
49
Toluene
303.15
−18
51
Toluene
300.15
−19
85
Toluene
303.15
−18
51
Toluene
293.15
−34
21
Toluene
298.65
−39
27
Toluene
308.15
−34
27
Toluene
318.15
−30
27
Toluene
333.15
−23
27
Toluene
343.15
−13
27
60000
190000 214000 250000
63
Toluene
353.15
−13
27
600
Trichloromethane
298.15
−13
54
600
Trichloromethane
313.15
900
Trichloromethane
291.15
−22
54
900
Trichloromethane
313.15
−15
54
2000
Trichloromethane
291.15
−28
54
2000
Trichloromethane
313.15
−16
54
5000
Trichloromethane
291.15
−30
54
5000
Trichloromethane
313.15
−18
54
10300
Trichloromethane
291.15
−33
54
10300
Trichloromethane
313.15
−23
54
Trichloromethane
298.15
−17
25
Trichloromethane
313.15
−25
54
1,3,5-Trimethylbenzene
296.15
−11
9
1,3,5-Trimethylbenzene
303.15
−13
51
22400 97200 20000 190000
−9.9
54
Poly(tetramethylene oxide)
487_S13.indb 64
3/27/06 2:37:22 PM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
13-65 ∆HB∞/ J/g
Solvent
T/K
650
Benzene
313.15
4.0
86
Ref.
1000
Benzene
313.15
2.0
86
2000
Benzene
313.15
1.1
86
650
1,2-Dichloroethane
313.35
3.1
88
2000
1,2-Dichloroethane
313.35
0.3
88
650
1,2-Dimethylbenzene
313.15
5.9
87
1000
1,2-Dimethylbenzene
313.15
1.8
87
2000
1,2-Dimethylbenzene
313.15
0.9
87
650
1,3-Dimethylbenzene
313.15
6.4
87
1000
1,3-Dimethylbenzene
313.15
0.6
87
2000
1,3-Dimethylbenzene
313.15
0.8
87
650
1,4-Dimethylbenzene
313.15
4.3
87
1000
1,4-Dimethylbenzene
313.15
1.8
87
2000
1,4-Dimethylbenzene
313.15
0.7
87
650
1,4-Dioxane
321.35
4.0
81
1000
1,4-Dioxane
321.35
2.3
81
2000
1,4-Dioxane
321.35
1.0
81
650
Ethylbenzene
313.15
6.9
86
1000
Ethylbenzene
313.15
3.4
86
2000
Ethylbenzene
313.15
−0.05
86
650
Propylbenzene
313.15
5.8
86
1000
Propylbenzene
313.15
1.3
86
2000
Propylbenzene
313.15
0.9
86
650
Tetrachloromethane
313.15
3.3
88
1000
Tetrachloromethane
313.15
1.4
88
2000
Tetrachloromethane
321.35
0.7
82
650
Toluene
313.15
4.3
86
1000
Toluene
313.15
2.0
86
2000
Toluene
313.15
0.9
86
650
1,3,5-Trimethylbenzene
313.15
6.1
87
1000
1,3,5-Trimethylbenzene
313.15
2.7
87
2000
1,3,5-Trimethylbenzene
313.15
0.6
87
Poly(vinyl acetate)
487_S13.indb 65
140000
Benzene
298.15
2.3
13
350000
2-Butanone
303.15
−1.7
51
350000
Butyl acetate
303.15
1.0
51
135000
Chlorobenzene
298.15
5.0
34
350000
Ethyl acetate
303.15
−6.7
51
Ethyl acetate
303.15
0.0
11
26000
3-Heptanone
303.15
7.0
44
350000
3-Heptanone
303.15
4.9
51
140000
Methanol
298.15
350000
Methyl acetate
303.15
350000
2-Pentanone
93000
2-Propanone
350000
−45
13
−9.7
51
303.15
0.0
51
303.15
−0.4
32
2-Propanone
303.15
−3.9
51
2-Propanone
303.15
−2.9
25
3/27/06 2:37:23 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-66 Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
Solvent
T/K
350000
Propyl acetate
303.15
Tetrahydrofuran
304.65
Trichloromethane
298.15
Ethanol
298.15
150000 140000
∆HB∞/ J/g
Ref.
−2.7
51
4.5
93
28
13
Poly(vinyl alcohol) 3.8
11
9.6
31
Ethanol
298.15
7260
Water
303.15
−34
15
17000
Water
303.15
−18
32
61600
Water
303.15
−41
15
Water
303.15
−8.4
11
Poly(vinyl chloride) Chlorobenzene
298.15
−17
36
Glass
23200
Cyclohexanone
303.15
−27
59
Liquid
23200
Cyclohexanone
303.15
Glass
38700
Cyclohexanone
303.15
Liquid
38700
Cyclohexanone
303.15
Glass
53500
Cyclohexanone
303.15
Liquid
53500
Cyclohexanone
303.15
Glass
66700
Cyclohexanone
303.15
Liquid
66700
Cyclohexanone
303.15
Glass
136000
Cyclohexanone
303.15
Liquid
136000
Cyclohexanone
303.15
Glass
155400
Cyclohexanone
303.15
Liquid
155400
Cyclohexanone
303.15
48000
Cyclopentanone
298.15
−28
104
1,2-Dichloroethane
323.65
24
27
1,2-Dichloroethane
328.15
34
27
1,2-Dichloroethane
333.15
38
27
1,2-Dichloroethane
368.15
44
27
1,2-Dichloroethane
373.15
46
27
1,2-Dichloroethane
378.15
46
27
−7.5 −29 −6.6 −28 −6.3 −29 −6.1 −31 −5.8 −32 −5.8
59 59 59 59 59 59 59 59 59 59 59
N,N-Dimethylformamide
293.15
−28
35
N,N-Dimethylformamide
308.15
−19
35
N,N-Dimethylformamide
323.15
−14
N,N-Dimethylformamide
338.15
35
−7.5
35
2.4
35
N,N-Dimethylformamide
353.15
Glass
23200
Tetrahydrofuran
303.15
−34
59
Liquid
23200
Tetrahydrofuran
303.15
−14
59
Glass
38700
Tetrahydrofuran
303.15
−35
59
Liquid
38700
Tetrahydrofuran
303.15
−14
59
Glass
53500
Tetrahydrofuran
303.15
−39
59
Liquid
53500
Tetrahydrofuran
303.15
−14
59
Glass
66700
Tetrahydrofuran
303.15
−36
59
Liquid
66700
Tetrahydrofuran
303.15
−14
59
Glass
136000
Tetrahydrofuran
303.15
−39
59
Liquid
136000
Tetrahydrofuran
303.15
−14
59
Glass
155400
Tetrahydrofuran
303.15
−39
59
487_S13.indb 66
3/27/06 2:37:24 PM
Specific Enthalpies of Solution of Polymers and Copolymers Polymer
Mn/ g/mol
Liquid
155400
Mw/ g/mol
Mη/ g/mol
13-67 Solvent
T/K
∆HB∞/ J/g
Ref.
Tetrahydrofuran
303.15
−14
59
N,N-Dimethylformamide
298.15
−28
94
Water
298.15
−139
94
Poly(1-vinyl-3,5-dimethyl-1,2,4-triazole)
Poly(1-vinylimidazole) 20700
Acetic acid
298.15
−393
94
20700
Butanoic acid
298.15
−322
94
20700
N,N-Dimethylacetamide
298.15
−48
94
20700
N,N-Dimethylformamide
298.15
−48
94
20700
1-Methyl-2-pyrrolidinone
298.15
−54
91
20700
Pentanoic acid
298.15
−325
94
20700
Propanoic acid
298.15
−278
94
20700
Water
298.15
−119
91
18900
Acetic acid
298.15
−88
94
18900
Butanoic acid
298.15
−60
94
Poly(1-vinylpyrazole)
18900
N,N-Dimethylacetamide
298.15
−26
94
18900
N,N-Dimethylformamide
298.15
−28
94
18900
Pentanoic acid
298.15
−52
94
18900
Propanoic acid
298.15
−36
94
32000
Trichloromethane
298.15
−75
48
32000
Water
298.15
−150
48
Poly(1-vinyl-2-pyrrolidone)
Poly(1-vinyl-1,2,4-triazole) 69500
Acetic acid
298.15
−85
94
69500
Butanoic acid
298.15
−74
94
69500
N,N-Dimethylacetamide
298.15
−49
94
69500
N,N-Dimethylformamide
298.15
−47
94
69500
1-Methyl-2-pyrrolidinone
298.15
−55
91
69500
Pentanoic acid
298.15
−75
94
69500
Propanoic acid
298.15
−72
94
69500
Water
298.15
−68
91
(9 wt% Vinyl acetate)
2-Propanone
298.15
6.3
33
(44 wt% Vinyl acetate)
2-Propanone
298.15
4.6
33
(57 wt% Vinyl acetate)
2-Propanone
298.15
0.0
33
(67 wt% Vinyl acetate)
2-Propanone
298.15
−1.3
33
(4.2 mol% Vinyl acetate) 7560
Water
303.15
−41
15
(4.3 mol% Vinyl acetate) 64300
Water
303.15
−49
15
(9.0 mol% Vinyl acetate) 66900
Water
303.15
−55
15
(10.3 mol% Vinyl acetate) 7970
Water
303.15
−41
15
(15.3 mol% Vinyl acetate) 8300
Water
303.15
−60
15
Vinyl acetate/vinyl alcohol copolymer
487_S13.indb 67
3/27/06 2:37:24 PM
Specific Enthalpies of Solution of Polymers and Copolymers
13-68
Solvent
T/K
∆HB∞/ J/g
Ref.
(15.4 mol% Vinyl acetate) 70700
Water
303.15
−65
15
(19.5 mol% Vinyl acetate) 73100
Water
303.15
−66
15
(22.1 mol% Vinyl acetate) 8800
Water
303.15
−60
15
(26.2 mol% Vinyl acetate) 77000
Water
303.15
−64
15
(30.6 mol% Vinyl acetate) 9370
Water
303.15
−53
15
(34.0 mol% Vinyl acetate) 81600
Water
303.15
−60
15
(34.7 mol% Vinyl acetate) 9670
Water
303.15
−44
15
Polymer
Mn/ g/mol
Mw/ g/mol
Mη/ g/mol
Vinyl acetate/vinyl chloride copolymer (90 wt% Vinyl chloride) Glass
12400
26000
Cyclohexanone
304.15
−37
101
Liquid
12400
26000
Cyclohexanone
304.15
−16
101
Trichloromethane
297.15
−17
2
Vinyl chloride/vinylidene chloride copolymer
References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.
487_S13.indb 68
Liepatoff, S. and Preobagenskaja, S., Kolloid Z. Z. Polym., 68, 324, 1934. Kargin, V. and Papkov, S., Acta Physicochim. URSS, 3, 839, 1935. Papkov, S. and Kargin, V., Acta Physicochim. URSS, 7, 667, 1937. Tager, A. and Kargin, V., Acta Physicochim. URSS, 14, 713, 1941. Raine, H.C., Richards, R.B., and Ryder, H., Trans Faraday Soc., 41, 56, 1945. Roberts, D.E., Walton, W.W., and Jessup, R.S., J. Polym. Sci., 2, 420, 1947. Tager, A. and Sanatina, V., Kolloidn. Zhur., 12, 474, 1950. Glikman, S.A. and Root, L.A., Zh. Obshch. Khim., 21, 58, 1951. 35. Hellfritz, H., Makromol. Chem., 7, 191, 1951. 36. Tager, A. and Vershkain, R., Kolloidn. Zhur., 13, 123, 1951. Tager, A.A., and Kargin, V.A., Kolloidn. Zhur., 14, 367, 1952. 37. Tager, A.A. and Dombek, Zh.S., Kolloidn. Zhur., 15, 69, 1953. 38. Daoust, H. and Rinfret, M., Can. J. Chem., 32, 492, 1954. Gatovskaya, T.V., Kargin, V.A., and Tager, A.A., Zh. Fiz. Khim., 29, 883, 1955. 39. Oya, S., Chem. High Polym. Japan, 12, 122, 1955. Schulz, G.V., Guenner, K. von, and Gerrens, H., Z. Phys. Chem., N. F., 40. 4, 192, 1955. Tager, A.A., Kosova, L.K., Karlinskaya, D.Yu., and Yurina, I.A., Kolloid. 41. Zhur., 17, 315, 1955. 42. Tager, A.A. and Kosova, L.K., Kolloid. Zhur., 17, 391, 1955. Tager, A.A., Krivokorytova, R.V., and Khodorov, P.M., Dokl. Akad. 43. Nauk SSSR, 100, 741, 1955. Glikman, S.A. and Root, L.A., Kolloidn. Zhur., 18, 523, 1956. 44. Jenckel, E. and Gorke, K., Z. Elektrochem., 60, 579, 1956. Lipatov, Yu.S., Kargin, V.A., and Slonimskii, G.L., Zh. Fiz. Khim., 30, 45. 1202, 1956 46. Meerson, S.I. and Lipatov, S.M., Kolloidn.,Zh., 18, 447, 1956. 47. Mikhailov, N.V. and Fainberg, E.Z., Kolloidn. Zhur., 18, 44, 1956. Struminskii, G.V. and Slonimskii, G.L., Zh. Fiz. Khim., 30, 1941, 1956. 48. Gal’perin, D.I. and Moseev, L.I., Kolloidn. Zhur., 19, 167, 1957. 49. Akhmedov, K.S., Uzb. Khim. Zh. (1), 19, 1958. 50. Kargin, V.A. and Lipatov, Yu.S., Zh. Fiz. Khim., 32, 326, 1958. Meerson, S.I. and Lipatov, S.M., Kolloidn. Zhur., 20, 353, 1958. 51. Tager, A.A. and Galkina, L.A., Nauchn. Dokl. Vyssh. Shkol., Khim. Khim. Tekhnol., (2), 357, 1958. 52. Tager, A. A. and Kargin, V. A., Zh. Fiz. Khim., 32, 1362, 1958. 53. Tager, A. A. and Kargin, V. A., Zh. Fiz. Khim., 32, 2694, 1958. 54. Tager, A.A. and Iovleva, M., Zh. Fiz. Khim., 32, 1774, 1958. 55. Horth, A., Patterson, D., and Rinfret, M., J. Polym. Sci., 39. 189, 1959.
Zelikman, S.G. and Mikhailov, N.V., Vysokomol. Soedin., 1, 1077, 1959. Mueller, F.H. and Engelter, A., Kolloid Z., 171, 152, 1960. Delmas, G., Patterson, D., and Boehme, A., Trans. Faraday Soc., 58, 2116, 1962. Delmas, G., Patterson, D., and Somcynsky, T., J. Polym. Sci., 57, 79, 1962. Tager, A.A. and Podlesnyak, A.I., Vysokomol. Soedin., Ser. A, 5, 87, 1963. Delmas, G., Patterson, D., and Bhattacharyya, S.N., J. Phys. Chem., 68, 1468, 1964. Patterson, D., J. Polym. Sci.: Part A, 2, 5177, 1964. Zverev, M.P., Barash, A.N., and Zubov, P.I., Vysokomol. Soedin., Ser. A, 6, 1012, 1964. Cottam, B.J., Cowie, J.M.G., and Bywater, S., Makromol. Chem., 86, 116, 1965. Bianchi, U., Pedemonte, E., and Rossi, C., Makromol. Chem., 92, 114, 1966. Cuniberti, C. and Bianchi, U., Polymer, 7, 151, 1966. Giacommeti, G. and Turolla, A., Z. Phys. Chem., N.F., 51, 108, 1966. Schreiber, H.P. and Waldman, M.H., J. Polym. Sci.: Part A-2, 5, 555, 1967. Goldfarb, J. and Rodriguez, S., Makromol. Chem., 116, 96, 1968. Maron, S.H. and Daniels, C.A., J. Macromol. Sci.-Phys. B, 2, 769, 1968. Morimoto, S., J. Polym. Sci.: Part A-1, 6, 1547, 1968. Bianchi, U., Cuniberti, C., Pedemonte, E., and Rossi, C., J. Polym. Sci.: Part A-2, 7, 855, 1969. Gerth, Ch. and Mueller, F.H., Kolloid-Z. Z. Polym., 241, 1071, 1970. Liddell, A.H. and Swinton, F.L., Discuss. Faraday Soc., 49, 115, 1970. Morimoto, S., Nippon Kagaku Zasshi, 91, 31, 1970. Nakayama, H., Bull. Chem. Soc. Japan, 43, 1683, 1970.
3/27/06 2:37:25 PM
Specific Enthalpies of Solution of Polymers and Copolymers 56. Blackadder, D.A. and Roberts, T.L., Angew. Makromol. Chem., 27, 165, 1972. 57. Maron, S.H. and Filisko, F.E., J. Macromol. Sci.-Phys. B, 6, 57, 1972. 58. Maron, S.H. and Filisko, F.E., J. Macromol. Sci.-Phys. B, 6, 79, 1972. 59. Maron, S.H. and Filisko, F.E., J. Macromol. Sci.-Phys. B, 6, 413, 1972. 60. Sokolova, D.F., Sokolov, L.B., and Gerasimov, V.D., Vysokomol. Soedin., Ser. B, 14, 580, 1972. 61. Chahal, R.S., Kao, W.-P., and Patterson, D., J. Chem. Soc., Faraday Trans. I, 69, 1834, 1973. 62. Delmas, G. and Tancrede, P., Eur. Polym. J., 9, 199, 1973. 63. Filisko, F.E., Raghava, R.S., and Yeh, G.S.Y., J. Macromol. Sci.-Phys. B, 10, 371, 1974. 64. Ikeda, M., Suga, H., and Seki, S., Polymer, 16, 634, 1975. 65. Kiselev, V.P., Shakhova, E.M., Fainberg, E.Z., Virnik, A.D, and Rogovin, Z.A., Vysokomol. Soedin., Ser. B, 18, 847, 1976. 66. Petrosyan, V.A., Gabrielyan, G.A., and Rogovin, Z.A., Arm. Khim. Zhur., 29, 516, 1976. 67. Deshpande, D.D. and Prabhu, C.S., Macromolecules, 10, 433, 1977. 68. Miura, T. and Nakamura, M., Bull. Chem. Soc. Japan, 50, 2528, 1977. 69. Sokolova, D.F., Kudim, T.V., Sokolov, L.B., Zhegalova, N.I., and Zhuravlev, N.D., Vysokomol. Soedin., Ser. B, 20, 596, 1978. 70 Basedow, A.M. and Ebert, K.H., J. Polym. Sci.: Polym. Symp., 66, 101, 1979. 71 Koller, J., Dissertation, TU München, 1979. 72. Lee, J.-O., Ono, M., Hamada, F., and Nakajima, A., Polym. Bull., 1, 763, 1979. 73. Phuong-Nguyen, H. and Delmas, G., Macromolecules, 12, 740, 1979. 74. Phuong-Nguyen, H. and Delmas, G., Macromolecules, 12, 746, 1979. 75. Basedow, A.M., Ebert, K.H., and Feigenbutz, W., Makromol. Chem., 181, 1071, 1980. 76. Graun, K., Dissertation, TU München, 1980. 77. Shiomi, T., Izumi, Z., Hamada, F., and Nakajima, A., Macromolecules, 13, 1149, 1980. 78. Shiomi, T., Kohra, Y., Hamada, F., and Nakajima, A., Macromolecules, 13, 1154, 1980. 79. Aharoni, S.M., Charlet, G., and Delmas, G., Macromolecules, 14, 1390, 1981. 80. Ochiai, H., Ohashi, T., Tadokoro, Y., and Murakami, I., Polym. J., 14, 457, 1982. 81. Sharma, S.C., Mahajan, R., Sharma, V.K., and Lakhanpal, M.L., Indian J. Chem., 21A, 682, 1982. 82. Sharma, S.C., Mahajan, R., Sharma, V.K., and Lakhanpal, M.L., Indian J. Chem., 21A, 685, 1982. 83. Lakhanpal, M.L. and Parashar, R.N., Indian J. Chem., 22A, 48, 1983. 84. Daoust, H. and St-Cyr, D., Macromolecules, 17, 596, 1984. 85. Aeleni, N., Mater. Plast. (Bucharest), 22, 92, 1985. 86. Sharma, S.C. and Sharma, V.K., Indian J. Chem., 24A, 292, 1985.
487_S13.indb 69
13-69
87. Sharma, S.C., Bhalla, S., and Sharma, V.K., Indian J. Chem., 25A, 131, 1986. 88. Sharma, S.C., Syngal, M., and Sharma, V.K., Indian J. Chem., 26A, 285, 1987. 89. Aukett, P.N. and Brown, C.S., J. Therm. Anal., 33, 1079, 1988. 90. Lanzavecchia, L. and Pedemonte, E., Thermochim. Acta, 137, 123, 1988. 91. Tager, A.A., Safronov, A.P., Voit, V.V., Lopyrev, V.A., Ermakova, T.G., Tatarova, L.A., and Shagelaeva, N.S., Vysokomol. Soedin., Ser. A, 30, 2360, 1988. 92. Pedemonte, E. and Lanzavecchia, L., Thermochim. Acta, 162, 223, 1990. 93. Shiomi, T., Ishimatsu, H., Eguchi, T., and Imai, K., Macromolecules, 23, 4970, 1990. 94. Tager, A.A. and Safronov, A.P., Vysokomol. Soedin., Ser. A, 33, 67, 1991. 95. Zellner, H., Dissertation, TU München, 1993. 96. Brunacci, A., Pedemonte, E., Cowie, J.M.G., and McEwen, I. J., Polymer, 35, 2893, 1994. 97. Carlsson, M., Hallen, D., and Linse, P., J. Chem. Soc. Faraday Trans., 91, 2081, 1995. 98. Sato, T., Tohyama, M., Suzuki, M., Shiomi, T.,and Imai, K., Macromolecules, 29, 8231, 1996. 99. Shiomi, T., Tohyama, M., Endo, M., Sato, T., and Imai, K., J. Polym. Sci.: Part B: Polym. Phys., 34, 2599, 1996. 100. Kizhnyaev, V.N., Gorkovenko, O.P., Bazhenov, D.N., and Smirnov, A.I., Vysokomol. Soedin., Ser. A, 39, 856, 1997. 101. Sato, T., Suzuki, M., Tohyama, M., Endo, M., Shiomi, T., and Imai, K., Polym. J., 29, 417, 1997. 102. Vanderryn, J. and Zettlemoyer, A.C., Ind. Eng. Chem., Chem. Eng. Data Ser., 2, 56, 1957. 103. Parashar, R. and Sharma, S.C., Indian J. Chem., 27A, 1092, 1988. 104. Righetti, M.C., Cardelli, C., Scalari, M., Tombari, E., and Conti, G., Polymer, 43, 5035, 2002. 105. Phuong-Nguyen, H. and Delmas, G., J. Solution Chem., 23, 249, 1994. 106. Wohlfarth, C., CRC Handbook of Enthalpy Data of Polymer-Solvent Systems, CRC Press, Boca Raton, 2006.
3/27/06 2:37:25 PM
Astronomical Constants Victor Abalakin The constants in this table are based primarilarly on the set of constants adopted by the International Astronomical Union (IAU) in 1976. Updates have been made when new data were available. All values are given in SI Units; thus masses are expressed in kilograms and distances in meters. The astronomical unit of time is a time interval of one day (1 d) equal to 86400 s. An interval of 36525 d is one Julian century (1 cy). Defining constants Gaussian gravitational constant Speed of light Primary constants Light-time for unit distance (1 ua) Equatorial radius of earth Equatorial radius of earth (IUGG value) Dynamical form-factor for earth Geocentric gravitational constant Constant of gravitation Ratio of mass of moon to that of earth General precession in longitude, per Julian century, at standard epoch J2000 Obliquity of the ecliptic at standard epoch J2000
References 1. Seidelmann, P. K., Explanatory Supplement to the Astronomical Almanac, University Science Books, Mill Valley, CA, 1990. 2. Lang, K. R., Astrophysical Data: Planets and Stars, Springer-Verlag, New York, 1992. 3. The Astronomical Almanac for the Year 2005, U.S. Government Printing Office, Washington, and Her Majesty’s Stationary Office, London (2003).
k = 0.01720209895 m3 kg–1 s–2 c = 299792458 m s–1 τA = 499.004782 s ae = 6378140 m ae = 6378136 m J2 = 0.001082626 GE = 3.986005 × 1014 m3s–2 G = 6.6742 × 10–11 m3kg–1s–2 µ = 0.01230002 1/µ = 81.300587 ρ = 5029″.0966 ε = 23°26′21″.448
Derived constants Constant of nutation at standard epoch J2000 Unit distance (ua = cτA) Solar parallax (π0 = arcsin(ae/ua)) Constant of aberration for standard epoch J2000 Flattening factor for the earth Heliocentric gravitational constant (GS = A3k2/D2) Ratio of mass of sun to that of the earth (S/E) = (GS)/(GE)) Ratio of mass of sun to that of earth + moon Mass of the sun (S = (GS)/G)
N = 9″.2025 ua = 1.49597870660× 1011 m π0 = 8″.794148 κ = 20″.49552 f = 1/298.257 = 0.00335281 GS = 1.32712438 × 1020 m3 s–2 S/E = 332946.0 (S/E)/(1 + µ) = 328900.5 S = 1.98844 × 1030 kg
Ratios of mass of sun to masses of the planets Mercury Venus Earth + moon Mars Jupiter Saturn Uranus Neptune Pluto
6023600 408523.5 328900.5 3098710 1047.355 3498.5 22869 19314 3000000
487_S14.indb 1
14-1
4/10/06 12:01:55 PM
Properties of the Solar System The following tables give various properties of the planets and characteristics of their orbits in the solar system. Certain properties of the sun and of the earth’s moon are also included. Explanations of the column headings: • • • •
Den.: mean density in g/cm3 Radius: radius at the equator in km Flattening: degree of oblateness, defined as (re–rp )/re, where re and rp are the equatorial and polar radii, respectively Potential coefficients: coefficients in the spherical harmonic representation of the gravitational potential U by the equation U(r,φ) = (GM/r) [1 – Σ Jn(a/r)n Pn(sin φ)]
where G is the gravitational constant, r the distance from the center of the planet, a the radius of the planet, M the mass, φ the latitude, and Pn the Legendre polynomial of degree n.
• •
Gravity: acceleration due to gravity at the surface Escape velocity: velocity needed at the surface of the planet to escape the gravitational pull Dist. to sun: semi-major axis of the elliptical orbit (1 ua = 1.496 × 108 km) ε: eccentricity of the orbit Ecliptic angle: angle between the planetary orbit and the plane of the earth’s orbit around the sun Inclin.: angle between the equatorial plane and the plane of the planetary orbit Rot. period: period of rotation of the planet measured in earth days Albedo: ratio of the light reflected from the planet to the light incident on it Tsur: mean temperature at the surface Psur: pressure of the atmosphere at the surface
• • • • • • • •
Planet Mercury Venus Earth (Moon) Mars Jupiter Saturn Uranus Neptune Pluto
Mass 1024 kg 0.33022 4.8690 5.9742 0.073483 0.64191 1898.8 568.50 86.625 102.78 0.015
Den. g/cm3 5.43 5.24 5.515 3.34 3.94 1.33 0.70 1.30 1.76 1.1
Radius km 2439.7 6051.9 6378.140 1738 3397 71492 60268 25559 24764 1151
Flattening 0 0 0.00335364 0 0.00647630 0.0648744 0.0979624 0.0229273 0.0171 0
The following general information on the solar system is of interest: Mass of the earth = Me = 5.9742 × 1024 kg Total mass of planetary system = 2.669 × 1027 kg = 447 Me Total angular momentum of planetary system = 3.148 × 1043 kg m2/s Total kinetic energy of the planets = 1.99 × 1035 J Total rotational energy of planets = 0.7 × 1035 J Properties of the sun: Mass = 1.9891 × 1030 kg = 332946.0 Me Radius = 6.9599 × 108 m Surface area = 6.087 × 1018 m2 Volume = 1.412 × 1027 m3 Mean density = 1.409 g/cm3 Gravity at surface = 27398 cm/s2 Escape velocity at surface = 6.177 × 105 m/s Effective temperature = 5780 K Total radiant power emitted (luminosity) = 3.86 × 1026 W Surface flux of radiant energy = 6.340 × 107 W/m2 Flux of radiant energy at the earth (Solar Constant) = 1373 W/m2
References 1. Seidelmann, P. K., Ed., Explanatory Supplement to the Astronomical Almanac, University Science Books, Mill Valley, CA, 1992. 2. Lang, K. R., Astrophysical Data: Planets and Stars, Springer-Verlag, New York, 1992. 3. Allen, C. W., Astrophysical Quantities, Third Edition, Athlone Press, London, 1977.
103 J2 0.027 1.08263 0.2027 1.964 14.75 16.45 12 4
Potential coeffients 106 J3 106 J4 –2.54 36 –580 –1000
–1.61
Gravity cm/s2 370 887 980 162 371 2312 896 777 1100 72
Escape vel. km/s 4.25 10.4 11.2 2.37 5.02 59.6 35.5 21.3 23.3 1.1
14-2
487_S14.indb 2
4/10/06 12:01:57 PM
Properties of the Solar System
Planet Mercury Venus Earth (Moon) Mars Jupiter Saturn Uranus Neptune Pluto
Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto
487_S14.indb 3
Dist. to sun ua
14-3 Ecliptic angle
ε
0.38710 0.72333 1.00000
0.2056 0.0068 0.0167
7.00° 3.39°
1.52369 5.20283 9.53876 19.19139 30.06107 39.52940
0.0933 0.048 0.056 0.046 0.010 0.248
1.85° 1.31° 2.49° 0.77° 1.77° 17.15°
Tsur K 440 730 288 218 129 97 58 56 50
Psur bar
CO2
2 × 10–15 90 1 0.007
96.4% 0.03% 95.32%
1 × 10–5
Inclin. 0° 177.3° 23.45° 6.68° 25.19° 3.12° 26.73° 97.86° 29.56° 118°
N2
O2
3.4% 78.08% 2.7%
69 ppm 20.95% 0.13%
Rot. period d
Albedo
58.6462 –243.01 0.99726968 27.321661 1.02595675 0.41354 0.4375 –0.65 0.768 –6.3867
0.106 0.65 0.367 0.12 0.150 0.52 0.47 0.51 0.41 0.3
Atmospheric composition H2O H2 He 0.1% 0 to 3% 0.03%
2%
86.1% 92.4% 89% 89%
98%
13.8% 7.4% 11% 11%
Ar
4 ppm 0.93% 1.6%
No. of satellites 0 0 1 2 16 18 15 8 1
Ne
CO
18 ppm 3 ppm
20 ppm 1 ppm 0.07%
4/10/06 12:01:58 PM
Properties of the Solar System The following tables give various properties of the planets and characteristics of their orbits in the solar system. Certain properties of the sun and of the earth’s moon are also included. Explanations of the column headings: • • • •
Den.: mean density in g/cm3 Radius: radius at the equator in km Flattening: degree of oblateness, defined as (re–rp )/re, where re and rp are the equatorial and polar radii, respectively Potential coefficients: coefficients in the spherical harmonic representation of the gravitational potential U by the equation U(r,φ) = (GM/r) [1 – Σ Jn(a/r)n Pn(sin φ)]
where G is the gravitational constant, r the distance from the center of the planet, a the radius of the planet, M the mass, φ the latitude, and Pn the Legendre polynomial of degree n.
• •
Gravity: acceleration due to gravity at the surface Escape velocity: velocity needed at the surface of the planet to escape the gravitational pull Dist. to sun: semi-major axis of the elliptical orbit (1 ua = 1.496 × 108 km) ε: eccentricity of the orbit Ecliptic angle: angle between the planetary orbit and the plane of the earth’s orbit around the sun Inclin.: angle between the equatorial plane and the plane of the planetary orbit Rot. period: period of rotation of the planet measured in earth days Albedo: ratio of the light reflected from the planet to the light incident on it Tsur: mean temperature at the surface Psur: pressure of the atmosphere at the surface
• • • • • • • •
Planet Mercury Venus Earth (Moon) Mars Jupiter Saturn Uranus Neptune Pluto*
14-2
Mass 1024 kg 0.33022 4.8690 5.9723 0.073483 0.64191 1898.8 568.50 86.625 102.78 0.015
Den. g/cm3 5.43 5.24 5.515 3.34 3.94 1.33 0.70 1.30 1.76 1.1
Radius km 2439.7 6051.9 6378.140 1738 3397 71492 60268 25559 24764 1151
Flattening 0 0 0.00335364 0 0.00647630 0.0648744 0.0979624 0.0229273 0.0171 0
The following general information on the solar system is of interest: Mass of the earth = Me = 5.9723 × 1024 kg Total mass of planetary system = 2.669 × 1027 kg = 447 Me Total angular momentum of planetary system = 3.148 × 1043 kg m2/s Total kinetic energy of the planets = 1.99 × 1035 J Total rotational energy of planets = 0.7 × 1035 J Properties of the sun: Mass = 1.98844 × 1030 kg = 332946.0 Me Radius = 6.961 × 108 m Surface area = 6.087 × 1018 m2 Volume = 1.412 × 1027 m3 Mean density = 1.409 g/cm3 Gravity at surface = 27398 cm/s2 Escape velocity at surface = 6.177 × 105 m/s Effective temperature = 5780 K Total radiant power emitted (luminosity) = 3.846 × 1026 W Surface flux of radiant energy = 6.340 × 107 W/m2 Flux of radiant energy at the Earth (Solar Constant) = 1367.5 W/m2
References 1. Seidelmann, P. K., Ed., Explanatory Supplement to the Astronomical Almanac, University Science Books, Mill Valley, CA, 1992. 2. Lang, K. R., Astrophysical Data: Planets and Stars, Springer-Verlag, New York, 1992. 3. Allen, C. W., Astrophysical Quantities, Third Edition, Athlone Press, London, 1977. 4. Yao, W.-M., et al., J. Phys. G, 33, 1, 2006; also available at http://pdg.lbl. gov/2006/reviews/astrorpp.pdf.
103 J2 0.027 1.08263 0.2027 1.964 14.75 16.45 12 4
Potential coeffients 106 J3 106 J4 –2.54 36 –580 –1000
–1.61
Gravity cm/s2 370 887 980 162 371 2312 896 777 1100 72
Escape vel. km/s 4.25 10.4 11.2 2.37 5.02 59.6 35.5 21.3 23.3 1.1
Properties of the Solar System
Planet Mercury Venus Earth (Moon) Mars Jupiter Saturn Uranus Neptune Pluto*
Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto*
Dist. to sun ua 0.38710 0.72333 1.00000 1.52369 5.20283 9.53876 19.19139 30.06107 39.52940
Tsur K 440 730 288 218 129 97 58 56 50
Psur bar 2 × 10–15 90 1 0.007
1 × 10–5
14-3
ε 0.2056 0.0068 0.0167 0.0933 0.048 0.056 0.046 0.010 0.248
CO2 96.4% 0.03% 95.32%
Ecliptic angle 7.00° 3.39°
Inclin. 0° 177.3° 23.45° 6.68° 25.19° 3.12° 26.73° 97.86° 29.56° 118°
1.85° 1.31° 2.49° 0.77° 1.77° 17.15°
N2
O2
3.4% 78.08% 2.7%
69 ppm 20.95% 0.13%
Rot. period d 58.6462 –243.01 0.99726968 27.321661 1.02595675 0.41354 0.4375 –0.65 0.768 –6.3867
Atmospheric composition H2O H2 He 2% 98% 0.1% 0 to 3% 0.03% 86.1% 13.8% 92.4% 7.4% 89% 11% 89% 11%
No. of satellites 0 0 1
Albedo 0.106 0.65 0.367 0.12 0.150 0.52 0.47 0.51 0.41 0.3
Ar 4 ppm 0.93% 1.6%
2 16 18 15 8 1
Ne
CO
18 ppm 3 ppm
20 ppm 1 ppm 0.07%
* The International Astronomical Union passed resolutions in August 2006 that defined Pluto as a “dwarf planet” and recognized it as the prototype of a new category of Trans-Neptunian Objects. See <http://www.iau.org/fileadmin/content/pdfs/Resolution_GA26-5-6.pdf>.
Satellites of the Planets This table gives characteristics of the known satellites of the planets. The parameters covered are: • • • • • • • •
Orbital period in units of earth days. An R following the value indicates a retrograde motion. Distance from the planet, as measured by the semi-major axis of the orbit. Eccentricity of the orbit. Inclination of the satellite orbit with respect to the equator of the planet. Mass of the satellite relative to the planet. Radius of the satellite in km. Mean density of the satellite. Geometric albedo, which is a measure of the fraction of incident sunlight reflected by the satellite.
Orb. Period Planet Earth Mars Jupiter
Saturn
Uranus
14-4
I II I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII I II III IV
Satellite Moon Phobos Deimos Io Europa Ganymede Callisto Amalthea Himalia Elara Pasiphae Sinope Lysithea Carme Ananke Leda Thebe Adrastea Metis Mimas Enceladus Tethys Dione Rhea Titan Hyperion Iapetus Phoebe Janus Epimetheus Helene Telesto Calypso Atlas Prometheus Pandora Pan Ariel Umbriel Titania Oberon
d 27.321661 0.31891023 1.2624407 1.769137786 3.551181041 7.15455296 16.6890184 0.49817905 250.5662 259.6528 735 R 758 R 259.22 692 R 631 R 238.72 0.6745 0.29826 0.294780 0.942421813 1.370217855 1.887802160 2.736914742 4.517500436 15.94542068 21.2766088 79.3301825 550.48 R 0.6945 0.6942 2.7369 1.8878 1.8878 0.6019 0.6130 0.6285 0.5750 2.52037935 4.1441772 8.7058717 13.4632389
References 1. Seidelmann, P. K., Ed., Explanatory Supplement to the Astronomical Almanac, University Science Books, Mill Valley, CA, 1992. 2. Lang, K. R., Astrophysical Data: Planets and Stars, Springer-Verlag, New York, 1992. 3. Burns, J. A., and Matthews, M. S., Eds., Satellites, University of Arizona Press, Tucson, 1986.
Distance 103 km 384.400 9.378 23.459 422 671 1070 1883 181 11480 11737 23500 23700 11720 22600 21200 11094 222 129 128 185.52 238.02 294.66 377.40 527.04 1221.83 1481.1 3561.3 12952 151.472 151.422 377.40 294.66 294.66 137.670 139.353 141.700 133.583 191.02 266.30 435.91 583.52
Rel. Eccentricity 0.054900489 0.015 0.0005 0.004 0.009 0.002 0.007 0.003 0.15798 0.20719 0.378 0.275 0.107 0.20678 0.16870 0.14762 0.015
Inclination 18.28–28.58° 1.0° 0.9–2.7° 0.04° 0.47° 0.21° 0.51° 0.40° 27.63° 24.77° 145° 153° 29.02° 164° 147° 26.07° 0.8°
0.0202 0.00452 0.00000 0.002230 0.00100 0.029192 0.104 0.02828 0.16326 0.007 0.009 0.005
1.53° 1.86° 1.86° 0.02° 0.35° 0.33° 0.43° 14.72° 177° 0.14° 0.34° 0.0°
0.000 0.003 0.004
0.3° 0.0° 0.0°
0.0034 0.0050 0.0022 0.0008
0.3° 0.36° 0.14° 0.10°
mass 0.01230002 1.5 × 10–8 3 × 10–9 4.68 × 10–5 2.52 × 10–5 7.80 × 10–5 5.66 × 10–5 3.8 × 10–9 5.0 × 10–9 4 × 10–10 1 × 10–10 0.4 × 10–10 0.4 × 10–10 0.5 × 10–10 0.2 × 10–10 0.03 × 10–10 4 × 10–10 0.1 × 10–10 0.5 × 10–10 8.0 × 10–8 1.3 × 10–7 1.3 × 10–6 1.85 × 10–6 4.4 × 10–6 2.38 × 10–4 3 × 10–8 3.3 × 10–6 7 × 10–10
1.56 × 10–5 1.35 × 10–5 4.06 × 10–5 3.47 × 10–5
Radius km 1738 13.5 × 10.8 × 9.4 7.5 × 6.1 × 5.5 1815 1569 2631 2400 135 × 83 × 75 93 38 25 18 18 20 15 8 55 × 45 12.5 × 10 × 7.5 20 196 250 530 560 765 2575 205 × 130 × 110 730 110 110 × 100 × 80 70 × 60 × 50 18 × 16 × 15 17 × 14 × 13 17 × 11 × 11 20 × 10 70 × 50 × 40 55 × 45 × 35 10 579 586 790 762
Den. g/cm3 3.34 <2 <2 3.55 3.04 1.93 1.83
1.44 1.13 1.20 1.41 1.33 1.88 1.15
1.55 1.58 1.69 1.64
Albedo 0.12 0.06 0.07 0.61 0.64 0.42 0.20 0.05 0.03 0.03
0.05 0.05 0.05 0.5 1.0 0.9 0.7 0.7 0.21 0.3 0.2 0.06 0.8 0.8 0.7 0.5 0.6 0.9 0.6 0.9 0.5 0.34 0.18 0.27 0.24
Satellites of the Planets
14-5 Orb. Period
Planet
Neptune
Pluto*
V VI VII VIII IX X XI XII XIII XIV XV I II III IV V VI VII VIII I
Satellite Miranda Cordelia Ophelia Bianca Cressida Desdemona Juliet Portia Rosalind Belinda Puck Triton Nereid Naiad Thalassa Despina Galatea Larissa Proteus Charon
d 1.41347925 0.335033 0.376409 0.434577 0.463570 0.473651 0.493066 0.513196 0.558459 0.623525 0.761832 5.8768541 R 360.13619 0.294396 0.311485 0.334655 0.428745 0.554654 1.122315 6.38725
Distance 103 km 129.39 49.77 53.79 59.17 61.78 62.68 64.35 66.09 69.94 75.26 86.01 354.76 5513.4 117.6 73.6 52.6 62.0 50.0 48.2 19.6
Rel. Eccentricity 0.0027 <0.001 0.010 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.000016 0.7512 <0.001 <0.001 <0.001 <0.001 <0.0014 <0.001 <0.001
Inclination 4.2° 0.1° 0.1° 0.2° 0.0° 0.2° 0.1° 0.1° 0.3° 0.0° 0.31° 157.345° 27.6° 4.74° 0.21° 0.07° 0.05° 0.20° 0.55° 99°
mass 0.08 × 10–5
2.09 × 10–4 2 × 10–7
0.22
Radius km 240 13 15 21 31 27 42 54 27 33 77 1353 170 29 40 74 79 104 × 89 218 × 208 × 201 593
Den. g/cm3 1.25
2.05
Albedo 0.27 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.7 0.4 0.06 0.06 0.06 0.06 0.06 0.06 0.5
* The International Astronomical Union passed resolutions in August 2006 that defined Pluto as a “dwarf planet” and recognized it as the prototype of a new category of Trans-Neptunian Objects. See <http://www.iau.org/fileadmin/content/pdfs/Resolution_GA26-5-6.pdf>.
Mass, Dimensions, and Other Parameters of the Earth This table is a collection of data on various properties of the Earth. Most of the values are given in SI units. Note that 1 ua (astronomical unit) = 149,597,870 km.
Mass Major orbital semi-axis
Quantity
Distance from sun at perihelion Distance from sun at aphelion Moment of perihelion passage Moment of aphelion passage Siderial rotation period around sun Mean rotational velocity Mean equatorial radius Mean polar compression (flattening factor) Difference in equatorial and polar semi-axes Compression of meridian of major equatorial axis Compression of meridian of minor equatorial axis Equatorial compression Difference in equatorial semi-axes Difference in polar semi-axes Polar asymmetry Mean acceleration of gravity at equator Mean acceleration of gravity at poles Difference in acceleration of gravity at pole and at equator Mean acceleration of gravity for entire surface of terrestrial ellipsoid Mean radius Area of surface Volume Mean density Siderial rotational period Rotational angular velocity Mean equatorial rotational velocity Rotational angular momentum Rotational energy Ratio of centrifugal force to force of gravity at equator Moment of inertia Relative braking of earth’s rotation due to tidal friction Relative secular acceleration of earth’s rotation Not secular braking of earth’s rotation Probable value of total energy of tectonic deformation of earth Secular loss of heat of earth through radiation into space Portion of earth’s kinetic energy transformed into heat as a result of lunar and solar tides in the hydrosphere Differences in duration of days in March and August Corresponding relative annual variation in earth’s rotational velocity Presumed variation in earth’s radius between August and March Annual variation in level of world ocean Area of continents
487_S14.indb 9
References 1. Seidelmann, P. K., Ed., Explanatory Supplement to the Astronomical Almanac, University Science Books, Mill Valley, CA, 1992. 2. Lang, K. R., Astrophysical Data: Planets and Stars, Springer-Verlag, New York, 1992. Symbol M aorb
Uorb ā α a–c αa αb ε a–b cN – cS η ge gp gp – ge
Value 5.9723·1027 1.000000 1.4959787·108 0.9833 1.0167 Jan. 2, 4 h 52 min July 4, 5 h 05 min 31.5581·106 365.25636 29.78 6378.140 1/298.257 21.385 1/295.2 1/298.0 1/30 000 213 ~70 ~1.10–5 9.78036 9.83208 5.172
g R S V ρ P ω v L E qc I ∆ωe/ω ∆ωi/ω ∆ω/ω Et ∆′Ek
9.7978 6371.0 5.10·108 1.0832·1012 5.515 86,164.09 7.292116·10–5 0.46512 5.861·1033 2.137·1029 0.0034677 = 1/288 8.070·1037 –4.2·10–8 +1.4·10–8 –2.8·10–8 ~1·1023 1·1023
m/s2 km km2 km3 g/cm3 s rad/s km/s Js J
1.3·1023 0.0025 (March-August)
J/century s
2.9·10–8 (Aug.-March) –9.2 (Aug.-March) ∼10 (Sept.-March) 1.49·108 29.2
cm cm km2 % of surface
rπ rα Tπ Tα Porb
∆″Ek ∆P ∆*ω/ω ∆*R ∆ho SC
g ua km ua ua
Unit
s d km/s km km
m m m/s2 m/s2 cm/s2
kg m2 century–1 century–1 century–1 J/century J/century
14-9
4/10/06 12:02:10 PM
Mass, Dimensions, and Other Parameters of the Earth
14-10 Quantity
Symbol So
Mean height of continents above sea level Mean depth of world ocean Mean thickness of lithosphere within the limits of the continents Mean thickness of lithosphere within the limits of the ocean Mean rate of thickening of continental lithosphere Mean rate of horizontal extension of continental lithosphere Mass of crust Mass of mantle Amount of water released from the mantle and core in the course of geological time Total reserve of water in the mantle Present content of free and bound water in the earth’s lithosphere Mass of hydrosphere Amount of oxygen bound in the earth’s crust Amount of free oxygen Mass of atmosphere Mass of biosphere Mass of living matter in the biosphere Density of living matter on dry land Density of living matter in ocean Age of the earth Age of oldest rocks Age of most ancient fossils
hC ho hc.l. ho.l. ∆h/∆t ∆l/∆t ml
Area of world ocean
487_S14.indb 10
mh ma mb
3.61·108 70.8 875 3794 35 4.7 10 – 40 0.75 – 20 2.36·1022 4.05·1024 3.40·1021 2·1023 2.4·1021 1.664·1021 1.300·1021 1.5·1018 5.136·1018 1.148·1016 3.6·1014 0.1 15·10–8 4.55·109 4.0·109 3.4·109
Value
Unit km2 % of surface m m km km m/106 y km/106 y kg kg kg kg kg kg kg kg kg kg kg g/cm2 g/cm3 y y y
4/10/06 12:02:11 PM
GEOLOGICAL TIME SCALE Period or epoch
Beginning and end, in 106 years
Key events
0–10,000 y ± 2,000 y 10,000–1,000,000 y ± 50,000 y
Homo Erectus breakout
1.8–5.3 5–25 25–37 37–55 55–67
Ape man fossils Origin of grass Rise of cats, dogs, pigs Debut of hoofed mammals Earliest primates
Mesozoic era Cretaceous Jurassic Triassic
67–138 138–208 208–245
Demise of dinosaurs First birds Appearance of dinosaurs
Paleozoic era Permian Carboniferous Devonian Silurian Ordovician Cambrian
245–290 290–360 360–410 410–435 435–520 520–570
Flowers, insect pollination First conifers First vertebrates ashore Spore-bearing plants First animals ashore Vertebrates appear
Pre-Cambrian Pre-Cambrian III (Proterozoic) Pre-Cambrian II (Archean) Pre-Cambrian I (Hadean)
570–2500 2500–3800 3800–4450
First plants, jellyfish Photosynthetic bacteria Earth formed 4600 million years ago
Cenozoic era Quaternian Contemporary Pleistocene Tertiary Pliocene Miocene Oligocene Eocene Paleocene
Reference: Calder, N., Timescale - An Atlas of the Fourth Dimension, Viking Press, New York, 1983.
14-11
Section 14.indb 11
4/27/05 5:03:27 PM
ACCELERATION DUE TO GRAVITY The acceleration due to gravity is tabulated here as a function of latitude and height above the earth’s surface. Values were calculated from the expression g/(m/s2) = 9.780356 (1 + 0.0052885 sin2 φ – 0.0000059 sin2 2 φ) – 0.003086 H
Reference Jursa, A. S., Ed., Handbook of Geophysics and the Space Environment, 4th ed., Air Force Geophysics Laboratory, 1985, p. 14–17.
where φ is the latitude and H is the height in kilometers.
φ 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
H=0 9.78036 9.78075 9.78191 9.78381 9.78638 9.78956 9.79324 9.79732 9.80167 9.80616 9.81065 9.81501 9.81911 9.82281 9.82601 9.82860 9.83051 9.83168 9.83208
H = 1 km 9.77727 9.77766 9.77882 9.78072 9.78330 9.78647 9.79016 9.79424 9.79858 9.80307 9.80757 9.81193 9.81602 9.81972 9.82292 9.82551 9.82743 9.82860 9.82899
H = 5 km 9.76493 9.76532 9.76648 9.76838 9.77095 9.77413 9.77781 9.78189 9.78624 9.79073 9.79522 9.79958 9.80368 9.80738 9.81058 9.81317 9.81508 9.81625 9.81665
H = 10 km 9.74950 9.74989 9.75105 9.75295 9.75552 9.75870 9.76238 9.76646 9.77081 9.77530 9.77979 9.78415 9.78825 9.79195 9.79515 9.79774 9.79965 9.80082 9.80122
14-12
Section 14.indb 12
4/27/05 5:03:28 PM
DENSITY, PRESSURE, AND GRAVITY AS A FUNCTION OF DEPTH WITHIN THE EARTH This table gives the density ρ, pressure p, and acceleration due to gravity g as a function of depth below the earth’s surface, as calculated from the model of the structure of the earth in Reference 1. The model assumes a radius of 6371 km for the earth. The boundary between the crust and mantle (the Mohorovicic discontinuity) is taken as 21 km, while in reality it varies considerable with location.
Crust
Depth km
ρ g/cm3
0 3
1.02 1.02
0 3
981 982
3 21
2.80 2.80
3 5
982 983
3.49 3.51 3.52 3.48 3.44 3.40 3.37 3.34 3.37 3.47 3.59 3.95 4.54 4.67 4.81
5 12 19 26 33 39 56 73 89 106 124 199 328 466 607
983 983 984 984 984 985 987 989 991 993 994 999 997 992 991
Mantle (solid) 21 41 61 81 101 121 171 221 271 321 371 571 871 1171 1471
p kbar
g cm/s2
References 1. Anderson, D. L., and Hart, R. S., J. Geophys. Res., 81, 1461, 1976. 2. Carmichael, R. S., CRC Practical Handbook of Physical Properties of Rocks and Minerals, p. 467, CRC Press, Boca Raton, FL, 1989.
Depth km 1771 2071 2371 2671 2886
ρ g/cm3 4.96 5.12 5.31 5.45 5.53
p kbar 752 903 1061 1227 1352
g cm/s2 994 1002 1017 1042 1069
Outer core (liquid) 2886 2971 3371 3671 4071 4471 4871 5156
9.96 10.09 10.63 11.00 11.36 11.69 11.99 12.12
1352 1442 1858 2154 2520 2844 3116 3281
1069 1050 953 874 760 641 517 427
Inner core (solid) 5156 5371 5771 6071 6371
12.30 12.48 12.52 12.53 12.58
3281 3385 3529 3592 3617
427 355 218 122 0
14-13
S14_07.indd 13
5/2/05 1:47:09 PM
OCEAN PRESSURE AS A FUNCTION OF DEPTH AND LATITUDE The following table is based upon an ocean model which takes into account the equation of state of standard seawater and the dependence on latitude of the acceleration of gravity. The tabulated pressure value is the excess pressure over the ambient atmospheric pressure at the surface.
Depth (meters) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
References 1. International Oceanographic Tables, Volume 4, Unesco Technical Papers in Marine Science No. 40, Unesco, Paris, 1987. 2. Saunders, P. M., and Fofonoff, N. P., Deep-Sea Res. 23, 109–111, 1976.
Pressure in MPa at the Specified Latitude 0° 0.0000 5.0338 10.0796 15.1376 20.2076 25.2895 30.3831 35.4886 40.6056 45.7342 50.8742 56.0255 61.1882 66.3619 71.5467 76.7426 81.9493 87.1669 92.3950 97.6346 102.8800
15° 0.0000 5.0355 10.0832 15.1431 20.2148 25.2985 30.3940 35.5012 40.6201 45.7505 50.8924 56.0456 61.2100 66.3857 71.5724 76.7701 81.9788 87.1983 92.4284 97.6698 102.9170
30° 0.0000 5.0404 10.0930 15.1577 20.2344 25.3231 30.4236 35.5358 40.6598 45.7952 50.9421 56.1004 61.2700 66.4508 71.6427 76.8456 82.0594 87.2841 92.5194 97.7661 103.0185
45° 0.0000 5.0471 10.1064 15.1778 20.2613 25.3568 30.4641 35.5832 40.7140 45.8564 51.0102 56.1755 61.3521 66.5399 71.7388 76.9488 82.1697 87.4016 92.6440 97.8978 103.1572
60° 0.0000 5.0537 10.1198 15.1980 20.2882 25.3905 30.5047 35.6307 40.7683 45.9176 51.0785 56.2508 61.4344 66.6292 71.8352 77.0523 82.2804 87.5193 92.7689 98.0300 103.2961
75° 0.0000 5.0586 10.1296 15.2127 20.3080 25.4153 30.5345 35.6654 40.8082 45.9626 51.1285 56.3059 61.4947 66.6947 71.9059 77.1282 82.3614 87.6057 92.8606 98.1269 103.3981
90° 0.0000 5.0605 10.1333 15.2182 20.3153 25.4244 30.5453 35.6782 40.8229 45.9791 51.1469 56.3262 61.5168 66.7187 71.9318 77.1560 82.3911 87.6373 92.8941 98.1624 103.4355
14-14
Section 14.indb 14
4/27/05 5:03:30 PM
PROPERTIES OF SEAWATER In addition to the dependence on temperature and pressure, the physical properties of seawater vary with the concentration of the dissolved constituents. A convenient parameter for describing the composition is the salinity, S, which is defined in terms of the electrical conductivity of the seawater sample. The defining equation for the practical salinity is: S = a0 + a1K1/2 + a2K + a3K3/2 + a4K2 + a5K5/2, where K is the ratio of the conductivity of the seawater sample at 15°C and atmospheric pressure to the conductivity of a potassium chloride solution in which the mass fraction of KCl is 0.0324356, at the same temperature and pressure. The values of the coefficients are: a0 = 0.0080 a3 = 14.0941 a1 = –0.1692 a4 = –7.0261 a2 = 25.3851 a5 = 2.7081 Σ ai = 35.0000 Thus when K = 1, S = 35 exactly (S is normally quoted in units of ‰, i.e., parts per thousand). The value of S can be roughly equated with the mass of dissolved material in grams per kilogram of seawater. Salinity values in the open oceans at mid latitudes typically fall between 34 and 36.
It is customary in oceanography to define the pressure at a given point as the pressure due to the column of water between that point and the surface. Thus by convention P = 0 at the sea surface. To a good approximation the pressure in decibars (dbar) can be equated to the depth in meters. Thus at 45° latitude the pressure is 5000 dbar at 4902 m, 10000 dbar at 9700 m. The first table below gives several properties of seawater as a function of temperature for a salinity of 35. The second and third give density and electrical conductivity as a function of salinity at several temperatures, and the fourth lists typical concentrations of the main constituents of seawater as a function of salinity. The final table gives the freezing point as a function of salinity and pressure.
References 1. The Practical Salinity Scale 1978 and the International Equation of State of Seawater 1980, Unesco Technical Papers in Marine Science No. 36, Unesco, Paris, 1981; sections No. 37, 38, 39, and 40 in this series give background papers and detailed tables. 2. Kennish, M. J., CRC Practical Handbook of Marine Science, CRC Press, Boca Raton, FL, 1989. 3. Poisson, A. IEEE J. Ocean. Eng. OE-5, 50, 1981. 4. Webster, F., in AIP Physics Desk Reference, E. R. Cohen, D. R. Lide and G. L. Trigg, Eds., Springer-Verlag, New York, 2003.
Properties of Seawater as a Function of Temperature at Salinity S = 35 and Normal Atmospheric Pressure ρ = density in g/cm3 β = (1/ρ) (dρ/dS) = fractional change in density per unit change in salinity α = –(1/ρ) (dρ/dt) = fractional change in density per unit change in temperature (°C–1) t/°C 0 5 10 15 20 25 30 35 40
ρ/g cm–3 1.028106 1.027675 1.026952 1.025973 1.024763 1.023343 1.021729 1.019934
107β 7854 7717 7606 7516 7444 7385 7338 7300 7270
107 α/°C–1 526 1136 1668 2141 2572 2970 3341 3687 4004
κ = electrical conductivity in S/cm η = viscosity in mPa s (equal to cP) cp = specific heat in J/kg °C v = speed of sound in m/s
κ/S cm–1 0.029048 0.033468 0.038103 0.042933 0.047934 0.053088 0.058373
η/mPa s 1.892 1.610 1.388 1.221 1.085 0.966 0.871
cp/J kg–1 °C–1 v/m s–1 3986.5 1449.1 3986.3
1489.8
3993.9
1521.5
4000.7
1545.6
4003.5
1563.2
Density of Surface Seawater in g/cm3 as a Function of Temperature and Salinity t/°C 0 5 10 15 20 25 30 35 40
S=0 0.999843 0.999967 0.999702 0.999102 0.998206 0.997048 0.995651 0.994036 0.992220
S=5 1.003913 1.003949 1.003612 1.002952 1.002008 1.000809 0.999380 0.997740 0.995906
S = 10 1.007955 1.007907 1.007501 1.006784 1.005793 1.004556 1.003095 1.001429 0.999575
S = 15 1.011986 1.011858 1.011385 1.010613 1.009576 1.008301 1.006809 1.005118 1.003244
S = 20 1.016014 1.015807 1.015269 1.014443 1.013362 1.012050 1.010527 1.008810 1.006915
S = 25 1.020041 1.019758 1.019157 1.018279 1.017154 1.015806 1.014252 1.012509 1.010593
S = 30 1.024072 1.023714 1.023051 1.022122 1.020954 1.019569 1.017985 1.016217 1.014278
S = 35 1.028106 1.027675 1.026952 1.025973 1.024763 1.023343 1.021729 1.019934 1.017973
S = 40 1.032147 1.031645 1.030862 1.029834 1.028583 1.027128 1.025483 1.023662 1.021679
14-15
S14_09.indd 15
5/2/05 1:48:27 PM
Properties of Seawater
14-16 Electrical Conductivity of Seawater in S/cm as a Function of Temperature and Salinity t/°C 0 5 10 15 20 25 30
S=5 0.004808 0.005570 0.006370 0.007204 0.008068 0.008960 0.009877
S = 10 0.009171 0.010616 0.012131 0.013709 0.015346 0.017035 0.018771
S = 15 0.013357 0.015441 0.017627 0.019905 0.022267 0.024703 0.027204
S = 20 0.017421 0.020118 0.022947 0.025894 0.028948 0.032097 0.035330
S = 25 0.021385 0.024674 0.028123 0.031716 0.035438 0.039276 0.043213
S = 30 0.025257 0.029120 0.033171 0.037391 0.041762 0.046267 0.050888
S = 35 0.029048 0.033468 0.038103 0.042933 0.047934 0.053088 0.058373
S = 40 0.032775 0.037734 0.042935 0.048355 0.053968 0.059751 0.065683
Composition of Seawater and Ionic Strength at Various Salinities (Ref. 2) Constituent
Cl– Br– F– SO42– HCO3– NaSO4– KSO4– Na+ K+ Mg2+ Ca2+ Sr2+ MgHCO3+ MgSO4 CaSO4 NaHCO3 H3BO3 Ionic strength
S = 30 0.482 0.00074 0.0104 0.00131 0.0085 0.00010 0.405 0.00892 0.0413 0.00131 0.00008 0.00028 0.00498 0.00102 0.00015 0.00032 0.5736
Expressed as molality S = 35 0.562 0.00087 0.00007 0.0114 0.00143 0.0108 0.00012 0.472 0.01039 0.0483 0.00143 0.00009 0.00036 0.00561 0.00115 0.00020 0.00037 0.6675
S = 40 0.650 0.00100
S = 30 16.58 0.057
0.0122 0.00100 0.0139 0.00015 0.544 0.01200 0.0561 0.00154 0.00011 0.00045 0.00614 0.00126 0.00024 0.00042 0.7701
0.97 0.078 0.98 0.013 9.03 0.338 0.974 0.051 0.007 0.023 0.582 0.135 0.012 0.019
As grams per kilogram of seawater S = 35 S = 40 19.33 22.36 0.067 0.078 0.001 1.06 1.14 0.085 0.059 1.25 1.60 0.016 0.020 10.53 12.13 0.394 0.455 1.139 1.323 0.056 0.060 0.008 0.009 0.030 0.037 0.655 0.717 0.152 0.166 0.016 0.020 0.022 0.025
Freezing Point of Seawater in °C as a Function of Salinity and Pressure P/dbar 0 50 100 500
S14_09.indd 16
S=0 0.000 –0.038 –0.075 –0.377
5 –0.274 –0.311 –0.349 –0.650
10 –0.542 –0.580 –0.618 –0.919
15 –0.812 –0.849 –0.887 –1.188
20 –1.083 –1.121 –1.159 –1.460
25 –1.358 –1.396 –1.434 –1.735
30 –1.638 –1.676 –1.713 –2.014
35 –1.922 –1.960 –1.998 –2.299
40 –2.212 –2.250 –2.287 –2.589
5/2/05 1:48:27 PM
ABUNDANCE OF ELEMENTS IN THE EARTH’S CRUST AND IN THE SEA This table gives the estimated abundance of the elements in the continental crust (in mg/kg, equivalent to parts per million by mass) and in seawater near the surface (in mg/L). Values represent the median of reported measurements. The concentrations of the less abundant elements may vary with location by several orders of magnitude.
Element Ac Ag Al Ar As Au B Ba Be Bi Br C Ca Cd Ce Cl Co Cr Cs Cu Dy Er Eu F Fe Ga Gd Ge H He Hf Hg Ho I In Ir K Kr La Li Lu Mg Mn Mo
Abundance Crust mg/kg 5.5 × 10–10 7.5 × 10–2 8.23 × 104 3.5 1.8 4 × 10–3 1.0 × 101 4.25 × 102 2.8 8.5 × 10–3 2.4 2.00 × 102 4.15 × 104 1.5 × 10–1 6.65 × 101 1.45 × 102 2.5 × 101 1.02 × 102 3 6.0 × 101 5.2 3.5 2.0 5.85 × 102 5.63 × 104 1.9 × 101 6.2 1.5 1.40 × 103 8 × 10–3 3.0 8.5 × 10–2 1.3 4.5 × 10–1 2.5 × 10–1 1 × 10–3 2.09 × 104 1 × 10–4 3.9 × 101 2.0 × 101 8 × 10–1 2.33 × 104 9.50 × 102 1.2
Sea mg/L 4 × 10–5 2 × 10–3 4.5 × 10–1 3.7 × 10–3 4 × 10–6 4.44 1.3 × 10–2 5.6 × 10–6 2 × 10–5 6.73 × 101 2.8 × 101 4.12 × 102 1.1 × 10–4 1.2 × 10–6 1.94 × 104 2 × 10–5 3 × 10–4 3 × 10–4 2.5 × 10–4 9.1 × 10–7 8.7 × 10–7 1.3 × 10–7 1.3 2 × 10–3 3 × 10–5 7 × 10–7 5 × 10–5 1.08 × 105 7 × 10–6 7 × 10–6 3 × 10–5 2.2 × 10–7 6 × 10–2 2 × 10–2 3.99 × 102 2.1 × 10–4 3.4 × 10–6 1.8 × 10–1 1.5 × 10–7 1.29 × 103 2 × 10–4 1 × 10–2
References 1. Carmichael, R. S., Ed., CRC Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, Boca Raton, FL, 1989. 2. Bodek, I., et al., Environmental Inorganic Chemistry, Pergamon Press, New York, 1988. 3. Ronov, A. B., and Yaroshevsky, A. A., “Earth’s Crust Geochemistry” , in Encyclopedia of Geochemistry and Environmental Sciences, Fairbridge, R. W., Ed., Van Nostrand, New York, 1969.
Element N Na Nb Nd Ne Ni O Os P Pa Pb Pd Po Pr Pt Ra Rb Re Rh Rn Ru S Sb Sc Se Si Sm Sn Sr Ta Tb Te Th Ti Tl Tm U V W Xe Y Yb Zn Zr
Abundance Crust mg/kg 1.9 × 101 2.36 × 104 2.0 × 101 4.15 × 101 5 × 10–3 8.4 × 101 4.61 × 105 1.5 × 10–3 1.05 × 103 1.4 × 10–6 1.4 × 101 1.5 × 10–2 2 × 10–10 9.2 5 × 10–3 9 × 10–7 9.0 × 101 7 × 10–4 1 × 10–3 4 × 10–13 1 × 10–3 3.50 × 102 2 × 10–1 2.2 × 101 5 × 10–2 2.82 × 105 7.05 2.3 3.70 × 102 2.0 1.2 1 × 10–3 9.6 5.65 × 103 8.5 × 10–1 5.2 × 10–1 2.7 1.20 × 102 1.25 3 × 10–5 3.3 × 101 3.2 7.0 × 101 1.65 × 102
Sea mg/L 5 × 10–1 1.08 × 104 1 × 10–5 2.8 × 10–6 1.2 × 10–4 5.6 × 10–4 8.57 × 105 6 × 10–2 5 × 10–11 3 × 10–5 1.5 × 10–14 6.4 × 10–7 8.9 × 10–11 1.2 × 10–1 4 × 10–6 6 × 10–16 7 × 10–7 9.05 × 102 2.4 × 10–4 6 × 10–7 2 × 10–4 2.2 4.5 × 10–7 4 × 10–6 7.9 2 × 10–6 1.4 × 10–7 1 × 10–6 1 × 10–3 1.9 × 10–5 1.7 × 10–7 3.2 × 10–3 2.5 × 10–3 1 × 10–4 5 × 10–5 1.3 × 10–5 8.2 × 10–7 4.9 × 10–3 3 × 10–5
14-17
Section 14.indb 17
4/27/05 5:03:35 PM
SOLAR SPECTRAL IRRADIANCE The solar luminosity (total radiant power emitted) is 3.86⋅1026 W, of which 1373 W/m2 reaches the top of the earth’s atmosphere. To a zeroth approximation the sun can be considered a black body with an effective temperature of 5780 K, which implies a peak in the radiation at around 0.520 µm (5200 Å). The actual solar spectral emission is more complex, especially at ultraviolet and shorter wavelengths. The graph below, which was taken from Reference 1, summarizes the solar irradiance at the top of the atmosphere in the range 0.3 to 10 µm.
References 1. Jursa, A. S., Ed., Handbook of Geophysics and the Space Environment, Air Force Geophysics Laboratory, 1985. 2. Pierce, A. K., and Allen, R. G., “The Solar Spectrum between 0.3 and 10 µm” , in The Solar Output and Its Variation, White, O. R., Ed., Colorado Associated University Press, Boulder, CO, 1977. 3. Lang, K. R., Astrophysical Data. Planets and Stars, Springer-Verlag, New York, 1992.
2000 1800
Irradiance in W m -2 µm-1
1600 1400 1200 1000 800 600 400 X10
200 0
0.3
0.4
0.5
0.7
1.0
2
3
4
5
6
7
8
9
10
Wavelength in µm
14-18
Section 14.indb 18
4/27/05 5:03:38 PM
U.S. STANDARD ATMOSPHERE (1976) A Standard Atmosphere is a hypothetical vertical distribution of atmospheric temperature, pressure, and density which is roughly representative of year-round, midlatitude conditions. Typical uses are to serve as a basis for pressure altimeter calibrations, aircraft performance calculations, aircraft and rocket design, ballistic tables, meteorological diagrams, and various types of atmospheric modeling. The air is assumed to be dry and to obey the perfect gas law and the hydrostatic equation which, taken together, relate temperature, pressure, and density with vertical position. The atmosphere is considered to rotate with the earth and to be an average over the diurnal cycle, the semiannual variation, and the range from active to quiet geomagnetic and sunspot conditions. The U.S. Standard Atmosphere, (1976) is an idealized, steadystate representation of mean annual conditions of the earth’s atmosphere from the surface to 1000 km at latitude 45°N, as it is assumed to exist during a period with moderate solar activity. The defining meteorological elements are sea-level temperature and pressure and a temperature-height profile to 1000 km. The 1976 Standard Atmosphere uses the following sea-level values which have been standard for many decades: Temperature — 288.15 K (15°C) Pressure — 101325 Pa (1013.25 mbar, 760 mm of Hg, or 29.92 in. of Hg)
Density — 1225 g/m3 (1.225 g/L) Mean molar mass — 28.964 g/mol The parameters included in this condensed version of the U.S. Standard Atmosphere are: Z — Height (geometric) above mean sea level in meters T — Temperature in kelvins P — Pressure in pascals (1 Pa = 0.01 millibars) ρ — Density in kilograms per cubic meter (1 kg/m3 = 1 g/L) n — Number density in molecules per cubic meter ν — Mean collision frequency in collisions per second l — Mean free path in meters η — Absolute viscosity in pascal seconds (1 Pa s = 1000 cP) k — Thermal conductivity in joules per meter second kilogram (W/m K) vs — Speed of sound in meters per second g — Acceleration of gravity in meters per second square The sea-level composition (percent by volume) is taken to be: N2 — 78.084% O2 — 20.9476 Ar — 0.934 CO2 — 0.0314 Ne — 0.001818
He — 0.000524 Kr — 0.000114 Xe — 0.0000087 CH4 — 0.0002 H2 — 0.00005
The T and P columns for the troposphere and lower stratosphere were generated from the following formulas: H ≤ 11000 m 11000 m < H ≤ 20000 m 20000 m < H ≤ 32000 m
T/K 288.15 – 0.0065 H 216.65 216.65 + 0.0010(H–20000)
where H = rZ/(r + Z) is the geopotential height in meters and r is the mean earth radius at 45° N latitude, taken as 6356766 m. For altitudes up to 32 km, ρ = 0.003483677(P/T) in the units used here. Formulas for the other quantities may be found in the references.
P/Pa 101325(288.15/T)–5.25577 22632 e–0.00015768832(H–11000) 5474.87(216.65/T)34.16319
References 1. COESA, U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976. 2. Jursa, A. S., Ed., Handbook of Geophysics and the Space Environment, Air Force Geophysics Laboratory, 1985.
14-19
Section 14.indb 19
4/27/05 5:03:39 PM
U.S. Standard Atmosphere (1976)
14-20 Z/m –5000 –4500 –4000 –3500 –3000 –2500 –2000 –1500 –1000 –500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000 12500 13000 13500 14000 14500 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000 27000 28000 29000 30000 31000 32000 33000 34000 35000
Section 14.indb 20
T/K 320.68 317.42 314.17 310.91 307.66 304.41 301.15 297.90 294.65 291.40 288.15 284.90 281.65 278.40 275.15 271.91 268.66 265.41 262.17 258.92 255.68 252.43 249.19 245.94 242.70 239.46 236.22 232.97 229.73 226.49 223.25 220.01 216.77 216.65 216.65 216.65 216.65 216.65 216.65 216.65 216.65 216.65 216.65 216.65 216.65 216.65 217.58 218.57 219.57 220.56 221.55 222.54 223.54 224.53 225.52 226.51 227.50 228.49 230.97 233.74 236.51
P/Pa 1.778E+05 1.685E+05 1.596E+05 1.511E+05 1.430E+05 1.352E+05 1.278E+05 1.207E+05 1.139E+05 1.075E+05 1.013E+05 9.546E+04 8.988E+04 8.456E+04 7.950E+04 7.469E+04 7.012E+04 6.579E+04 6.166E+04 5.775E+04 5.405E+04 5.054E+04 4.722E+04 4.408E+04 4.111E+04 3.830E+04 3.565E+04 3.315E+04 3.080E+04 2.858E+04 2.650E+04 2.454E+04 2.270E+04 2.098E+04 1.940E+04 1.793E+04 1.658E+04 1.533E+04 1.417E+04 1.310E+04 1.211E+04 1.035E+04 8.850E+03 7.565E+03 6.467E+03 5.529E+03 4.729E+03 4.048E+03 3.467E+03 2.972E+03 2.549E+03 2.188E+03 1.880E+03 1.610E+03 1.390E+03 1.197E+03 1.031E+03 8.891E+02 7.673E+02 6.634E+02 5.746E+02
ρ/kg m–3 1.931 1.849 1.770 1.693 1.619 1.547 1.478 1.411 1.347 1.285 1.225 1.167 1.112 1.058 1.007 0.957 0.909 0.863 0.819 0.777 0.736 0.697 0.660 0.664 0.590 0.557 0.526 0.496 0.467 0.440 0.414 0.389 0.365 0.337 0.312 0.288 0.267 0.246 0.228 0.211 0.195 0.166 0.142 0.122 0.104 8.891E–02 7.572E–02 6.451E–02 5.501E–02 4.694E–02 4.008E–02 3.426E–02 2.930E–02 2.508E–02 2.148E–02 1.841E–02 1.579E–02 1.356E–02 1.157E–02 9.887E–03 8.463E–03
n/m–3 4.015E+25 3.845E+25 3.680E+25 3.520E+25 3.366E+25 3.217E+25 3.102E+25 2.935E+25 2.801E+25 2.672E+25 2.547E+25 2.427E+25 2.311E+25 2.200E+25 2.093E+25 1.990E+25 1.891E+25 1.795E+25 1.704E+25 1.616E+25 1.531E+25 1.450E+25 1.373E+25 1.299E+25 1.227E+25 1.159E+25 1.093E+25 1.031E+25 9.711E+24 9.141E+24 8.598E+24 8.079E+24 7.585E+24 7.016E+24 6.486E+24 5.996E+24 5.543E+24 5.124E+24 4.738E+24 4.380E+24 4.049E+24 3.461E+24 2.959E+24 2.529E+24 2.162E+24 1.849E+24 1.574E+24 1.341E+24 1.144E+24 9.759E+23 8.334E+23 7.123E+23 6.092E+23 5.214E+23 4.466E+23 3.828E+23 3.283E+23 2.813E+23 2.406E+23 2.056E+23 1.760E+23
ν/s–1 1.151E+10 1.096E+10 1.044E+10 9.933E+09 9.448E+09 8.982E+09 8.623E+09 8.106E+09 7.693E+09 7.298E+09 6.919E+09 6.556E+09 6.208E+09 5.874E+09 5.555E+09 5.250E+09 4.959E+09 4.680E+09 4.414E+09 4.160E+09 3.918E+09 3.687E+09 3.467E+09 3.258E+09 3.058E+09 2.869E+09 2.689E+09 2.518E+09 2.356E+09 2.202E+09 2.056E+09 1.918E+09 1.787E+09 1.653E+09 1.528E+09 1.412E+09 1.306E+09 1.207E+09 1.116E+09 1.032E+09 9.538E+08 8.153E+08 6.969E+08 5.958E+08 5.093E+08 4.354E+08 3.716E+08 3.173E+08 2.712E+08 2.319E+08 1.985E+08 1.700E+08 1.458E+08 1.250E+08 1.073E+08 9.219E+07 7.925E+07 6.818E+07 5.852E+07 5.030E+07 4.331E+07
l/m 4.208E–08 4.395E–08 4.592E–08 4.800E–08 5.019E–08 5.252E–08 5.447E–08 5.757E–08 6.032E–08 6.324E–08 6.633E–08 6.961E–08 7.310E–08 7.680E–08 8.073E–08 8.491E–08 8.937E–08 9.411E–08 9.917E–08 1.046E–07 1.103E–07 1.165E–07 1.231E–07 1.302E–07 1.377E–07 1.458E–07 1.545E–07 1.639E–07 1.740E–07 1.848E–07 1.965E–07 2.091E–07 2.227E–07 2.408E–07 2.605E–07 2.818E–07 3.048E–07 3.297E–07 3.566E–07 3.857E–07 4.172E–07 4.881E–07 5.710E–07 6.680E–07 7.814E–07 9.139E–07 1.073E–06 1.260E–06 1.477E–06 1.731E–06 2.027E–06 2.372E–06 2.773E–06 3.240E–06 3.783E–06 4.414E–06 5.146E–06 5.995E–06 7.021E–06 8.218E–06 9.601E–06
η/Pa s 1.942E–05 1.927E–05 1.912E–05 1.897E–05 1.882E–05 1.867E–05 1.852E–05 1.836E–05 1.821E–05 1.805E–05 1.789E–05 1.774E–05 1.758E–05 1.742E–05 1.726E–05 1.710E–05 1.694E–05 1.678E–05 1.661E–05 1.645E–05 1.628E–05 1.612E–05 1.595E–05 1.578E–05 1.561E–05 1.544E–05 1.527E–05 1.510E–05 1.493E–05 1.475E–05 1.458E–05 1.440E–05 1.422E–05 1.422E–05 1.422E–05 1.422E–05 1.422E–05 1.422E–05 1.422E–05 1.422E–05 1.422E–05 1.422E–05 1.422E–05 1.422E–05 1.422E–05 1.422E–05 1.427E–05 1.432E–05 1.438E–05 1.443E–05 1.448E–05 1.454E–05 1.459E–05 1.465E–05 1.470E–05 1.475E–05 1.481E–05 1.486E–05 1.499E–05 1.514E–05 1.529E–05
k/J m–1s–1K–1 0.02788 0.02763 0.02738 0.02713 0.02688 0.02663 0.02638 0.02613 0.02587 0.02562 0.02533 0.02511 0.02485 0.02459 0.02433 0.02407 0.02381 0.02355 0.02329 0.02303 0.02277 0.02250 0.02224 0.02197 0.02170 0.02144 0.02117 0.02090 0.02063 0.02036 0.02009 0.01982 0.01954 0.01953 0.01953 0.01953 0.01953 0.01953 0.01953 0.01953 0.01953 0.01953 0.01953 0.01953 0.01953 0.01953 0.01961 0.01970 0.01978 0.01986 0.01995 0.02003 0.02011 0.02020 0.02028 0.02036 0.02044 0.02053 0.02073 0.02096 0.02119
vs/m s–1 359.0 357.2 355.3 353.5 351.6 349.8 347.9 346.0 344.1 342.2 340.3 338.4 336.4 334.5 332.5 330.6 328.6 326.6 324.6 322.6 320.6 318.5 316.5 314.4 312.3 310.2 308.1 306.0 303.9 301.7 299.5 297.4 295.2 295.1 295.1 295.1 295.1 295.1 295.1 295.1 295.1 295.1 295.1 295.1 295.1 295.1 295.1 296.4 297.1 297.7 298.4 299.1 299.7 300.4 301.1 301.7 302.4 303.0 304.7 306.5 308.3
g/m s–2 9.822 9.830 9.819 9.818 9.816 9.814 9.813 9.811 9.810 9.808 9.807 9.805 9.804 9.802 9.801 9.799 9.797 9.796 9.794 9.793 9.791 9.790 9.788 9.787 9.785 9.784 9.782 9.781 9.779 9.777 9.776 9.774 9.773 9.771 9.770 9.768 9.767 9.765 9.764 9.762 9.761 9.758 9.754 9.751 9.748 9.745 9.742 9.739 9.736 9.733 9.730 9.727 9.724 9.721 9.718 9.715 9.712 9.709 9.706 9.703 9.700
4/27/05 5:03:43 PM
U.S. Standard Atmosphere (1976) Z/m 36000 38000 40000 42000 44000 46000 48000 50000 52000 54000 56000 58000 60000 65000 70000 75000 80000 85000 90000 95000 100000 110000 120000 130000 140000 150000 160000 170000 180000 190000 200000 220000 240000 260000 280000 300000 320000 340000 360000 380000 400000 450000 500000 550000 600000 650000 700000 750000 800000 850000 900000 950000 1000000
Section 14.indb 21
T/K 239.28 244.82 250.35 255.88 261.40 266.93 270.65 270.65 269.03 263.52 258.02 252.52 247.02 233.29 219.59 208.40 198.64 188.89 186.87 188.42 195.08 240.00 360.00 469.27 559.63 634.39 696.29 747.57 790.07 825.16 854.56 899.01 929.73 950.99 965.75 976.01 983.16 988.15 991.65 994.10 995.83 998.22 999.24 999.67 999.85 999.93 999.97 999.98 999.99 1000.00 1000.00 1000.00 1000.00
P/Pa 4.985E+02 3.771E+02 2.871E+02 2.200E+02 1.695E+02 1.313E+02 1.023E+02 7.978E+01 6.221E+01 4.834E+01 3.736E+01 2.872E+01 2.196E+01 1.093E+01 5.221 2.388 1.052 4.457E–01 1.836E–01 7.597E–02 3.201E–02 7.104E–03 2.538E–03 1.251E–03 7.203E–04 4.542E–04 3.040E–04 2.121E–04 1.527E–04 1.127E–04 8.474E–05 5.015E–05 3.106E–05 1.989E–05 1.308E–05 8.770E–06 5.980E–06 4.132E–06 2.888E–06 2.038E–06 1.452E–06 6.447E–07 3.024E–07 1.514E–07 8.213E–08 4.887E–08 3.191E–08 2.260E–08 1.704E–08 1.342E–08 1.087E–08 8.982E–09 7.514E–09
ρ/kg m–3 7.258E–03 5.367E–03 3.996E–03 2.995E–03 2.259E–03 1.714E–03 1.317E–03 1.027E–03 8.056E–04 6.390E–04 5.045E–04 3.963E–04 3.097E–04 1.632E–04 8.283E–05 3.992E–05 1.846E–05 8.220E–06 3.416E–06 1.393E–06 5.604E–07 9.708E–08 2.222E–08 8.152E–09 3.831E–09 2.076E–09 1.233E–09 7.815E–10 5.194E–10 3.581E–10 2.541E–10 1.367E–10 7.858E–11 4.742E–11 2.971E–11 1.916E–11 1.264E–11 8.503E–12 5.805E–12 4.013E–12 2.803E–12 1.184E–12 5.215E–13 2.384E–13 1.137E–13 5.712E–14 3.070E–14 1.788E–14 1.136E–14 7.824E–15 5.759E–15 4.453E–15 3.561E–15
14-21 n/m–3 1.509E+23 1.116E+23 8.308E+22 6.227E+22 4.697E+22 3.564E+22 2.738E+22 2.135E+22 1.675E+22 1.329E+22 1.049E+22 8.239E+21 6.439E+21 3.393E+21 1.722E+21 8.300E+20 3.838E+20 1.709E+20 7.116E+19 2.920E+19 1.189E+19 2.144E+18 5.107E+17 1.930E+17 9.322E+16 5.186E+16 3.162E+16 2.055E+16 1.400E+16 9.887E+15 7.182E+15 4.040E+15 2.420E+15 1.515E+15 9.807E+14 6.509E+14 4.405E+14 3.029E+14 2.109E+14 1.485E+14 1.056E+14 4.678E+13 2.192E+13 1.097E+13 5.950E+12 3.540E+12 2.311E+12 1.637E+12 1.234E+12 9.717E+11 7.876E+11 6.505E+11 5.442E+11
ν/s–1 3.736E+07 2.794E+07 2.104E+07 1.594E+07 1.215E+07 9.318E+06 7.208E+06 5.620E+06 4.397E+06 3.452E+06 2.696E+06 2.095E+06 1.620E+06 8.294E+05 4.084E+05 1.918E+05 8.656E+04 3.766E+04 1.560E+04 6.440E+03 2.680E+03 5.480E+02 1.630E+02 7.100E+01 3.800E+01 2.300E+01 1.500E+01 1.000E+01 7.200 5.200 3.900 2.300 1.400 9.300E–01 6.100E–01 4.200E–01 2.900E–01 2.000E–01 1.400E–01 1.000E–01 7.200E–02 3.300E–02 1.600E–02 8.400E–03 4.800E–03 3.100E–03 2.200E–03 1.700E–03 1.400E–03 1.200E–03 1.000E–03 8.700E–04 7.500E–04
l/m 1.120E–05 1.514E–05 2.034E–05 2.713E–05 3.597E–05 4.740E–05 6.171E–05 7.913E–05 1.009E–04 1.272E–04 1.611E–04 2.051E–04 2.624E–04 4.979E–04 9.810E–04 2.035E–03 4.402E–03 9.886E–03 2.370E–02 5.790E–02 1.420E–01 7.880E–01 3.310 8.800 1.800E+01 3.300E+01 5.300E+01 8.200E+01 1.200E+02 1.700E+02 2.400E+02 4.200E+02 7.000E+02 1.100E+03 1.700E+03 2.600E+03 3.800E+03 5.600E+03 8.000E+03 1.100E+04 1.600E+04 3.600E+04 7.700E+04 1.500E+05 2.800E+05 4.800E+05 7.300E+05 1.000E+06 1.400E+06 1.700E+06 2.100E+06 2.600E+06 3.100E+06
η/Pa s 1.543E–05 1.572E–05 1.601E–05 1.629E–05 1.657E–05 1.685E–05 1.704E–05 1.703E–05 1.696E–05 1.660E–05 1.640E–05 1.612E–05 1.584E–05 1.512E–05 1.438E–05 1.376E–05 1.321E–05 1.265E–05
k/J m–1s–1K–1 0.02142 0.02188 0.02233 0.02278 0.02323 0.02376 0.02397 0.02397 0.02384 0.02340 0.02296 0.02251 0.02206 0.02093 0.01978 0.01883 0.01800 0.01716
vs/m s–1 310.1 313.7 317.2 320.7 324.1 327.5 329.8 329.8 328.8 325.4 322.0 318.6 315.1 306.2 297.1 289.4 282.5 275.5
g/m s–2 9.697 9.690 9.684 9.678 9.672 9.666 9.660 9.654 9.648 9.642 9.636 9.632 9.624 9.609 9.594 9.579 9.564 9.550 9.535 9.520 9.505 9.476 9.447 9.418 9.389 9.360 9.331 9.302 9.274 9.246 9.218 9.162 9.106 9.051 8.997 8.943 8.889 8.836 8.784 8.732 8.680 8.553 8.429 8.307 8.188 8.072 7.958 7.846 7.737 7.630 7.525 7.422 7.322
4/27/05 5:03:45 PM
U.S. Standard Atmosphere (1976)
14-22
FIGURE 1. Temperature-height profile for U.S. Standard Atmosphere.
FIGURE 3. Mean molecular weight as a function of geometric altitude.
1000 900
GEOMETRIC ALTITUDE, km
800 700 600 500 400 300
O1 O2 N2 Ar H1 He TOTAL
200 100 0 8 10 1010 1012 1014 1016 1018 1020 1022 1024 1026 NUMBER DENSITY, m-3
FIGURE 2. Total pressure and mass density as a function of geometric altitude.
Section 14.indb 22
FIGURE 4. Number density of individual species and total number density as a function of geometric altitude.
4/27/05 5:03:49 PM
U.S. Standard Atmosphere (1976)
14-23
FIGURE 5. Collision frequency as a function of geometric altitude.
FIGURE 7. Mean air-particle speed as a function of geometric altitude.
FIGURE 6. Mean free path as a function of geometric altitude.
FIGURE 8. Dynamic viscosity as a function of geometric altitude.
Section 14.indb 23
4/27/05 5:03:52 PM
14-24
U.S. Standard Atmosphere (1976)
90 80
GEOMETRIC ALTITUDE, km
70 60 50 40 30 20 10 0 .017 .018 .019 .020 .021 .022 .023 .024 .025 .026 COEFFICIENT OF THERMAL CONDUCTIVITY, W/(m â&#x2039;&#x2026; K) FIGURE 9. Coefficient of thermal conductivity as a function of geometric altitude.
FIGURE 11. Molecular-diffusion and eddy-diffusion coefficients as a function of geometric altitude.
FIGURE 10. Speed of sound as a function of geometric altitude.
FIGURE 12. Acceleration of gravity as a function of geometric altitude.
Section 14.indb 24
4/27/05 5:03:55 PM
GEOGRAPHICAL AND SEASONAL VARIATION IN SOLAR RADIATION This table gives the amount of solar radiation reaching a unit area at the top of the earth’s atmosphere per day as a function of latitude and approximate date. It is based upon a solar constant (total energy per unit area at the earth’s average orbital distance) of 1373 W/m2. Absorption of radiation by the atmosphere is not taken into consideration.
Reference List, R. J., Smithsonian Meteorological Tables, Seventh Edition, Smithsonian Institution Press, Washington, D.C., 1962.
Daily Solar Radiation in MJ/m2 May 6 May 29 Jun. 2 32.8 42.4 45.7 32.3 41.8 45.0 31.8 39.9 43.0 34.4 39.7 41.6 36.8 40.7 42.0 38.6 41.3 42.1 39.4 41.1 41.4 39.2 39.7 39.7 37.9 37.4 37.1 35.5 34.1 33.5 32.3 30.0 29.2 28.0 25.2 24.1 23.1 19.7 18.5 17.5 14.0 12.6 11.7 8.2 7.0 5.9 2.9 2.0 1.0
Jul. 15 42.2 41.6 39.7 39.4 40.5 41.1 40.8 39.5 37.2 34.0 29.9 25.1 19.7 13.9 8.2 2.9
Aug. 8 32.5 32.0 31.5 34.0 36.5 38.3 39.1 38.9 37.6 35.2 32.0 27.8 22.8 17.4 11.6 5.9 1.0
Aug. 31 17.7 17.7 22.0 26.7 30.8 33.9 36.3 37.5 37.7 36.6 34.6 31.5 27.4 22.6 17.2 11.3 5.3 0.3
Jan. 13
Feb. 4
Feb. 26
3.1 8.7 14.9 21.0 26.7 31.9 36.3 39.7 42.2 43.5 43.8 43.2 42.1 42.4 44.4 45.1
1.0 6.2 12.3 18.4 24.1 29.3 33.8 37.3 39.7 41.1 41.3 40.5 38.6 36.0 33.3 33.8 34.4
0.3 5.6 11.7 17.8 23.5 28.4 32.7 35.9 38.0 39.1 39.0 37.7 35.2 31.9 27.7 22.9 18.4 18.4
Lat. 90° 80 70 60 50 40 30 20 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90
Mar. 21 6.6 13.0 19.0 24.4 29.1 32.9 35.7 37.4 38.0 37.4 35.7 32.9 29.1 24.4 19.0 13.0 6.6
Apr. 13 18.0 18.0 22.3 27.0 31.1 34.3 36.7 38.0 38.1 37.1 35.0 31.8 27.8 22.8 17.3 11.4 5.4 0.3
Lat. 90° 80 70 60 50 40 30 20 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90
Sep. 23
Oct. 16
Nov. 8
6.5 12.9 18.8 24.1 28.7 32.5 35.3 37.0 37.6 37.0 35.3 32.5 28.7 24.1 18.8 12.9 6.5
0.3 5.5 11.6 17.6 23.1 28.2 32.3 35.5 37.6 38.6 38.5 37.2 34.8 31.5 27.3 22.6 18.2 18.2
1.0 6.2 12.1 18.2 23.9 29.1 33.5 36.9 39.4 40.7 40.9 40.1 38.3 35.7 33.0 33.5 34.0
Nov. 30
3.1 8.7 14.8 20.9 26.6 31.8 36.1 39.5 42.0 43.3 43.6 43.1 41.9 42.2 44.2 44.8
Dec. 22
2.1 7.5 13.5 19.8 25.7 31.1 35.8 39.6 42.4 44.2 45.0 44.8 44.4 45.9 48.1 48.8
14-25
Section 14.indb 25
4/27/05 5:03:57 PM
INFRARED ABSORPTION BY THE EARTHâ&#x20AC;&#x2122;S ATMOSPHERE Several constituents of the earthâ&#x20AC;&#x2122;s atmosphere absorb infrared radiation. At ground level the strongest absorbers are H2O and CO2, but 30 to 40 other compounds can make significant contributions. The centers of the most important absorption bands are listed below: Molecule H2O H2O H2O CO2 CO2 O3 O3 O3 N2O N2O N2O CO CH4 CH4
Vibrational mode Bend Symmetric O-H stretch Antisymmetric O-H stretch Bend Antisymmetric C-O stretch Bend Antisymmetric O-O stretch Symmetric O-O stretch Bend N-O stretch N-N stretch C-O stretch Degenerate deformation Degenerate stretch
Band center in cm-1 1595 3657 3756 667 2349 701 1042 1103 589 1285 2224 2143 1306 3019
The HITRAN Molecular Spectroscopy Database (References 1 and 2) is a compilation of wavenumbers and intensities of more than 1.7 million spectral lines of atmospheric constituents. It is a valuable resource for calculating transmission of the atmosphere, radiative energy transfer, and other phenomena. The graph below, which was supplied by Walter J. Lafferty (Reference 3), gives the transmittance of the atmosphere for one set of conditions.
References 1. Rothman, L. S., et al., J. Quant. Spectros. Radiat. Transfer 82, 5, 2003; ibid., to be published, 2005. 2. HITRAN Molecular Spectroscopy Database, <http://cfa-www. Harvard.edu/HITRAN/hitrandata04/>. 3. Lafferty, W. J., Some Aspects of High Resolution Molecular Spectroscopy, in Lectures on Molecular Physics, Institute for the Structure of Matter, Centro de Fisica Miguel A. Catalan, Madrid, 1997.
Transmittance of U.S. Standard Atmosphere at Ground Level for a Path of 1 km at 296 K
Wavenumber in cm-1
14-26
Section 14.indb 26
4/27/05 5:04:00 PM
ATMOSPHERIC CONCENTRATION OF CARBON DIOXIDE, 1958â&#x20AC;&#x201C;2004 The data in this table were taken at the Mauna Loa Observatory in Hawaii and represent averages adjusted to the 15th of each month. The last column gives the average over the year. The concentration of CO2 is given in parts per million by volume. Data from other measurement sites may be found in Reference 1. The first graph illustrates the seasonal variation of CO2 concentration and the steady increase over the last 45 years. The second graph summarizes the growth in the emissions of CO2 into the atmosphere as a result of burning of fossil fuels (Reference 2).
References 1. Keeling, C.D., and Whorf, T.P., Atmospheric carbon dioxide record from Mauna Loa, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, 2005; <cdiac.esd.ornl.gov/trends/co2/sio-mlo.htm>. 2. Marland, G., Boden, T. A., and Andres, R. J., Global, Regional, and National CO2 Emissions. In Trends: A Compendium of Data on Global Change, 2001. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN; <cdiac.esd.ornl.gov/trends/emis/tre_glob.htm>.
CO2 Concentration in ppm at Mauna Loa Year 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
487_S14.indb 27
Jan.
Feb. 316.47 316.97 317.70 318.56 319.08
March 315.71 316.65 317.58 318.54 319.69 319.86
April 317.45 317.72 319.03 319.48 320.58 321.39
315.58 316.43 316.89 317.94 318.74 319.57 319.44 320.62 322.33 322.57 324.00 325.06 326.17 326.77 328.54 329.35 330.40 331.74 332.92 334.97 336.23 338.01 339.23 340.75 341.37 343.70 344.97 346.29 348.02 350.43 352.76 353.66 354.72 355.98 356.70 358.36 359.96 362.05 363.18 365.32 368.15 369.14 370.28
320.44 321.59 322.50 323.15 324.42 325.98 326.68 327.63 329.56 330.71 331.41 332.56 333.41 335.39 336.76 338.36 340.47 341.61 342.52 344.50 346.00 346.96 348.47 351.72 353.07 354.70 355.75 356.72 357.16 358.91 361.00 363.25 364.00 366.15 368.87 369.46 371.50
320.89 322.39 323.04 323.89 325.64 326.93 327.18 327.75 330.30 331.48 332.04 333.50 334.70 336.64 337.96 340.08 341.38 342.70 343.10 345.29 347.43 347.86 349.42 352.22 353.68 355.39 357.16 357.81 358.38 359.97 361.64 364.03 364.57 367.31 369.59 370.52 372.12
322.13 323.70 324.42 325.03 326.66 328.14 327.78 329.72 331.50 332.65 333.31 334.58 336.07 337.76 338.89 340.77 342.51 343.57 344.94 347.08 348.35 349.55 350.99 353.59 355.42 356.20 358.60 359.15 359.46 361.27 363.45 364.72 366.35 368.61 371.14 371.66 372.87
May 317.50 318.29 320.03 320.58 321.01 322.24 322.24 322.16 324.07 325.00 325.57 327.38 328.07 328.92 330.07 332.48 333.08 333.96 334.87 336.74 338.01 339.47 341.46 342.91 344.13 345.75 347.43 348.93 350.21 351.84 354.22 355.67 357.16 359.33 359.66 360.28 361.68 363.79 365.41 366.80 369.29 371.00 371.82 374.02
June 318.16 319.59 319.77 320.61 321.47 321.89 321.87 323.75 324.09 325.36 326.70 327.66 328.57 329.09 332.07 332.25 333.59 334.34 336.27 337.89 339.29 341.17 342.25 343.35 345.32 346.79 348.25 349.54 351.25 353.79 355.13 356.22 358.24 359.25 359.59 360.94 363.26 364.97 365.62 368.87 370.35 371.70 373.30
July 315.85 316.55 318.18 318.58 319.61 319.74 320.44 321.21 322.41 322.55 324.14 325.89 326.35 327.37 328.05 330.87 331.18 331.91 333.05 334.93 336.54 337.73 339.56 340.49 342.06 343.99 345.40 346.56 347.94 349.52 352.39 353.90 354.82 356.18 357.03 357.58 359.55 361.90 363.65 364.47 367.64 369.27 370.12 371.62
Aug. 314.93 314.80 315.91 316.79 317.40 317.77 318.70 318.87 320.37 320.92 322.11 323.67 324.69 325.43 326.32 329.31 329.40 330.06 330.94 332.75 334.68 336.09 337.60 338.43 339.82 342.39 343.28 344.69 345.91 348.11 350.44 351.67 352.91 354.03 355.00 355.52 357.49 359.46 361.49 362.51 365.77 366.94 368.12 369.55
Sept. 313.19 313.84 314.16 314.99 316.26 316.21 316.70 317.81 318.64 319.26 320.33 322.38 323.10 323.36 324.84 327.51 327.44 328.56 329.30 331.58 332.76 333.91 335.88 336.69 337.97 339.86 341.07 343.09 344.86 346.44 348.72 349.80 350.96 352.16 353.01 353.70 355.84 358.06 359.46 360.19 363.90 364.63 366.62 367.96
Oct. 313.34 313.84 315.31 315.42 315.99 316.87 317.30 318.10 319.39 320.25 321.78 323.07 323.57 325.20 327.18 327.37 328.34 328.94 331.16 332.54 333.86 336.02 336.85 337.86 339.99 341.35 342.80 344.17 346.36 348.88 349.99 351.18 352.21 353.31 353.98 355.99 357.75 359.60 360.77 364.23 365.12 366.73 368.09
Nov. 313.34 314.82 315.00 316.10 316.69 317.06 317.68 318.87 319.79 320.72 321.33 322.85 324.01 324.80 326.50 328.16 328.46 329.49 330.31 332.40 333.92 335.29 337.10 338.36 339.26 341.16 342.98 344.24 345.66 347.81 350.07 351.30 352.83 353.75 354.16 355.33 357.58 359.56 360.76 362.43 365.46 366.67 368.29 369.68
Dec. 314.67 315.59 316.19 317.01 317.69 318.36 318.71 319.42 321.03 321.96 322.90 324.12 325.13 326.01 327.55 328.64 329.58 330.76 331.68 333.85 334.95 336.73 338.21 339.61 340.49 342.99 344.22 345.56 346.90 348.96 351.34 352.53 354.21 354.99 355.40 356.80 359.04 360.70 362.33 364.28 366.97 368.01 369.53 371.24
Annual 315.98 316.91 317.65 318.45 318.99 320.03 321.37 322.18 323.05 324.62 325.68 326.32 327.46 329.68 330.25 331.15 332.15 333.90 335.50 336.85 338.69 339.93 341.13 342.78 344.42 345.91 347.15 348.93 351.48 352.91 354.19 355.59 356.37 357.04 358.89 360.88 362.64 363.76 366.63 368.31 369.48 371.02
14-27
4/10/06 12:02:46 PM
Atmospheric Concentration of Carbon Dioxide, 1958â&#x20AC;&#x201C;2004
14-28 Year 2002 2003 2004
Jan. 372.43 374.68 376.79
Feb. 373.09 375.63 377.37
March 373.52 376.11 378.41
April 374.86 377.65 380.52
May 375.55 378.35 380.63
June 375.40 378.13 379.57
July 374.02 376.62 377.79
Aug. 371.49 374.50 375.86
Sept. 370.71 372.99 374.06
Oct. 370.24 373.00 374.24
Nov. 372.08 374.35 375.86
Dec. 373.78 375.70 377.48
Annual 373.10 375.64 377.38
CO2 Concentration at Mauna Loa
CO2 Emmissions from Burning of Fossil Fuels
0LOOLRQ 0HWULF 7RQV RI &DUERQ
<HDU 7RWDO
487_S14.indb 28
*DV
/LTXLGV
6ROLGV
4/10/06 12:02:49 PM
MEAN TEMPERATURES IN THE UNITED STATES, 1900–1992 Historical records of atmospheric temperatures have been analyzed to obtain mean temperatures in °C for 23 climatically distinct regions of the United States. The table below gives the average over these 23 regions, which cover completely the contiguous 48 states. Data for the individual regions and for other parts of the world may be found in the references. The data are presented as temperature anomalies, i.e., as deviations (in °C) from the average temperature at each individual recording station over a 1961–1990 reference period. The trend in the temperature anomaly thus gives an indication of the long-term variation in average temperatures.
Year 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
CY Mean 0.46 –0.21 –0.14 –0.77 –0.72 –0.45 –0.04 –0.23 –0.11 –0.36 –0.14 0.02 –0.88 –0.23 –0.05 –0.11 –0.77 –1.34 –0.14 –0.16 –0.37 0.87 0.01 –0.10 –1.01 0.20 –0.01 0.20 –0.08 –0.68 –0.12 0.81 –0.14 0.35 0.86 0.12 –0.10 –0.13 0.71 0.38 0.06 0.79
Winter 0.07 –0.69 –0.84 –1.86 –1.86 0.23 1.09 0.73 0.82 –2.08 0.52 –1.50 –0.74 0.48 –0.37 –0.29 –1.93 –2.02 0.69 –0.83 1.56 –0.44 0.23 0.13 –0.44 0.97 1.11 –0.40 –1.94 0.07 1.16 1.75 –0.60 1.45 0.84 –2.23 –0.65 1.31 0.36 0.03 1.56
CY Mean: Calendar year mean (January-December) Winter: December-February Spring: March-May Summer: June-August Fall: September-November
References 1. Karl, T. R., Easterling, D. R., Knight, R. W., and Hughes, P. Y., in Trends ’93: A Compendium of Data on Global Change, p. 686, Boden, T. A., Kaiser, D. P., Sepanski, R. J., and Stoss, F. W., Eds., ORNL/CDIAC-65, Oak Ridge National Laboratory, Oak Ridge, TN, 1994. 2. Carbon Dioxide Information Analysis Center, WWW site <http:// cdiac.esd.ornl.gov/ftp/trends93>.
Spring 0.21 –0.46 0.48 0.10 –0.39 0.67 –0.69 –0.61 0.36 –1.06 0.95 0.20 –0.75 –0.65 0.04 –0.18 –0.36 –1.75 0.30 0.00 –0.96 0.83 0.15 –1.02 –1.27 0.57 –0.58 0.41 –0.28 0.30 0.09 –0.71 –0.58 –0.08 0.77 0.12 0.48 –0.24 0.98 0.34 –0.10 0.44
Summer 0.27 0.48 –0.58 –0.83 –0.92 –0.32 –0.42 –0.85 –0.64 0.06 –0.55 –0.19 –0.76 –0.07 0.14 –1.16 –0.30 –0.73 0.03 0.12 –0.67 0.52 0.16 –0.07 –0.64 0.05 –0.27 –0.83 –0.43 –0.39 –0.07 0.51 0.26 0.45 0.86 0.31 1.00 0.66 0.39 0.18 0.18 0.28
Fall 0.85 –0.28 0.12 –1.02 –0.21 –0.25 –0.10 –0.39 –0.59 0.01 0.13 –0.62 –0.51 0.22 0.32 0.31 –1.23 –1.04 –0.09 –0.13 0.02 0.32 0.41 –0.09 –0.53 –0.41 0.02 0.83 –0.08 –0.78 –0.25 1.41 –0.78 0.54 0.82 –0.47 –0.32 –0.03 0.08 0.15 0.12 0.85
14-29
S14_16.indd 29
5/2/05 1:51:29 PM
Mean Temperatures in the United States, 1900-1992
14-30 Year 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
S14_16.indd 30
CY Mean 0.01 –0.17 0.04 –0.02 0.53 0.10 –0.22 0.05 –0.37 –0.45 0.03 0.61 0.57 –0.25 –0.05 0.45 0.14 0.12 –0.27 –0.01 –0.04 –0.06 –0.27 –0.03 –0.34 –0.13 –0.28 –0.06 –0.12 –0.04 –0.13 0.48 0.16 –0.09 –0.62 0.32 –0.37 –0.53 0.18 0.64 –0.08 0.40 0.21 –0.26 0.93 0.67 –0.07 –0.30 0.72 0.77
Winter 0.35 0.20 0.61 0.30 –0.26 0.47 –0.67 –0.77 0.39 0.05 0.68 1.91 1.47 –0.33 –0.16 1.02 0.93 –0.60 0.43 –0.02 –0.52 –1.35 –1.30 –0.07 –0.31 0.23 –0.31 –0.36 –0.17 –0.08 0.20 –0.23 0.52 0.63 0.88 –1.95 –1.31 –2.92 0.72 0.90 –0.86 2.33 –0.78 –0.78 0.22 1.52 –0.26 –0.28 0.41 0.32 2.48
Spring 0.22 –0.46 –0.38 0.25 1.21 –0.42 –0.01 0.39 –1.02 –0.69 –0.40 0.03 –0.22 0.12 –0.42 0.44 0.06 0.16 –0.98 –0.17 –0.09 0.61 –0.24 –0.56 –0.25 –0.05 –0.16 –0.54 –0.44 –0.99 0.26 0.47 0.74 –0.79 –0.09 1.07 0.23 0.09 –0.25 0.80 0.03 –0.36 –0.30 1.24 1.22 0.97 –0.06 0.36 0.72 1.36 0.82
Summer 0.08 0.54 –0.20 –0.47 –0.21 0.03 0.02 0.33 –0.86 –0.30 0.49 0.31 0.36 0.19 0.01 0.25 0.11 0.50 0.01 0.18 –0.41 0.12 –0.08 –0.42 –0.07 –0.37 –0.12 0.12 0.32 0.01 –0.19 0.22 –0.32 0.03 –0.54 0.60 0.09 –0.21 0.43 0.57 –0.11 0.58 0.31 –0.23 0.45 0.33 0.57 0.12 0.41 0.56 –0.70
Fall 0.06 –0.79 0.43 0.08 0.18 0.85 –0.15 0.23 0.13 –0.70 –1.22 0.31 0.70 –0.60 –0.37 –0.13 0.45 –0.52 0.56 –0.29 0.65 1.38 –0.40 0.28 –0.13 –0.32 0.01 –0.16 –0.07 0.56 0.05 0.90 –0.39 –0.20 –1.72 0.68 0.21 –0.07 –0.04 0.36 0.06 0.94 0.07 0.05 0.49 –0.17 0.04 –0.27 0.66 –0.31
5/2/05 1:51:29 PM
GLOBAL TEMPERATURE TREND, 1856–2004 This table and graph summarize the trend in annual mean global surface temperature from 1856 to 2004. The values were calculated from mean temperature anomalies by assuming an absolute global mean of 14.00°C, which is the best estimate for the 1961–1990 period. The 95% confidence interval for the annual mean temperature values since 1951 is ± 0.12°C; prior to 1900 this interval is ± 0.18°C. Year 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
t/°C 13.621 13.538 13.584 13.775 13.628 13.596 13.473 13.727 13.526 13.733 13.777 13.709 13.775 13.695 13.704 13.649 13.734 13.673 13.624 13.576 13.548 13.789 13.943 13.713 13.704 13.754 13.738 13.682 13.651 13.650 13.746
Year 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
t/°C 13.657 13.689 13.800 13.587 13.647 13.593 13.551 13.586 13.638 13.801 13.814 13.661 13.750 13.808 13.744 13.651 13.555 13.557 13.629 13.708 13.495 13.523 13.553 13.558 13.535 13.594 13.607 13.752 13.841 13.627 13.505
Year 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
Reference Jones, P. D., Parker, D. E., Osborn, T. J., and Briffa, K. R., Global and hemispheric temperature anomalies--land and marine instrumental records, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN; <cdiac.esd.ornl.gov/trends/temp/jonescru/jones.html>.
t/°C 13.590 13.708 13.707 13.783 13.677 13.701 13.653 13.754 13.884 13.782 13.773 13.639 13.848 13.901 13.863 13.761 13.861 13.828 13.879 13.976 14.076 13.962 13.917 14.028 13.980 14.001 14.158 14.039 13.880 13.895 13.907
Year 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
t/°C 13.903 13.790 13.907 13.975 14.045 13.830 13.811 13.728 13.994 14.061 14.014 13.972 14.015 14.008 14.039 13.767 13.834 13.916 13.907 13.895 14.040 13.969 13.813 13.959 14.093 13.829 13.877 13.800 14.057 13.964 14.067
Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
t/°C 14.102 14.133 14.019 14.226 14.031 14.014 14.096 14.253 14.240 14.163 14.310 14.251 14.116 14.179 14.232 14.373 14.227 14.411 14.579 14.340 14.290 14.422 14.475 14.475 14.455
Annual Mean Global Temperature in °C
487_S14.indb 31
14-31
4/10/06 12:02:54 PM
ATMOSPHERIC ELECTRICITY Hans Dolezalek, Hannes Tammet, John Latham, and Martin A. Uman
I. SURVEY AND GLOBAL CIRCUIT Hans Dolezalek
The science of atmospheric electricity originated in 1752 by an experimental proof of a related earlier hypothesis (that lightning is an electrical event). In spite of a large effort, in part by such eminent physicists as Coulomb, Lord Kelvin, and many others, an overall, proven theory able to generate models with sufficient resolution is not yet available. Generally accepted and encompassing text books are now more than 20 years old. The voluminous proceedings of the, so far, nine international atmospheric electricity conferences (1954 to 1992) give much valuable detail and demonstrate impressive progress, as do a number of less comprehensive textbooks published in the last 20 years, but a general theory as indicated above is not yet created. Only now, certain related measuring techniques and mathematical possibilities are emerging. Applications to practical purposes do exist in the field of lightning research (including the electromagnetic radiation emanating from lightning) by the establishment of lightning-location networks and by the now developing possibility to detect electrified clouds which pose hazards to aircraft. Application of atmospheric electricity to other parts of meteorology seems to be promising but so far has seldom been instituted. Because some atmospheric electric signals propagate around the earth and because of the existence of a global circuit, applications for the monitoring of global change processes and conditions are now being proposed. Significant secular changes in the global circuit would indicate a change in the global climate; the availability of many old data (about a span of 100 years) could help detect a long-term trend. The concept of the “global circuit” is based on the theory of the global spherical capacitor: both, the solid (and liquid) earth as one electrode, and the high atmospheric layers (about the ionosphere) as the other, are by orders of magnitude more electrically conductive than the atmosphere between them. According to the “classical picture of atmospheric electricity”, this capacitor is continuously charged by the common action of all thunderstorms to a d.c. voltage difference of several hundred kilovolts, the earth being negative. The much smaller but still existing conductivity of the atmosphere allows a current flowing from the ionosphere to the ground, integrated for all sink areas of the whole earth, of the order of 1.5 kA. In this way, a global circuit is created with many generators and sinkareas both interspaced and distributed over the whole globe, all connected to two nodes: ionosphere and ground. Within the scope of the global circuit, for each location, the current density (order of several pA/m2) is determined by the voltage difference between ionosphere and ground (which is the same for all locations but varying in time) and the columnar resistance reaching from the ground up to the ionosphere (in the order of 1017 Ωm2). Natural processes, especially meteorological processes and some human activity, which produce or move electric charges (“space charges”) or affect the ion distribution, constitute local generators and thereby “local circuits”, horziontally and/or in parallel or antiparallel to the local part of the global circuit. In many cases, the local currents are much stronger than the global ones, making the measurement of the global current at a given location and/or during a period of time very difficult or, often, impossible. The strongest local circuits usually occur with certain weather conditions (precipitation, fog, high wind, blown-up dust or snow, heavy cloudiness) which make measurement of the global circuit impossible everywhere: but even in their absence local generators exist in varying magnitudes and of different characters. The separation
of the local and global shares in the measured values of current density is a central problem of the science of atmospheric electricity. Aerological measurements are of high value in this regard. The above description is within the “classical picture” of atmospheric electricity, a group of hypotheses to explain the electrification of the atmosphere. It is probably fundamentally correct but certainly not complete; it has not yet been confirmed by systems of measurements resulting in no inner contradictions. In particular, extraterrestrial influences must be permitted; their general significance is still under debate. Within this “classical picture” a kind of electric standard atmosphere may be constructed as shown in Table 1. Values with a star, *, are rough average values from measurement. A star in parentheses, (*), points to a typical value from one or a few measurements. All other values have been calculated from starred values, under the assumption that at 2 km 50% and at 12 km 90% of the columnar resistance is reached. Voltage drop along one of the partial columns can be calculated by subtracting the value for the lower column from that of the upper one. Columnar resistances, conductances, and capacitances are valid for that particular part of the column which is indicated at the left. Capacitances are calculated with the formula for plate capacitors, and this fact must be considered also for the time constants for columns. According to measurements, U, the potential difference between 0 m and 65 km may vary by a factor of approximately 2. The total columnar resistance, Rc, is estimated to vary up to a factor of 3, the variation being due to either reduction of conductivity in the exchange layer (about lowest 2 km of this table) or to the presence of high mountains; in both cases the variation is caused in the troposphere. Smaller variations in the stratosphere and mesosphere are being discussed because of aerosols there. The air-earth current density in fair weather varies by a factor of 3 to 6 accordingly. Conductivity near the ground varies by a factor of about 3 but only decreasing; increase of conductivity due to extraordinary radioactivity is a singular event. The field strength near the ground varies as a consequence of variations of air-earth current density and conductivity from about 1/3 to about 10 times of the value quoted in the table. Conductivity near the ground shows a diurnal and an annual variation which depends strongly on the locality: air-earth current density shows a diurnal and annual variation because the earth-ionosphere potential difference undergoes such variations, and also because the columnar resistance is supposed to have a diurnal and probably an annual variation. Conductivities and air-earth current densities on high mountains are greater than at sea level by factors of up to 10. Conductivity decreases when atmospheric humidity increases. Values for space charges are not quoted because measurements are too few to allow calculation of average values. Values of parameters over the oceans are still rather uncertain. Theoretically, in fair-weather conditions, Ohm’s law must be fulfilled for the electric field, the conduction current density, and the electrical conductivity of the atmosphere. Deviations point to shortcomings in the applied measuring techniques. Data which are representative for a large area (in the extreme, “globally representative data”, i.e. data on the global circuit), can on the ground be obtained only by stations on an open plane and only if local generators are either small or constant or are independently measured. Certain measurements with instrumented aircraft provide globally representative information valid for the period of the actual measurement.
14-32
S14_18.indd 32
5/2/05 1:56:08 PM
Atmospheric Electricity
14-33
TABLE 1. Electrical Parameters of the Clear (Fair-Weather) Atmosphere, Pertinent to the Classical Picture of Atm. Electricity (Electric Standard Atmosphere) Part of atmosphere for Potential which the values are Currents, I, in A; differences, U, in calculated (elements are and current V; field strength E in free, cloudless densities, in V/m; U = 0 at atmosphere) i, in A/m2 sea level Volume element at about i = 3 × 10-12* E0 = 1.2 × 102* sea level, 1 m3 Lower column of 1 m2 At upper end: i = 3 × 10-12 cross section from sea U1 = 1.8 × 105 level to 2 km height Volume element at about i = 3 × 10-12 E2 = 6.6 × 101 2 km height, 1 m3 Center column of 1 m2 At upper end: i = 3 × 10-12 cross section from 2 to Um = 3.15 × 105 12 km Volume element at about i = 3 × 10-12 E12 = 3.9 × 100 12 km height, 1 m3 Upper column of 1 m2 At upper end: i = 3 × 10-12 cross section from 12 to Uu = 3.5 × 105 65 km height Whole column of 1 m2 At upper end: i = 3 × 10-12 cross section from 0 to U = 3.5 × 105 65 km height Total spherical capacitor i = 1.5 × 103 U = 3.5 × 105* 14 2 area: 5 ×10 m
Resistances, R, in Ω; columnar resistances,Rc , in Ω m2 and resistivities, ρ, in Ω m ρ0 = 4 × 1013
Conductances, G, Capacitances, C, in in Ω-1; columnar F; columnar conductances Gc, capacitances,Cc , in Ω-1m2; total in F m-2 and Time constants τ, conductivities, capacitivities, in seconds γ, in Ω-1m-1 ε, in F m-1 γ0 = 2.5 × 10-14 ε0 = 8.9 × 10-12* τ0 = 3.6 × 102
Rc1 = 6 × 1016
Gc1 = 1.7 × 10-17
Ccl = 4.4 × 10-15
τc1 = 2.6 × 102
ρ2 = 2.2 × 1013(*)
γ2 = 4.5 × 10-14
ε2 = 8.9 × 10-12*
τ2 = 2 × 102
Rcm = 4.5 × 1016
Gcm = 5 × 10-17
Ccm = 8.8 × 10-16
τcm = 1.8 × 101
ρ12 = 1.3 × 1012(*)
γ12 = 7.7 × 10-13
ε12 = 8.9 × 10-12
τ12 = 1.2 × 101
Rcu = 1.5 × 1016
Gcu = 2.5 × 10-17
Ccu = 1.67 × 10-16
τcm = 6.7 × 100
Rc = 1.2 × 1017
Gc = 8.3 × 10-18
Cc = 1.36 × 10-16
τc = 1.64 × 101
R = 2.4 × 102
G = 4.2 × 10-3
C = 6.8 × 10-2
τ = 1.64 × 101
Note: All currents and fields listed are part of the global circuit, i.e., circuits of local generators are not included. Values are subject to variations due to latitude and altitude of the point of observation above sea level, locality with respect to sources of disturbances, meteorological and climatological factors, and man-made changes. For more explanations, see text.
II. AIR IONS
Hannes Tammet
The term “air ions” signifies all airborne particles which are the carriers of the electrical current in the air and have drift velocities determined by the electric field. The probability of electrical dissociation of molecules in the atmospheric air under thermodynamic equilibrium is near to zero. The average ionization at the ground level over the ocean is 2∙106 ion pairs m-3s-1. This ionization is produced mainly by cosmic rays. Over the continents the ionizing radiation from soil and from radioactive substances in the air each add about 4∙106 m-3s-1. The total average ionization rate of 107 m3s-1 is equivalent to 17 μR/h which is a customary expression of the background level of the ionizing radiations. The ionization rate over the ground varies in space due to the radioactivity of soil, and in time depending on the exchange of air between the atmosphere and radon-containing soil. Radioactive pollution increases the ionization rate. A temporary increase of about 10 times was registered in Sweden after the Chernobyl accident in 1986. The emission of Kr85 from nuclear power plants can noticeably increase the global ionization rate in the next century. The ionization rate decreases with altitude near the ground and increases at higher altitudes up to 15 km, where it has a maximum of about 5∙107 m-3s-1. Solar X-ray and extreme UV radiation cause a new increase at altitudes over 60 km. Local sources of air ions are point discharges in strong electric fields, fluidization of charged drops from waves, etc. The enhanced chemical activity of an ion results in a chain of ion-molecule reactions with the colliding neutrals, and, in the first microsecond of the life of an air ion, a charged molecular cluster called the cluster ion is formed. According to theoretical calcula-
Section 14.indb 33
tions in the air free from exotic trace gases the following cluster ions should be dominant: NO3− ∙(HNO3)·H2O, NO2−·(H2O)2, NO3− ∙H2O, O2−·(H2O)4, O2−·(H2O)5, H3O+·(H2O)6, NH4+·(H2O)2, NH4+·(H2O), H3O+·(H2O)5, NH4+·NH3 A measurable parameter of air ions is the electrical mobility k, characterizing the drift velocity in the unit electric field. The mobility is inversely proportional to the density of air, and the results of measurements are as a rule reduced to normal conditions. According to mobility the air ions are called: fast or small or light ions with mobility k > 5·10-5 m2V-1s1 , intermediate ions, and slow or large or heavy ions with mobility k > 10-6 m2V-1s1. The boundary between intermediate and slow ions is conventional. Cluster ions are fast ions. The masses of cluster ions may be measured with mass spectrometers, but the possible ion-molecule reactions during the passage of the air through nozzles to the vacuum chamber complicate the measurement. Mass and mobility of cluster ions are highly correlated. The experimental results5 can be expressed by the empirical formula
m≈
850 u −4
-1 −1
[ 0.3 + k / (10 m V s )] 2
3
where u is the unified atomic mass unit. The value of the transport cross-section of a cluster ion is needed to calculate its mobility according to the kinetic theory of Chapman and Enskog. The theoretical estimation of transport cross-sections is rough and cannot be used to identify the chemi-
4/27/05 5:04:17 PM
Atmospheric Electricity
14-34 cal structures of cluster ions. Mass spectrometry is the main technique of identification of cluster ions.2 Märk and Castleman4 presented an overview of over 1000 publications on the experimental studies of cluster ions. Most of them present information about ions of millisecond age range. The low concentration makes it difficult to get detailed information about masses and mobilities of the natural atmospheric ions at ground level. The results of a 1-year continuous measurement6 are as follows: Average mobility The corresponding mass The corresponding diameter The average concentration The corresponding conductivity
+ ions 1.36 190
– ions 1.56 130
unit 10-4m2V-1s1 u
0.69 400
0.61 360
nm 106m-3
8.7
9.0
fS
The distribution of tropospheric cluster ions according to the mobility and estimated mass is depicted in Figure 1. The problems and results of direct mass spectrometry of natural cluster ions are analyzed by Eisele2 for ground level and by Meyerott, Reagan and Joiner5 for stratospheric measurements. Air ions in the high atmosphere are a subject of ionospheric physics. During its lifetime (about 1 min), a cluster ion at ground level collides with nearly 1012 molecules. Thus the cluster ions are able to concentrate trace gases of very low concentration if they have an extra high electron or proton affinity. For example, Eisele2 demond P0 p-1+p1 p-2+p2 Pq>2 k1
3 98 2 0 0 15000
10 90 10 0 0 1900
30 70 30 0 0 250
100 42 48 10 0 28
FIGURE 1. Average mobility and mass spectra of natural tropospheric cluster ions. Concentrations of the mobility fractions were measured in a rural site every 5 min over 1 year.6 Ion mass is estimated according to the above empirical formula.
Section 14.indb 34
strated that a considerable fraction of positive atmospheric cluster ions in the unpolluted atmosphere at ground level probably consist of a molecule derived from pyridine. The concentration of these constituents is estimated to be about 10-12. Therefore, air- ion mass and mobility spectrometry is considered as a promising technique for trace analysis in the air. Mass and mobility spectrometry of millisecond-age air ions has been developed as a technique of chemical analysis known as “plasma chromatography”.1 The sensitivity of the detection grows with the age of the cluster ions measured. The mechanisms of annihilation of cluster ions are ion-ion recombination (on the average 3%) and sedimentation on aerosol particles (on the average 97% of cluster ions at ground level). The result of the combination of a cluster ion and neutral particle is a charged particle called an aerosol ion. In conditions of detailed thermodynamic equilibrium the probability that a spherical particle of diameter d carries q elementary charges is calculated from the Boltzmann distribution: pq (d ) = (2πd /d0 )1/2 exp(−q 2 d0 /2d ) where d0 = 115 nm (at 18°C). The supposition about the detailed equilibrium is an approximation and the formula is not valid for particles less than d0. On the basis of numerical calculations by Hoppel and Frick3 the following charge probabilities can be derived:
300 24 41 23 12 5.1
1000 14 25 21 40 1.11
3000 8 15 14 63 0.33
nm % % % % 10-9 m2V-1s-1
FIGURE 2. Mobility and size spectra of tropospheric aerosol ions.6 The wide bars mark the fraction concentrations theoretically estimated on the basis of the standard size distribution of tropospheric aerosol. The pin bars with head + and – mark average values of positive and negative aerosol ion fraction concentrations measured in a rural site every 5 min during 4 months.
4/27/05 5:04:22 PM
Atmospheric Electricity The last line of the table presents the mobility of a particle carrying one elementary charge. The distribution of the atmospheric aerosol ions over mobility is demonstrated in Figure 2. Although the concentration of aerosol in continental air at ground level is an order of magnitude higher than the concentration of cluster ions, the mobilities of aerosol ions are so small that their percentage in air conductivity is less than 1%. A specific class of aerosol ions are condensed aerosol ions produced as a result of the condensation of gaseous matter on the cluster ions. In aerosol physics the process is called ion-induced nucleation; it is considered as one among the processes of gas-toparticle conversion. The condensed aerosol ions have an inherent charge. Their sizes and mobilities are between the sizes and mobilities of cluster ions and of ordinary aerosol ions. Water and standard constituents of atmospheric air are not able to condense on the cluster ions in the real atmosphere. Thus the concentration of condensed aerosol ions depends on the trace constituents in the air and is very low in unpolluted air. Knowledge about condensed aerosol ions is poor because of measurement difficulties.
References 1. Carr, T. W., Ed., Plasma Chromatography, Plenum Press, New York and London, XII + 259 pp., 1984. 2. Eisele, F. L., Identification of Tropospheric Ions, J. Geophys. Res., vol. 91, no. D7, pp. 7897–7906, 1986. 3. Hoppel, W. A., and Frick, G. M., The Nonequilibrium Character of the Aerosol Charge Distributions Produced by Neutralizers, Aerosol Sci. Technol., vol. 12, no. 3, pp. 471–496, 1990. 4. Mark, T. D., and Castleman, A. W., Experimental Studies on Cluster Ions, in Advances in Atomic and Molecular Physics, vol. 20, pp. 65– 172, Academic Press, 1985. 5. Meyerott, R. E., Reagan, J. B., and Joiner, R. G., The Mobility and Concentration of Ions and the Ionic Conductivity in the Lower Stratosphere, J. Geophys. Res., vol. 85, no. A3, pp. 1273–1278, 1980. 6. Salm, J., Tammet, H., Iher, H., and Hörrak, U., Atmospheric Electrical Measurements in Tahkuse, Estonia (in Russian), in Voprosy Atmosfernogo Elektrichestva, pp. 168–175, Gidrometeoizdat, Leningrad, 1990.
III. THUNDERSTORM ELECTRICITY John Latham The development of improved radar techniques and instruments for in-cloud electrical and physical measurements, coupled with a much clearer recognition by the research community that establishment of the mechanism or mechanisms responsible for electric field development in thunderclouds, culminating in lightning, is inextricably linked to the concomitant dynamical and microphysical evolution of the clouds, has led to significant progress over the past decade. Field studies indicate that in most thunderclouds the electrical development is associated with the process of glaciation, which can occur in a variety of incompletely understood ways. In the absence of ice, field growth is slow, individual hydrometeor charges are low, and lightning is produced only rarely. Precipitation — in the solid form, as graupel — also appears to be a necessary ingredient for significant electrification, as does significant convective activity and mixing between the clouds and their environments, via entrainment. Increasingly, the view is being accepted that charge transfer leading to field-growth is largely a consequence of rebounding collisions between graupel pellets and smaller vapor-grown ice crystals, followed by the separation under gravity of these two types
Section 14.indb 35
14-35 of hydrometeor. These collisions occur predominantly within the temperature range –15 to –30°C, and for significant charge transfer need to occur in the presence of supercooled cloud droplets. The field evidence is inconsistent with an inductive mechanism, and extensive laboratory studies indicate that the principal charging mechanism is non-inductive and associated — in ways yet to be identified — with differences in surface characteristics of the interacting hydrometeors. Laboratory studies indicate that the two most favored sites for corona emission leading to the lightning discharge are the tips of ephemeral liquid filaments, produced during the glancing collisions of supercooled raindrops, and protuberances on large ice crystals or graupel pellets. The relative importance of these alternatives will depend on the hydrometeor characteristics and the temperature in the regions of strongest fields; these features are themselves dependent on air-mass characteristics and climatological considerations. A recently identified but unresolved question is why, in continental Northern Hemisphere thunderclouds at least, the sign of the charge brought to ground by lightning is predominantly negative in summer but more evenly balanced in winter.
IV. LIGHTNING Martin A. Uman From both ground-based weather-station data and satellite measurements, it has been estimated that there are about 100 lightning discharges, both cloud and ground flashes, over the whole earth each second; representing an average global lightning flash density of about 6 km-2yr-1. Most of this lightning occurs over the earth’s land masses. For example, in central Florida, where thunderstorms occur about 90 days/yr, the flash density for discharges to earth is about 15 km-2yr-1. Some tropical areas of the earth have thunderstorms up to 300 days/yr. Lightning can be defined as a transient, high-current electric discharge whose path length is measured in kilometers and whose most common source is the electric charge separated in the ordinary thunderstorm or cumulonimbus cloud. Well over half of all lightning discharges occur totally within individual thunderstorm clouds and are referred to as intracloud discharges. Cloudto-ground lightning, however, has been studied more extensively than any other lightning form because of its visibility and its more practical interest. Cloud-to-cloud and cloud-to-air discharges are less common than intracloud or cloud-to-ground lightning. Lightning between the cloud and earth can be categorized in terms of the direction of motion, upward or downward, and the sign of the charge, positive or negative, of the developing discharge (called a leader) which initiates the overall event. Over 90% of the worldwide cloud-to-ground discharges is initiated in the thundercloud by downward-moving negatively charged leaders and subsequently results in the lowering of negative charge to earth. Cloudto-ground lightning can also be initiated by downward-moving positive leaders, less than 10% of the worldwide cloud-to-ground lightning being of this type although the exact percentage is a function of season and latitude. Lightning between cloud and ground can also be initiated by leaders which develop upward from the earth. These upward-initiated discharges are relatively rare, may be of either polarity, and generally occur from mountaintops and tall man-made structures. We discuss next the most common type of cloud-to-ground lightning. A negative cloud-to-ground discharge or flash has an overall duration of some tenths of a second and is made up of vari-
4/27/05 5:04:23 PM
14-36 ous components, among which are typically three or four highcurrent pulses called strokes. Each stroke lasts about a millisecond, the separation time between strokes being typically several tens of milliseconds. Such lightning often appears to “flicker” because the human eye can just resolve the individual light pulse associated with each stroke. A drawing of the components of a negative cloud-to-ground flash is found in Figure 3. Some values for salient parameters are found in Table 1. The negatively charged stepped leader initiates the first stroke in a flash by propagating from cloud to ground through virgin air in a series of discrete steps. Photographically observed leader steps in clear air are typically 1 μs in duration and tens of meters in length, with a pause time between steps of about 50 μs. A fully developed stepped leader lowers up to 10 or more coulombs of negative cloud charge toward ground in tens of milliseconds with an average downward speed of about 2 × 105 m/s. The average leader current is in the 100 to 1000 A range. The steps have pulse currents of at least 1 kA. Associated with these currents are electric- and magnetic-field pulses with widths of about 1 μs or less and risetimes of about 0.1 μs or less. The stepped leader, during its trip toward ground, branches in a downward direction, resulting in the characteristic downwardbranched geometrical structure commonly observed. The electric potential of the bottom of the negatively charged leader channel with respect to ground has a magnitude in excess of 107 V. As the leader tip nears ground, the electric field at sharp objects on the ground or at irregularities of the ground itself exceeds the breakdown value of air, and one or more upward-moving discharges (often called upward leaders) are initiated from those points, thus beginning the attachment process. An understanding of the physics of the attachment process is central to an understanding of the operation of lightning protection of ground-based objects and the effects of lightning on humans and animals, since it is the attachment process that determines where the lightning connects to objects on the ground and the value of the early currents which flow. When one of the upward-moving discharges from the ground (or from a lightning rod or an individual) contacts the tip of the downward-moving stepped leader, typically some tens of meters above the ground, the leader tip is effectively connected to ground potential. The negatively charged leader channel is then discharged to earth when a ground potential wave, referred to as the first return stroke, propagates continuously up the leader path. The upward speed of a return stroke near the ground is typically near one third the speed of light, and the speed decreases with height. The first return stroke produces a peak current near ground of typically 30 kA, with a time from zero to peak of a few microseconds. Currents measured at the ground fall to half of the peak value in about 50 μs, and currents of the order of hundreds of amperes may flow for times of a few milliseconds up to several hundred milliseconds. The longer-lasting currents are known as continuing currents. The rapid release of return stroke energy heats the leader channel to a temperature near 30,000 K and creates a high-pressure channel which expands and generates the shock waves that eventually become thunder, as further discussed later. The return stroke effectively lowers to ground the charge originally deposited onto the stepped-leader channel and additionally initiates the lowering of other charges which may be available to the top of its channel. First return-stroke electric fields exhibit a microsecond scale rise to peak with a typical peak value of 5 V/m, normalized to a distance of 100 km by an inverse distance relationship. Roughly half of the field rise to peak, the so-called “fast transition”, takes place in tenths of a microsecond, an observation that can only be made if the field propagation is over a highly conducting surface such as salt water.
Section 14.indb 36
Atmospheric Electricity After the first return-stroke current has ceased to flow, the flash, including charge motion in the cloud, may end. The lightning is then called a single-stroke flash. On the other hand, if additional charge is made available to the top of the channel, a continuous or dart leader may propagate down the residual first-stroke channel at a typical speed of about 1 × 107 m/s. The dart leader lowers a charge of the order of 1 C by virtue of a current of about 1 kA. The dart leader then initiates the second (or any subsequent) return stroke. Subsequent return-stroke currents generally have faster zero-to-peak rise times than do first-stroke currents, but similar maximum rates of change, about 100 kA/μs. Some leaders begin as dart leaders, but toward the end of their trip toward ground become stepped leaders. These leaders are known as dartstepped leaders and may have different ground termination points (and separate upward leaders) from the first stroke. Most often the dart-stepped leaders are associated with the second stroke of the flash. Nearly half of all flashes exhibit more than one termination point on ground with the distance between separate terminations being up to several kilometers. Subsequent return-stroke radiated electric and magnetic fields are similar to, but usually a factor of two or so smaller, than first return-stroke fields. About one third of all multiple-stroke flashes has at least one subsequent stroke which is larger than the first stroke. Cloud-to-ground flashes that lower positive charge, though not common, are of considerable practical interest because their peak currents and total charge transfer can be much larger than for the more common negative ground flash. The largest recorded peak currents, those in the 200- to 300-kA range, are due to the return strokes of positive lightning. Such positive flashes to ground are initiated by downward-moving leaders which do not exhibit the distinct steps of their negative counterparts. Rather, they show a luminosity which is more or less continuous but modulated in intensity. Positive flashes are generally composed of a single stroke followed by a period of continuing current. Positive flashes are probably initiated from the upper positive charge in the thundercloud charge dipole when that cloud charge is horizontally separated from the negative charge beneath it, the source of the usual negative cloud-to-ground lightning. Positive flashes are relatively common in winter thunderstorms (snow storms), which produce few flashes overall, and are relatively uncommon in summer thunderstorms. The fraction of positive lightning in summer thunderstorms apparently increases with increasing latitude and with increasing height of the ground above sea level. Distant lightning return stroke fields are often referred to as sferics (called “atmospherics” in the older literature). The peak in the sferics frequency spectrum is near 5 kHz due to the bipolar or ringing nature of the distant return-stroke electromagnetic signal and to the effects of propagation. Thunder, the acoustic radiation associated with lightning, is sometimes divided into the categories “audible”, sounds that one can hear, and “infrasonic”, below a few tens of hertz, a frequency range that is inaudible. This division is made because it is thought that the mechanisms that produce audible and infrasonic thunder are different. Audible thunder is thought to be due to the expansion of a rapidly heated return stroke channel, as noted earlier, whereas infrasonic thunder is thought to be associated with the conversion to sound of the energy stored in the electrostatic field of the thundercloud when lightning rapidly reduces that cloud field. The technology of artificially initiating lightning by firing upward small rocket trailing grounded wire of a few hundred meters length has been well-developed during the past decade. Such “triggered” flashes are similar to natural upward-initiated discharges from tall structure. They often contain subsequent strokes which,
4/27/05 5:04:23 PM
Atmospheric Electricity
14-37
FIGURE 3. Sequence of steps in cloud-to-ground lightning.
when they occur, are similar to the subsequent strokes in natural lightning. These triggered subsequent strokes have been the subject of considerable recent research. Also in the past 10 years or so sophisticated lightning locating equipment has been installed throughout the world. For example, all ground flashes in the U.S. are now centrally monitored for research, for better overall weather prediction, and for hazard warning for aviation, electric utilities and other lightning-sensitive facilities. Information on lightning physics can be found in M. A. Uman, The Lightning Discharge, Academic Press, San Diego, 1987; on lightning death and injury in Medical Aspects of Lightning Injury, C. Andrews, M. A. Cooper, M. Darveniza, and D. Mackerras, Eds.,
Section 14.indb 37
CRC Press, 1992. Ground flash location information for the U.S., in real time or archived, is available from Geomet Data Service of Tucson, AZ, which is also a source of the names of providers of those data in other countries. Table 2 has data for cloud-to-ground lightning discharges bringing negative charge to earth. The values listed are intended to convey a rough feeling for the various physical parameters of lightning. No great accuracy is claimed since the results of different investigators are often not in good agreement. These values may, in fact, depend on the particular environment in which the lightning discharge is generated. The choice of some of the entries in the table is arbitrary.
4/27/05 5:04:27 PM
Atmospheric Electricity
14-38 TABLE 2. Data for Cloud-to-Ground Lightning Discharges Stepped leader Length of step, m Time interval between steps, µs Average speed of propagation of stepped leader, m/sb Charged deposited on stepped-leader channel, coulombs Dart leader Speed of propagation, m/sb Charged deposited on dart-leader channel, coulombs Return strokec Speed of propagation, m/sb Maximum current rate of increase, kA/µs Time to peak current, µs Peak current, kA Time to half of peak current, µs Charge transferred excluding continuing current, coulombs Channel length, km Lightning flash Number of strokes per flash Time interval between strokes in absence of continuing current, ms Time duration of flash, s Charge transferred including continuing current, coulombs a b
c
Minimuma
Representative values
Maximuma
3 30 1.0 × 105 3
50 50 2.0 × 105 5
200 125 3.0 × 106 20
1.0 × 106 0.2
1.0 × 107 1
2.4 × 107 6
2.0 × 107 <1 <1 2 10 0.02 2
1.0 × 108 100 2 30 50 3 5
2.0 × 108 400 30 200 250 20 15
1 3 10-2 3
4 60 0.5 30
26 100 2 200
The words maximum and minimum are used in the sense that most measured values fall between these limits. Speeds of propagation are generally determined from photographic data and are “two-dimensional”. Since many lightning flashes are not vertical, values stated are probably slight underestimates of actual values. First return strokes have longer times to current peak and generally larger charge transfer than do subsequent return strokes.
Adapted from Uman, M.A., Lightning, Dover Paperbook, New York, 1986, and Uman, M.A., The Lightning Discharge, Academic Press, San Diego, 1987.
Section 14.indb 38
4/27/05 5:04:27 PM
SPEED OF SOUND IN VARIOUS MEDIA The speed of sound in various solids, liquids, and gases is given in these tables. While only a single parameter v is needed for liquids and gases, sound propagation in isotropic solids is characterized by three velocity parameters. For a solid of infinite extent (or of finite extent if all dimensions are much larger than a wavelength), there are two relevant quantities, vl: velocity of longitudinal waves vs: velocity of shear waves. For a cylindrical rod with diameter much smaller than a wavelength, vext : velocity of extensional waves along the rod. (Torsional waves in the rod are propagated at the same speed as sheer waves in an infinite solid.) Table 1 lists values for a variety of solid materials. Table 2 covers gases liquids and gases; values for cryogenic liquids are given at the normal boiling point. Table 3 gives the speed of sound in pure
water and in seawater of salinity S = 3.5% as a function of temperature. All values are in meters per second and are given for normal atmospheric pressure.
References 1. Gray, D. E., Ed., American Institute of Physics Handbook, Third Edition, McGraw Hill, New York, 1972. 2. Anderson, H.L., Ed., A Physicist’s Desk Reference, American Institute of Physics, New York, 1989. 3. Younglove, B. A., Thermophysical Proeprties of Fluids. Part I, J. Phys. Chem. Ref. Data, 11, Suppl. 1, 1982. 4. Younglove, B. A., and Ely, J. F., Thermophysical Properties of Fluids. Part II, J. Phys. Chem. Ref. Data, 16, 577, 1987. 5. Haar, L., Gallagher, J. S., and Kell, G. S., NBS/NRC Steam Tables, Hemisphere Publishing Corp., New York, 1984. 6. Mason, W. P., Physical Acoustics and the Properties of Solids, D. Van Nostrand Co., Princeton, N.J., 1958. 7. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, II/5, Molecular Acoustics, Springer-Verlag, Heidelberg, 1967.
TABLE 1. Speed of Sound in Solids at Room Temperature Name
vl/m s–1
vs/m s–1
vext/m s–1
Metals Aluminum, rolled Beryllium Brass (70 Cu, 30 Zn) Constantan Copper, annealed Copper, rolled Duralumin 17S Gold, hard-drawn Iron, cast Iron, electrolytic Iron, Armco Lead, annealed Lead, rolled Magnesium, annealed Molybdenum Monel metal Nickel Platinum Silver Steel (1% C) Steel, 347 Stainless
6420 12890 4700 5177 4760 5010 6320 3240 4994 5950 5960 2160 1960 5770 6250 5350 6040 3260 3650 5940 5790
3040 8880 2110 2625 2325 2270 3130 1200 2809 3240 3240 700 690 3050 3350 2720 3000 1730 1610 3220 3100
5000 12870 3480 4270 3810 3750 5150 2030 4480 5120 5200 1190 1210 4940 5400 4400 4900 2800 2680 5180 5000
Name Steel, K9 Tin, rolled Titanium Tungsten, annealed Tungsten, drawn Zinc, rolled Other materials Fused silica Glass, heavy silicate flint Glass, light borate crown Glass, pyrex Lucite Nylon 6-6 Polyethylene Polystyrene Rubber, butyl Rubber, gum Rubber, neoprene Tungsten carbide
vl/m s–1 5940 3320 6070 5220 5410 4210
vs/m s–1 3250 1670 3125 2890 2640 2440
vext/m s–1 5250 2730 5090 4620 4320 3850
5968
3764
5760
3980
2380
3720
5100 5640 2680 2620 1950 2350 1830 1550 1600 6655
2840 3280 1100 1070 540 1120
4540 5170 1840 1800 920 1840
3980
6220
14-39
Section 14.indb 39
4/27/05 5:04:28 PM
Speed of Sound in Various Media
14-40 TABLE 2. Speed of Sound in Liquids and Gases Name Liquids Acetone Argon Benzene Bromobenzene Butane 1-Butanol Carbon disulphide Chlorobenzene Cyclohexane 1-Decene Diethyl ether Ethane Ethanol Ethylene Ethylene glycol Fluorobenzene Glycerol Helium Heptane 1-Heptene Hexane Hydrogen Iodobenzene Mercury Methane Methanol Nitrobenzene Nitrogen 1-Nonene Octane 1-Octene Oxygen
t/°C
v/m s–1
20 –185.9 25 20 –0.5 20 25 20 19 20 25 –88.6 20 –103.8 25 20 25 –268.9 20 20 20 –252.9 20 25 –161.5 20 25 –195.8 20 20 20 –183.0
1203 813 1310 1169 1034 1258 1140 1311 1280 1250 976 1326 1162 1309 1658 1183 1904 180 1162 1128 1083 1101 1114 1450 1337 1121 1463 939 1218 1197 1184 906
t/°C
Name 1-Pentadecene Pentane Propane 1-Propanol Tetrachloromethane Trichloromethane 1-Undecene Water Water (sea, S = 3.5%)
20 20 –42.1 20 25 25 20 25 25
Gases at 1 atm Air, dry Ammonia Argon Carbon monoxide Carbon dioxide Chlorine Deuterium Ethane Ethylene Helium Hydrogen Hydrogen bromide Hydrogen chloride Hydrogen iodide Hydrogen sulfide Methane Neon Nitric oxide Nitrogen Nitrous oxide Oxygen Sulfur dioxide Water (steam)
25 0 27 0 0 0 0 27 27 0 27 0 0 0 0 27 0 10 27 0 27 0 100
v/m s–1 1351 1008 1158 1223 930 987 1275 1497 1535 346 415 323 338 259 206 890 312 331 965 1310 200 296 157 289 450 435 325 353 263 330 213 473
TABLE 3. Speed of Sound in Water and Seawater (S = 3.5%) at Different Temperatures t/°C 0 10 20 25 30 40 50 60 70 80
Section 14.indb 40
Water 1401.0 1447.8 1483.2 1497.4 1509.5 1528.4 1541.4 1549.5 1553.2 1552.8
v/m s–1 Seawater 1449.4 1490.4 1522.2 1535.1 1546.2
4/27/05 5:04:30 PM
ATTENUATION AND SPEED OF SOUND IN AIR AS A FUNCTION OF HUMIDITY AND FREQUENCY This table gives the attenuation and speed of sound as a function of frequency at various values of relative humidity. All values refer to still air at 20°C.
Frequency (Hz)
Attenuation (dB/km)
Speed (m/s)
References 1. Tables of Absorption and Velocity of Sound in Still Air at 68°F (20°C), AD-738576, National Technical Information Service, Springfield, VA. 2. Evans, L. B., Bass, H. E., and Sutherland, L. C., J. Acoust. Soc. Am., 51, 1565, 1972. Frequency (Hz)
Attenuation (dB/km)
Speed (m/s)
Relative humidity 0% 20 0.51 40 1.07 50 1.26 63 1.43 100 1.67 200 1.84 400 1.96 630 2.11 800 2.27 1250 2.82 2000 4.14 4000 8.84 6300 14.89 10000 26.28 12500 35.81 16000 52.15 20000 75.37 40000 267.01 63000 644.66 80000 1032.14
343.477 343.514 343.525 343.536 343.550 343.559 343.561 343.562 343.562 343.562 343.562 343.564 343.565 343.566 343.566 343.567 343.567 343.567 343.567 343.567
Relative humidity 60% 20 0.02 40 0.06 50 0.09 63 0.15 100 0.34 200 0.99 400 1.94 630 2.57 800 2.94 1250 4.01 2000 6.55 4000 18.73 6300 42.51 10000 101.84 12500 155.67 16000 247.78 20000 373.78 40000 1195.37 63000 2220.64 80000 2951.71
344.182 344.183 344.183 344.184 344.185 344.190 344.197 344.200 344.201 344.202 344.203 344.204 344.204 344.206 344.208 344.211 344.215 344.238 344.262 344.274
Relative humidity 30% 20 0.03 40 0.11 50 0.17 63 0.25 100 0.50 200 1.01 400 1.59 630 2.24 800 2.85 1250 5.09 2000 10.93 4000 38.89 6300 90.61 10000 204.98 12500 294.08 16000 422.51 20000 563.66 40000 1110.97 63000 1639.47 80000 2083.08
343.807 343.808 343.810 343.810 343.814 343.821 343.826 343.827 343.828 343.828 343.829 343.831 343.836 343.846 343.854 343.865 343.877 343.911 343.924 343.929
Relative humidity 100% 20 0.01 40 0.04 50 0.06 63 0.09 100 0.22 200 0.77 400 2.02 630 3.05 800 3.57 1250 4.59 2000 6.29 4000 13.58 6300 27.72 10000 63.49 12500 96.63 16000 154.90 20000 237.93 40000 884.28 63000 1973.62 80000 2913.01
344.685 344.685 344.685 344.685 344.686 344.689 344.695 344.699 344.701 344.704 344.705 344.706 344.706 344.706 344.707 344.708 344.709 344.718 344.731 344.742
14-41
Section 14.indb 41
4/27/05 5:04:32 PM
SPEED OF SOUND IN DRY AIR The values in this table were calculated from the equation of state for dry air (average molecular weight 28.96) treated as a real gas. Values refer to standard atmospheric pressure. The speed of sound varies only slightly with pressure; at two atmospheres and –100°C the value decreases by 0.13%, while at two atmospheres and 80°C the speed increases by 0.04%. t/°C –100 –95 –90 –85 –80 –75 –70 –65 –60 –55 –50 –45 –40
vs/m s–1 263.5 267.3 271.1 274.8 278.5 282.1 285.7 289.2 292.7 296.1 299.5 302.9 306.2
t/°C –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 25
Reference Sytchev, V. V., Vasserman, A. A., Kozlov, A. D., Spiridonov, G. A., and Tsymarny, V. A., Thermodynamic Properties of Air, Hemisphere Publishing Corp., New York, 1987.
vs/m s–1 309.5 312.7 315.9 319.1 322.3 325.4 328.4 331.5 334.5 337.5 340.4 343.4 346.3
t/°C 30 35 40 45 50 55 60 65 70 75 80
vs/m s–1 349.1 352.0 354.8 357.6 360.4 363.2 365.9 368.6 371.3 374.0 376.7
14-42
Section 14.indb 42
4/27/05 5:04:32 PM
MUSICAL SCALES Equal Tempered Chromatic Scale A4 = 440 Hz
Note C0 C#0 D0 D#0 E0 F0 F#0 G0 G#0 A0 A#0 B0 C1 C#1 D1 D#1 E1 F1 F#1 G1 G#1 A1 A#1 B1
Note C0 D0 E0 F0 G0 A0 B0 C1 D1 E1 F1 G1 A1 B1
Frequency 16.35 17.32 18.35 19.45 20.60 21.83 23.12 24.50 25.96 27.50 29.14 30.87 32.70 34.65 36.71 38.89 41.20 43.65 46.25 49.00 51.91 55.00 58.27 61.74
Frequency 16 18 20 21.33 24 26.67 30 32 36 40 42.67 48 53.33 60
Note C2 C#2 D2 D#2 E2 F2 F#2 G2 G#2 A2 A#2 B2 C3 C#3 D3 D#3 E3 F3 F#3 G3 G#3 A3 A#3 B3
International Concert Pitch Frequency Note 65.41 C4 69.30 C#4 73.42 D4 77.78 D#4 82.41 E4 87.31 F4 92.50 F#4 98.00 G4 103.83 G#4 110.00 A4 116.54 A#4 123.47 B4 130.81 C5 138.59 C#5 146.83 D5 155.56 D#5 164.81 E5 174.61 F5 185.00 F#5 196.00 G5 207.65 G#5 220.00 A5 233.08 A#5 246.94 B5
Frequency 261.63 277.18 293.66 311.13 329.63 349.23 369.99 392.00 415.30 440.00 466.16 493.88 523.25 554.37 587.33 622.25 659.26 698.46 739.99 783.99 830.61 880.00 932.33 987.77
Note C6 C#6 D6 D#6 E6 F6 F#6 G6 G#6 A6 A#6 B6 C7 C#7 D7 D#7 E7 F7 F#7 G7 G#7 A7 A#7 B7 C8
Frequency 1046.50 1108.73 1174.66 1244.51 1318.51 1396.91 1479.98 1567.98 1661.22 1760.00 1864.66 1975.53 2093.00 2217.46 2349.32 2489.02 2637.02 2793.83 2959.96 3135.96 3322.44 3520.00 3729.31 3951.07 4186.01
Note C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3
Scientific or Just Scale C4 = 256 Hz Frequency Note 64 C4 72 D4 80 E4 85.33 F4 96 G4 106.67 A4 120 B4 128 C5 144 D5 160 E5 170.67 F5 192 G5 213.33 A5 240 B5
Frequency 256 288 320 341.33 384 426.67 480 512 576 640 682.67 768 853.33 960
Note C6 D6 E6 F6 G6 A6 B6 C7 D7 E7 F7 G7 A7 B7 C8
Frequency 1024 1152 1280 1365.33 1536 1706.67 1920 2048 2304 2560 2730.67 3072 3413.33 3840 4096
14-43
Section 14.indb 43
4/27/05 5:04:35 PM
CHARACTERISTICS OF HUMAN HEARING The human ear is sensitive to sound waves with frequencies in the range from a few hertz to almost 20 kHz. Auditory response is usually expressed in terms of the loudness level of a sound, which is a measure of the sound pressure. The reference level, which is given in the unit phon, is a pure tone of frequency 1000 Hz with sound pressure of 20 µPa (in cgs units, 2·10–4 dyn/cm2 ); loudness level is usually expressed in decibels (dB) relative to this reference level. If a normal observer perceives an arbitrary sound to
be equally loud as this reference sound, the sound is said to have the loudness level of the reference. The sensitivity of the typical human ear ranges from about 0 dB, the threshold loudness level, to about 140 dB, the level at which pain sets in. The minimum detectable level thus represents a sound wave of pressure 20 µPa and intensity (power density) 10–16 W/cm2. The following figure illustrates the frequency dependence of the threshold for an average young adult.
Frequency in Hz The relation between loudness level and frequency for a typical person is expressed by the following table: Sound pressure level in dB relative to 20 µPa 10 20 30 40 50 60 70 80 90 100
125
500
4 17 34 52 70 86 98 108
16 27 39 52 65 76 86 96 105
Thus, a 10,000 Hz tone at a pressure level of 50 dB seems equally loud as a 1000 Hz tone at a pressure of 35 dB. The term noise refers to any unwanted sound, either a pure tone or a mixture of frequencies. Since the sensitivity of the ear is fre-
Frequency in Hz 1000 4000 10 18 20 28 30 37 40 45 50 54 60 64 70 73 80 83 90 94 100 106
8000
10000
11 21 30 38 47 56 66 77 88
17 26 35 44 54 64 74 86
quency dependent, as illustrated by the above table, noise level is expressed in a frequency-weighted scale, known as A-weighting. Decibel readings on this scale are designated as dBa. Typical noise levels from various sources are illustrated in this table:
14-44
Section 14.indb 44
4/27/05 5:04:37 PM
Characteristics of Human Hearing
14-45
Source Rocket engine Jet aircraft engine Light aircraft, cruising Tractor, 150 hp Electric motor, 100 hp at 2600 rpm Pneumatic drill Subway train Vacuum cleaner Heavy automobile traffic Conversational speech Whispered speech Background noise, recording studio
Recommended noise thresholds in the workplace have been established by the American Conference of Government Industrial Duration of exposure 24 h 8h 4h 1h 30 min 15 min 2 min 28 s 0.11 s
Noise level in dBa 200 160 140 115 105 100 90 85 75 65 40 25-30
Hygenists. Some examples of the maximum safe levels for different daily exposure times are given below. Max. level in dBa 80 85 88 94 97 100 109 115 139
No exposure greater than 140 dBa is permitted. Further details may be found in Reference 3.
References 1. Anderson, H. L., Ed., A Physicistâ&#x20AC;&#x2122;s Desk Reference, American Institute of Physics, New York, 1989, chap. 2. 2. Gray, D. E., Ed., American Institute of Physics Handbook, Third Edition, McGraw Hill, New York, 1972, chap. 3.
Section 14.indb 45
3. Threshold Limit Values for Chemical Substances and Physical Agents; Biological Exposure Indices, 1999 Edition, American Conference of Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, Cincinnati, OH 45240-1634.
4/27/05 5:04:38 PM
Interstellar Molecules Frank J. Lovas and Lewis E. Snyder A number of molecules have been detected in the interstellar medium, in circumstellar envelopes around evolved stars, and comae and tails of comets through observation of their microwave, infrared, or optical spectra. The following list gives the molecules and the particular isotopic species that have been reported thus far. Molecules are listed by molecular formula in the Hill order. All species not footnoted otherwise are observed in interstellar clouds, while some are also found in comets and circumstellar clouds. The list was last updated in November 2005 and lists 147 molecules (263 isotopic forms). Molecular formula AlCl
Name Aluminum monochloride
AlF CAlN CF+ CH CH+ CHN
Aluminum monofluoride Aluminum isocyanide Fluoromethylidynium ion Methylidyne Methyliumylidene Hydrogen cyanide
CHN
Hydrogen isocyanide
CHNO
Isocyanic acid
CHNS CHO CHO+
Isothiocyanic acid Oxomethyl Oxomethylium
CHO+ CHO2+ CHS+ CH2 CH2N+ CH2N CH2N2 CH2O
14-6
Hydroxymethylidyne Hydroxyoxomethylium Thiooxomethylium Methylene Iminomethylium Methylene amidogen Cyanamide Formaldehyde
CH2O2
Formic acid
CH2S
Thioformaldehyde
Isotopic species AlCla Al37Cla AlFa AlNCa CF+ CH CH+ HCN H13CN HC15N DCN HNC H15NC HN13C DNC D15NC HNCO DNCO HNCS HCO HCO+ H13CO+ HC17O+ HC18O+ DCO+ D13CO+ HOC+ HOCO+ HCS+ CH2 HCNH+ CH2N NH2CN H2CO H213CO H2C18O HDCO D2CO HCOOH H13COOH HCOOD DCOOH H2CS H213CS
References 1. Lovas, F. J., Recommended Rest Frequencies for Observed Interstellar Molecule Microwave Transitions - 1991 Revision, J. Phys. Chem. Ref. Data, 21, 181–272, 1992. 2. Snyder, L. E., Cometary Molecules, Internat. Astron. Union Symposium No. 150, Astrochemistry of Cosmic Phenomena, Ed. P.D. Singh, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 427–434 (1992).
Molecular formula
Name
CH3 CH3N
Methyl Methanimine
CH3NO
Formamide
CH3O+ CH4 CH4O
Hydroxy methylium ion Methane Methanol
CH4S CH5N CMgN CMgN
Methanethiol Methylamine Magnesium cyanide Magnesium isocyanide
CN
Cyanide radical
CN+ CNNa CNSi CNSi CN2 CO
Cyanide radical ion Sodium cyanide Silicon cyanide Silicon isocyanide Cyanoimidogen Carbon monoxide
CO+ COS
Carbon monoxide ion Carbon oxysulfide
CO2 CO2+ CP
Carbon dioxide Carbon dioxide ion Carbon phosphide
Isotopic species H2C34S HDCS D2CS CH3 a CH2NH 13 CH2NH NH2CHO NH213CHO H2COH+ CH4 CH3OH 13 CH3OH CH318OH CH2DOH CH3OD CHD2OH CD3OH CH3SH CH3NH2 MgCNa 24 MgNCa 25 MgNCa 26 MgNCa CN 13 CN C15N CN+ b NaCNa SiNCa SiNCa NCNb CO 13 CO C17O C18O 13 18 C O CO+ OCS OC34S O13CS 18 OCS CO2 CO2+ b CPa
Interstellar Molecules Molecular formula CS
Name Carbon monosulfide
CSi C2 C2H
Silicon carbide Dicarbon Ethynyl
C2HN C2H2 C2H2N C2H2O C2H3N
Cyanomethylene Acetylene Cyanomethyl Ketene Acetonitrile
C2H3N C2H4 C2H4O C2H4O C2H4O C2H4O2 C2H4O2 C2H4O2 C2H6 C2H6O C2H6O C2H6O C2H6O2 C2O C2S
Isocyanomethane Ethylene Acetaldehyde Ethylene oxide Ethenol Methyl formate Acetic acid Glycolaldehyde Ethane trans-Ethanol gauche-Ethanol Dimethyl ether Ethylene glycol Oxoethenylidene Thioxoethenylidene
C2Si
Silicon dicarbide
C3 C3H C3H C3HN
Tricarbon Cyclopropenylidyne Propenylidyne Cyanoacetylene
C3HN C3HN
Isocyanoacetylene 1,2-Propadienylidene, 3imino Cyclopropenylidene
C3H2
C3H2 C3H2N+ C3H2O C3H2O
Propadienylidene Protonated cyanoacetylene 2-Propynal Cyclopropenone
14-7 Isotopic species CS C33S C34S C36S 13 CS 13 34 C S SiCa C2 C2H 13 CCH C13CH C2D HCCN HCCH CH2CN H2CCO CH3CN 13 CH3CN CH313CN CH3C15N CH2DCN CH3NC H2CCH2 CH3CHO c-C2H4Oc CH2CHOH CH3OCHO CH3COOH CH2OHCHO CH3CH3b t-CH3CH2OH g-CH3CH2OH CH3OCH3 HOCH2CH2OH CCO CCS CC34S c-SiC2 c-29SiC2 c-30SiC2 c-Si13CC C3 c-C3H l-C3H HCCCN H13CCCN HC13CCN HCC13CN HCCC15N DCCCN HCCNC HNCCC c-C3H2 c-H13CCCH c-HC13CCH c-C3HD l-H2CCC HCCCNH+ HCCCHO c-C3H2O
Molecular formula C3H3N C3H4
C3H4O C3H5N C3H6O C3H6O C3N C3O C3S C3Si C4H
C4HN C4H2 C4H2 C4H3N C4H3N C4Si C5 C5H C5HN
C5H4 C5N C6H C6H2 C6H2 C6H3N C6H6 C7H C7HN C8H C9HN C11HN ClH ClK ClNa FH FeO HLi
Isotopic Name species Acrylonitrile (vinyl cyanide) CH2CHCN Propyne CH3CCH CH3C13CH 13 CH3CCH CH2DCCH CH3CCD Propenal CH2CHCHO Propanenitrile (ethyl CH3CH2CN cyanide) Acetone (CH3)2CO Propanal CH3CH2CHO Cyanoethynyl CCCN 1,2-Propadienylidene, 3-oxo CCCO 1,2-Propadienylidene, 3CCCS thioxo Silicon tricarbon SiC3 1,3-Butadiynyl radical HCCCC H13CCCC HC13CCC HCC13CC HCCC13C DCCCC 3-Cyano-1,2HCCCCN propadienylidene Butatrienylidene H2CCCC 1,3-Butadiyne HCCCCHa 2-Butynenitrile CH3CCCN Cyanoallene CH2CCHCN Silicon tetracarbide SiC4a Pentacarbon C5a 2,4-Pentadiynylidyne HCCCCC 2,4-Pentadiynenitrile HCCCCCN H13CCCCCN HC13CCCCN HCC13CCCN HCCC13CCN HCCCC13CN DCCCCCN 1,3-Pentadiyne CH3C4H 1,3-Butadiynylium, 4-cyano C5N 1,3,5-Hexatriynyl HCCCCCC 1,3,5-Hexatriyne HCCCCCCHa 1,2,3,4,5H2CCCCCC Hexapentaenylidene Methylcyanodiacetylene CH3C4CN Benzene C6H6 2,4,6-Heptatriynylidyne HCCCCCCC 2,4,6-Heptatriynenitrile HC7N 1,3,5,7-Octatetraynyl HC8 2,4,6,8-Nonatetraynenitrile HC9N 2,4,6,8,10HC11N Undecapentaynenitrile Hydrogen chloride H35Cl H37Cl Potassium chloride K35Cla K37Cla Sodium chloride Na35Cla Na37Cla Hydrogen fluoride HF Iron monoxide FeO 7 LiH Lithium hydride
Interstellar Molecules
14-8 Molecular formula HN HNO HN2+
Name Imidogen Nitrosyl hydride Hydrodinitrogen(1+)
HO
Hydroxyl
HO+ HS H2 H2N H2O
Oxoniumylidene Mercapto Hydrogen Amidogen Water
H2O+ H2S
Oxoniumyl Hydrogen sulfide
H3+
Trihydrogen ion
H3N
Ammonia
H3O+
Oxonium hydride
Isotopic species HN HNO N2H+ 15 NNH+ N15NH+ N2D+ OH 17 OH 18 OH HO+ b SH H2 NH2 H2O H218O HDO H2O+b H2S H234S HDS D2S H3+ H2D+ D2H+ NH3 15 NH3 NH2D NHD2 ND3 H3O+
Molecular formula H4Si NO NP NS
Name Silane Nitric oxide Phosphorus nitride Nitrogen sulfide
NSi N2 N2+ N2O OS
Silicon nitride Nitrogen Nitrogen ion Nitrous oxide Sulfur monoxide
OS+ OSi
Sulfur monoxide ion Silicon monoxide
O2S
Sulfur dioxide
SSi
Silicon monosulfide
S2
Disulfur
l- before the isotopic species indicates a linear configuration, while c- indicates a cyclic molecule. a Reported only in circumstellar clouds. b Reported only in comets.
Isotopic species SiH4a NO NP NS N34S SiN N2 N2+ b N 2O SO 34 SO 33 SO S18O SO+ SiO Si18O 29 SiO 30 SiO SO2 33 SO2 34 SO2 OS18O SiS Si33S Si34S 29 SiS 30 SiS Si36S S2b
STANDARD ITS-90 THERMOCOUPLE TABLES The Instrument Society of America (ISA) has assigned standard letter designations to a number of thermocouple types having specified emf-temperature relations. These designations and the approximate metal compositions which meet the required relations, as well as the useful temperature ranges, are given below: Type B Type E Type J Type K Type N Type R Type S Type T
(Pt + 30% Rh) vs. (Pt + 6% Rh) (Ni + 10% Cr) vs. (Cu + 43% Ni) Fe vs. (Cu + 43% Ni) (Ni + 10% Cr) vs. (Ni + 2% Al + 2% Mn + 1% Si) (Ni + 14% Cr + 1.5% Si) vs. (Ni + 4.5% Si + 0.1% Mg) (Pt + 13% Rh) vs. Pt (Pt + 10% Rh) vs. Pt Cu vs. (Cu + 43% Ni)
0 to 1820°C –270 to 1000°C –210 to 1200°C –270 to 1372°C –270 to 1300°C –50 to 1768°C –50 to 1768°C –270 to 400°C
The compositions are given in weight percent, and the positive leg is listed first. It should be emphasized that the standard letter
designations do not imply a precise composition but rather that the specified emf-temperature relation is satisfied. The first set of tables below lists, for each thermocouple type, the emf as a function of temperature on the International Temperature Scale of 1990 (ITS-90). The coefficients in the equation used to generate the table are also given. The second set of tables gives the inverse relationships, i.e., the coefficients in the polynomial equation which expresses the temperature as a function of thermocouple emf. The accuracy of these equations is also stated. Further details and tables at closer intervals may be found in Reference 1.
References 1. Burns, G. W., Seroger, M. G., Strouse, G. F., Croarkin, M. C., and Guthrie, W. F., Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types Based on the ITS-90, Natl. Inst. Stand. Tech. (U.S.) Monogr. 175, 1993. 2. Schooley, J. F., Thermometry, CRC Press, Boca Raton, FL, 1986.
Type B Thermocouples: emf-Temperature (°C) Reference Table and Equations °C 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
emf in Millivolts 0 10 0.000 –0.002 0.033 0.043 0.178 0.199 0.431 0.462 0.787 0.828 1.242 1.293 1.792 1.852 2.431 2.499 3.154 3.230 3.957 4.041 4.834 4.926 5.780 5.878 6.786 6.890 7.848 7.957 8.956 9.069 10.099 11.263 12.433 13.591
10.215 11.380 12.549 13.706
Thermocouple emf as a Function of Temperature in Degrees Celsius (ITS-90) Reference junctions at 0 °C 20 30 40 50 60 70 80 90 100 –0.003 –0.002 –0.000 0.002 0.006 0.011 0.017 0.025 0.033 0.053 0.065 0.078 0.092 0.107 0.123 0.141 0.159 0.178 0.220 0.243 0.267 0.291 0.317 0.344 0.372 0.401 0.431 0.494 0.527 0.561 0.596 0.632 0.669 0.707 0.746 0.787 0.870 0.913 0.957 1.002 1.048 1.095 1.143 1.192 1.242 1.344 1.397 1.451 1.505 1.561 1.617 1.675 1.733 1.792 1.913 1.975 2.037 2.101 2.165 2.230 2.296 2.363 2.431 2.569 2.639 2.710 2.782 2.854 2.928 3.002 3.078 3.154 3.308 3.386 3.466 3.546 3.626 3.708 3.790 3.873 3.957 4.127 4.213 4.299 4.387 4.475 4.564 4.653 4.743 4.834 5.018 5.111 5.205 5.299 5.394 5.489 5.585 5.682 5.780 5.976 6.075 6.175 6.276 6.377 6.478 6.580 6.683 6.786 6.995 7.100 7.205 7.311 7.417 7.524 7.632 7.740 7.848 8.066 8.176 8.286 8.397 8.508 8.620 8.731 8.844 8.956 9.182 9.296 9.410 9.524 9.639 9.753 9.868 9.984 10.099 10.331 11.497 12.666 13.820
10.447 11.614 12.782
10.563 11.731 12.898
Temperature ranges and coefficients of equations used to compute the above table: The equations are of the form: E = c0 + c1t + c2t2 + c3t3 + … cntn, where E is the emf in millivolts, t is the tem-
10.679 11.848 13.014
10.796 11.965 13.130
10.913 12.082 13.246
11.029 12.199 13.361
11.146 12.316 13.476
11.263 12.433 13.591
perature in degrees Celsius (ITS- 90), and c0, c1, c2, c3, etc. are the coefficients. These coefficients are extracted from Reference 1.
15-1
Section 15.indb 1
5/3/05 9:11:19 AM
Standard ITS-90 Thermocouple Tables
15-2 0 °C to 630.615 °C c0 c1 c2 c3 c4 c5 c6 c7 c8
= = = = = = = = =
630.615 °C to 1820 °C
0.000 000 000 0 − 2.465 081 834 6 × 10−4 5.904 042 117 1 × 10−6 − 1.325 793 163 6 × 10−9 1.566 829 190 1 × 10−12 − 1.694 452 924 0 × 10−15 6.299 034 709 4 × 10−19 ………… …………
−3.893 816 862 1 … 2.857 174 747 0 × 10-2 −8.488 510 478 5 × 10−5 1.578 528 016 4 × 10−7 −1.683 534 486 4 × 10−10 1.110 979 401 3 × 10−13 −4.451 543 103 3 × 10−17 9.897 564 082 1 × 10−21 −9.379 133 028 9 × 10−25
Type E Thermocouples: emf-Temperature (°C) Reference Table and Equations °C -200 -100 0 °C 0 100 200 300 400 500 600 700 800 900 1000
emf in Millivolts 0 -10 -8.825 -9.063 -5.237 -5.681 0.000 -0.582 0 10 0.000 0.591 6.319 6.998 13.421 14.164 21.036 21.817 28.946 29.747 37.005 37.815 45.093 45.900 53.112 53.908 61.017 61.801 68.787 69.554 76.373
Thermocouple emf as a Function of Temperature in Degrees Celsius (ITS-90) Reference junctions at 0 °C -20 -30 -40 -50 -60 -70 -80 -90 -9.274 -9.455 -9.604 -9.718 -9.797 -9.835 -6.107 -6.516 -6.907 -7.279 -7.632 -7.963 -8.273 -8.561 -1.152 -1.709 -2.255 -2.787 -3.306 -3.811 -4.302 -4.777 20 30 40 50 60 70 80 90 1.192 1.801 2.420 3.048 3.685 4.330 4.985 5.648 7.685 8.379 9.081 9.789 10.503 11.224 11.951 12.684 14.912 15.664 16.420 17.181 17.945 18.713 19.484 20.259 22.600 23.386 24.174 24.964 25.757 26.552 27.348 28.146 30.550 31.354 32.159 32.965 33.772 34.579 35.387 36.196 38.624 39.434 40.243 41.053 41.862 42.671 43.479 44.286 46.705 47.509 48.313 49.116 49.917 50.718 51.517 52.315 54.703 55.497 56.289 57.080 57.870 58.659 59.446 60.232 62.583 63.364 64.144 64.922 65.698 66.473 67.246 68.017 70.319 71.082 71.844 72.603 73.360 74.115 74.869 75.621
Temperature ranges and coefficients of equations used to compute the above table: The equations are of the form: E = c0 + c1t + c2t2 + c3t3 + … cntn, where E is the emf in millivolts, t is the tem= = = = = = = = = = = = = =
-8.825 -5.237 100 6.319 13.421 21.036 28.946 37.005 45.093 53.112 61.017 68.787 76.373
perature in degrees Celsius (ITS- 90), and c0, c1, c2, c3, etc. are the coefficients. These coefficients are extracted from Reference 1.
–270 to 0°C c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13
-100
0°C to 1000°C
0.000 000 000 0 ... 5.866 550 870 8 × 10−2 4.541 097 712 4 × 10−5 –7.799 804 868 6 × 10–7 –2.580 016 084 3 × 10–8 –5.945 258 305 7 × 10–10 –9.321 405 866 7 × 10–12 –1.028 760 553 4 × 10–13 –8.037 012 362 1 × 10–16 –4.397 949 739 1 × 10–18 –1.641 477 635 5 × 10–20 –3.967 361 951 6 × 10–23 –5.582 732 872 1 × 10–26 –3.465 784 201 3 × 10–29
0.000 000 000 0 … 5.866 550 871 0 × 10–2 4.503 227 558 2 × 10–5 2.890 840 721 2 × 10–8 –3.305 689 665 2 × 10–10 6.502 440 327 0 × 10–13 –1.919 749 550 4 × 10–16 –1.253 660 049 7 × 10–18 2.148 921 756 9 × 10–21 –1.438 804 178 2 × 10–24 3.596 089 948 1 × 10–28 ………… ………… …………
Type J Thermocouples: emf-Temperature (°C) Reference Table and Equations Thermocouple emf as a Function of Temperature in Degrees Celsius (ITS-90)
°C -200 -100 0
Section 15.indb 2
emf in Millivolts 0 -10 -7.890 -8.095 -4.633 -5.037 0.000 -0.501
-20
-30
-40
-50
-60
-5.426 -0.995
-5.801 -1.482
-6.159 -1.961
-6.500 -2.431
-6.821 -2.893
-70 -7.123 -3.344
Reference junctions at 0 °C -80 -90 -7.403 -3.786
-7.659 -4.215
-100 -7.890 -4.633
5/3/05 9:11:20 AM
Standard ITS-90 Thermocouple Tables
15-3
°C 0 100 200 300 400
emf in Millivolts 0 0.000 5.269 10.779 16.327 21.848
10 0.507 5.814 11.334 16.881 22.400
20 1.019 6.360 11.889 17.434 22.952
30 1.537 6.909 12.445 17.986 23.504
40 2.059 7.459 13.000 18.538 24.057
50 2.585 8.010 13.555 19.090 24.610
60 3.116 8.562 14.110 19.642 25.164
70 3.650 9.115 14.665 20.194 25.720
500 600 700 800 900
27.393 33.102 39.132 45.494 51.877
27.953 33.689 39.755 46.141 52.500
28.516 34.279 40.382 46.786 53.119
29.080 34.873 41.012 47.431 53.735
29.647 35.470 41.645 48.074 54.347
30.216 36.071 42.281 48.715 54.956
30.788 36.675 42.919 49.353 55.561
31.362 37.284 43.559 49.989 56.164
31.939 37.896 44.203 50.622 56.763
32.519 38.512 44.848 51.251 57.360
33.102 39.132 45.494 51.877 57.953
1000 1100 1200
57.953 63.792 69.553
58.545 64.370
59.134 64.948
59.721 65.525
60.307 66.102
60.890 66.679
61.473 67.255
62.054 67.831
62.634 68.406
63.214 68.980
63.792 69.553
Temperature ranges and coefficients of equations used to compute the above table: The equations are of the form: E = c0 + c1t + c2t2 + c3t3 + … cntn, where E is the emf in millivolts, t is the tem-
c0
c1 c2 c3 c4 c5 c6 c7 c8
= = = = = = = = =
Reference junctions at 0 °C 80 90 4.187 4.726 9.669 10.224 15.219 15.773 20.745 21.297 26.276 26.834
100 5.269 10.779 16.327 21.848 27.393
perature in degrees Celsius (ITS-90), and c0, c1, c2, c3, etc. are the coefficients. These coefficients are extracted from Reference 1.
–260°C to 760°C
760°C to 1200°C
0.000 000 000 0 …
2.964 562 568 1 × 102
−1.497 612 778 6 … 3.178 710 392 4 × 10−3 −3.184 768 670 1 × 10−6 1.572 081 900 4 × 10−9 −3.069 136 905 6 × 10−13 ………… ………… …………
5.038 118 781 5 × 10−2 3.047 583 693 0 × 10−5 −8.568 106 572 0 × 10−8 1.322 819 529 5 × 10−10 −1.705 295 833 7 × 10−13 2.094 809 069 7 × 10−16 −1.253 839 533 6 × 10−19 1.563 172 569 7 × 10−23
Type K Thermocouples: emf-Temperature (°C) Reference Table and Equations °C -200 -100 0 °C 0 100 200 300 400
emf in Millivolts 0 -10 -5.891 -6.035 -3.554 -3.852 0.000 -0.392 0 10 0.000 0.397 4.096 4.509 8.138 8.539 12.209 12.624 16.397 16.820
Thermocouple emf as a Function of Temperature in Degrees Celsius (ITS-90) Reference junctions at 0 °C -20 -30 -40 -50 -60 -70 -80 -90 -6.158 -6.262 -6.344 -6.404 -6.441 -6.458 -4.138 -4.411 -4.669 -4.913 -5.141 -5.354 -5.550 -5.730 -0.778 -1.156 -1.527 -1.889 -2.243 -2.587 -2.920 -3.243 20 30 40 50 60 70 80 90 0.798 1.203 1.612 2.023 2.436 2.851 3.267 3.682 4.920 5.328 5.735 6.138 6.540 6.941 7.340 7.739 8.940 9.343 9.747 10.153 10.561 10.971 11.382 11.795 13.040 13.457 13.874 14.293 14.713 15.133 15.554 15.975 17.243 17.667 18.091 18.516 18.941 19.366 19.792 20.218
-100 -5.891 -3.554 100 4.096 8.138 12.209 16.397 20.644
500 600 700 800 900
20.644 24.905 29.129 33.275 37.326
21.071 25.330 29.548 33.685 37.725
21.497 25.755 29.965 34.093 38.124
21.924 26.179 30.382 34.501 38.522
22.350 26.602 30.798 34.908 38.918
22.776 27.025 31.213 35.313 39.314
23.203 27.447 31.628 35.718 39.708
23.629 27.869 32.041 36.121 40.101
24.055 28.289 32.453 36.524 40.494
24.480 28.710 32.865 36.925 40.885
24.905 29.129 33.275 37.326 41.276
1000 1100 1200 1300
41.276 45.119 48.838 52.410
41.665 45.497 49.202 52.759
42.053 45.873 49.565 53.106
42.440 46.249 49.926 53.451
42.826 46.623 50.286 53.795
43.211 46.995 50.644 54.138
43.595 47.367 51.000 54.479
43.978 47.737 51.355 54.819
44.359 48.105 51.708
44.740 48.473 52.060
45.119 48.838 52.410
Temperature ranges and coefficients of equations used to compute the above table: The equations are of the form: E = c0 + c1t + c2t2 + c3t3 + … cntn, where E is the emf in millivolts, t is the temperature in degrees Celsius (ITS-90), and c0, c1, c2, c3, etc. are the coefficients. In the 0°C to 1372°C range there is also an exponen-
Section 15.indb 3
tial term that must be evaluated and added to the equation. The c1 ( t –126.9686 )2
exponential term is of the form: c0 e , where t is the temperature in °C, e is the natural logarithm base, and c0 and c1 are the coefficients. These coefficients are extracted from Reference 1.
5/3/05 9:11:22 AM
Standard ITS-90 Thermocouple Tables
15-4 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
= = = = = = = = = = =
-270°C to 0°C 0.000 000 000 0 3.945 012 802 5 × 10−2 2.362 237 359 8 × 10−5 −3.285 890 678 4 × 10−7 −4.990 482 877 7 × 10−9 −6.750 905 917 3 × 10−11 −5.741 032 742 8 × 10−13 −3.108 887 289 4 × 10−15 −1.045 160 936 5 × 10−17 −1.988 926 687 8 × 10−20 −1.632 269 748 6 × 10−23
0°C to 1372°C −1.760 041 368 6 × 10−2 3.892 120 497 5 × 10−2 1.855 877 003 2 × 10−5 −9.945 759 287 4 × 10−8 3.184 094 571 9 × 10−10 −5.607 284 488 9 × 10−13 5.607 505 905 9 × 10−16 −3.202 072 000 3 × 10−19 9.715 114 715 2 × 10−23 −1.210 472 127 5 × 10−26 ……
0°C to 1372°C (Exponential term) 1.185 976 × 10−1 −1.183 432 × 10−4 .…… .…… .…… .…… .…… .…… .…… .…… .……
Type N Thermocouples: emf-Temperature (°C) Reference Table and Equations °C -200 -100 0 °C 0 100 200 300 400
emf in Millivolts 0 -10 3.990 -4.083 -2.407 -2.612 0.000 -0.260 0 10 0.000 0.261 2.774 3.072 5.913 6.245 9.341 9.696 12.974 13.346
Thermocouple emf as a Function of Temperature in Degrees Celsius (ITS-90) Reference junctions at 0 °C -20 -30 -40 -50 -60 -70 -80 -90 -4.162 -4.226 -4.277 -4.313 -4.336 -4.345 2.808 2.994 3.171 3.336 -3.491 3.634 -3.766 -3.884 -0.518 -0.772 -1.023 -1.269 -1.509 1.744 -1.972 -2.193 20 30 40 50 60 70 80 90 0.525 0.793 1.065 1.340 1.619 1.902 2.189 2.480 3.374 3.680 3.989 4.302 4.618 4.937 5.259 5.585 6.579 6.916 7.255 7.597 7.941 8.288 8.637 8.988 10.054 10.413 10.774 11.136 11.501 11.867 12.234 12.603 13.719 14.094 14.469 14.846 15.225 15.604 15.984 16.366
-100 -3.990 -2.407 100 2.774 5.913 9.341 12.974 16.748
500 600 700 800 900
16.748 20.613 24.527 28.455 32.371
17.131 21.003 24.919 28.847 32.761
17.515 21.393 25.312 29.239 33.151
17.900 21.784 25.705 29.632 33.541
18.286 22.175 26.098 30.024 33.930
18.672 22.566 26.491 30.416 34.319
19.059 22.958 26.883 30.807 34.707
19.447 23.350 27.276 31.199 35.095
19.835 23.742 27.669 31.590 35.482
20.224 24.134 28.062 31.981 35.869
20.613 24.527 28.455 32.371 36.256
1000 1100 1200 1300
36.256 40.087 43.846 47.513
36.641 40.466 44.218
37.027 40.845 44.588
37.411 41.223 44.958
37.795 41.600 45.326
38.179 41.976 45.694
38.562 42.352 46.060
38.944 42.727 46.425
39.326 43.101 46.789
39.706 43.474 47.152
40.087 43.846 47.513
Temperature ranges and coefficients of equations used to compute the above table: The equations are of the form: E = c0 + c1t + c2t2 + c3t3 + … cntn, where E is the emf in millivolts, t is the tem-
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
Section 15.indb 4
= = = = = = = = = = =
–270°C to 0°C 0.000 000 000 0 … 2.615 910 596 2 × 10−2 1.095 748 422 8 × 10−5 – 9.384 111 155 4 × 10−8 – 4.641 203 975 9 × 10−11 – 2.630 335 771 6 × 10−12 – 2.265 343 800 3 × 10−14 – 7.608 930 079 1 × 10−17 – 9.341 966 783 5 × 10−20 ………. ……….
perature in degrees Celsius (ITS-90), and c0, c1, c2, c3, etc. are the coefficients. These coefficients are extracted from Reference 1.
0°C to 1300°C 0.000 000 000 0… 2.592 939 460 1 × 10–2 1.571 014 188 0 × 10–5 4.382 562 723 7 × 10–8 –2.526 116 979 4 × 10–10 6.431 181 933 9 × 10–13 –1.006 347 151 9 × 10–15 9.974 533 899 2 × 10–19 –6.086 324 560 7 × 10–22 2.084 922 933 9 × 10–25 –3.068 219 615 1 × 10–29
5/3/05 9:11:23 AM
Standard ITS-90 Thermocouple Tables
15-5
Type R Thermocouples: emf-Temperature (°C) Reference Table and Equations °C 0 °C 0 100 200 300 400
emf in Millivolts 0 -10 0.000 -0.051 0 10 0.000 0.054 0.647 0.723 1.469 1.558 2.401 2.498 3.408 3.512
Thermocouple emf as a Function of Temperature in Degrees Celsius (ITS-90) Reference junctions at 0 °C -20 -30 -40 -50 -60 -70 -80 -90 -0.100 -0.145 -0.188 -0.226 20 30 40 50 60 70 80 90 0.111 0.171 0.232 0.296 0.363 0.431 0.501 0.573 0.800 0.879 0.959 1.041 1.124 1.208 1.294 1.381 1.648 1.739 1.831 1.923 2.017 2.112 2.207 2.304 2.597 2.696 2.796 2.896 2.997 3.099 3.201 3.304 3.616 3.721 3.827 3.933 4.040 4.147 4.255 4.363
-100 100 0.647 1.469 2.401 3.408 4.471
500 600 700 800 900
4.471 5.583 6.743 7.950 9.205
4.580 5.697 6.861 8.073 9.333
4.690 5.812 6.980 8.197 9.461
4.800 5.926 7.100 8.321 9.590
4.910 6.041 7.220 8.446 9.720
5.021 6.157 7.340 8.571 9.850
5.133 6.273 7.461 8.697 9.980
5.245 6.390 7.583 8.823 10.111
5.357 6.507 7.705 8.950 10.242
5.470 6.625 7.827 9.077 10.374
5.583 6.743 7.950 9.205 10.506
1000 1100 1200 1300 1400
10.506 11.850 13.228 14.629 16.040
10.638 11.986 13.367 14.770 16.181
10.771 12.123 13.507 14.911 16.323
10.905 12.260 13.646 15.052 16.464
11.039 12.397 13.786 15.193 16.605
11.173 12.535 13.926 15.334 16.746
11.307 12.673 14.066 15.475 16.887
11.442 12.812 14.207 15.616 17.028
11.578 12.950 14.347 15.758 17.169
11.714 13.089 14.488 15.899 17.310
11.850 13.228 14.629 16.040 17.451
1500 1600 1700
17.451 18.849 20.222
17.591 18.988 20.356
17.732 19.126 20.488
17.872 19.264 20.620
18.012 19.402 20.749
18.152 19.540 20.877
18.292 19.677 21.003
18.431 19.814
18.571 19.951
18.710 20.087
18.849 20.222
Temperature ranges and coefficients of equations used to compute the above table: The equations are of the form: E = c0 + c1t + c2t2 + c3t3 + ... cntn, where E is the emf in millivolts, t is the temc0 c1 c2 c3 c4 c5 c6 c7 c8 c9
= = = = = = = = = =
–50°C to 1064.18°C 0.000 000 000 00 ... 5.289 617 297 65 × 10–3 1.391 665 897 82 × 10–5 –2.388 556 930 17 × 10–8 3.569 160 010 63 × 10–11 –4.623 476 662 98 × 10–14 5.007 774 410 34 × 10–17 –3.731 058 861 91 × 10–20 1.577 164 823 67 × 10–23 –2.810 386 252 51 × 10–27
perature in degrees Celsius (ITS-90), and c0, c1, c2, c3, etc. are the coefficients. These coefficients are extracted from Reference 1.
1064.18°C to 1664.5°C 2.951 579 253 16 … –2.520 612 513 32 × 10–3 1.595 645 018 65 × 10–5 –7.640 859 475 76 × 10–9 2.053 052 910 24 × 10–12 –2.933 596 681 73 × 10–16 …………. …………. …………. ………….
1664.5°C to 1768.1°C 1.522 321 182 09 × 102 –2.688 198 885 45 × 10–1 1.712 802 804 71 × 10–4 –3.458 957 064 53 × 10–8 –9.346 339 710 46 × 10–15 …………. …………. …………. …………. ………….
Type S Thermocouples: emf-Temperature (°C) Reference Table and Equations. °C 0 °C 0 100 200 300 400
emf in Millivolts 0 -10 0.000 -0.053 0 10 0.000 0.055 0.646 0.720 1.441 1.526 2.323 2.415 3.259 3.355
Thermocouple emf as a Function of Temperature in Degrees Celsius (ITS-90) Reference junctions at 0 °C -20 -30 -40-50 -60 -70 -80 -90 -0.103 -0.150 -0.194 -0.236 20 30 40 50 60 70 80 90 0.113 0.173 0.235 0.299 0.365 0.433 0.502 0.573 0.795 0.872 0.950 1.029 1.110 1.191 1.273 1.357 1.612 1.698 1.786 1.874 1.962 2.052 2.141 2.232 2.507 2.599 2.692 2.786 2.880 2.974 3.069 3.164 3.451 3.548 3.645 3.742 3.840 3.938 4.036 4.134
-100 100 0.646 1.441 2.323 3.259 4.233
500 600 700 800 900
4.233 5.239 6.275 7.345 8.449
4.332 5.341 6.381 7.454 8.562
4.432 5.443 6.486 7.563 8.674
4.532 5.546 6.593 7.673 8.787
4.632 5.649 6.699 7.783 8.900
4.732 5.753 6.806 7.893 9.014
4.833 5.857 6.913 8.003 9.128
4.934 5.961 7.020 8.114 9.242
5.035 6.065 7.128 8.226 9.357
5.137 6.170 7.236 8.337 9.472
5.239 6.275 7.345 8.449 9.587
1000 1100 1200
9.587 10.757 11.951
9.703 10.875 12.071
9.819 10.994 12.191
9.935 11.113 12.312
10.051 11.232 12.433
10.168 11.351 12.554
10.285 11.471 12.675
10.403 11.590 12.796
10.520 11.710 12.917
10.638 11.830 13.038
10.757 11.951 13.159
Section 15.indb 5
5/3/05 9:11:25 AM
Standard ITS-90 Thermocouple Tables
15-6
Type S Thermocouples: emf-Temperature (°C) Reference Table and Equations. °C 1300 1400 1500 1600 1700
emf in Millivolts 0 -10 13.159 13.280 14.373 14.494 15.582 16.777 17.947
Thermocouple emf as a Function of Temperature in Degrees Celsius (ITS-90) Reference junctions at 0 °C -20 -30 -40-50 -60 -70 -80 -90 -100 13.402 13.523 13.644 13.766 13.887 14.009 14.130 14.251 14.373 14.615 14.736 14.857 14.978 15.099 15.220 15.341 15.461 15.582
15.702 16.895 18.061
15.822 17.013 18.174
15.942 17.131 18.285
16.062 17.249 18.395
Temperature ranges and coefficients of equations used to compute the above table: The equations are of the form: E = c0 + c1t + c2t2 + c3t3 + … cntn, where E is the emf in millivolts, t is the tem-
c0 c1 c2 c3 c4 c5 c6 c7 c8
= = = = = = = = =
–50°C to 1064.18°C 0.000 000 000 00 ... 5.403 133 086 31 × 10–3 1.259 342 897 40 × 10–5 –2.324 779 686 89 × 10–8 3.220 288 230 36 × 10–11 –3.314 651 963 89 × 10–14 2.557 442 517 86 × 10–17 –1.250 688 713 93 × 10–20 2.714 431 761 45 × 10–24
16.182 17.366 18.503
16.301 17.483 18.609
16.420 17.600
16.539 17.717
16.658 17.832
16.777 17.947
perature in degrees Celsius (ITS-90), and c0, c1, c2, c3, etc. are the coefficients. These coefficients are extracted from Reference 1.
1064.18°C to 1664.5°C 1.329 004 440 85 … 3.345 093 113 44 × 10–3 6.548 051 928 18 × 10–6 –1.648 562 592 09 × 10–9 1.299 896 051 74 × 10–14 …………. …………. …………. ………….
1664.5°C to 1768.1°C 1.466 282 326 36 × 102 –2.584 305 167 52 × 10–1 1.636 935 746 41 × 10– 4 –3.304 390 469 87 × 10–8 –9.432 236 906 12 × 10–15 …………. …………. …………. ………….
Type T Thermocouples: emf-Temperature (°C) Reference Table and Equations. °C -200 -100 0 °C 0 100 200 300 400
emf in Millivolts 0 -10 -5.603 -5.753 -3.379 -3.657 0.000 -0.383 0 10 0.000 0.391 4.279 4.750 9.288 9.822 14.862 15.445 20.872
Thermocouple emf as a Function of Temperature in Degrees Celsius (ITS-90) Reference junctions at 0 °C -20 -30 -40 -50 -60 -70 -80 -90 -5.888 -6.007 -6.105 -6.180 -6.232 -6.258 -3.923 -4.177 -4.419 -4.648 -4.865 -5.070 -5.261 -5.439 -0.757 -1.121 -1.475 -1.819 -2.153 -2.476 -2.788 -3.089 20 30 40 50 60 70 80 90 0.790 1.196 1.612 2.036 2.468 2.909 3.358 3.814 5.228 5.714 6.206 6.704 7.209 7.720 8.237 8.759 10.362 10.907 11.458 12.013 12.574 13.139 13.709 14.283 16.032 16.624 17.219 17.819 18.422 19.030 19.641 20.255
Temperature ranges and coefficients of equations used to compute the above table: The equations are of the form: E = c0 + c1t + c2t2 + c3t3 + … cntn, where E is the emf in millivolts, t is the tem-
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14
Section 15.indb 6
= = = = = = = = = = = = = = =
270 °C to 0 °C 0.000 000 000 0 ... 3.874 810 636 4 × 10−2 4.419 443 434 7 × 10−5 1.184 432 310 5 × 10−7 2.003 297 355 4 × 10−8 9.013 801 955 9 × 10−10 2.265 115 659 3 × 10−11 3.607 115 420 5 × 10−13 3.849 393 988 3 × 10−15 2.821 352 192 5 × 10−17 1.425 159 477 9 × 10−19 4.876 866 228 6 × 10−22 1.079 553 927 0 × 10−24 1.394 502 706 2 × 10−27 7.979 515 392 7 × 10−31
-100 -5.603 -3.379 100 4.279 9.288 14.862 20.872
perature in degrees Celsius (ITS-90), and c0, c1, c2, c3, etc. are the coefficients. These coefficients are extracted from Reference 1.
0 °C to 400 °C 0.000 000 000 0 ... 3.874 810 636 4 × 10−2 3.329 222 788 0 × 10−5 2.061 824 340 4 × 10−7 −2.188 225 684 6 × 10−9 1.099 688 092 8 × 10−11 −3.081 575 877 2 × 10−14 4.547 913 529 0 × 10−17 −2.751 290 167 3 × 10−20 ………… ………… ………… ………… ………… …………
5/3/05 9:11:26 AM
Standard ITS-90 Thermocouple Tables
15-7
Type B Thermocouples: Coefficients (ci) of Polynomials for the Computation of Temperatures in °C as a Function of the Thermocouple emf in Various Temperature and emf Ranges Temperature range: emf range: c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 =
250 °C to 700 °C 0.291 mV to 2.431 mV 9.842 332 1 × 101 6.997 150 0 × 102 −8.476 530 4 × 102 1.005 264 4 × 103 −8.334 595 2 × 102 4.550 854 2 × 102 −1.552 303 7 × 102 2.988 675 0 × 101 −2.474 286 0 …
700 °C to 1820 °C 2.431 mV to 13.820 mV 2.131 507 1 × 102 2.851 050 4 × 102 −5.274 288 7 × 101 9.916 080 4 ... −1.296 530 3 ... 1.119 587 0 × 10−1 −6.062 519 9 × 10−3 1.866 169 6 × 10−4 −2.487 858 5 × 10−6
NOTE— The above coefficients are extracted from Reference 1 and are for an expression of the form shown in Section 10.3.2. They yield approximate values of temperature that agree within ±0.03 °C with the values given in Table 10.2.
Type E Thermocouples: Coefficients (ci) of Polynomials for the Computation of Temperatures in °C as a Function of the Thermocouple emf in Various Temperature and emf Ranges Temperature range: emf range: c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 =
-200 °C TO 0 °C -8.825 mV to 0.0 mV 0.000 000 0 … 1.697 728 8 × 101 −4.351 497 0 × 10−1 −1.585 969 7 × 10−1 −9.250 287 1 × 10−2 −2.608 431 4 × 10−2 −4.136 019 9 × 10−3 −3.403 403 0 × 10−4 −1.156 489 0 × 10−5
c9 =
…….
0 °C to 1000 °C 0.0 mV to 76.373 mV 0.000 000 0 … 1.705 703 5 × 101 −2.330 175 9 × 10−1 6.543 558 5 × 10−3 −7.356 274 9 × 10−5 −1.789 600 × 10−6 8.403 616 5 × 10−8 −1.373 587 9 × 10−9 1.062 982 3 × 10−11 −3.244 708 7 × 10−14
NOTE— The above coefficients are extracted from Reference 1 and are for an expression of the form shown in Section 10.3.2. They yield approximate values of temperature that agree within ±0.02 °C with the values given in Table 10.4
Type J Thermocouples: Coefficients (ci) of Polynomials for the Computation of Temperatures in °C as a Function of the Thermocouple emf in Various Temperature and emf Ranges Temperature range: emf Range: c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 =
-210 °C to 0 °C -8.095 mVto 0.0 mV 0.000 000 0… 1.952 826 8 × 101 −1.228 618 5 … −1.075 217 8 … −5.908 693 3 × 10−1 −1.725 671 3 × 10−1 −2.813 151 3 × 10−2 −2.396 337 0 × 10−3 −8.382 332 1 × 10−5
0 °C to 760 °C 0.0 mV to 42.919 mV 0.000 000 … 1.978 425 × 101 −2.001 204 × 10−1 1.036 969 × 10−2 −2.549 687 × 10−4 3.585 153 × 10−6 −5.344 285 × 10−8 5.099 890 × 10−10 …….
760 °C to 1200 °C 42.919 mV to 69.553 mV −3.113 581 87 × 103 3.005 436 84 × 102 −9.947 732 30 … 1.702 766 30 × 10−1 1.430 334 68 × 10−3 4.438 860 84 × 10−6 ……. ……. …….
NOTE— The above coefficients are extracted from Reference 1 and are for an expression of the form shown in Section 10.3.2. They yield approximate values of temperature that agree within ± 0.5 °C with the values given in Table 10.6.
Section 15.indb 7
5/3/05 9:11:27 AM
Standard ITS-90 Thermocouple Tables
15-8
Type K Thermocouples: Coefficients (ci) of Polynomials for the Computation of Temperatures in °C as a Function of the Thermocouple emf in Various Temperature and emf Ranges Temperature range: emf Range: c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = c9 =
– 200 °C to 0 °C − 5.891 mV to 0.0 mV 0.000 000 0 … 2.517 346 2 × 101 −1.166 287 8 … − 1.083 363 8 … −8.977 354 0 × 10−1 −3.734 237 7 × 10−1 −8.663 264 3 × 10−2 −1.045 059 8 × 10−2 −5.192 057 7 × 10−4 …….
0 °C to 500 °C 0.0 mV to 20.644 mV 0.000 000 … 2.508 355 × 101 7.860 106 × 10−2 −2.503 131 × 10−1 8.315 270 × 10−2 −1.228 034 × 10−2 9.804 036 × 10−4 −4.413 030 × 10−5 1.057 734 × 10−6 −1.052 755 × 10−8
500 °C to 1372 °C 20.644 mV to 54.886 mV −1.318 058 × 102 4.830 222 × 101 −1.646 031 … 5.464 731 × 10−2 −9.650 715 × 10−4 8.802 193 × 10−6 3.110 810 × 10−8 ……. ……. …….
NOTE—The above coefficients are extracted from Reference 1 and are for an expression of the form shown in Section 10.3.2. They yield approximate values of temperature that agree within ±0.05 °C with the values given in Table 10.8.
Type N Thermocouples: Coefficients (ci) of Polynomials for the Computation of Temperatures in °C as a Function of the Thermocouple emf in Various Temperature and emf Ranges
Temperature range: emf Range: c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = c9 =
–200 °C to 0 °C −3.990 mV to 0.0 mV 0.000 000 0 … 3.843 684 7 × 101 1.101 048 5 … 5.222 931 2 … 7.206 052 5 … 5.848 858 6 … 2.775 491 6 … 7.707 516 6 × 10−1 1.158 266 5 × 10−1 7.313 886 8 × 10−3
0 °C to 600 °C 0.0 mV to 20.613 mV 0.000 00 … 3.868 96 × 101 −1.082 67 … 4.702 05 × 10−2 −2.121 69 × 10−6 −1.172 72 × 10−4 5.392 80 × 10−6 −7.981 56 × 10−8 ……… ………
600 °C to 1300 °C 20.613 mV to 47.513 mV 1.972 485 × 101 3.300 943 × 101 −3.915 159 × 10−1 9.855 391× 10−3 −1.274 371 × 10−4 7.767 022 × 10−7 ……… ……… ……… ………
NOTE—The above coefficients are extracted from Reference 1 and are for an expression of the form shown in Section 10.3.2. They yield approximate values of temperature that agree within ± 0.04 °C with the values given in Table 10.10.
Type R Thermocouples: Coefficients (ci) of Polynomials for the Computation of Temperatures in °C as a Function of the Thermocouple emf in Various Temperature and emf Ranges Temperature range: emf Range: c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = c9 = c10 =
− 50 °C to 250 °C − 0.226 mV to 1.923 mV 0.000 000 0 … 1.889 138 0 × 102 −9.383 529 0 × 101 1.306 861 9 × 102 −2.270 358 0 × 102 3.514 565 9 × 102 −3.895 390 0 × 102 2.823 947 1 × 102 −1.260 728 1 × 102 3.135 361 1 × 101 −3.318 776 9 …
250 °C to 1200 °C 1.923 mV to 13.228 mV 1.334 584 505 × 101 1.472 644 573 × 102 −1.844 024 844 × 101 4.031 129 726 … −6.249 428 360 × 10− 1 6.468 412 046 × 10− 2 −4.458 750 426 × 10− 3 1.994 710 149 × 10− 4 −5.313 401 790 × 10−6 6.481 976 217 × 10− 8 ………
1064°C to 1664.5 °C 11.361 mV to 19.739 mV −8.199 599 416 × 101 1.553 962 042 × 102 −8.342 197 663 4.279 433 549 × 10-1 −1.191 577 910× 10-2 1.492 290 091× 10-4 ……… ……… ……… ……… ………
1664.5 °C to 1768.1 °C 19.739 mV to 21.103 mV 3.406 177 836 × 104 −7.023 729 171 × 103 5.582 903 813 × 102 −1.952 394 635 × 101 2.560 740 231 × 10−1 ……… ……… ……… ……… ……… ………
NOTE—The above coefficients are extracted from Reference 1 and are for an expression of the form shown in Section 10.3.2. They yield approximate values of temperature that agree within ±0.02 °C with the values given in Table 10.12.
Section 15.indb 8
5/3/05 9:11:27 AM
Standard ITS-90 Thermocouple Tables
15-9
Type S Thermocouples: Coefficients (ci) of Polynomials for the Computation of Temperatures in °C as a Function of the Thermocouple emf in Various Temperature and emf Ranges Temperature range: emf Range: c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = c9 =
–50 °C to 250 °C –0.235 mV to 1.874 mV 0.000 000 00 . . . 1.849 494 60 × 102 -8.005 040 62 × 101 1.022 374 30 × 102 -1.522 485 92 × 102 1.888 213 43 × 102 -1.590 859 41 × 102 8.230 278 80 × 101 -2.341 819 44 × 101 2.797 862 60 . . .
250 °C to 1200 °C 1.874 mV to 11.950 mV
1.291 507 177 × 101 1.466 298 863 × 102 -1.534 713 402 ×101 3.145 945 973 . . . -4.163 257 839 × 10-1 3.187 963 771 × 10-2 -1.291 637 500 × 10-3 2.183 475 087 × 10-5 -1.447 379 511 × 10-7 8.211 272 125 × 10-9
1064 °C to 1664.5 °C 10.332 mV to 17.536 mV
-8.087 801 117 ×101 1.621 573 104 × 102 -8.536 869 453 . . . 4.719 686 976 × 10-1 -1.441 693 666 × 10-2 2.081 618 890 × 10-4 ………. ………. ………. ……….
1664.5 °C to 1768.1 °C 17.536 mV to 18.693 mV
5.333 875 126 × 104 -1.235 892 298 × 104 1.092 657 613 × 103 -4.265 693 686 × 101 6.247 205 420 × 10-1 ………. ………. ………. ………. ……….
NOTE—The above coefficients are extracted from Reference 1 and are for an expression of the form shown in Section 10.3.2. They yield approximate values of temperature that agree within ± 0.02 °C with the values given in Table 10.14.
Type T Thermocouples: Coefficients (ci) of Polynomials for the Computation of temperatures in °C as a Function of the Thermocouple emf in Various Temperature and emf Ranges
Temperature range: emf Range: c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 =
–200 °C to 0 °C –5.603 mV to 0.0 mV 0.000 000 0 . . . 2.594 919 2 × 101 -2.131 696 7 × 10-1 7.901 869 2 × 10-1 4.252 777 7 × 10-1 1.330 447 3 × 10-1 2.024 144 6 × 10-2 1.266 817 1 × 10-3
0 °C to 400 °C 0.0 mV to 20.872 mV 0.000 000 . . . 2.592 800 × 101 -7.602 961 × 10-1 4.637 791 × 10-2 -2.165 394 × 10-3 6.048 144 × 10-5 -7.293 422 × 10-7 ……….
NOTE—The above coefficients are extracted from Reference 1 and are for an expression of the form shown in Section 10.3.2. They yield approximate values of temperature that agree within ± 0.04 °C with the values given in Table 10.16.
Section 15.indb 9
5/3/05 9:11:28 AM
Laboratory Solvents and Other Liquid Reagents This table summarizes the properties of 575 liquids that are commonly used in the laboratory as solvents or chemical reagents. The properties tabulated are: Mr : tm: tb : ρ:
Molecular weight Melting point in °C Normal boiling point in °C Density in g/mL at the temperature in °C indicated by the superscript η: Viscosity in mPa s (1 mPa s = 1 centipoise) ε: Dielectric constant at ambient temperature (15 to 30°C) Dipole moment in D μ: cp: Specific heat capacity of the liquid at constant pressure at 25°C in J/g K vp: Vapor pressure at 25°C in kPa (1 kPa = 7.50 mmHg) FP: Flash point in °C Fl.Lim: Flammable (explosive) limit in air in percent by volume Autoignition temperature in °C IT TLV Threshold limit for allowable airborne concentration in parts per million by volume at 25°C and atmospheric pressure
Name
Mol. form.
Mr
t m/°C
t b/°C
Acetaldehyde
C2H4O
44.052
-123.37
20.1
Acetic acid Acetic anhydride Acetone Acetone cyanohydrin Acetonitrile Acetophenone Acetyl bromide Acetyl chloride Acrolein Acrylic acid Acrylonitrile Allyl alcohol Allylamine 2-Amino-2-methyl-1propanol 3-Amino-1-propanol Aniline Anisole Antimony(V) chloride Antimony(V) fluoride Arsenic(III) chloride Benzaldehyde Benzene Benzeneacetonitrile Benzeneethanamine Benzeneethanol Benzenemethanethiol Benzenesulfonyl chloride Benzenethiol Benzonitrile Benzoyl chloride Benzyl acetate Benzyl alcohol Benzylamine 2,2’-Bioxirane
C2H4O2 C4H6O3 C3H6O C4H7NO C2H3N C8H8O C2H3BrO C2H3ClO C3H4O C3H4O2 C3H3N C3H6O C3H7N C4H11NO
60.052 102.089 58.079 85.105 41.052 120.149 122.948 78.497 56.063 72.063 53.063 58.079 57.095 89.136
16.64 -74.1 -94.7 -19 -43.82 20.5 -96 -112.8 -87.7 12.5 -83.48 -129 -88.2 25.5
C3H9NO C6H7N C7H8O Cl5Sb F5Sb AsCl3 C7H6O C6H6 C8H7N C8H11N C8H10O C7H8S C6H5ClO2S C6H6S C7H5N C7H5ClO C9H10O2 C7H8O C7H9N C4H6O2
75.109 93.127 108.138 299.024 216.752 181.280 106.122 78.112 117.149 121.180 122.164 124.204 176.621 110.177 103.122 140.567 150.174 108.138 107.153 86.090
12.4 -6.02 -37.13 4 8.3 -16 -57.1 5.49 -23.8 <0 -27 -30 14.5 -14.93 -13.99 -0.4 -51.3 -15.4
487_S15.indb 13
2.0
Data on the temperature dependence of viscosity, dielectric constant, and vapor pressure can be found in the pertinent tables in this Handbook.
References 1. Lide, D. R., Handbook of Organic Solvents, CRC Press, Boca Raton, FL, 1994. 2. Lide, D. R., and Kehiaian, H. V., Handbook of Thermophysical and Thermochemical Data, CRC Press, Boca Raton, FL, 1994. 3. Riddick, J. A., Bunger, W. B., and Sakano, T. K., Organic Solvents, Fourth Edition, John Wiley & Sons, New York, 1986. 4. Fire Protection Guide to Hazardous Materials, 11th Edition, National Fire Protection Association, Quincy, MA, 1994. 5. Urben, P. G., Ed., Bretherick’s Handbook of Reactive Chemical Hazards, 5th Edition, Butterworth-Heinemann, Oxford, 1995. 6. 2004 TLV’s and BEI’s, American Conference of Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, Cincinnati, OH 45240-1634, 2004.
ρ/g mL-1 η/mPa s ε
μ/D
cp/J g-1K-1 vp/kPa
FP/ °C Fl. lim.
IT/°C TLV/ppm
21.0
2.750
2.020
120
-39
4-60%
175
25
117.9 139.5 56.05 95 81.65 202 76 50.7 52.6 141 77.3 97.0 53.3 165.5
1.044625 1.08220 0.784525 0.93219 0.785720 1.028120 1.662516 1.105120 0.84020 1.051120 0.800725 0.854020 0.75820 0.93420
1.056 0.843 0.306
6.20 22.45 21.01
1.70 ≈ 2.8 2.88
2.053 1.648 2.175
2.07 0.680 30.8
0.369 1.681
36.64 17.44
3.92 3.02
2.229 1.703
4-20% 2.7-10.3% 3-13% 2.2-12% 3-16%
463 316 465 688 524 570
10 5 500 4.6 20 10
0.368
15.8
2.72 3.1
1.491
11.9 0.049 16.2 38.4 36.2 0.53 14.1 3.14 33.1
39 49 -20 74 6 77
390 220 438 481 378 374
0.1 2 2 0.5
187.5 184.17 153.7 140 dec 141 130 178.8 80.09 233.5 195 218.2 194.5 251 dec 169.1 191.1 197.2 213 205.31 185 144
0.982426 1.021720 0.994020 2.34 3.10 2.150 1.040125 0.876520 1.020515 0.964025 1.020220 1.05820 1.347015 1.077520 1.009315 1.212020 1.055020 1.041924 0.981320 1.11320
0.783418
1.218
3.85 1.056
2.8-31% 2.4-8% 3-17% 3-18% 2-22%
33.0 19.7
3.87 1.60 1.2
7.06 4.30 3.222
1.13 1.38
2.061 1.840
0.090 0.472
80 70 52
1.3-11%
1.59 3.0 0 3.5
1.621 1.741
5.38 0.169 12.7 0.012
63 -11 113
1-8%
2.068
0.01
96
0.604
17.85 2.2825 17.87
1.267
12.31 4.705 28.90 4.26 25.9 23.0 5.34 11.916 5.18
5.47 1.624
2.022 2.05 2.392
4 -26 50 0 21 -29 67
1.23 4.18
1.572 1.602
1.22 1.71
0.989 2.015
0.008 0.26 0.11 0.084 0.022 0.015 0.096
615 475
192 498
2
0.5
0.1 72 90 93
460 436
0.5 10
15-13
3/20/06 11:35:43 AM
Laboratory Solvents and Other Liquid Reagents
15-14 Name Bis(2-aminoethyl)amine N,N’-Bis(2-aminoethyl)-1,2ethanediamine Bis(2-chloroethyl) ether Bis(chloromethyl) ether Bis(2-ethylhexyl) phthalate Bis(2-hydroxyethyl) sulfide Boron tribromide Boron trichloride Bromine Bromobenzene 1-Bromobutane 2-Bromobutane, (±)Bromochloromethane Bromodichloromethane Bromoethane Bromoethene 2-Bromo-2-methylpropane 1-Bromopentane 1-Bromopropane 2-Bromopropane 3-Bromopropene 2-Bromotoluene Bromotrichloromethane Butanal 1,3-Butanediol 1,4-Butanediol 2,3-Butanediol 2,3-Butanedione Butanenitrile 1-Butanethiol 2-Butanethiol Butanoic acid Butanoic anhydride 1-Butanol 2-Butanol 2-Butanone trans-2-Butenal cis-2-Butenoic acid 2-Butoxyethanol Butyl acetate sec-Butyl acetate Butyl acrylate Butylamine sec-Butylamine tert-Butylamine Butylbenzene tert-Butylbenzene Butyl benzoate tert-Butyl ethyl ether tert-Butyl hydroperoxide 1-tert-Butyl-4-methylbenzene Butyl vinyl ether γ-Butyrolactone Carbon disulfide Chloroacetaldehyde Chloroacetone Chloroacetyl chloride 2-Chloroaniline 3-Chloroaniline Chlorobenzene 2-Chloro-1,3-butadiene 1-Chlorobutane 2-Chlorobutane Chlorocyclohexane Chlorodibromomethane Chloroethane
487_S15.indb 14
Mol. form.
Mr
t m/°C
t b/°C
C4H13N3 C6H18N4
103.166 146.234
-39 12
207 266.5
C4H8Cl2O C2H4Cl2O C24H38O4 C4H10O2S BBr3 BCl3 Br2 C6H5Br C4H9Br C4H9Br CH2BrCl CHBrCl2 C2H5Br C2H3Br C4H9Br C5H11Br C3H7Br C3H7Br C3H5Br C7H7Br CBrCl3 C4H8O C4H10O2 C4H10O2 C4H10O2 C4H6O2 C4H7N C4H10S C4H10S C4H8O2 C8H14O3 C4H10O C4H10O C4H8O C4H6O C4H6O2 C6H14O2 C6H12O2 C6H12O2 C7H12O2 C4H11N C4H11N C4H11N C10H14 C10H14 C11H14O2 C6H14O C4H10O2 C11H16 C6H12O C4H6O2 CS2 C2H3ClO C3H5ClO C2H2Cl2O C6H6ClN C6H6ClN C6H5Cl C4H5Cl C4H9Cl C4H9Cl C6H11Cl CHBr2Cl C2H5Cl
143.012 114.958 390.557 122.186 250.523 117.169 159.808 157.008 137.018 137.018 129.384 163.829 108.965 106.949 137.018 151.045 122.992 122.992 120.976 171.035 198.274 72.106 90.121 90.121 90.121 86.090 69.106 90.187 90.187 88.106 158.195 74.121 74.121 72.106 70.090 86.090 118.174 116.158 116.158 128.169 73.137 73.137 73.137 134.218 134.218 178.228 102.174 90.121 148.245 100.158 86.090 76.141 78.497 92.524 112.942 127.572 127.572 112.557 88.536 92.567 92.567 118.604 208.280 64.514
-51.9 -41.5 -55 -10.2 -45 -107 -7.2 -30.72 -112.6 -112.65 -87.9 -57 -118.6 -139.54 -16.2 -88.0 -110.3 -89.0 -119 -27.8 -5.65 -96.86 -77 20.4 7.6 -1.2 -111.9 -115.7 -165 -5.1 -75 -88.6 -88.5 -86.64 -76 15 -74.8 -78 -98.9 -64.6 -49.1 <-72 -66.94 -87.85 -57.8 -22.4 -94 6 -52 -92 -43.61 -112.1 -16.3 -44.5 -22 -1.9 -10.28 -45.31 -130 -123.1 -131.3 -43.81 -20 -138.4
178.5 106 384 282 91 12.65 58.8 156.06 101.6 91.3 68.0 90 38.5 15.8 73.3 129.8 71.1 59.5 70.1 181.7 105 74.8 207.5 235 182.5 88 117.6 98.5 85.0 163.75 200 117.73 99.51 79.59 102.2 169 168.4 126.1 112 145 77.00 62.73 44.04 183.31 169.1 250.3 72.6 89 dec 190 94 204 46 85.5 119 106 208.8 230.5 131.72 59.4 78.4 68.2 142 120 12.3
ρ/g mL-1 η/mPa s ε
μ/D
cp/J g-1K-1 vp/kPa
FP/ °C Fl. lim.
IT/°C TLV/ppm
0.956920
12.62 10.76
1.9
2.462
0.03
98
2-7%
358
1
1.2220 1.32315 0.98125 1.179325 2.6
21.20 3.51 5.3 28.61
2.6
1.545
0.143
55
3%-
369
2.84
1.804
0.00000005 218 0.08 160
5 0.001 0.3
3.1028 1.495020 1.275820 1.258520 1.934420 1.98020 1.460420 1.493320 1.427820 1.218220 1.353720 1.314020 1.39820 1.423220 2.01225 0.801620 1.005320 1.017120 1.003320 0.980818 0.793620 0.841620 0.829520 0.952825 0.966820 0.809520 0.806320 0.799925 0.851620 1.026720 0.901520 0.882520 0.874820 0.889820 0.741420 0.724620 0.695820 0.860120 0.866520 1.00020 0.73625 0.896020 0.861220 0.788820 1.129620 1.263220 1.19 1.1520 1.420220
0.944 1.074 0.606
0.374
0.489 0.458 0.471
0.553
1.426 2.54 3.10 0.405
0.685
0.574
0.950
9.01 5.63 10.98 6.31 8.09 9.46 7.0 4.641 2.405 13.45 28.8 31.9 4.04 24.83 5.204 5.645 2.98 12.8 17.84 17.26 18.56
9.30 5.07 5.135 5.25 4.71 58.5 2.359 2.359 5.52
0.41
2.03 1.42 2.17 2.20 2.18 2.21 ≈ 1.9
0.925 1.007 1.102 0.875 0.702 1.075
2.72
2.270 2.521 2.220 2.363
2.58
2.378 1.961 1.958 2.450
0.731 12.2
2.627 1.813 1.773
48.4 0.150 0.280 0.005 16.5
2.301 1.898
1.65
2.027 1.793 2.391 2.656 2.201 1.361
2.1 1.9 1.87 1.0 1.28 1.3 ≈0 ≈ 0.83
0.352
0.753 0.422
39.0 2.6320
13.40 13.3 5.6895 4.914 7.276 8.564 7.9505 9.45
≈0 1.25 4.27 0
2.316 1.642 1.003
2.23 1.77 1.69
156 28.2 0.556 5.26 9.32 19.5 62.5 141 17.7 1.68 18.6 28.9 18.6 0.17 5.35 15.7 0.008 0.002 0.02 7.45 2.55 6.07 10.8 0.221 0.07 0.86 2.32 12.6 4.92 0.06 0.15 1.66
3.9 1.53
1.66 1.8 2.78 3.67
298 1
0.911 0.474 0.983 0.798
2.13
3.32 1.216120 1.105820 0.95620 0.885720 0.873220 1.00020 2.45120 0.92390
3.1484 5.45 7.315 8.64
0 0 0 1.70 2.08 2.23 1.7
1.558 1.334
2.05 2.04 2.1
1.891
2.05
1.617
0.1 51 18 21
2.6-6.6%
565 265 200
7-8% 9-15%
511 530
5 0.5
32 490 -1 79
4.4-7.3%
295
-22 121 121
2-12.5%
218 395 402
27 24 2 -23 72 54 37 24 -9 13 69 22 31 29 -12 -9 -9 71 60 107
>1.6%
501 0.5
2-10% 0.9-5.8% 1-11% 2-10% 1-11% 2.1-15.5%
443 279 343 405 404 232
4-13% 2-8% 1.7-9.8% 1.7-9.9% 2-10%
238 425 292 312
2-9% 0.8-5.8% 0.7-5.7%
380 410 450
20 100 200 0.3 20 150 200 2 5
5
0.09 6.65 0.43 48.2
27 68 -9 98 -30
2 3.33 0.034 0.0156 1.6 29.5 13.7 21.0 1.0
28 -20 -12 -10 32
1-10% 4-20% 2-10%
160
-50
4-15%
1 255 1-50%
90
705 593
10 1 1 0.05
10 10
240
519
100
3/20/06 11:35:47 AM
Laboratory Solvents and Other Liquid Reagents Name 2-Chloroethanol 2-Chloroethyl vinyl ether (Chloromethyl)benzene Chloromethyl methyl ether 1-Chloro-2-methylpropane 2-Chloro-2-methylpropane 1-Chloronaphthalene 1-Chlorooctane 1-Chloropentane 2-Chlorophenol 1-Chloropropane 2-Chloropropane 3-Chloro-1,2-propanediol 3-Chloropropanenitrile 2-Chloropropene 3-Chloropropene Chlorosulfonic acid 2-Chlorotoluene 4-Chlorotoluene Chromyl chloride trans-Cinnamaldehyde o-Cresol m-Cresol p-Cresol Cyanogen chloride Cyclobutane Cyclohexane Cyclohexanol Cyclohexanone Cyclohexene Cyclohexylamine 1,3-Cyclopentadiene Cyclopentane Cyclopentanol Cyclopentanone cis-Decahydronaphthalene trans-Decahydronaphthalene Decamethylcyclopentasiloxane Decanal Decane Decanoic acid 1-Decanol 1-Decene Diacetone alcohol Dibenzyl ether Dibromodifluoromethane 1,2-Dibromoethane Dibromomethane 1,2-Dibromotetrafluoroethane Dibutylamine Dibutyl ether Di-tert-butyl peroxide Dibutyl phthalate Dibutyl sebacate Dibutyl sulfide Dichloroacetic acid o-Dichlorobenzene m-Dichlorobenzene trans-1,4-Dichloro-2-butene Dichlorodimethylsilane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Dichloromethane
487_S15.indb 15
Mol. form.
Mr
t m/°C
t b/°C
C2H5ClO C4H7ClO C7H7Cl C2H5ClO C4H9Cl C4H9Cl C10H7Cl C8H17Cl C5H11Cl C6H5ClO C3H7Cl C3H7Cl C3H7ClO2 C3H4ClN C3H5Cl C3H5Cl ClHO3S C7H7Cl C7H7Cl Cl2CrO2 C9H8O C7H8O C7H8O C7H8O CClN C4H8 C6H12 C6H12O C6H10O C6H10 C6H13N C5H6 C5H10 C5H10O C5H8O C10H18 C10H18 C10H30O5Si5
80.513 106.551 126.584 80.513 92.567 92.567 162.616 148.674 106.594 128.556 78.541 78.541 110.540 89.524 76.525 76.525 116.525 126.584 126.584 154.900 132.159 108.138 108.138 108.138 61.471 56.107 84.159 100.158 98.142 82.143 99.174 66.102 70.133 86.132 84.117 138.250 138.250 370.770
-67.5 -70 -45 -103.5 -130.3 -25.60 -2.5 -57.8 -99.0 9.4 -122.9 -117.18 -51 -137.4 -134.5 -80 -35.8 7.5 -96.5 -7.5 31.03 12.24 34.77 -6.5 -90.7 6.59 25.93 -27.9 -103.5 -17.8 -85 -93.4 -17.5 -51.90 -42.9 -30.4 -38
128.6 108 179 59.5 68.5 50.9 259 183.5 108.4 174.9 46.5 35.7 213 dec 175.5 22.6 45.1 152 159.0 162.4 117 246 191.04 202.27 201.98 13 12.6 80.73 160.84 155.43 82.98 134 41 49.3 140.42 130.57 195.8 187.3 210
1.201920 1.049520 1.100420 1.06310 0.877320 0.842020 1.188025 0.873420 0.882020 1.263420 0.889920 0.861720 1.32518 1.157320 0.901720 0.937620 1.75 1.082520 1.069720 1.91 1.049720 1.032735 1.033920 1.018540 1.18620 0.70380 0.773925 0.962420 0.947820 0.811020 0.819120 0.802120 0.745720 0.948820 0.948720 0.896520 0.865925 0.959320
C10H20O C10H22 C10H20O2 C10H22O C10H20 C6H12O2 C14H14O CBr2F2 C2H4Br2 CH2Br2 C2Br2F4 C8H19N C8H18O C8H18O2 C16H22O4 C18H34O4 C8H18S C2H2Cl2O2 C6H4Cl2 C6H4Cl2 C4H6Cl2 C2H6Cl2Si C2H4Cl2 C2H4Cl2 C2H2Cl2 C2H2Cl2 C2H2Cl2 CH2Cl2
156.265 142.282 172.265 158.281 140.266 116.158 198.260 209.816 187.861 173.835 259.823 129.244 130.228 146.228 278.344 314.461 146.294 128.942 147.002 147.002 124.997 129.061 98.959 98.959 96.943 96.943 96.943 84.933
-4.0 -29.6 31.4 6.9 -66.3 -44 1.8 -110.1 9.84 -52.5 -110.32 -62 -95.2 -40 -35 -10 -79.7 10 -17.0 -24.8 1.0 -16 -96.9 -35.7 -122.56 -80.0 -49.8 -97.2
208.5 174.15 268.7 231.1 170.5 167.9 298 22.76 131.6 97 47.35 159.6 140.28 111 340 344.5 185 194 180 173 155.4 70.3 57.3 83.5 31.6 60.1 48.7 40
0.83015 0.726625 0.885840 0.829720 0.740820 0.938720 1.042820
15-15
ρ/g mL-1 η/mPa s ε
2.168325 2.496920 2.14925 0.767020 0.768420 0.70420 1.046520 0.940515 0.838620 1.563420 1.305920 1.288420 1.18325 1.06425 1.175720 1.245425 1.21320 1.283720 1.256520 1.326620
3.59 0.334 0.303
μ/D
cp/J g-1K-1 vp/kPa
25.80
1.78
6.854
1.8
1.44
7.027 9.663 5.04 5.05 6.654 7.40 8.588
2.00 2.13 1.57 2.00 2.16
1.713 1.867 1.307 1.335
2.05 2.17
1.2
1.468 1.683
0.164 24.9 19.9 42.7 0.003 0.11 4.36 0.308 45.8 68.9
FP/ °C Fl. lim.
IT/°C TLV/ppm
60 27 67
5-16%
425
1
1%-
585
1
-6 0 121 70 13 64 <-18 -32
2-8.7%
1.6-8.6%
260
2.6-11% 2.8-11%
520 593
76 -37 -32
4.5-16% 2.9-11%
485
>558
31.0
0.314
8.92 8.2
1.647 1.94
0.964 0.837
4.721 6.25
1.56 2.21
1.635 1.318
110 48.9 0.42 0.482 0.4
1 50 0.025
12.91
17.72 6.76 12.44 13.05
0.894 57.5 2.02 0.625 1.944
2.0243 16.40 16.1 2.2176 4.547
0.413
1.9687 18.5 13.58 2.219 2.184 2.50
3.04 1.948
1.45 1.48 1.48 2.8331 0 ≈0 2.87 0.33 1.3 0.419 ≈0 3.3 ≈0 ≈0
0.838
1.9853
≈0
10.91 0.756 2.80
7.93 2.136 18.2 3.821
≈0 3.2
1.595 0.980
4.9612 7.77 2.34 2.765 3.0830
0.918 0.637 16.63
1.324 1.044
6.58 4.54 4.29 8.33 10.12 5.02
0.66 1.2 1.43
2.160 2.080 2.044
1.841 2.079 1.856 1.805
1.837 2.119 1.84 1.678 1.653
2.210 2.761 2.341 2.144 1.905
0.005 0.041 0.019 0.017 157 13.0 0.10 0.53 11.8 1.20 58.5 42.3 0.294 1.55 0.10 0.164 0.02 0.02 0.170 0.009 0.210 0.224 110 1.55 6.12 43.4 0.34 0.898 3.43
1.0 1.17
0.724 0.61 0.69 2.266 2.136
2.82 2.48 1.61
1.789 1.968 1.943
2.50 1.72
1.105 1.163
0.09 0.03 0.18 0.252
1.276 1.298 1.148 1.201 1.205 1.192
18.9 30.5 10.6 80.0 26.8 44.2 58.2
81 86 86
>1.4% >1.1% >1.1%
599 558 558
5 5 5 0.3
<10 -20 68 44 -12 31
>1.8% 1-8% 1-9% 1-9% >1.2% 1-9%
245 300 420 310 293
-25 51 26
2%-
361
100 50 20 300 10 75 600
54
1-5%
255
51
0.8-5.4%
210
2-7%
288 235 643
82 <55 58 135
50 100
47 25 18 157 178 76
1-6% 1.5-7.6%
194
>0.5% >0.4%
402 365
0.4
66 72
2-9%
648
25
<21 -17 13 -28 6 2
3.4-9.5% 5-11% 6-16% 7-16% 3-15% 6-13% 13-23%
0.005 0.464 0.779 0.445 0.317 0.413
10.10 10.42 4.60 9.20 2.14 8.93
2.06 1.8 1.34 1.90 0 1.60
458 413 570 460 460 556
100 10 5 200 200 50
3/20/06 11:35:51 AM
Laboratory Solvents and Other Liquid Reagents
15-16 Name (Dichloromethyl)benzene 1,1-Dichloropropane 1,2-Dichloropropane, (±)1,3-Dichloropropane 2,3-Dichloropropene 2,4-Dichlorotoluene Dicyclohexylamine Diethanolamine 1,1-Diethoxyethane 1,2-Diethoxyethane Diethylamine N,N-Diethylaniline o-Diethylbenzene m-Diethylbenzene p-Diethylbenzene Diethyl carbonate Diethylene glycol Diethylene glycol diethyl ether Diethylene glycol dimethyl ether Diethylene glycol monobutyl ether Diethylene glycol monoethyl ether Diethylene glycol monoethyl ether acetate Diethylene glycol monomethyl ether Diethyl ether Diethyl maleate Diethyl malonate Diethyl oxalate Diethyl phthalate Diethyl succinate Diethyl sulfate Diethyl sulfide Diiodomethane Diiodosilane Diisobutylamine Diisopentyl ether Diisopropylamine Diisopropyl ether 1,2-Dimethoxyethane Dimethoxymethane Dimethylacetal N,N-Dimethylacetamide 2,3-Dimethylaniline 2,6-Dimethylaniline N,N-Dimethylaniline 2,2-Dimethylbutane 2,3-Dimethylbutane 3,3-Dimethyl-2-butanone Dimethylcarbamic chloride Dimethyl disulfide N,N-Dimethylethanolamine N,N-Dimethylformamide 2,6-Dimethyl-4-heptanone 1,1-Dimethylhydrazine Dimethyl phthalate 2,6-Dimethylpyridine Dimethyl sulfate Dimethyl sulfide Dimethyl sulfoxide 1,4-Dioxane 1,3-Dioxolane Dipentyl ether Dipropylamine
487_S15.indb 16
Mol. form.
Mr
t m/°C
t b/°C
C7H6Cl2 C3H6Cl2 C3H6Cl2 C3H6Cl2 C3H4Cl2 C7H6Cl2 C12H23N C4H11NO2 C6H14O2 C6H14O2 C4H11N C10H15N C10H14 C10H14 C10H14 C5H10O3 C4H10O3 C8H18O3
161.029 112.986 112.986 112.986 110.970 161.029 181.318 105.136 118.174 118.174 73.137 149.233 134.218 134.218 134.218 118.131 106.120 162.227
-17 -100.53 -99.5 10 -13.5 -0.1 28 -100 -74.0 -49.8 -38.8 -31.2 -83.9 -42.83 -43 -10.4 -45
205 88.1 96.4 120.9 94 201 256 dec 268.8 102.25 121.2 55.5 216.3 184 181.1 183.7 126 245.8 188
1.2625 1.132120 1.156020 1.178525 1.21120 1.247620 0.912320 1.096620 0.825420 0.835125 0.705620 0.930720 0.880020 0.860220 0.862020 0.969225 1.119715 0.906320
C6H14O3
134.173
-68
162
0.943420
C8H18O3
162.227
-68
231
0.955320
C6H14O3
134.173
196
0.988520
1.6
C8H16O4
176.211
218.5
1.009620
1.8
C5H12O3
120.147
193
1.03520
1.6
C4H10O C8H12O4 C7H12O4 C6H10O4 C12H14O4 C8H14O4 C4H10O4S C4H10S CH2I2 H2I2Si C8H19N C10H22O C6H15N C6H14O C4H10O2 C3H8O2 C4H10O2 C4H9NO C8H11N C8H11N C8H11N C6H14 C6H14 C6H12O C3H6ClNO C2H6S2 C4H11NO C3H7NO C9H18O C2H8N2 C10H10O4 C7H9N C2H6O4S C2H6S C2H6OS C4H8O2 C3H6O2 C10H22O C6H15N
74.121 172.179 160.168 146.141 222.237 174.195 154.185 90.187 267.836 283.911 129.244 158.281 101.190 102.174 90.121 76.095 90.121 87.120 121.180 121.180 121.180 86.175 86.175 100.158 107.539 94.199 89.136 73.094 142.238 60.098 194.184 107.153 126.132 62.134 78.133 88.106 74.079 158.281 101.190
34.5 223 200 185.7 295 217.7 208 92.1 182 150 139.6 172.5 83.9 68.4 84.5 42 64.5 165 221.5 215 194.15 49.73 57.93 106.1 167 109.74 134 153 169.4 63.9 283.7 144.01 188 dec 37.33 189 101.5 78 190 109.3
0.713820 1.066220 1.055120 1.078520 1.23214 1.040220 1.17225 0.836220 3.321120
-25
-116.2 -8.8 -50 -40.6 -40.5 -21 -24 -103.91 6.1 -1 -73.5 -61 -85.4 -69.20 -105.1 -113.2 -18.59 <-15 11.2 2.42 -98.8 -128.10 -52.5 -33 -84.67 -59 -60.48 -41.5 -57.20 5.5 -6.1 -31.7 -98.24 17.89 11.85 -97.22 -69 -63
ρ/g mL-1 η/mPa s ε
0.319
30.2
0.989
0.224
0.422
μ/D
6.9
2.1
8.37 10.27
1.8 2.08
5.68
1.70
25.75 3.80 3.90 3.680 5.15 2.594 2.369 2.259 2.820 31.82 5.70
2.8 1.4
1.10 2.3
7.23
2.0
4.2666 7.560 7.550 8.266 7.86 6.098 29.2 5.723 5.32
cp/J g-1K-1 vp/kPa
1.320
2.817 0.393 0.379 0.455
3.805 7.30 2.644
75
15
2.6-7.8%
0.5
0.7-6%
662 230 205 312 630 395 450 430
2-17%
224
0.315
67
2.188
0.0032
2.243
0.017
96
0.029
110
2.256
0.024
96
1-23%
240
1.15
2.369
180 350
400
1.779 1.784 1.647
-45 121 93 76 161 90 104
2-36%
2.54 2.49
71.7 0.015 0.048 0.030 0.002 0.15 0.05 7.78 0.172
>0.7%
457
0.6
0.972 0.210 10.7 19.9 9.93 53.1 22.9 0.075
29
1.54 1.08
1.900 0.500
1.23 1.15 1.13
2.394
2.016
1.63 1.68 ≈0 ≈0
1.971 1.771 2.227 2.201
0.45 0.107 42.5 31.3 4.27
9.6
1.8
1.551
0.794
38.25 9.91
3.82 2.7
14.36
1.7
0.284 1.987 1.177
8.66 7.33 55.0 6.70 47.24 2.2189
2.060 2.090 2.731 1.561 1.728
0.517
2.798 2.923
1.554 3.96 0 1.19 1.20 1.03
1.901 1.958 1.726 1.593 1.579 2.500
3.82 0.9 0.439 0.23 20.9 0.001 0.746 0.13 64.4 0.084 4.95 14.6 0.13 3.21
4.90 1.869 1.889 12.73
557
2.043
3.7
1.300 0.351 0.361
3-15%
1.80 2.307 2.104
0.92
0.7
38.85
21
>99 172 -21 27 -23 85 57 56 55 25 124 82
2.22 2.01 2.195 2.313
2.122 2.145 2.129
1.927
IT/°C TLV/ppm
0.055 0.003 <0.01 3.68 4.33 30.1 0.025 0.13 0.14 0.13 1.63 0.001 0.10
0.723 0.777720 0.715320 0.719225 0.863725 0.859320 0.850120 0.937225 0.993120 0.984220 0.955720 0.644425 0.661620 0.722925 1.16825 1.062520 0.886620 0.944525 0.806220 0.79122 1.190520 0.922620 1.332220 0.848320 1.101025 1.033720 1.06020 0.783320 0.740020
0.06 9.09 6.62 2.44
FP/ °C Fl. lim.
2-13% 2-10% 2-10%
5
425
436
-1 -28 -2 -32
1.1-7.1% 1-8%
316 443 202 237
5 250
70 97 96 63 -48 -29
2-12% >1%
490
10
1.2-7% 1.2-7%
371 405 405
5 500 500
2-15% 1-7% 2-95% >0.9%
445 396 249 490
10 25 0.01 0.6
2.2-20% 3-42% 2-22%
188 206 215 180
0.1 10
2-14%
1000
24 58 49 -15 146 83 -37 95 12 2 57 17
20 20
170 299
3/20/06 11:35:55 AM
Laboratory Solvents and Other Liquid Reagents Name Dipropylene glycol monomethyl ether Dipropyl ether Dodecane 1-Dodecanol 1-Dodecene Epichlorohydrin 1,2-Epoxybutane 1,2-Epoxy-4(epoxyethyl)cyclohexane 1,2-Ethanediamine 1,2-Ethanediol 1,2-Ethanediol, diacetate 1,2-Ethanediol, dinitrate 1,2-Ethanedithiol Ethanethiol Ethanol Ethanolamine 4-Ethoxyaniline Ethoxybenzene 2-Ethoxyethanol 2-Ethoxyethyl acetate Ethyl acetate Ethyl acetoacetate Ethyl acrylate Ethylamine N-Ethylaniline Ethylbenzene Ethyl benzoate Ethyl butanoate 2-Ethyl-1-butanol Ethyl chloroacetate Ethyl chloroformate Ethyl cyanoacetate Ethyleneimine Ethyl formate 2-Ethylhexanal 2-Ethyl-1,3-hexanediol 2-Ethyl-1-hexanol 2-Ethylhexyl acetate Ethyl lactate Ethyl 3-methylbutanoate Ethyl 2-methylpropanoate Ethyl nitrite Ethyl propanoate Ethyl silicate Eucalyptol Fluorobenzene Fluorosulfonic acid Formamide Formic acid Furan Furfural Furfuryl alcohol Germanium(IV) chloride Glycerol Glycerol triacetate Glycerol trioleate Heptanal Heptane Heptanoic acid 1-Heptanol 2-Heptanone 3-Heptanone 4-Heptanone 1-Heptene Hexachloro-1,3-butadiene
487_S15.indb 17
Mol. form.
Mr
t m/°C
t b/°C
C7H16O3
148.200
-80
188.3
C6H14O C12H26 C12H26O C12H24 C3H5ClO C4H8O C8H12O2
102.174 170.334 186.333 168.319 92.524 72.106 140.180
-114.8 -9.57 23.9 -35.2 -26 -150 <-55
C2H8N2 C2H6O2 C6H10O4 C2H4N2O6 C2H6S2 C2H6S C2H6O C2H7NO C8H11NO C8H10O C4H10O2 C6H12O3 C4H8O2 C6H10O3 C5H8O2 C2H7N C8H11N C8H10 C9H10O2 C6H12O2 C6H14O C4H7ClO2 C3H5ClO2 C5H7NO2 C2H5N C3H6O2 C8H16O C8H18O2 C8H18O C10H20O2 C5H10O3 C7H14O2 C6H12O2 C2H5NO2 C5H10O2 C8H20O4Si C10H18O C6H5F FHO3S CH3NO CH2O2 C4H4O C5H4O2 C5H6O2 Cl4Ge C3H8O3 C9H14O6 C57H104O6 C7H14O C7H16 C7H14O2 C7H16O C7H14O C7H14O C7H14O C7H14 C4Cl6
60.098 62.068 146.141 152.062 94.199 62.134 46.068 61.083 137.179 122.164 90.121 132.157 88.106 130.141 100.117 45.084 121.180 106.165 150.174 116.158 102.174 122.551 108.524 113.116 43.068 74.079 128.212 146.228 130.228 172.265 118.131 130.185 116.158 75.067 102.132 208.329 154.249 96.102 100.070 45.041 46.026 68.074 96.085 98.101 214.42 92.094 218.203 885.432 114.185 100.202 130.185 116.201 114.185 114.185 114.185 98.186 260.761
11.14 -12.69 -31 -22.3 -41.2 -147.88 -114.14 10.5 4.6 -29.43 -70 -61.7 -83.8 -45 -71.2 -80.5 -63.5 -94.96 -34 -98 <-15 -21 -80.6 -22.5 -77.9 -79.6 <-100 -40 -70 -80 -26 -99.3 -88.2 -73.9 -82.5 0.8 -42.18 -89 2.49 8.3 -85.61 -38.1 -14.6 -51.50 18.1 -78 -4 -43.4 -90.55 -7.17 -33.2 -35 -39 -33 -118.9 -21
15-17
ρ/g mL-1 η/mPa s ε
μ/D
cp/J g-1K-1 vp/kPa
FP/ °C Fl. lim.
90.08 216.32 260 213.8 118 63.4 227
0.746620 0.749520 0.830924 0.758420 1.181220 0.829720 1.096620
1.21 ≈0
2.169 2.206 2.351 2.143 1.422 2.039
21 74 127 79 31 -22
117 197.3 190 198.5 146.1 35.0 78.29 171 254 169.81 135 156.4 77.11 180.8 99.4 16.5 203.0 136.19 212 121.3 147 144.3 95 205 56 54.4 163 244 184.6 199 154.5 135.0 110.1 18 99.1 168.8 176.4 84.73 163 220 101 31.5 161.7 171 86.55 290 259
0.897920 1.113520 1.104320 1.491820 1.23420 0.831525 0.789320 1.018020 1.065216 0.965120 0.925325 0.974020 0.900320 1.036810 0.923420 0.68915 0.962520 0.862625 1.041525 0.873525 0.832620 1.158520 1.135220 1.065420 0.83225 0.920820 0.854020 0.932522 0.831925 0.871820 1.032820 0.865620 0.86820 0.89915 0.884325 0.932020 0.926720 1.022520 1.726 1.133420 1.22020 0.951420 1.159420 1.129620 1.88 1.261320 1.158320 0.91515 0.813225 0.679525 0.912425 0.821920 0.811120 0.818320 0.817420 0.697020 1.55625
152.8 98.4 222.2 176.45 151.05 147 144 93.64 215
IT/°C TLV/ppm
0.95
0.396 1.383 1.20 1.073
3.38 2.0120 5.82 2.152 22.6
≈0 1.8 1.891
8.35 0.016 0.000016 0.019 2.2 31.7
1.3-7% >0.6%
188 203 275
4-21% 1.7-19%
411 439
0.5 0.1
16.06
0.287 1.074 21.1 1.197
0.423
2.05 0.631 0.639
13.82 41.4 7.7 28.26 7.26 6.667 25.3 31.94 7.43 4.216 13.38 7.567 6.0814 14.0 6.05 8.7 5.87 2.4463 6.20 5.18 6.19
0.380
9.736 31.62 18.3 8.57
6.27
18.73 7.58 15.4 4.71
1.99 2.28 2.34 2.03 1.60 1.69 2.3 1.45 2.1 2.2 1.78
2.872 2.394 2.121
1.898 2.438 3.201 1.870 2.339 2.845 1.937 1.906
1.96 1.22
2.884
0.59 2.00 1.74
1.726 1.638 1.963
2.17 1.90 1.9
1.947
1.74 1.8 2.4
2.438
2.015
1.62 0.01 0.030 0.009
40 111 88
70.3 7.87 0.05 0.0007 0.204 0.71 0.24 12.6 0.095 5.14 141 0.039 1.28 0.04 2.01 0.206 0.640
-17 13 86 116 63 43 56 -4 57 10 -16 85 21 88 24 57 64 16 110 -11 -20 44 127 73 71 46
0.003 28.9 32.3
0.019 0.09
2.150
5.76 2.50 4.57 5.465
1.74
1.60
1.523
3.34 1.607 0.361 1.587
111.0 51.1 2.94 42.1 16.85
2.389 2.151 1.686 1.698 2.079
934
46.53 7.11 3.109 9.07 1.9209 3.04 11.75 11.95 12.7 12.60 2.092 2.55
3.73 1.425 0.66 3.5 1.9 0 2.6
1.07 3.25 135 4.97 1.17 0.260 10.4 0.08 0.01 5.75 80.0 0.29 0.097
2.377 1.763
<0.01 <0.01
2.015 2.242 2.039 2.342 2.037
0.46 6.09 0.001 0.0044 0.49 0.5 0.164 7.52 0.13
0.501
0.550
0.387 3.84 5.81 0.714
0.340
≈0
2.6 2.78 ≈0
1.920 1.749
2.157
3-12% 3-22% 1.6-8.4%
385 398 482
10 40 0.05
13 -35 12 52 48 -15
2.8-18% 3-19% 3-24%
300 363 410
0.5 1000 3
3-18% 2-8% 2-12% 1-10% 1.4-14% 4-14%
235 379 426 295 372 385
5 5 400
1-7%
432 490 463
5 5 100
500 3.3-55% 3-16% 0.9-7.2% 0.8-9.7% 1-8% >1.5%
320 455 190 360 231 268 400
4-50% 1.9-11%
90 440
0.5 100
10
154 50 -36 60 75
18-57% 2-14% 2-19% 2-16%
434
10 5
316 491
2 10
199 138
3-19% 1%-
370 433
2.7
-4
1-7%
204 275
400
39 46 49 -1
1-8%
393
50 50 50
260 610
0.02
3/20/06 11:35:59 AM
Laboratory Solvents and Other Liquid Reagents
15-18 Name Hexachloro-1,3cyclopentadiene Hexafluorobenzene Hexamethyldisiloxane Hexamethylphosphoric triamide Hexanal Hexane Hexanedinitrile Hexanoic acid 1-Hexanol 2-Hexanone 1-Hexene Hexyl acetate Hydrazine Hydrazoic acid Hydrogen cyanide Hydrogen peroxide 3-Hydroxypropanenitrile Indan Indene Iodine bromide Iodine chloride Iodobenzene 1-Iodobutane Iodoethane Iodomethane 1-Iodopropane 2-Iodopropane Iron pentacarbonyl Isobutanal Isobutyl acetate Isobutyl acrylate Isobutylamine Isobutylbenzene Isobutyl formate Isobutyl isobutanoate Isopentane Isopentyl acetate Isophorone Isopropenyl acetate Isopropenylbenzene Isopropyl acetate Isopropylamine Isopropylbenzene Isopropylbenzene hydroperoxide 1-Isopropyl-2-methylbenzene 1-Isopropyl-3-methylbenzene 1-Isopropyl-4-methylbenzene Isoquinoline d-Limonene l-Limonene Mesityl oxide Methacrylic acid Methanol 2-Methoxyaniline 4-Methoxybenzaldehyde 2-Methoxyethanol 2-Methoxyethyl acetate Methyl acetate Methyl acrylate 2-Methylacrylonitrile 2-Methylaniline 3-Methylaniline N-Methylaniline Methyl benzoate
487_S15.indb 18
Mol. form.
Mr
t m/°C
t b/°C
C5Cl6
272.772
-9
239
C6F6 C6H18OSi2 C6H18N3OP
186.054 162.377 179.200
5.03 -66 7.2
C6H12O C6H14 C6H8N2 C6H12O2 C6H14O C6H12O C6H12 C8H16O2 H4N2 HN3 CHN H2O2 C3H5NO C9H10 C9H8 BrI ClI C6H5I C4H9I C2H5I CH3I C3H7I C3H7I C5FeO5 C4H8O C6H12O2 C7H12O2 C4H11N C10H14 C5H10O2 C8H16O2 C5H12 C7H14O2 C9H14O C5H8O2 C9H10 C5H10O2 C3H9N C9H12 C9H12O2
100.158 86.175 108.141 116.158 102.174 100.158 84.159 144.212 32.045 43.028 27.026 34.015 71.078 118.175 116.160 206.808 162.357 204.008 184.018 155.965 141.939 169.992 169.992 195.896 72.106 116.158 128.169 73.137 134.218 102.132 144.212 72.149 130.185 138.206 100.117 118.175 102.132 59.110 120.191 152.190
C10H14 C10H14 C10H14 C9H7N C10H16 C10H16 C6H10O C4H6O2 CH4O C7H9NO C8H8O2 C3H8O2 C5H10O3 C3H6O2 C4H6O2 C4H5N C7H9N C7H9N C7H9N C8H8O2
134.218 134.218 134.218 129.159 136.234 136.234 98.142 86.090 32.042 123.152 136.149 76.095 118.131 74.079 86.090 67.090 107.153 107.153 107.153 136.149
ρ/g mL-1 η/mPa s ε
μ/D
80.26 99 232.5
1.618420 0.763820 1.0320
0
-56 -95.35 1 -3 -47.4 -55.5 -139.76 -80.9 1.4 -80 -13.29 -0.43 -46 -51.38 -1.5 40 27.39 -31.3 -103 -111.1 -66.4 -101.3 -90 -20 -65.9 -98.8 -61 -86.7 -51.4 -95.8 -80.7 -159.77 -78.5 -8.1 -92.9 -23.2 -73.4 -95.13 -96.02
131 68.73 295 205.2 157.6 127.6 63.48 171.5 113.55 35.7 26 150.2 221 177.97 182 116 dec 100 dec 188.4 130.5 72.3 42.43 102.5 89.5 103 64.5 116.5 132 67.75 172.79 98.2 148.6 27.88 142.5 215.2 94 165.4 88.6 31.76 152.41 153
0.833520 0.660625 0.967620 0.921225 0.813620 0.811320 0.668525 0.877915 1.0036 0.687620 1.44 1.040425 0.963920 0.996025 4.3 3.24 1.830820 1.615420 1.935720 2.278920 1.748920 1.704220 1.520 0.789120 0.871220 0.889620 0.72425 0.853220 0.877620 0.854220 0.620120 0.87615 0.925520 0.909020 0.910620 0.871820 0.689120 0.864025 1.0320
-71.5 -63.7 -67.94 26.47 -74.0
178.1 175.1 177.1 243.22 178 178 130 162.5 64.6 224 248 124.1 143 56.87 80.7 90.3 200.3 203.3 196.2 199
0.876620 0.861020 0.857320 1.091030 0.841120 0.84320 0.865320 1.015320 0.791420 1.092320 1.11915 0.964720 1.007419 0.934220 0.953520 0.800120 0.998420 0.988920 0.989120 1.083725
-59 16 -97.53 6.2 0 -85.1 -70 -98.25 <-75 -35.8 -14.41 -31.3 -57 -12.4
cp/J g-1K-1 vp/kPa
FP/ °C Fl. lim.
IT/°C TLV/ppm
1.701925
2.79
0.300
4.58 0.583 0.252 0.876 0.183
0.01
2.029 2.179 31.3
5.5
1.8865
≈0
2.600 13.03 14.56 2.077 4.42 51.7
1.13
114.9 74.6
2.7 ≈0 1.75 1.70 2.985 1.573 3.2
1.357
1.554 0.556 0.469 0.703 0.653
4.59 6.27 7.82 6.97 7.07 8.19 2.602 5.068
0.571
4.43 2.318 6.41
0.214
1.845 4.72
0.726 1.24 1.70 1.93 1.976 1.62 2.04 1.95 2.75 1.9 1.3 ≈0 1.88 1.9 0.13 1.9
2.33 2.28
1.47 0.602 0.544
0.364
3.82 3.31 2.04 1.857
11.3 5.57
2.101 2.270 1.190 1.937 2.353 2.130 2.178 1.961 3.086
1.48 20.2 <0.01 0.005 0.11 1.54 24.8 0.185 1.91 68.2 98.8 0.26 0.010 0.2 0.220
2.612 2.619 1.609 1.609
0.676
0.325 0.737
1.191 1.918 1.791
5.6268 2.381
2.2322 11.0 2.3746 2.3738 15.6 33.0 5.230 22.0 17.2 8.25 7.07 7.03 6.138 5.816 5.96 6.642
1.19 0.79
≈0 2.73
0.778 0.738 0.888 0.746 0.535 1.228 2.013 2.505 1.793
2.284 1.909 1.834 1.711 1.952 2.771 1.753
1.761 1.519 1.828
2.8 1.65 1.70
2.165 1.871 2.531
2.36 2.1 1.72 1.77 3.69 1.6 1.45
2.249 2.624 1.916 1.845 1.883 1.96 2.118 1.933 1.625
1.9
3.59 0.133 1.85 18.2 53.9 5.75 9.36 4 23.0 2.39 19.0 0.257 5.34 0.552 91.7 0.728 0.06 6.02 0.40 7.88 78.0 0.61 0.004 0.2 0.22 0.19 0.007 0.277 0.254 1.47 0.12 16.9 0.013 0.004 1.31 0.67 28.8 11.0 8.26 0.043 0.036 0.05 0.052
32 -22 93 102 63 25 -26 45 38 -18
1-8% 2-5%
1-8% 1.2-6.9%
225 550 380 290 423 253
5-100% 6-40%
538
50 2
5 50 0.01 0.11 4.7 1
129 10
2
0.1 -18 18 30 -9 55 5 38 -51 25 84 26 54 2 -37 36
1.6-10.6% 196 1-11% 421 427 2-12% 378 0.8-6% 427 2-9% 320 1-8% 432 1.4-7.6% 420 1-8% 360 1-4% 460 432 1.9-6.1% 574 2-8% 460 402 1-7% 424
47
1-6%
436
45
0.7-6.1%
237
31 77 11 118
1-7% 1.6-8.8% 6-36%
344 68 464
15 20 200 0.1
39 49 -10 -3 1 85
2-14% 2-12% 3-16% 2.8-25% 2-6.8%
285 392 454 468
5 5 200 2 1 2 2 0.5
482
150
600 50 5 50 100 5 50
83
3/20/06 11:36:03 AM
Laboratory Solvents and Other Liquid Reagents Name 2-Methyl-1,3-butadiene Methyl butanoate 3-Methylbutanoic acid 3-Methyl-1-butanol 2-Methyl-2-butanol 3-Methyl-2-butanol, (±)3-Methyl-2-butanone 2-Methyl-1-butene 2-Methyl-2-butene Methyl tert-butyl ether Methyl chloroacetate Methylcyclohexane Methylcyclopentane N-Methylformamide Methyl formate 5-Methyl-2-hexanone Methylhydrazine Methyl isocyanate Methyl lactate, (±)Methyl methacrylate 1-Methylnaphthalene Methyloxirane 2-Methylpentane 3-Methylpentane 2-Methyl-2,4-pentanediol 2-Methyl-1-pentanol 4-Methyl-2-pentanol 4-Methyl-2-pentanone 2-Methylpropanenitrile 2-Methyl-2-propanethiol Methyl propanoate 2-Methylpropanoic acid 2-Methyl-1-propanol 2-Methyl-2-propanol 2-Methylpyridine 3-Methylpyridine 4-Methylpyridine N-Methyl-2-pyrrolidone Methyl salicylate 4-Methylstyrene Morpholine β-Myrcene Nickel carbonyl L-Nicotine Nitric acid 2-Nitroanisole Nitrobenzene Nitroethane Nitromethane 1-Nitropropane 2-Nitropropane N-Nitrosodiethylamine N-Nitrosodimethylamine 2-Nitrotoluene 3-Nitrotoluene Nonane Nonanoic acid 1-Nonanol 1-Nonene 4-Nonylphenol cis,cis-9,12-Octadecadienoic acid cis-9-Octadecenoic acid Octane Octanoic acid 1-Octanol 2-Octanol
487_S15.indb 19
Mol. form.
Mr
t m/°C
t b/°C
C5H8 C5H10O2 C5H10O2 C5H12O C5H12O C5H12O C5H10O C5H10 C5H10 C5H12O C3H5ClO2 C7H14 C6H12 C2H5NO C2H4O2 C7H14O CH6N2 C2H3NO C4H8O3 C5H8O2 C11H10 C3H6O C6H14 C6H14 C6H14O2 C6H14O C6H14O C6H12O C4H7N C4H10S C4H8O2 C4H8O2 C4H10O C4H10O C6H7N C6H7N C6H7N C5H9NO C8H8O3 C9H10 C4H9NO C10H16 C4NiO4 C10H14N2 HNO3 C7H7NO3 C6H5NO2 C2H5NO2 CH3NO2 C3H7NO2 C3H7NO2 C4H10N2O C2H6N2O C7H7NO2 C7H7NO2 C9H20 C9H18O2 C9H20O C9H18 C15H24O C18H32O2
68.118 102.132 102.132 88.148 88.148 88.148 86.132 70.133 70.133 88.148 108.524 98.186 84.159 59.067 60.052 114.185 46.072 57.051 104.105 100.117 142.197 58.079 86.175 86.175 118.174 102.174 102.174 100.158 69.106 90.187 88.106 88.106 74.121 74.121 93.127 93.127 93.127 99.131 152.148 118.175 87.120 136.234 170.734 162.231 63.013 153.136 123.110 75.067 61.041 89.094 89.094 102.134 74.081 137.137 137.137 128.255 158.238 144.254 126.239 220.351 280.446
-145.9 -85.8 -29.3 -117.2 -9.1
-10.4 15.5 -53.46 12.4 -5 -81.3 42 -7
34.0 102.8 176.5 131.1 102.4 112.9 94.33 31.2 38.56 55.0 129.5 100.93 71.8 199.51 31.7 144 87.5 39.5 144.8 100.5 244.7 35 60.26 63.27 197.1 149 131.6 116.5 103.9 64.2 79.8 154.45 107.89 82.4 129.38 144.14 145.36 202 222.9 172.8 128 167 43 (exp 60) 247 83 272 210.8 114.0 101.19 131.1 120.2 176.9 152 222 232 150.82 254.5 213.37 146.9 ≈ 295
C18H34O2 C8H18 C8H16O2 C8H18O C8H18O
282.462 114.229 144.212 130.228 130.228
13.4 -56.82 16.5 -14.8 -31.6
-93.1 -137.53 -133.72 -108.6 -32.1 -126.6 -142.42 -3.8 -99 -52.36 -45 -47.55 -30.43 -111.9 -153.6 -162.90 -50 -90 -84 -71.5 -0.5 -87.5 -46 -101.9 25.69 -66.68 -18.14 3.67 -23.09 -8 -34.1 -4.8 -19.3 -79 -41.6 10.5 5.7 -89.5 -28.38 -108 -91.3
360 125.67 239 195.16 179.3
15-19
ρ/g mL-1 η/mPa s ε
0.67920 0.898420 0.93120 0.810420 0.809620 0.818020 0.805120 0.650420 0.662320 0.735325 1.23620 0.769420 0.748620 1.01119 0.971320 0.88820
0.541
2.098 5.48
μ/D
cp/J g-1K-1 vp/kPa
0.25
2.240 1.941 1.930 2.382 2.803
0.63 3.69 3.55
0.203
0.679 0.479 1.678 0.325
15.63 5.78 12.1 10.37 2.180 1.979
1.82
2.089 2.241 2.179 2.127
12.0 2.024 1.9853 189.0 9.20 13.53
≈0 ≈0 3.83 1.77
21.75
≈ 2.8
6.32 2.915
1.67 ≈0 2.01 ≈0 ≈0 2.9
1.882 1.886 2.096 1.983 2.928
0.923027 1.092820 0.937725 1.020220 0.8590 0.65025 0.659825 0.92315 0.826320 0.807520 0.796525 0.770420 0.794325 0.915020 0.968120 0.801820 0.788720 0.944320 0.956620 0.954820 1.023025 1.18125 0.917325 1.000520 0.801315 1.3125 1.009720 1.55 1.254020 1.203720 1.044825 1.137120 0.996125 0.982125 0.942220 1.004820 1.161119 1.158120 0.719220 0.905220 0.828020 0.725325 0.95020 0.902220 0.893520 0.698625 0.907325 0.826225 0.819320
0.286 0.306
4.07 0.545
0.431 1.226 3.33 4.31
2.02
1.886 1.886 23.4
13.11 24.42 5.475 6.200 2.58 17.93 12.47 10.18 11.10 12.2 32.55 8.80 7.42 2.3
1.910 1.578 2.073 2.248 2.213 2.843 2.427 2.672 2.130
4.29 1.66 1.08 1.64 1.7 1.85 2.40 2.70 4.1 2.47
1.943 1.964 2.449 2.949 1.703 1.704 1.707 3.105 1.637
1.55
1.892
73.4 4.30 0.067 0.315 2.19 1.20 6.99 81.4 62.1 33.6 1.0 6.18 18.3 0.03 78.1 0.691 6.61 57.7 0.62 5.10 0.009 71.7 28.2 25.3 <0.01 0.236 0.698 2.64 24.2 11.5 0.17 1.39 5.52 1.5 0.795 0.759 0.04 0.015 0.245 1.34 0.280
FP/ °C Fl. lim.
IT/°C TLV/ppm
-54 14
1.5-8.9%
395
43 19 38
1.2-9% 1.2-9%
416 350 437
200 -20 -20 50 57 -4 -29
7.5-18.5% 1-7% 250 1-8% 258
-19 36 -8 -7 49 10
5-23% 1-8% 2.5-92% 5.3-26% >2.2% 1.7-8.2%
449 191 194 534 385
57 96 96 53 37
1-10% 0.8-11% 1-11%
346 454 538 290
1.198
1.863 0.688 0.630 0.798
0.665 7.01 9.12 0.586
26.26 24.95 1.9722 2.475 8.83 2.180
2.17 5.0 4.22 3.23 3.46 3.66 3.73
1.509 1.790 1.746 1.97 1.911
8.34 0.002 0.03 2.79 4.79 1.36 2.3
≈0
1.474 1.474 2.217 2.290 2.470 2.142
0.73 0.0014 0.03 0.570 0.00005 0.00050 0.714
1.18 ≈0 1.15 1.8 1.71
2.043 2.229 2.066 2.344 2.535
≈0 0.79
1.744
400
100 50 0.01 0.02 50
529 -37 3.1-27.5% 449 <-29 1-7% 264 -7 1.2-7% 278 102 1-9% 306 54 1.1-9.65% 310 41 1-6% 18 1-8% 448 8 482 <-29 -2 2.5-13% 469 56 2-9.2% 481 28 2-11% 415 11 2-8% 478 39 538
2 500 500 25 25 50
50 100
50 20 0.05 0.1 2
8.937 45.75 35.6 29.11 37.27 24.70 26.74
100
88 28 35 36 24
106 106 31
2-9% 3-17% 7-22% 2%3-11%
0.8-2.9%
482 414 418 421 428
1 100 20 25 10
205
2 2 200
260 26
2.754
0.508 5.02 7.29 6.49
2.336 1.948 2.85 10.30 8.13
0.000001 1.86 0.0002 0.01
189 13 81 88
1-7%
363 206
300
270 265
3/20/06 11:36:06 AM
Laboratory Solvents and Other Liquid Reagents
15-20 Name 2-Octanone 1-Octene Oxetane 2-Oxetanone Oxirane Oxiranemethanol, (±)Paraldehyde Parathion Pentachloroethane cis-1,3-Pentadiene trans-1,3-Pentadiene Pentanal Pentane Pentanedial 1,5-Pentanediol 2,4-Pentanedione 1-Pentanethiol Pentanoic acid 1-Pentanol 2-Pentanol 3-Pentanol 2-Pentanone 3-Pentanone 1-Pentene cis-2-Pentene trans-2-Pentene Pentyl acetate Pentylamine Perchloric acid Peroxyacetic acid Phenol 2-Phenoxyethanol Phenylhydrazine 1-Phenyl-2-propylamine, (±)Phosphinic acid Phosphoric acid Phosphorothioc trichloride Phosphorus(III) bromide Phosphorus(III) chloride Phosphoryl chloride α-Pinene β-Pinene Piperidine Propanal 1,2-Propanediol 1,3-Propanediol Propanenitrile Propanoic acid Propanoic anhydride 1-Propanol 2-Propanol Propargyl alcohol Propyl acetate Propylamine Propylbenzene Propyl butanoate Propylene carbonate Propyl formate Propyl propanoate Pyridine Pyrrole Pyrrolidine 2-Pyrrolidone Quinoline Safrole Salicylaldehyde
487_S15.indb 20
Mol. form.
Mr
t m/°C
t b/°C
C8H16O C8H16 C3H6O C3H4O2 C2H4O C3H6O2 C6H12O3 C10H14NO5PS C2HCl5 C5H8 C5H8 C5H10O C5H12 C5H8O2 C5H12O2 C5H8O2 C5H12S C5H10O2 C5H12O C5H12O C5H12O C5H10O C5H10O C5H10 C5H10 C5H10 C7H14O2 C5H13N ClHO4 C2H4O3 C6H6O C8H10O2 C6H8N2 C9H13N
128.212 112.213 58.079 72.063 44.052 74.079 132.157 291.261 202.294 68.118 68.118 86.132 72.149 100.117 104.148 100.117 104.214 102.132 88.148 88.148 88.148 86.132 86.132 70.133 70.133 70.133 130.185 87.164 100.459 76.051 94.111 138.164 108.141 135.206
-16 -101.7 -97 -33.4 -112.5 -45 12.6 6.1 -28.78 -140.8 -87.4 -91.5 -129.67 -14 -18 -23 -75.65 -33.6 -77.6 -73 -69 -76.8 -39 -165.12 -151.36 -140.21 -70.8 -55 -112 -0.2 40.89 14 20.6
172.5 121.29 47.6 162 10.6 167 dec 124.3 375 162.0 44.1 42 103 36.06 188 dec 239 138 126.6 186.1 137.98 119.3 116.25 102.26 101.7 29.96 36.93 36.34 149.2 104.3 ≈ 90 dec 110 181.87 245 243.5 203
H3O2P H3O4P Cl3PS Br3P Cl3P Cl3OP C10H16 C10H16 C5H11N C3H6O C3H8O2 C3H8O2 C3H5N C3H6O2 C6H10O3 C3H8O C3H8O C3H4O C5H10O2 C3H9N C9H12 C7H14O2 C4H6O3 C4H8O2 C6H12O2 C5H5N C4H5N C4H9N C4H7NO C9H7N C10H10O2 C7H6O2
65.997 97.995 169.398 270.686 137.332 153.331 136.234 136.234 85.148 58.079 76.095 76.095 55.079 74.079 130.141 60.095 60.095 56.063 102.132 59.110 120.191 130.185 102.089 88.106 116.158 79.101 67.090 71.121 85.105 129.159 162.185 122.122
26.5 42.4 -36.2 -41.5 -93.6 1.18 -64 -61.5 -11.02 -80 -60 -27.7 -92.78 -20.5 -45 -124.39 -87.9 -51.8 -93 -84.75 -99.6 -95.2 -48.8 -92.9 -75.9 -41.70 -23.39 -57.79 25 -14.78 11.2 -7
130 407 125 173.2 76.1 105.5 156.2 166 106.22 48 187.6 214.4 97.14 141.15 170 97.2 82.3 113.6 101.54 47.22 159.24 143.0 242 80.9 122.5 115.23 129.79 86.56 251 237.16 234.5 197
ρ/g mL-1 η/mPa s ε 0.82020 0.714920 0.893025 1.146020 0.882110 1.114325 0.994320 1.268120 1.679620 0.691020 0.671025 0.809520 0.626220
0.991420 0.972125 0.85020 0.933925 0.814420 0.809420 0.820320 0.80920 0.809825 0.640520 0.655620 0.643125 0.875620 0.754420 1.77 1.22615 1.054545 1.10222 1.098620 0.930625
0.447
9.51 2.113
12.42 1.079
μ/D
cp/J g-1K-1 vp/kPa
FP/ °C Fl. lim.
IT/°C TLV/ppm
2.7 ≈0 1.94 4.18 1.89
2.132 2.148
0.12 2.30
52 21
230
1.694 1.998
0.3 175
74 -20
>2.9% 3-100%
429
1.6
36
>1.3%
238
1.43
0.5 1 2 0.01
2.25
3.716 2.319
0.224
10.00 1.8371
3.62 3.47 4.15 0.470 0.444 0.195
26.2 26.524 4.847 2.661 15.13 13.71 13.35 15.45 17.00 2.011
0.702
4.79 4.27
12.40 13.03
0.92 0.500 0.585
0.859
≈0
2.317
2.5 2.8
3.08 2.08
1.61 1.7 1.66 1.64 2.7 2.82 ≈ 0.5 ≈0 ≈0 1.75
2.059 2.361 2.716 2.719 2.137 2.216 2.196 2.163 2.239 2.005 2.501
1.224
2.123
7.15
2.007
0.478 50.6 54.7 4.58 68.3
12 -40
0.001 1.02 1.83 0.024 0.259 0.804 1.10 4.97 4.72 85.0 66.0 67.4 0.60 4.00
129 34 18 96 33 34 41 7 13 -18 <-20 <-20 16 -1
1.93 0.055 0.001 0.003 0.06
41 79 1.8-8.6% 121 88 <100
2-8%
222 260
50 600 0.05
335 340
1-10% 1.2-9% 1.2-9% 2-8% >1.6% 1.5-8.7%
1-8% 2.2-22%
400 300 343 435 452 450 275
200 200
360
50
715
5 0.1
1.49 1.480 1.635 2.8 1.574 1.645 0.853925 0.86025 0.860620 0.865725 1.036120 1.053820 0.781820 0.988225 1.011020 0.799725 0.780925 0.947820 0.887820 0.717320 0.859325 0.873020 1.204720 0.907320 0.880920 0.981920 0.969820 0.858620 1.12020 1.097715 1.100020 1.167420
0.25
4.94 0.529
1.573 0.321 40.4 0.294 1.030 1.945 2.04 0.544 0.376
0.485 0.879 1.225 0.704 3.34
3.498 14.1 2.1787 2.4970 4.33 18.5 27.5 35.1 29.7 3.44 18.30 20.8 20.18 20.8 5.62 5.08 2.370 4.3 66.14 6.92 5.249 13.260 8.00 8.30 28.18 9.16 18.35
0.56 2.54
1.2 2.72 2.2 2.5 4.05 1.75 1.55 1.56 1.13 1.8 1.17 ≈0
0.905
2.113 2.362 2.507 2.166 2.063 1.806 2.395 2.604 1.921 2.776 1.786
4.9 1.89
2.141 1.945
2.21 1.74 1.6 3.5 2.29
1.678 1.903 2.202 1.99 1.51
2.86
1.818
0.38 16.1 4.97 0.64 0.61 4.28 42.2 0.02 0.007 6.14 0.553 0.45 2.76 6.02 4.49 42.1 0.45 0.618 0.05 10.9 1.88 2.76 1.10 8.40 0.011 0.01 0.075
0.2 0.1 33 38 16 -30 99 2 52 63 23 12 36 13 -37 30 37 135 -3 79 20 39 3 129
255 275 1-10% 2.6-17% 3-13%
207 371 400 3-14% 512 2.9-12.1% 465 1.3-9.5% 285 2-14% 412 2-13% 399 2-8% 2-10% 1-6%
450 318 450
20
10 200 200 1 200
455 2-12%
482
1
480 100 78
3/20/06 11:36:10 AM
Laboratory Solvents and Other Liquid Reagents Name Selenium chloride Selenium oxychloride Selenium oxyfluoride Styrene Sulfolane Sulfur chloride Sulfur dichloride Sulfuric acid Sulfuryl chloride α-Terpinene 1,1,2,2-Tetrabromoethane Tetrabromosilane 1,1,2,2-Tetrachloro-1,2difluoroethane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Tetrachloromethane Tetrachlorosilane Tetradecane Tetraethylene glycol Tetrafluoroboric acid Tetrahydrofuran Tetrahydrofurfuryl alcohol 1,2,3,4Tetrahydronaphthalene Tetrahydropyran Tetrahydrothiophene Tetramethylsilane Tetramethylurea Tetranitromethane Thionyl bromide Thionyl chloride Thiophene Tin(IV) chloride Titanium(IV) chloride Toluene Toluene-2,4-diisocyanate Tribromomethane Tributylamine Tributyl borate Tributyrin Trichloroacetaldehyde 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichloroethylsilane Trichlorofluoromethane Trichloromethane (Trichloromethyl)benzene Trichloromethylsilane Trichloronitromethane 1,2,3-Trichloropropane Trichlorosilane 1,1,2-Trichloro-1,2,2trifluoroethane Tri-o-cresyl phosphate Tridecane 1-Tridecene Triethanolamine Triethylamine Triethylene glycol Triethylene glycol dimethyl ether Triethyl phosphate Trifluoroacetic acid (Trifluoromethyl)benzene
487_S15.indb 21
15-21
Mol. form.
Mr
t m/°C
t b/°C
Cl2Se2 Cl2OSe F2OSe C8H8 C4H8O2S Cl2S2 Cl2S H2O4S Cl2O2S C10H16 C2H2Br4 Br4Si C2Cl4F2
228.83 165.86 132.96 104.150 120.171 135.037 102.971 98.080 134.970 136.234 345.653 347.702 203.830
-85 8.5 15 -30.65 27.6 -77 -122 10.31 -51
130 dec 177 125 145 287.3 137 59.6 337 69.4 174 243.5 154 92.8
2.774 2.44 2.8 0.901625 1.272318 1.69 1.62 1.8 1.680 0.837519 2.965520 2.8 1.595150
C2H2Cl4 C2H2Cl4 C2Cl4 CCl4 Cl4Si C14H30 C8H18O5 BF4H C4H8O C5H10O2 C10H12
167.849 167.849 165.833 153.823 169.897 198.388 194.226 87.813 72.106 102.132 132.202
-70.2 -42.4 -22.3 -22.62 -68.74 5.82 -6.2 -108.44 <-80 -35.7
130.2 145.2 121.3 76.8 57.65 253.58 328 130 dec 65 178 207.6
1.5406 1.595320 1.623020 1.594020 1.5 0.759620 1.128515 ~1.8 0.883325 1.052420 0.964525
C5H10O C4H8S C4H12Si C5H12N2O CN4O8 Br2OS Cl2OS C4H4S Cl4Sn Cl4Ti C7H8 C9H6N2O2 CHBr3 C12H27N C12H27BO3 C15H26O6 C2HCl3O C6H3Cl3 C2H3Cl3 C2H3Cl3 C2HCl3 C2H5Cl3Si CCl3F CHCl3 C7H5Cl3 CH3Cl3Si CCl3NO2 C3H5Cl3 Cl3HSi C2Cl3F3
86.132 88.172 88.224 116.161 196.033 207.873 118.970 84.140 260.521 189.678 92.139 174.156 252.731 185.349 230.151 302.363 147.387 181.447 133.404 133.404 131.388 163.506 137.368 119.378 195.474 149.480 164.376 147.431 135.452 187.375
-49.1 -96.2 -99.06 -0.6 13.8 -50 -101 -38.21 -34.07 -24.12 -94.95 20.5 8.69 -70 <-70 -75 -57.5 16.92 -30.01 -36.3 -84.7 -105.6 -110.44 -63.41 -4.42 -90 -64 -14.7 -128.2 -36.22
88 121.1 26.6 176.5 126.1 140 75.6 84.0 114.15 136.45 110.63 251 149.1 216.5 234 307.5 97.8 213.5 74.09 113.8 87.21 100.5 23.7 61.17 221 65.6 112 157 33 47.7
0.881420 0.998720 0.64819 0.968720 1.638020
C21H21O4P C13H28 C13H26 C6H15NO3 C6H15N C6H14O4 C8H18O4
368.363 184.361 182.345 149.188 101.190 150.173 178.227
11 -5.4 -13 20.5 -114.7 -7 -45
410 235.47 232.8 335.4 89 285 216
1.195520 0.756420 0.765820 1.124220 0.727520 1.127415 0.98620
C6H15O4P C2HF3O2 C7H5F3
182.154 114.023 146.110
-56.4 -15.2 -28.95
215.5 73 102.1
1.069520 1.535125 1.188420
0 5.39 24.8
ρ/g mL-1 η/mPa s ε
20
1.631 1.064920 2.234 1.73 0.866820 1.224420 2.878825 0.777020 0.856720 1.035020 1.51220 1.45925 1.339020 1.439720 1.464220 1.237320 1.487920 1.478825 1.372320 1.27320 1.655820 1.388920 1.331 1.563525
μ/D
cp/J g-1K-1 vp/kPa
46.2 0.695
2.4737 43.26 4.79 2.915 9.1 2.4526 6.72
0.123 4.8 0.36 1.81 1.38 0
2.52 1.437 0.844 0.908 99.4 2.13
0.456 2.14
8.50 2.268 2.2379 2.0343 20.44
0.793 0.545 0.421 0.537
1.724 1.50 609 0.347
0.808
0.479
0.003
0.852
7.51
0.92 0.967 0.865 0.850 0.855
47 62 45
5-12% 20-54%
112 182
>0.5%
200
2.208
1.6 0.622 2.42 15.2 31.3 0.002 0.000001
2-12% 1.5-9.7% 1-5%
321 282 385
335
1.74 1.90 0 3.5 0
1.82
-20
1.45 0.55 0
1.017 1.471 0.634 0.766 1.707 1.653 0.517
9.54 2.45 94.2 0.138 1.13 0.84 16.0 10.6
3.79 0.003 0.726 0.01
4 127 83 63 93 180
7.243 7.1937 3.390 3.00 4.8069 6.9
0.99 0.8 0.77
1.837 1.025 1.76 1.4 0.8 2.04 0.46 1.04 2.03 1.91
1.245
6.66 0.057 16.5 3.1 9.91 6.29 106 26.2 0.35 22.5 3.18 0.492
0.908
44.8
1.57 2.206 2.149 2.61 2.173 2.18
0.0000002 0.005 0.0047 <0.01 7.70 0.0002
1.289
15.1 5.14
1.082 1.131 0.947 0.885 0.957 1.091
0.86 2.41 6.7 2.0213 2.139 29.36 2.418 23.69 7.62
2.87 ≈0 ≈0 3.6 0.66
13.20 8.42 9.22
3.1 2.28 2.86
1 500
5.66
2.313
20
0.05
-14 75 71
7.319 7.5 0.326 0.656
18.7
21.6 0.100 0.05
0.37
490
1.416 0.993
1.720 1.774 1.645
2.379 8.433 4.404 2.340 2.23 5.72 6.8
1-7%
IT/°C TLV/ppm
1
1.75 2.1 ≈0
1.921 23.10 2.317 9.06 8.675 2.739
1.857
1.32 0 0 0 ≈0
31 177
7.52 13.48 2.771
0.973
0.560
1.747 1.498
0.02 0.56 0.81 <0.01 1.27 17.9
FP/ °C Fl. lim.
1 25 5
200
77 0.005 1 -1
105 -1 32 32 22
127 -9 71 -50
1-7% 0.9-9.5%
480
50 0.005 0.5
1-5% >0.5%
407
2.5-6.6% 8-13% 6-28% 8-11%
571 500 460 420
7.6->20%
211 >404
5 350 10 50 1000 10 0.1 0.1 10
3.2-12.6% 104
1000 225 79 79 179 -7 177 111 115
385
1-10% 1-8% 1-9%
249 371
0.01
0.8 1
454
12
3/20/06 11:36:14 AM
Laboratory Solvents and Other Liquid Reagents
15-22 Name
Mol. form.
Mr
t m/°C
t b/°C
1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Trimethyl borate Trimethylchlorosilane 2,2,4-Trimethylpentane 2,3,3-Trimethylpentane Trimethyl phosphate 2,4,6-Trimethylpyridine Trinitroglycerol Undecane Vanadium(IV) chloride Vanadyl trichloride Vinyl acetate 4-Vinylcyclohexene Water o-Xylene m-Xylene p-Xylene 2,4-Xylenol
C9H12 C9H12 C9H12 C3H9BO3 C3H9ClSi C8H18 C8H18 C3H9O4P C8H11N C3H5N3O9 C11H24 Cl4V Cl3OV C4H6O2 C8H12 H2O C8H10 C8H10 C8H10 C8H10O
120.191 120.191 120.191 103.912 108.642 114.229 114.229 140.074 121.180 227.087 156.309 192.753 173.299 86.090 108.181 18.015 106.165 106.165 106.165 122.164
-25.4 -43.77 -44.72 -29.3 -40 -107.3 -100.9 -46 -46 13.5 -25.5 -25.7 -79 -93.2 -108.9 0.00 -25.2 -47.8 13.25 24.5
176.12 169.38 164.74 67.5 60 99.22 114.8 197.2 170.6 exp 218 195.9 148 127 72.8 128 100.0 144.5 139.12 138.37 210.98
487_S15.indb 22
ρ/g mL-1 η/mPa s ε 0.894420 0.875820 0.861525 0.91525 0.85625 0.687825 0.726220 1.214420 0.916622 1.593120 0.740220 1.816 1.829 0.925625 0.829920 0.9970 0.880210 0.859625 0.856625 0.965020
1.098
0.890 0.760 0.581 0.603
μ/D
cp/J g-1K-1 vp/kPa
2.656 2.377 2.279 2.2762
≈0 ≈0 0
1.800 1.789 1.741 1.828
1.943 1.9780 20.6 7.807 19.25 1.9972 3.05 3.4
≈0 ≈0 3.2 2.05
2.093 2.150
≈0
2.207
1.79
1.969
1.8546 0.64 ≈0 0 1.4
4.180 1.753 1.724 1.710
80.100 2.562 2.359 2.2735 5.060
FP/ °C Fl. lim. 0.8-6.6% 1-6% 1-5%
IT/°C TLV/ppm
0.20 0.30 0.33 17.2 30.7 6.50 3.60 0.11 4.1 0.00005 0.05
44 44 50 -8 -28 -12 <21 107
470 500 559
25 25 25
395 418 425
300 300
270
0.05
15.4 1.87 3.17 0.88 1.13 1.19 0.022
-8 16
2.6-13.4% 402 269
10 0.1
32 27 27
1-7% 1-7% 1-7%
100 100 100
69
463 527 528
3/20/06 11:36:16 AM
DEPENDENCE OF BOILING POINT ON PRESSURE The normal boiling point of a liquid is defined as the temperature at which the vapor pressure reaches standard atmospheric pressure, 101.325 kPa. The change in boiling point with pressure may be calculated from the representation of the vapor pressure by the Antoine Equation, ln p = A1 – A2/(T + A3) where p is the vapor pressure, T the absolute temperature, and A1, A2, and A3 are constants. This table, which has been calculated using the Antoine constants in Reference 1, gives values of ∆t/∆p for a number of liquids, in units of both °C/kPa and °C/mmHg. The correction to the boiling point is generally accurate to 0.1 to 0.2 °C as long as the pressure is within 10% of standard atmospheric pressure. A slightly less accurate estimate of ∆t/∆p may be obtained from the Clausius-Clapeyron equation, with the assumption that the tb Compound Acetaldehyde Acetic acid Acetone Acetonitrile Ammonia Aniline Anisole Benzaldehyde Benzene Bromine Butane 1-Butanol Carbon disulfide Chlorine Chlorobenzene 1-Chlorobutane Chloroethane Chloroethylene Cyclohexane Cyclohexanol Cyclohexanone Decane Dibutyl ether Dichloromethane Diethyl ether Dimethyl sulfoxide 1,4-Dioxane Dipropyl ether Ethanol Ethyl acetate Ethylene glycol Heptane Hexafluorobenzene Hexane
change in volume upon vaporization equals the ideal-gas volume of the vapor. This leads to the equation ∆t/∆p = RTb2 /p0 ∆vapH(Tb) where R is the molar gas constant, p0 is 101.325 kPa, Tb is the normal boiling point temperature (absolute), and ∆vapH(Tb) is the molar enthalpy of vaporization at the normal boiling point. Values of the last quantity may be obtained from the table “Enthalpy of Vaporization” in Section 6.
Reference 1. Lide, D. R., and Kehiaian, H. V., CRC Handbook of Thermophysical and Thermochemical Data, CRC Press, Boca Raton, FL, 1994, pp. 49-59.
tb
∆t/∆p
°C
°C/kPa
20.1 117.9 56.0 81.6 -33.33 184.1 153.7 179.0 80.0 58.8 -0.5 117.7 46.2 -34.04 131.7 78.6 12.3 -13.3 80.7 160.8 155.4 174.1 140.2 39.6 34.5 189.0 101.5 90.0 78.2 77.1 197.3 98.5 80.2 68.7
0.261 0.324 0.289 0.316 0.198 0.378 0.367 0.392 0.321 0.300 0.267 0.278 0.304 0.224 0.365 0.321 0.262 0.241 0.328 0.344 0.382 0.388 0.363 0.276 0.278 0.379 0.321 0.326 0.249 0.300 0.331 0.336 0.305 0.314
°C/mmHg 0.0348 0.0432 0.0385 0.0421 0.0264 0.0504 0.0489 0.0523 0.0428 0.0400 0.0356 0.0371 0.0405 0.0299 0.0487 0.0428 0.0349 0.0321 0.0437 0.0459 0.0509 0.0517 0.0484 0.0368 0.0371 0.0505 0.0428 0.0435 0.0332 0.0400 0.0441 0.0448 0.0407 0.0419
Compound 1-Hexanol Hydrogen fluoride Iodomethane Isobutane Methanol Methyl acetate Methyl formate N-Methylaniline N-Methylformamide Nitrobenzene Nitromethane 1-Octanol Pentane 1-Pentanol Phenol Propane 1-Propanol 2-Propanol Pyridine Pyrrole Pyrrolidine Styrene Sulfur dioxide Tetrachloroethylene Tetrachloromethane Toluene Trichloroethylene Trichloromethane Trimethylamine Water o-Xylene m-Xylene p-Xylene
∆t/∆p
°C
°C/kPa
157.6 20.1 42.5 -11.7 64.6 56.8 31.7 196.2 199.5 210.8 101.1 195.1 36.0 137.9 181.8 -42.1 97.2 82.3 115.2 129.7 86.5 145.1 -10.05 121.3 76.8 110.6 87.2 61.1 2.8 100.0 144.5 139.1 138.3
0.318 0.276 0.291 0.254 0.251 0.282 0.582 0.396 0.371 0.418 0.320 0.360 0.289 0.296 0.349 0.224 0.261 0.247 0.340 0.330 0.309 0.369 0.221 0.354 0.325 0.353 0.330 0.302 0.248 0.276 0.373 0.368 0.369
°C/mmHg 0.0424 0.0368 0.0388 0.0339 0.0335 0.0376 0.0776 0.0528 0.0495 0.0557 0.0427 0.0480 0.0385 0.0395 0.0465 0.0299 0.0348 0.0329 0.0453 0.0440 0.0412 0.0492 0.0295 0.0472 0.0433 0.0471 0.0440 0.0403 0.0331 0.0368 0.0497 0.0491 0.0492
15-26
Section 15.indb 26
5/3/05 9:11:53 AM
EBULLIOSCOPIC CONSTANTS FOR CALCULATION OF BOILING POINT ELEVATION The boiling point Tb of a dilute solution of a non-volatile, nondissociating solute is elevated relative to that of the pure solvent. If the solution is ideal (i.e., follows Raoult’s Law), the amount of elevation depends only on the number of particles of solute present. Hence the change in boiling point ∆Tb can be expressed as ∆Tb = Eb m2 where m2 is the molality (moles of solute per kilogram of solvent) and Eb is the Ebullioscopic Constant, a characteristic property of Compound Acetic acid Acetone Acetonitrile Aniline Anisole Benzaldehyde Benzene 1-Butanol Carbon disulfide Chlorobenzene 1-Chlorobutane Cyclohexane Cyclohexanol Decane Dichloromethane Diethyl ether Dimethyl sulfoxide 1,4-Dioxane Ethanol Ethyl acetate Ethylene glycol Heptane
Eb/K kg mol–1 3.22 1.80 1.44 3.82 4.20 4.24 2.64 2.17 2.42 4.36 3.13 2.92 3.5 6.10 2.42 2.20 3.22 3.01 1.23 2.82 2.26 3.62
the solvent. The Ebullioscopic Constant may be calculated from the relation Eb = R Tb2 M/∆vapH where R is the molar gas constant, Tb is the normal boiling point temperature (absolute) of the solvent, M the molar mass of the solvent, and ∆vapH the molar enthalpy (heat) of vaporization of the solvent at its normal boiling point. This table lists Eb values for some common solvents, as calculated from data in the table “Enthalpy of Vaporization” in Section 6. Compound Hexane Iodomethane Methanol Methyl acetate N-Methylaniline N-Methylformamide Nitrobenzene Nitromethane 1-Octanol Phenol 1-Propanol 2-Propanol Pyridine Pyrrole Pyrrolidine Tetrachloroethylene Tetrachloromethane Toluene Trichloroethylene Trichloromethane Water o-Xylene
Eb/K kg mol–1 2.90 4.31 0.86 2.21 4.3 2.2 5.2 2.09 5.06 3.54 1.66 1.58 2.83 2.33 2.32 6.18 5.26 3.40 4.52 3.80 0.513 4.25
15-27
Section 15.indb 27
5/3/05 9:11:53 AM
CRYOSCOPIC CONSTANTS FOR CALCULATION OF FREEZING POINT DEPRESSION The freezing point Tf of a dilute solution of a non-volatile, nondissociating solute is depressed relative to that of the pure solvent. If the solution is ideal (i.e., follows Raoult’s Law), this lowering is a function only of the number of particles of solute present. Thus the absolute value of the lowering of freezing point ∆Tf can be expressed as ∆Tf = Ef m2 where m2 is the molality (moles of solute per kilogram of solvent) and Ef is the Cryoscopic Constant, a characteristic property of the Compound Acetamide Acetic acid Acetophenone Aniline Benzene Benzonitrile Benzophenone (+)-Camphor 1-Chloronaphthalene o-Cresol m-Cresol p-Cresol Cyclohexane Cyclohexanol cis-Decahydronaphthalene trans-Decahydronaphthalene Dibenzyl ether p-Dichlorobenzene Diethanolamine Dimethyl sulfoxide
Ef/K kg mol–1 3.92 3.63 5.16 5.23 5.07 5.35 8.58 37.8 7.68 5.92 7.76 7.20 20.8 42.2 6.42 4.70 6.17 7.57 3.16 3.85
solvent. The Cryoscopic Constant may be calculated from the relation Ef = R Tf2 M/∆fusH where R is the molar gas constant, Tb is the freezing point temperature (absolute) of the solvent, M the molar mass of the solvent, and ∆fusH the molar enthalpy (heat) of fusion of the solvent. This table lists cryscopic constants for selected substances, as calculated from data in the table “Enthalpy of Fusion” in Section 6. Compound 1,4-Dioxane Diphenylamine Ethylene glycol Formamide Formic acid Glycerol Methylcyclohexane Naphthalene Nitrobenzene Phenol Pyridine Quinoline Succinonitrile 1,1,2,2-Tetrabromoethane 1,1,2,2-Tetrachloro-1,2-difluoroethane Toluene p-Toluidine Tribromomethane Water p-Xylene
Ef/K kg mol–1 4.63 8.38 3.11 4.25 2.38 3.56 2.60 7.45 6.87 6.84 4.26 6.73 19.3 21.4 41.0 3.55 4.91 15.0 1.86 4.31
15-28
Section 15.indb 28
5/3/05 9:11:54 AM
FREEZING POINT LOWERING BY ELECTROLYTES IN AQUEOUS SOLUTION Reference Forsythe, W. E., Smithsonian Physical Tables, Ninth Edition, Smithsonian Institution, Washington, 1956. Compound CaCl2 CuSO4 HCl HNO3 H2SO4 KBr KCl KNO3 K2SO4 LiCl MgSO4 NH4Cl NaCl NaNO3
0.05 0.25 0.13 0.18 0.18 0.20 0.18 0.17 0.17 0.23 0.18 0.13 0.17 0.18 0.18
0.10 0.49 0.23 0.36 0.35 0.39 0.36 0.35 0.33 0.43 0.35 0.24 0.34 0.35 0.36
Lowering of freezing point of water (in °C) as function of molality (mol/kg) 0.25 0.50 0.75 1.00 1.50 2.00 2.50 1.27 2.66 4.28 6.35 10.78 15.27 20.42 0.47 0.96 0.90 1.86 2.90 4.02 6.63 9.94 0.88 1.80 2.78 3.80 5.98 8.34 10.95 0.96 1.95 3.04 4.28 7.35 11.35 16.32 0.92 1.78 0.86 1.68 2.49 3.29 4.88 6.50 8.14 0.78 1.47 2.11 2.66 1.01 1.87 0.88 1.80 2.78 0.55 1.01 1.50 2.08 3.41 0.85 1.70 2.55 0.85 1.68 2.60 0.80 1.62 2.63 3.10
3.00 28.08
13.92
9.77
15-29
Section 15.indb 29
5/3/05 9:11:54 AM
DETERMINATION OF RELATIVE HUMIDITY FROM DEW POINT The relative humidity of a water vapor-air mixture is defined as 100 times the partial pressure of water divided by the saturation vapor pressure of water at the same temperature. The relative humidity may be determined from the dew point tdew, which is the temperature at which liquid water first condenses when the
mixture is cooled from an initial temperature t. This table gives relative humidity as a function of the dew point depression t – tdew for several values of the dew point. Values are calculated from the vapor pressure table in Section 6.
tdew/°C t – tdew 0.0 0.2 0.4 0.6 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.9 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0
tdew/°C
–10
0
10
20
30
100 99 97 95 94 92 91 90 88 87 86 84 83 82 80 79 78 77 76 75 73 72 71 70 69 69 67 66 65 64 63 62 61 60 60 59 58 57 56 55 54
100 99 97 96 94 93 92 90 89 88 87 85 84 83 82 81 80 79 77 76 75 74 73 72 71 70 69 68 67 66 66 65 64 63 62 61 60 60 59 58 57
100 99 97 96 95 94 92 91 90 89 88 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 69 68 67 66 65 64 63 63 62 61 60 60
100 99 98 96 95 94 93 92 91 90 88 87 86 85 84 83 82 81 80 79 78 77 77 76 75 74 73 72 71 70 70 69 68 67 66 66 65 64 63 63 62
100 99 98 97 96 94 93 92 91 90 89 89 87 86 85 84 83 82 82 81 80 79 78 77 76 75 75 74 73 72 71 71 70 69 68 68 67 66 65 65 64
t – tdew 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0
–10
0
10
20
30
54 53 52 51 51 50 49 48 48 47 45 44 42 41 39 38 37 35 34 33 32 31 30 29 28 27 26 25 24 24 22 21 19 18 17 16 15 14 13 12
56 56 55 54 53 53 52 51 51 50 48 47 45 44 42 41 40 38 37 36 35 34 33 32 31 30 29 28 27 26 25 23 22 21 19 18 17 16 15 14
59 58 57 57 56 55 55 54 53 53 51 49 48 47 45 44 43 41 40 39 38 37 36 35 34 33 32 31 30 29 27 26 24 23 22 21 20 19 18 17
61 60 60 59 58 58 57 56 56 55 54 52 51 49 48 46 45 44 43 42 40 39 38 37 36 35 34 33 33 32 30 29 27 26 24 23 22 21 20 19
63 63 62 61 61 60 59 59 58 57 56 55 53 52 50 49 48 47 45 44
15-31
Section 15.indb 31
5/3/05 9:11:57 AM
DETERMINATION OF RELATIVE HUMIDITY FROM WET AND DRY BULB TEMPERATURES Relative humidity may be determined by comparing temperature readings of wet and dry bulb thermometers. The following table, extracted from more extensive U.S. National Weather Service tables, gives the relative humidity as a function of air temperature
td (dry bulb) and the difference td – tw between dry and wet bulb temperatures. The data assume a pressure near normal atmospheric pressure and an instrumental configuration with forced ventilation. (td – tw)/°C
td/°C –10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 35 40
0.5 83 86 88 89 90 91 91 92 93 93 94 94 95 95 95 96 96 96 96 96 96 97 97
1.0 67 71 74 77 79 81 84 85 86 87 88 89 90 90 91 91 92 92 92 93 93 94 94
1.5 51 57 61 66 69 72 76 78 79 81 82 83 85 85 86 87 87 88 88 89 89 90 91
2.0 35 43 49 55 60 64 68 71 73 75 77 78 79 81 82 83 83 84 85 85 86 87 88
2.5 19 29 37 44 50 55 60 63 66 69 71 73 75 76 77 78 80 80 81 82 83 84 85
3.0
3.5
4.0
4.5
5.0
5.5
6.0
15 25 33 40 46 52 57 60 63 66 68 70 71 73 74 76 77 78 78 79 81 82
8 23 31 38 44 49 54 57 60 63 65 67 69 70 72 73 74 75 76 78 80
12 22 29 37 43 48 51 55 58 60 63 65 66 68 69 71 72 73 75 77
12 21 29 36 41 46 50 53 56 58 61 63 64 66 67 69 70 72 74
13 22 29 35 40 44 48 51 54 57 59 61 62 64 65 67 69 72
5 14 22 29 35 39 43 47 50 53 55 57 59 61 62 64 67 69
7 16 24 29 34 39 42 46 49 51 54 56 58 59 61 64 67
(td – tw)/°C td/°C 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
6.5 9 17 24 29 34 38 42 45 48 50 53 54 56 58 60 61 62 63 64
7.0
7.5
8.0
8.5
9.0
10.0
11.0
12.0
13.0
14.0
15.0
11 19 24 29 34 38 41 44 47 49 51 53 55 57 58 59 61 62
5 14 20 25 30 34 38 41 44 46 49 51 52 54 56 57 58 59
8 15 21 26 30 34 37 40 43 46 48 50 51 53 54 56 57
10 16 22 26 30 34 37 40 43 45 47 49 51 52 54 54
6 12 18 23 27 31 34 37 40 42 44 46 48 50 51 53
5 10 15 20 24 28 31 34 37 39 41 43 45 47 48
8 14 18 22 26 29 32 35 37 39 41 43 44
7 12 17 20 24 27 30 32 35 37 39 40
6 11 15 19 22 25 28 30 33 35 36
6 10 14 18 21 24 26 29 31 33
5 10 13 17 20 23 25 27 29
15-32
Section 15.indb 32
5/3/05 9:11:59 AM
CONSTANT HUMIDITY SOLUTIONS Anthony Wexler An excess of a water soluble salt in contact with its saturated solution and contained within an enclosed space produces a constant relative humidity and water vapor pressure according to
where p0 is the vapor pressure of pure water at temperature T as given in the table in Section 6 titled “Vapor Pressure of Water from 0 to 370°C”.
RH = A exp(B/T)
References
where RH is the percent relative humidity (generally accurate to ±2 %), T is the temperature in kelvin, and the constants A and B and the range of valid temperatures are given in the table below. The vapor pressure, p, can be calculated from p = (RH/100) × p0
Compound NaOH · H2O LiBr · 2H2O ZnBr2 · 2H2O KOH · 2H2O LiCl · H2O CaBr2 · 6H2O LiI · 3H2O CaCl2· 6H2O MgCl2· 6H2O NaI · 2H2O Ca(NO3)2 · 4H2O Mg(NO3)2 · 6H2O NaBr · 2H2O NH4NO3 KI SrCl2 · 6H2O NaNO3 NaCl NH4Cl KBr (NH4)2SO4 KCl Sr(NO3)2 · 4H2O BaCl2 · 2H2O CsI KNO3 K2SO4
Temperature range (°C) 15—60 10—30 5—30 5—30 20—65 11—22 15—65 15—25 5—45 5—45 10—30 5—35 0—35 10—40 5—30 5—30 10—40 10—40 10—40 5—25 10—40 5—25 5—25 5—25 5—25 0—50 10—50
1. Wexler, A. S. and Seinfeld, J. H., Atmospheric Environment, 25A, 2731, 1991. 2. Greenspan, L., J. Res. National Bureau of Standards, 81A, 89, 1977. 3. Broul, et al., Solubility of Inorganic Two-Component Systems, Elsevier, New York, 1981. 4. Wagman, D. D. et al., J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 2, 1982.
RH (25°C) 6 6 8 9 11 16 18 29 33 38 51 53 58 62 69 71 74 75 79 81 81 84 85 90 91 92 97
A 5.48 0.23 1.69 0.014 14.53 0.17 0.15 0.11 29.26 3.62 1.89 25.28 20.49 3.54 29.35 31.58 26.94 69.20 35.67 40.98 62.06 49.38 28.34 69.99 70.77 43.22 86.75
B 27 996 455 1924 –75 1360 1424 1653 34 702 981 220 308 853 254 241 302 25 235 203 79 159 328 75 75 225 34
15-33
Section 15.indb 33
5/3/05 9:11:59 AM