MRVL_GrowingSystems

Page 1

MRVL GROWING SYSTEMS

MARTA BERMEJO ROSIQUE - RUXANDRA MATEI - VLADISLAV BEK-BULATOV - LI CHEN


Architectural Association School of Architecture

2

Design R esearch L ab oratory 2014- 2016 Phase I I Sub mission Final B ook let_ Feb ruary 2016


DE SI G N R E SE AR C H L AB O R AT O R Y B E H AV I O U R AL C O M PL E X I T Y

2014- 2016

S t u d i o m as t e r : - S h aj a y B h o o s h an T e am

m - M ra - Ru x - V l ad - L i C

e m b e rs ta B e rm an d r a M is la v B e h e n

:

e j o Ro s i q u e a te i k - B u la t o v

3


G RO W I N G S YS T EM S | T AB L E O F C O N T EN T S

0 1 I N T RO D U C T I O N

9 - 3 3

T H ES I S S T AT EM EN T 3 D P RI N T I N G REF EREN C ES M AT ERI AL REF EREN C ES ARC H I T EC T U RAL REF EREN C ES W O RK S H O P S U RB AN S T U D I ES 0 2 M AT ERI AL RES EARC H

3 7 -1 1 1

I N T RO D U C T I O N D EP O S I T I O N L R L L M AT EI RAL T ES T S G EO M ET RY D EV EL O P M EN T P L A EX T RU S I O N G EO M ET RY D EV EL O P M EN T 03

D

R

4

L

3 6 3 8 4446 6 0 6 2 -6 8 -1

3 7 43 45 5 9 6 1

6 7 1 1

1 1 2 -1 3 3

D RD V O RT EX T U B E F I N AL V ERS I O N N O Z Z L ES 04

9 -1 3 1 4- 1 7 1 8 -1 9 2 0 2 2 -2 7 2 9 -3 3

L

R L

I N T RO G EO M G EO M RO B O

D U ET ET T IC

C T IO RY_ S RY_ S P RI N

L

1 1 41 2 41 2 6 1 2 8 R S

N T RU C T U RE U RF AC E T IN G

1 2 3 1 2 5 1 2 7 1 3 3

1 3 4- 1 7 7 1 3 6 1 3 8 1 7 0 1 7 4-

1 3 7 1 6 9 1 7 3 1 7 7


G RO W I N G S YS T EM S | T AB L E O F C O N T EN T S

0 5 RO B O T I C RES EARC H D ES K T O P RO B O T C O N T RO L RO B O T I C AN AL YS I S P RI N T I N G S I M U L AT I O N 0 6 AL G O RI T H M I N T RO D U C T I O N B I O L O G I C AL REF EREN C ES 2 D S L I M E M O U L D S I M U L AT I O N 3 D S L I M E M O U L D S I M U L AT I O N P RI N T I N G S T RU C T U RE G EN ERAT I N G P ARAM ET ER C AT AL O G U E G EO M ET RY AN AL YS I S P RI N T I N G S I M U L AT I O N S O F T W ARE I M P L I C AT I O N 0 7 P RO T O T YP E I N T RO D U C T I O N F EED B AC K L O O P F AB RI C AT I O N 0 8 D ES I G N AP P L I C AT I O N I N T RO D U C T I O N T O P O L O G I ES C AT AL O G U E RES P O N S E T O C O N T EX T G RO W T H S T RAT EG I ES P RO G RAM M AT I C C H AN G ES C O N S T RU C T I O N S EQ U EN C E P RI N T I N G G EO M ET RY B EYO N D RO B O T I C REAC H F I N AL D ES I G N 3 D P RI N T ED M O D EL S

1 7 8 -2 0 1 1 8 0 -1 8 3 1 8 4- 1 8 7 1 8 8 -2 0 1 2 0 2 - 2 41 2 0 2 2 0 6 2 0 8 2 1 2 2 2 42 2 6 2 3 42 3 8 2 40 -

2 0 5 2 0 7 2 1 1 2 2 3 2 2 5 2 3 3 2 3 7 2 3 9 2 41

2 44- 2 5 3 2 44- 2 45 2 46 - 2 47 2 48 - 2 5 3 2 5 4- 2 9 9 2 5 6 2 5 8 2 6 8 2 7 8 2 8 0 2 8 42 9 0 2 9 2 2 9 8 -

2 5 7 2 6 7 2 7 7 2 7 9 2 8 3 2 8 9 2 9 1 2 9 7 2 9 9

0 9 EX H I B I T I O N AN D P U B L I C AT I O N S

3 0 0 -3 0 3

1 0 REF EREN C ES 1 1 AC K N O W L ED G M EN T

3 0 4- 3 0 5 3 0 6 -3 0 7

5


6


I N T RO D U C T I O N

7



ARCHITECTURE URBANISM F O RM

C U S T O M I Z AT I O N

ROBOT

BEHAVIOUR COMPLEXITY

MATERIAL

AD D I T I V E/

AI

S U B T RAC T I V E

ALGORITHM

T H ES I S S T AT EM EN T n contrast to t e ri i static arc itect re o to ay e are ro osin a system o e asticity one t at can accommo ate arameters o site an eat er i e a o in s acia c an es to occ r over time. e met o intro ces ro otic a rication as a y ri system com inin t e recision o re a ricate e ements it t e a a ta i ity o onsite a rication. Different tec ni es o vertica e tr sion are com ine it t e e avio r o t e materia to rive a rocess t at e iminates t e nee or scaffo in . n oin so ne eve s o esi n com e ity can e reac e .


0 1 I N T RO D U C T I O N | T H ES I S

History of construction practices and its impact on the house layout D rin t e ast eca es o ation as ro n nti ns s ecte imits. is is one o t e main ro ems t at ifferent cities ave in t e resent. ccor in to t e a itat t e 30 o t e or s r an o ation ives in s ms. D e to t is nacce ta e con itions eo e o not ave man com ort in act t e ac o services is even ecreasin t e ivin stan ar s an it is rivin society to cra y sit ations ere t ey are not rovi e it ater se a e aci ities an ot er nee e s ies. or instance Rio e aneiro is one t e main cities t at s ffer t is iss e. e ro em comes rom overcro e areas mi e it an im ortant ac o s ace. ese ot mi e to et er ave a res t t at oes not a o citi ens to en oy t eir ai y i e. Some ro ems ten to c an e in ivi a s an t e crime rate as een increase over t e ast e years e to t e nee s t at eo e are s fferin . at sit ation as to c an e an e im rove .

Rocin a ave a in Rio e aneiro s

omostroenie ave a

ra i .

ver o

ate c inese city.

i ismi e.com 20 2 05 nese city 22 ics. tm

rim i e in an over o

ate

c i-

s a res t a ossi e so tion co e to create a met o o esi nin a a tive ro in systems it a itive an s tractive ca acities. e o ort nity o offerin society o tions i e ast s ee o i in an constant y c an in o ses is im ortant oo in at t e comin t re. e esi n s imit is in nite. n terms o nee everyt in is ossi e. vera t ere are n mero s systems o ro t . Severa ro ects can e mentione as an e am e o ro in strate ies. irst o a it is im ortant to e ne at a itive arc itect re means. e term as rst se y . t on to e ain t e eve o ment o is ro ects on t e asis o

ro t

a erns in nat re.1

- Ric ar eston itive rc itect re rn t on Lo oo tion n a . Retrieve 25 Se tem er 20 .

1 0

o

i-

oto ra o rn t on s mo e or a s orts sta i m in e a Sa i ra ia. e mo e create in 6 as s o n at t e t on e i ition in enice 2008. tt . ic r.com otos seier 38 3 0630


0 1 I N T RO D U C T I O N | T H ES I S

itive arc itect re as a ay o c an ea e s ace in terms o so vin t e ser s esire. at i t e ami y ro s in e years Does it mean t ey act a y ave to eave t at o se an n a ne one i er e i ea is to ive a so tion to ro ems i e t e mentione ear ier. it t e tec no o y t at e are eve o in it o e ossi e to a str ct ra e ements to t e revio s i in an ma e ne rooms or ne sers. et at t e same time it i e ossi e to remove certain e ements an ma e ne ones. ere are vario s ro in esi ns t at can e a ie to o r researc .

System overvie

.S

itive arc itect re

G S ase sim ations

T h e s t ac k i n g u n i t s s t r a t e g y c an b e u s e d to create a variety o a itive a erns t h a t m ai n t ai n c o n s i s t e n c y ac c o r d i g t o t e r es o t e . e ossi i ities are e n d l e s s y e t t h e v i s u a l l an g u ag e i s h o m o eneo s. is ives t e system t e a i ity to ic y a a t to any t re c an es i e maintainin its inte rity. 2 eve s...

eve ...

3 eve s...

1 0 0 le v e ls

e met o o o y o o e in t e ia rams a ove co ive a so tion to t e ro em mentione ear ier o overcro e areas i e in ina or rai . t e ave a s str ct re Rio e aneiro is ta en into consi eration an c an e to a vertica ro t it i rovi e t e city it more o en s aces an ot er ene ts. is co c an e t e ay eo e e ave an im rove t eir

a ity o i e.

1 1


0 1 I N T RO D U C T I O N | T H ES I S Spacial strategies and examples of growth

C as e 1 : e mo ntain D e in . o en a e Denmar .

G.

Dia ona comm nication eat re s ace insi e t e vo me can not e se

e mo ntain D e in G rc itects. o en a e Denmar . 2008 rc ai y .arc ai y.com 5022 mo ntain- e in s- i

ro a a.

ertica comm nication

ons me ess s ace on t e ro n eve s t r u c t u r e i s l e s s s t ab l e

1 2

e in

e arc itect ra st io eci e to rin t e i ea o o en s aces to t is ro ect. e oa as to et a reen roo an to com ine t o i in s into a sym iotic re ations i . arin an a resi entia oc are connecte creatin a s ran nei o r oo .

C as e 2 : a a in a s e o er. is o o yo a an.

a a in a s e o er is o ro a a. o yo a an. 2. rc ai y .arc ai y.com 0 45 a -c assics-na a in-ca s e-to er- is o- ro a a

or

tt e

Resi entia an o ce to er one in t e 0 s. t is consi ere a iece o arc itect re t at re resents t e a anese meta oism movement. e i in consist o severa ca s es t at are ivi e into t o ifferent ses a artments an o ces.


0 1 I N T RO D U C T I O N | T H ES I S

C as e 3 : a itat 6 . os e Sa ie. ontrea ana a.

ertica an

ori onta commin tion non a ia s ace

om icate navi ation it in t e c ster system i nction e ciency on y in a sma sca e

ti ami y o sin Habitat 67� os e Sa ie. ontrea ana a. 6 Great i in s on ine . reat i in s.com i in s a itat 6 . tm

a itat is a avi ion t at as ma e or t e osition in 6 . e i in consist o n mero s oc s o a artments ma e it concrete t at re resent t e conce t o s r an o se. e arc itect as oo in or ar ens o en s aces an a rivate is osition en e esi ne t e i in .

C as e 4: i e se c ster. Ser ey e omnyas c i.

ster it comm nication on vertica an ica e to ar e sca e c sters

i e tt

se c ster y Ser ey e omnyas c i. e eny Goro reen-city.s rossi s aya-teoriya-vo- a o- o ne esno

is e in 28

ay 20 4.

ori onta a is

e a c sters y Ser ey e omnyas c i. Des ite t at act t at ensity o t e c ster is i er t an in a ty ica city oc . t rovi es i ivin an stan ar s e to arran ement o s aces an e ciency o t e at ays. 1 3


0 1 I N T RO D U C T I O N | 3 D P RI N T I N G REF EREN C E

C sa e 1 - onto r ra in

niversity o

a i ornia -

Khoshnevis is a professor of Industrial & Systems Engineering and Civil & Environmental Engineering, as well as director of the Center for Rapid Automated Fabrication Technologies. According to the CRAFT website, his vision is to revolutionize housing construction, and the team has set an audacious goal for itself-the ability to build a custom-designed house in a day. The new approach is expected to “drastically [reduce] the costs, injuries, waste and environmental impact associated with traditional construction techniques.�

Key Ideas:

1 4

rintin can re ast rocess

ce costs an environmenta im act


0 1 I N T RO D U C T I O N | 3 D P RI N T I N G REF EREN C E

C as e 2 om onent an ssem y - G E T 端 r k i y e En d 端 s t r i n i n G e l e c e g i Re k l am

F ilm i -

The video shows us the possibility of real-time on-site building process. By utilizing 3D printing with a robotic arm, design and construction could happen simultaneously. Changes on design could instantaneously be reflected in the construction on site.

Key Ideas:

Rea -time esi n an constr ction

1 5


0 1 I N T RO D U C T I O N | 3 D P RI N T I N G REF EREN C E

C sa e 4 - is ts

en

an

art e

niversity -

This project recognizes the necessity for support structures of traditional 3D printing and aims at turning it into a design feature. This way the process become significantly more efficient in terms of material consumption. At the same time, structural requirements are achieved by mixing the brittle ABS plastic with plaster to increase compression strength.

Key Ideas:

1 6

nte ratin s ort materia as art o i in m ti e materia s

esi n


0 1 I N T RO D U C T I O N | 3 D P RI N T I N G REF EREN C E

C sa e 3 - 20 4 Di ita

t re S an ai

or s o

Lei -

This project looks to integrate design and fabrication through a process of digital craftsmanship. Inspired by biometrics and spiderweb weaving, it aims at balancing perfect performance for structure and construction simultaneously.

Key Ideas:

S acia rintin O r g an i c d e s i g n

it no s

ort materia

1 7


0 1 I N T RO D U C T I O N

| M AT ERI AL REF EREN C ES

Printing out of plastic from 1960-2014

re a mo ar e in o si astic o s in rance.

CURRENTLY ON DISPLAY

o se o t o astic in Saint eters r .

UNEXPOSED TODAY. DEMOLISHED

t ro o ses y a S ronen. n y 50 s rvive .

1 8

e

onsanto o se o t e t re in Dis ey an .

Das

1 9 6 9

1 9 6 3

1 9 6 1

1 9 6 0

1 9 5 7

n or er to start oo in at astic materia s se in t e tra itiona constr ction or it as im ortant to c ec arc itect ra rece ents t at ti i e t is materia . D rin t e 60 s t ere ere severa e am es o astic o ses eve o e y t e visionaries at t at time. Severa o t em i not ast a on time t rovi e an im ortant ase or o r researc . i e some res ts ere oo most o t em ere ins cient. e ast e am e in 20 4 ana o se in mster am is t e most re evant re erence to o r researc e to t e act t at it is ma e it 3D rinte ieces constr cte in a actory an ro t to site.

nststo a s y Dieter Sc i t.

G 2000 y o an eierb ac h i n G e r m an y .


| M AT ERI AL REF EREN C ES

2 0 1 4

2 0 1 3

2 0 1 0

2 0 0 6

2 0 0 1

1 9 7 0

0 1 I N T RO D U C T I O N

3D rinte ana o se in Am s t e r d am .

U n i d o m e m o d u l ar h o u s e i n G e r m an y .

astic ane s o se y essan ro rman o- an re o in assac se s.

o se o t o o es in Ser ia.

tt

G S

astic omes rom t e Days

io . i mo o.com

astic- omes- rom-t e- ays-

en astic

as t e

t re

en- astic- as-t e- t re- 6 02 2823

1 9


0 1 I N T RO D U C T I O N | ARC H I T EC T U RAL REF EREN C E Elastic House by Etienne Meneau’s. tienne enea is a e no n sc tor rom rance. e esi ne an nsta e t in t e mi e o t e a e. e e i e str ct re moves it t e eat er an aves. is eat re can e ac ieve y connectin ri i ro s it e astic s eres. is met o ma es t e o a str ct re e i e eno not to co a se eca se o nat ra orces. ven i t e str ct re is e orme as soon as orces are no on er a ie t e str ct re ret rns to its initia state. astic o se y tienne a a ine.

oste on n e au

2 0

/

enea s.

otos De een

on ay an ary 2 st 2008 at 0 m y Rose t erin ton. . e een.com 2008 0 2 e astic- o ses- y-etienne-me-


21


0 1 I N T RO D U C T I O N | O D I C O W O RK S H O P Workshop with ODICO Frameworks

WORKSHOP ODICO Cutting EPS with the hot wire. The aim of the workshop was to understand the logic of the , fabrication process which allow to achieve shapes with double curvature. The algorithm of control can be later on applied to the wide range of techniques with similar movement pattern.

D rame or s is a com any ic creative y ti i es in stria ro otic arms in t e arc itect ra constr ction rocess. n ri 20 5 e i a 3- ays ro otic or s o it t em ic is a so t e rst time e trie t e i ea o vertica e tr in on a rea in stria ro ot. n t is or s o y sin a sim e en -effector ic is a 3-D oo e en o er an recor ro ot movement y teac en ant e trie to ro ce some rimitive rintin s s c as strai t vertica ines ri e et een t o eometries an yrami - i e s a es. Experiment 1 Vertical straight line

0 0 :0 0 :0 1

0 0 :0 0 :0 2

0 0 :0 0 :0 3

0 0 :0 0 :0 4

0 0 :0 0 :0 5

0 0 :0 0 :0 6

Experiment 2 Bridge between to lines

0 0 :0 0 :0 2

0 0 :0 0 :0 4

0 0 :0 0 :0 6

0 0 :0 0 :0 8

0 0 :0 0 :1 0

0 0 :0 0 :1 2

2 2


0 1 I N T RO D U C T I O N | O D I C O W O RK S H O P

Experiment 3.1 Pyramid shape with temprory support in the middle

0 0 :0 0 :0 4

0 0 :0 0 :0 8

0 0 :0 0 :1 2

0 0 :0 0 :1 6

0 0 :0 0 :2 0

0 0 :0 0 :2 4

0 0 :0 0 :0 4

0 0 :0 0 :0 8

0 0 :0 0 :1 2

0 0 :0 0 :1 6

0 0 :0 0 :2 0

0 0 :0 0 :2 4

Experiment 3.2 Pyramid shape with temporary support removed

2 3


0 1 I N T RO D U C T I O N | I AAC W O RK S H O P Workshop with IAAC

o o in D e a so ent to in arce ona to ave anot er ro otic or s o . n t is one sin simi ar astic e tr er e e in to ro ramme re ative y com icate rintin at s it ire y -in o Grass o er. esi es eometry itse e a so e ore t e micro movement o t e e tr er rin rintin . or e am e in t e st e eriment e aime to rint an array o yrami s. en t e e tr er reac e t e i est oint t e contin o s e tr sion s e t e materia o n res tin in a ai re o reac in t e e ecte ei t. s e trie to rotate t e e tr er to an inc ine osition on to o eac yrami . y oin t is e s ccess y avoi e s in o n t e materia an reac e a si ni cant y i er recession o rintin .

Experiment 1 Extrude the shape without rotating the extruder

0 0 :0 0 :0 2

0 0 :0 0 :0 5

0 0 :0 0 :0 8

0 0 :0 0 :0 1 1

0 0 :0 0 :1 5

0 0 :0 0 :2 5

0 0 :0 0 :0 3

0 0 :0 0 :0 6

0 0 :0 0 :1 1

0 0 :0 0 :1 5

0 0 :0 0 :2 0

0 0 :0 0 :2 5

Experiment 2 Rotate extruder on top of pyramids

2 4


0 1 I N T RO D U C T I O N | I AAC W O RK S H O P

2 5


0 1 I N T RO D U C T I O N | RO B O F O L D W O RK S H O P Ro o o is a ro otic com any ase in Lon on. Doin a or s o ere as t e rst a em t to rint eometry sin ro otic arm. is or s o s o e t e ea oints o t e ar are an constraints o t e ro otic arm. e or s o affecte t e esi n o t e na version o t e en -effector.

T IM E

P AT H C O M P L EX I T Y

S T REN G T H

o vie

2 6


0 1 I N T RO D U C T I O N | RO B O F O L D W O RK S H O P

0 0 :0 1 :3 0

0 0 :0 5 :0 0

0 0 :1 0 :0 0

0 0 :1 8 :0 0 2 7


0 1 I N T RO D U C T I O N | P RO T O T YP I C AL U RB AN S T U D I ES

2 8


0 1 I N T RO D U C T I O N | P RO T O T YP I C AL U RB AN S T U D I ES rt erin t e researc t e ro ect oo s at o t e system can e a ie at t e sca e o t e r an conte t. ty ica site in Lonon is c osen as a case scenario an statistics are ta en rom t e ity o Lon on as a ase or com arison. t is iscovere t at t e main e in ty es in t e city ave 3 or more e rooms an are s a y s are . aintainin t e same ratio o ty es o e in s o r system is e oye on site. y com arison it is seen t at o r system rovi es a e ree o e i i ity t at a tra itiona system ac s.

1 BEDROOM

6% 2 BEDROOMS

24 %

3 BEDROOMS

46 %

4 BEDROOMS

17 % 5 BEDROOMS

7%

SCHOOL

2 BEDROOMS

3 BEDROOMS

4 BEDROOMS GYM

TRAIN STATION

2 9


0 1 I N T RO D U C T I O N | P RO T O T YP I C AL U RB AN S T U D I ES n or er to e cient y e oy o r system on a iven site strate ies o s ace occ ation are ti i e . ase on rei o s i ea o occ yin an connectin a se ence is eve o e ere t e corners et i t rst o o e y t e centre an t e remainin s ace.

Lo ic o t e s ace occ . orners o a site 2. entre 3. S ace in et een

S it e s t u d y 1

3 0

ation

S it e s t u d y 2

S it e s t u d y 3


0 1 I N T RO D U C T I O N | P RO T O T YP I C AL U RB AN S T U D I ES o o in t is o ic a aya sim ation is r n ere s eres are e oye on site in a s ace ac in manner. e ra i s o eac s ere is re ate to t e avera e si e o t e o se it a ar en. e sim ation e nes t e anc or oints rom ic t e e ansion o eac o se i start. nce t ese are in ace a enerative a orit m is ran to connect t e anc or oints in a trans ortation net or or materia eo e an ro ots.

nc or oint or t e o ses

Diameter 5. m Ar e a ~ 1 0 0 m 2

3 1


0 1 I N T RO D U C T I O N | P RO T O T YP I C AL U RB AN S T U D I ES

1 b e d ro o m

3 2

h o u se

2 b e d ro o m

h o u se

3 b e d ro o m

h o u se

4b e d r o o m

h o u se


0 1 I N T RO D U C T I O N | P RO T O T YP I C AL U RB AN S T U D I ES om arin it t e e istin site sit ation t e ne system rovi es a more e cient i er ensity r an scenario. rt ermore t e system is ca a e o e ansion i e easi y accommo atin or c an e in emo ra ics. s o ose to t e static e istin site o n aries can e constant y re e ne i e maintainin t e a ity o ivin con itions or t e sers.

3 3


M AT ERI AL 0 1 | I N T RO D U C T I O N

3 4


M AT ERI AL 0 1 | I N T RO D U C T I O N

M AT ERI AL RES EARC H

3 5


0 2 M AT ERI AL RES EARC H | I N T RO D U C T I O N Material research. o a ays t e i ita or ecomes t e ace ere i eas s rea ast an eve o co ective y. n arc itect re t e transition rom i ita to ysica ecomes a e ersona i e rocess o mac ine a rication. esi es t e act t at t e or e ersona i e as a ne ative connotation it a so means t at esi n can e more ersona i e an is no on er e en ent on t e s i s o a constr ction or er or a cra smen. ac ine a rication as its o n constrains t it a o s to ave anot er ayer o com e ity rin t e sta e in ic t e ro ect is containe in t e i ita environment. re ent y in tra itiona ro ction t e ar y re icta e nat re o materia e avior ecomes an n ante arti act rat er t an a eat re t at com ements t e esi n. n act t e materia e avior can ecome one o t e main esi n rivers sim i yin ot t e esi n an t e constr ction rocess i e re cin t e cons m tion o ener y an reso rces. n o osition orcin t e materia to e ave contrary to its nat re res ts in e tra ener y se.

M I N ERAL M AT ERI AL S

C o n c re te

M i n e r al

astics

P O L YM ERS C H EM I C AL S

y

F o am

/ B u b b le s

Sta e 3.5

S ta g e 3

S ta g e 2

S ta g e 1

Material research development


0 2 M AT ERI AL RES EARC H | I N T RO D U C T I O N

S ta g e 8

S ta g e 7

S ta g e 6

S ta g e 5

S ta g e 4

ateria a s anot er ayer o com e ity to o r researc . D rin o r rst a em ts e a a re e ne i ea on o t e materia s o e ave o ever t e materia a its o n eat res t at nee e to e consi ere in t e esi n rocess. is inner con ict ea to si ni cant amo nts o ns ccess a em ts ere str ct ra an materia o ic ere consi ere a art rom eac ot er. n o r rst e eriments e trie rintin rom t e ro n eve movin ar s t it a eare t at t is a roac nee s t ice more ener y or coo in i e creatin ess sta e eometry. er reversin t e irection o rintin e ere a e to increase t e coo in an eometry e ciency. nstea o str in it materia an ravity e a o astic in its i i con ition to o t in s t at are nat ra or it - to o o o in t e orce o ravity. r ro e in t e constr ction rocess ecame to i e an mo erate t e o . S atia e tr sion eman s materia s it a i ities to maintain its s a e as it is e osite an a so a i ity to create stron connections et een e ements. e researc e vario s materia ty es s c as minera materia s oams an astics. astics as an a vanta e o creatin e er connections et een rinte arts an n i e ot er materia s ave s tractive ca acities.


0 2 M AT ERI AL RES EARC H | D EP O S I T I O N

e most common y se met o o e osition is e tr sion. t can e a ie to a variety o materia s s c as concrete astic an c ay an it a o s or or anic s a es to e trace in t e air.

EXTRUSION

3 8

De osition or ri in invo ves e n t e materia ro in its nat ra state. y re eatin t is rocess t e materia i s into an e ement. isco s materia s s c as ot e astic an a are i ea .

DRIPPING


0 2 M AT ERI AL RES EARC H | D EP O S I T I O N

e oamin strate y as t e a vanta e o s ee t it is t e reis met o ses a itiona materia as rein orcement or cons t o a c emica reaction. e materia se ection is imite an it crete. t as t e a vanta e o increase str ct ra a i ity t it is i c t to ac ieve a sta e state or t e e ement. is restricte to t e s a e o t e rein orcement. e a rication met o is a so more com icate .

FOAMING

CASTING

3 9


0 2 M AT ERI AL RES EARC H | D EP O S I T I O N

Different mi es o concrete are teste or stren t an e ciency. e en ent on t e mi t re o t e materia .

Experiment 1 COMPOSITION: Concrete, fibre, plastic formwork

HEIGHT

10 cm

2 cm

RADIUS

SETTING TIME

METHODS: Extrusion, Casting

2 mins

-C TEMPERATURE

Experiment 2 COMPOSITION: Dental Plaster, Water , Cotton Fibre, Concrete

HEIGHT

RADIUS

SETTING TIME

10 cm

1 cm

15 mins

-C TEMPERATURE

40

METHODS: Extrusion

e e tr sion met o is s ccess

t t e res ts rove to e i

y


0 2 M AT ERI AL RES EARC H | D EP O S I T I O N

Rein orcement s c as ass or nat ra

re a o

or en t ier e ositions an si ni cant y re

ces t e se n time.

Experiment 3 COMPOSITION: Dental Plaster + Water + Glass Fibre, Tile Glue, PVA.

HEIGHT

RADIUS

SETTING TIME

10 cm

METHODS: Extrusion

1 cm

15 mins

-C TEMPERATURE

Experiment 4 - FOAM COMPOSITION: Hydrogen Peroxide, Potassium Iodide, Liquid Dish washing Detergent, Cement

HEIGHT

ANGLE

COOLING TIME

- cm

- degrees

METHODS: Foam

PROS: Speed of reaction CONS: Not permanent Changing after deposition

15 sec

+/-50 C TEMPERATURE

41


0 2 M AT ERI AL RES EARC H | D EP O S I T I O N

is met o invo ves eatin materia e ositin it a on a at an coo in it o n. se -s ortin an str ct ra y sta e. THE STRIP COMPOSITION: Hot Glue + Baking Powder + Water

HEIGHT

ANGLE

COOLING TIME

1 - 8 cm METHODS: Lacing + Spiral Mixing + Extrusion

30 - 80 degrees

PROS: Extra Flexible Multitude of Angles Surface quality Instantaneous hardening in contact with water Re-meltable CONS: Sensitive to temperature changes Timing must be exact Reduced control due to multiple ingredients Dripping before glue hardens

3 sec

190 C TEMPERATURE

THE STRING COMPOSITION: Hot Glue + Water + Freeze Spray

HEIGHT

ANGLE

COOLING TIME

1 - 12 cm

30 - 80 degrees

5 sec

150 C TEMPERATURE

42

METHODS: Extrusion

PROS: Flexible Tension capabilities - doubles length Wide variety of arches Re-meltable CONS: Little precision Tension affects curvature of string Less strong due to small cross section

e res ts are or anic an

n re icta e yet


0 2 M AT ERI AL RES EARC H | D EP O S I T I O N

Dri in ot e in ater mi e it a in o er iet e in rocess is in ace a o s or t e t in m o into a series o es. nce t ey are ar ene a ne ayer o ot e can e ri e . n t e secon e am e concrete is mi e it ero i e in t e a em t o oamin it into ace.

astic to oam

THE BUBBLES COMPOSITION: Hot Glue + Baking Powder + Water

HEIGHT

ANGLE

COOLING TIME

1 - 2 cm

METHODS: Dripping

-

PROS: Continuous bubble surface Strong and resistant Waterproof Re-meltable CONS: Unpredictable Horizontal building only

30 sec

190 C TEMPERATURE

PLA COMPOSITION: PLA plastic

HEIGHT

ANGLE

COOLING TIME

10 cm

METHODS: Extrusion

PROS: Continuity of path CONS: Less control

- degrees

15 sec

+/-50 C TEMPERATURE

43


0 2 M AT ERI AL | P O L YC AP RO L AC T O N E Polycaprolactone o yca ro actone as se ecte as t e main materia or rototy in . o yca ro actone is a o yester t at is a res t o tion o a ro actone.

o ymerisa-

orm a 6 0 2 n Density . 45 cm3

Sta e 3.5

S ta g e 3

S ta g e 2

S ta g e 1

Material research development

C o n c re te

M I N ERAL M AT ERI AL S

Se n time 30min -C e m e n t

M i n e r al

Se n time 30min -C e m e n t -W a te r - M o u ld

Se n time 3min -C e m e n t -W a te r - astic re -Gy s m aster - G lu e

y - a es on time to se t - H ar d t o c o n n e c t at s

P O L YM ERS

Se n time 24

astics

C H EM I C AL S

Se n time 30s t y ene-viny acetate e tin oint 80

F o a m / B u b b le s

Se n time - H e d r o g e n e P e r o x i d e P o t as s i u m -Li i Dis as in Deter ent

Io d id e

+ W e ig h t


0 2 M AT ERI AL | P O L YC AP RO L AC T O N E o yca ro actone it is -S tre n g th - F le x ib ilit y -Lo me tin oint - B i o d e g r ad ab i l i t y - Av ai l ab i l i t y

ase c an in materia . ts main a vanta es inc

e

ercent o

S ta g e 8

S ta g e 7

S ta g e 6

S ta g e 5

S ta g e 4

e main c a en e is t e si ni cant amo nt o coo in re ire or t e rintin rocess an inevita e e ormations. n or er to im rove materia e avio r to t e mi t re as a e 0 ercent micros eres to re ce e ormation an i ment to im rove scannin .

- H ar d t o c o n n e c t r o d s -Lon time to set Se n time 2min -C e m e n t -W a te r -G ass re -Gy s m aster - G lu e -P V A

+ S tre n g th + P r ic e

tomatic s y Se n time 2min -C e m e n t -W a te r - astic re -Gy s m aster - G lu e -P V A - P ig m e n t

Se n time 30s e en s on coo in - L o yca ro actone -San 30 50 0 0

Se n time 30s e en s on coo in - L o yca ro actone e tin oint 0

Se n time 30s t y ene-viny acetate e tin oint 80 -So a a 3 -W a te r

-Lo me tin - ro ematic to mi it san ar ens ast + EAS Y t o c o n n e c t r o d s oint + W e ig h t + P r ic e Lo me tin oint + S tre n g th

Strate y or a rame - L o yca ro actone - icros eres - ite i ment

Strate y or an enc os re -

L

o yca ro actone


46


1- PCL granules

2-Heat granules (60ยบC)

3- Granules slowly join together

4- Give the final form when it is transparent

5- Cool it down

M AT ERI AL T ES T S

oto.

ateria sam es. 47


0 2 M AT ERI AL | T ES T I N G Addition and subtraction test. er a series o materia test e ic e o yca ro actone as o r main materia . r ne t ste as to o anot er series o tests to n erstan t e e avio r an eat res o t is artic ar materia . ne o t e most im ortant eat res o materia is its a i ity to reverse t e rocess. otos e o escri e t e s traction rocess - eometry a een c t it a ot ire. e s a e o t e eometry oesn t affect t e c n rocess. er t e roce re materia can e re se .

EX T RU S I O N nitia State g r an u l e s

rintin rocess

e state s o lid

Decom osition Recyc in

S

traction. Str ct re.

S 48

rocess. Di ram.

traction. S r ace.


0 2 M AT ERI AL | T ES T I N G Compression test o e a e to e er n erstan t e er ormance o t e materia n er com ression e i a series o com ression tests. o r ifferent com ositions ere se . o r sam es s o e simi ar er ormance meanin t at minera a itives s c as san i it is mi e in t e e tr er not mo e oesn t im rove t e com ression resistance. o ever it can im rove cost o constr ction y se ective y a in san to certain e ements o t e str ct re s c as o n ation. ateria oesn t ra e even a er oa 0 tons er secon . er t e test sam es a most ret rn to t eir initia s a e.

0 k N 0 Ă— k g * m /s²

0 .46 1 0 1 46 0 Ă— k g * m / s ²

49


0 2 M AT ERI AL | T ES T I N G Comparison of samples, before and after the load was applied.

L - o yca ro actone

00

L 50

ar e

st 50

9 0 m m

8 2 m m

9 0 m m

8 2 m m

T i m e t o h ar d e n : 45 m i n

0 .46

W e i g h t : 45 1 g r

T i m e t o h ar d e n : 45 m i n W e i g h t : 45 1 g r

H ig h t

: 9 0 mm

H ig h t : 9 0 m m

D i am

e te r: 8 2 m m

D i am

e te r: 8 2 m m

7 6 m m

9 0 m m

7 8 m m

8 6 m m

De ormation i t - 3

De ormation - 2 mm

Diameter 4.

5 0

4 mm

i t - 5.5

m)

Diameter

- 4 mm 0.4

8 mm

0 .46


0 2 M AT ERI AL | T ES T I N G

L 50

San

50

L 42

San

42

9 0 m m

8 2 m m

9 0 m m

8 2 m m

i er ass 8

T i m e t o h ar d e n : 45 m i n

.

T i m e t o h ar d e n : 45 m i n

W e i g h t : 6 49 g r

W e ig h t : 6 5 3 g r

H ig h t : 9 0 m m

H ig h t : 9 0 m m

D i am

D i am

e te r: 8 2 m m

e te r: 8 2 m m

9 0 m m

7 8 m m

7 8 m m

9 0 m m

De ormation i t - 3 Diameter

02.66

De ormation - 2 mm 0.4

i t - 3 mm

Diameter

- 2 mm 0.4

mm

5 1


0 2 M AT ERI AL | T ES T I N G

Composition: Polycaprolactone+ Cooling Air + Freeze Spray

PROS: Fast hardening Strong and resistant Low weight Re-meltable Easy to connect with other elements Low melting point CONS: Low melting Problematic to mix with sand 5 2

Method: Extrusion

H EI G H T

AN G L E

-

-

C O O L IN G T IM E

5 se c

6 0 C T EM P ERAT U RE


0 2 M AT ERI AL | T ES T I N G

ateria testin e i ea is to test o i t is materia co reac vertica y. e met o or e tr in t e o ymer invo ves eatin it nti it me ts ivin it t e convenient s a e an coo in it o n. t e e eriments are one man a y in or er to test severa materia ro erties s c as tem erat re e ormation or an e. t t e same time t o ifferent materia com ositions are teste one i s com ose on y y o yca ro actone 00 an t e ot er is varyin t e ercenta e o san a e to t e ori ina sam e. 5 3


0 2 M AT ERI AL | T ES T I N G

Deformation Tests The experiment is made in three stages. The first one [1] by extruding PCL and sand with a temperature of 95ยบC and cooling it down with freeze spray. The second [2] is made without freeze spray and at the same temperature. The third one [3] is made by using a higher temperature (160ยบC) without cooling which makes a bigger deformation of the element. Polymorph (PCL) + Sand

[1 ]

00:00:00

00:00:53

00:01:00

[2 ]

00:00:05

00:00:55

00:02:00

[3 ]

00:00:10

00:01:00

00:05:00

Polymorph (PCL)

Polymorph with sand 1

1

2

8 .5 cm

6 .5 cm 2

20 cm

T IM E

5 4

4m in 2

1

20 cm

With cooling Without cooling

T IM E

5 m in 2

1

With cooling Without cooling


0 2 M AT ERI AL | T ES T I N G

Angle Tests In order to start generating different geometries by extruding Polycaprolactone it was important to test different angles during the printing process. Therefore, different angles are tested in this experiment made with PCL and sand at 95ยบC. The conclusion is that the lower the angle is the more the deformation needs to be controlled with an additional cooling system. Polymorph (PCL) + Sand

00:00:09

00:00:03

[ 1 ] 45 ยบ

00:00:13

Side view

Top view

1 3

L = 30 cm 2

2

L = 25 cm 3

1

5 45

L = 29 cm

W AI T W AI T

W AI T T I M E

60

1 0 se c

W AI T T I M E

45

1 3 se c

1 5 se c

W AI T W AI T T I M E

5

5 5


0 2 M AT ERI AL | T ES T I N G

Joint Tests Three experiments are made with a PCL + Sand mixture. The first one [1] is made branching the two elements. The second one [2] by overlapping two diagonals. The third one [3] is made by twisting the second elements around the first printed one. Each of the joins mentioned before needed freeze spray to harden and it was essential to make it resistant. The twisted join is the one that works beter in terms of conexion, but ist is extremely difficult to make it with a robotic arm. Therefore the second one will be the used in most of the cases.

o ymor

L

S an

d

[1 ]

00:00:09

00:00:20

00:00:30

[2 ]

00:00:05

00:00:55

00:01:10

[3 ]

00:01:20

00:01:50

00:02:05

5 6


0 2 M AT ERI AL | T ES T I N G

Branching

Overlap

Twist

5 7


0 2 M AT ERI AL | T ES T I N G

Polycaprolactone Extrusion e aim o t is test is to e ne t e o tima en t o t e interconnections ma e et een vertica e ements in t e str ct re. er testin 5 items it a simi ar stren t an meas rin t e e ormation t at a ene in t e rocess e rea ise t at t e interconnections s o e ma e in a istance rom 6- cm.

Extrusion process 15 cm

12 cm

9 cm

10 k g

14 k g

16 k g

Dedormation test

5 8


0 2 M AT ERI AL | T ES T I N G

6 cm

3 cm

21 k g

> 71 k g

5 9


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

1 A

6 0

S m al l s c al e P L A e x t r u s i o n


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

1 B

L ar g e s c al e P C L e x t r u s i o n

Lar er sca e mo e s can e sim ate in a sma er sca e ma e it a ifferent materia t at as t e same ro erties. L o y acti e is a o imer t at once it is me te it as t e same e avio r as L. t ar ens ast ic a o s s to rint in a contin o s e tr sion an i er mo e s can e create to erceive t e s ace an o it co oo i e in rea socia scenarios. 6 1


0 2 M AT ERI AL | P L A EX T RU S I O N

6 2


0 2 M AT ERI AL | P L A EX T RU S I O N

1 A

L

o y acti e e tr sion 6 3


0 2 M AT ERI AL | P L A EX T RU S I O N S T RAT EG I ES

EX T RU S I O N S T RAT EG I ES

6 4


0 2 M AT ERI AL | P L A EX T RU S I O N S T RAT EG I ES ase on t e revio s e eriments it as ecome c ear t at e tr sion is t e most s ccess means o e osition. s s c more tec ni es ere e ore in or er to create s r aces. e strin tec ni e invo ves vertica y e tr in L at ifferent s ee s. e aster t e e tr

er moves t e t inner t e stran o

astic e tr

e . sin t is strate y interestin

a erns can e create .

30

.

LD R

e rame can e s a e as t e materia ar ens into ace. e o tima an e or e osition i s 3 0 d e g r e e s t o t h e t an g e n t

2.

R

L

S

3.

G D

F AS T

SLOW

Simi ar res ts are ac ieve re ar ess o t e irection o e osition

S

S

D

e aster t e e osition t e t inner t e stran o materia . y s o in o n t e t ic ness o t e materia increases si ni cant y

4.

R D

S

S

D

e s ee can e varie a on t e same at to create interestin a erns

6 5


0 2 M AT ERI AL | P L A EX T RU S I O N S T RAT EG I ES y ee in t e e tr er e in a oint an a o in t e materia to ree y a a nice c rvat re is nat ra y ac ieve . S i in t e an e o t e e tr er can contro t e irection o t e c rves. is met o orms a se -s ortin net or .

30

B U I L D F RAM E e rame can e s a e as t e materia ar ens into ace. e o tima an e or e osition is 30 d e g r e e s t o t h e t an g e n t

F I X D EP O S I T I O N P O I N T i a oint on t e at e osite

ere materia

i

e

G RAV I T AT I O N AL P U L L o t e materia to nat ra y ro e y ravity. e ament i nat ra y start to c r

V ARY D EP O S I T I O N AN G L E y c an in t e e osition an e t e i c rve in ifferent irections

6 6

ament


0 2 M AT ERI AL | P L A EX T RU S I O N S T RAT EG I ES ase on t e revio s e eriments it as ecome c ear t at e tr sion is t e most s ccess means o e osition. s s c more tec ni es ere e ore in or er to create s r aces. e strin tec ni e invo ves vertica y e tr in L at ifferent s ee s. e aster t e e tr

er moves t e t inner t e stran o

astic e tr

e . sin t is strate y interestin

a erns can e create .

30

B U I L D F RAM E e rame can e s a e as t e materia ar ens into ace. e o tima an e or e osition is 30 d e g r e e s t o t h e t an g e n t

V ERT I C AL P AT H S Simi ar res ts are ac ieve re ar ess o t e irection o e osition

V ARY D EP O S I T I O N AN G L E e aster t e e osition t e t inner t e stran o materia . y s o in o n t e t ic ness o t e materia increases si ni cant y

C REAT E S - C U RV ES y c an in t e an e o e osition an S-c rve a ern i emer e. e ra i s can vary

6 7


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

P L AN V I EW

S I D E V I EW

n ara e to t e materia st ios ifferent eometrica systems ave een sim ate to ac ieve vertica e ements. is cata o e s o s cate ories o o o interior ia ona s r om s an star strate ies. e most e cient ones ave e c osen an man a y rinte sin t e 3D en an teste or t eir a i ities.

P ERS P EC T I V E V I EW

H O L LO W

6 8

I N T ERI O R

D I AG O N AL S


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

RH O M B U S

6 9


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

is eometrica system invo ves sin one trian e er ace. s t e str ct re ro s t e cross section ecreases. e o tima motion or t e at as a so een o serve in or er to e a e to ee it ac to t e ro otic arm. t as een o serve t at t e ar at nee s an increase o s ee i e movin o n ar s t e e tr sion as to e one at a o er s ee .

1. B ase

2. B uild T riangle

DE PO SI T I O N SE Q U E N C E N O DE - 3 sec d eposition FAST d eposition

W

7 0

SL O W d eposition W AI T T I M E - 5 sec

3. B uild T riangle

4. I ncrease lev els


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

T I M E E FFI C I E N C Y

6 0 cm

M AT E R I AL E FFI C I E N C Y

PAT H C O M PL E X I T Y

ST R E N G T H

low

high

18 00 mg

ST R U C T U R AL ST R E N G T H

3 cm

7 1


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

not er strate y is sin t o trian es er ace. n t is case t e at o o s t e same c an e in s ee rin t e ar s e tr sion an nee a aitin time or t e materia to coo . D rin t ese e secon s t e materia can sti soon as it coo s o t e materia ecomes very stron an str ct ra y sta e.

W

W

1. B ase

DE PO SI T I O N SE Q U E N C E N O DE - 3 sec d eposition FAST d eposition

W

7 2

SL O W d eposition W AI T T I M E - 5 sec

2. B uild T riangle

3. B uild T riangle 4. I ncrease lev els

ar s o nes a e . s


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

T I M E E FFI C I E N C Y

6 0 cm

M AT E R I AL E FFI C I E N C Y

PAT H C O M PL E X I T Y

ST R E N G T H

low

high

26 00 mg

ST R U C T U R AL ST R E N G T H

3 cm

7 3


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

e t ir strate y invo ves sin t ree trian es er ace. e se ence o rintin is simi ar to t e revio s ones. t o t is met o invo ves t e se o more materia an ta es on er t an t e revio s ones it er orms t ice e er in terms o str ct ra ab i l i t y .

W

W

1. B ase

2. T riangulate Face

DE PO SI T I O N SE Q U E N C E N O DE - 3 sec d eposition FAST d eposition

W

7 4

SL O W d eposition W AI T T I M E - 5 sec

3. Sq uare Frame

4. C ross b racing


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

T I M E E FFI C I E N C Y

M AT E R I AL E FFI C I E N C Y

ST R E N G T H

6 0 cm

PAT H C O M PL E X I T Y

low

high

38 00 mg

ST R U C T U R AL ST R E N G T H

3 cm

7 5


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Polylactide extrusion This test was made to check the number of vertical elements needed and the manner in which to connect all of them. The more vertical the printed elements are the more difficult it gets to attach to each other. When the final column has an element in the central point it is impossible to connect to the others.

Si e vie - 3 vertica e l e m e n t s

Si e vie - 4 vertica e l e m e n t s

2

3 1 6

5 4

o vie - 3 vertica e l e m e n t s

7 6

3

7

3 1

8

5

2

4

5

2

Si e vie - 4 vertica e ements

6

o vie - 4 vertica e l e m e n t s

1

6

4

9

8 7

o vie - 4 vertica e ements


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Si e vie - 5 vertica e ements

2 3 1

1

7 8

6

9

5

4 12

Si e vie - 6 vertica e ements

11 10

o vie - 5 vertica e ements

3

Si e vie - 6 vertica e ements

5

12 10 8

7 9 6

o vie - 6 vertica e ements

9

6

1

7 11

3 4

11

8

2

2

12

5 4

15

10

14 13

o vie - 6 vertica e ements

7 7


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Si e vie - 6 vertica e ements

2 3

1 8

7

16

4

5

12 6

9

11 15

10

14 13

o vie - 6 vertica e ements

7 8

Si e vie - vertica e ements

17

18 5

1

4

2

13

15 9

6

3

8

Si e vie - 8 vertica e ements

2 14

12

7

10 11

o vie - vertica e ements

5 4 7 6

3 9

1 16 14

8 11 15 12

13

10

o vie - 8 vertica e ements


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Si e vie - 8 vertica e ements

5

2 3 1

6 9

8

4 11 12 15

7

14

13

18 21

Si e vie - 8 vertica e ements

2 10 17 16

3

1

20

21

19

19

o vie - 8 vertica e ements

5 4 8 9 6 12 15

18 20

16

17

Si e vie - vertica e ements

16

20

11 10

17 13

18 15

14 13

14

7

o vie - 8 vertica e ements

10

12 11

19

23 22 21 24 4 5 1 6

9

7 8

3

2

o vie - vertica e ements

7 9


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Polylactide extrusion_Order of deposition Top views

2 5

2 3

5

1

4 6

3 vertica e ements

3

6

9

5

4

1

3 6

9 8

16 12

7

11

10

14

5

3 1

6 9

8

4 11 12 15

7

14

13

18 21

8 vertica e ements

8 0

5

4

15

11

2

17 16

3

1

20

21

19

19

5 4 8 9 6 12 15

18 20

16

17

8 vertica e ements

9

1 10

vertica e ements

10

13

5 4 7 6

2

12

7

14

15

3 14

8

10

6 vertica e ements

13

9 6

3

2

6 vertica e ements

2

18

1

13

15

4 6

17

12

5

6 vertica e ements

4

5

9

9 6

1

7

7 11

3

4

8

8

2 5

11

10

7 9

2

12

8

4 vertica e ements

10

5 vertica e ements

1

3

1

6

1 6

8

4 vertica e ements

11

12

2

1

7 8

2

3

7

3

4

5

2

4

8

16 14

11 15 12

10

13

8 vertica e ements

16

20

11 10

17 13

18 15

14 13

14

7

12

10

11

19

23 22 21 24 4 5 1 6

9

7 8

3

2

vertica e ements


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

First test [1] The structure is made with vertical elements positioned in pairs that are connected to each other and later connected with the rest of the structure with an additional extrusion.

T IM E

P AT H C O M P L EX I T Y

S T REN G T H

Si e vie - 6 vertica e ements

o vie - 6 vertica e ements

Second test [2] The internal structure is made with vertical elements interconnected in spiral and connected to an external structure. This is composed of vertical elements positioned in pairs that are connected to each other and with the rest of the structure through an additional extrusion.

T IM E

P AT H C O M P L EX I T Y

S T REN G T H

Si e vie - 2 vertica e ements

o vie - 2 vertica e ements

8 1


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Polylactide extrusion This test was made to check the number of vertical elements and how it could be possible to connect all of them in a spiral path. The method followed to connect all the elements is overlapping the nodes.

Si e vie - 3 vertica e ements

Si e vie - 4 vertica e ements

2

3

3

1 o vie - 3 vertica e ements

8 2

3

2

2 1

Si e vie - 5 vertica e ements

5 1

4

4

o vie - 4 vertica e em e n t s

o vie - 5 vertica e ements


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Si e vie - 5 vertica e ements

Si e vie - 6 vertica e em e n t s

1

2

3

2

6

3

5 1

4

o vie - 5 vertica e ements

5

4

o vie - 6 vertica e em e n t s

8 3


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Polylactide extrusion_Model [1] Model extruded from the top to the bottom. The method can be simplified in two stages. The first one is to print the roof following a triangulation system. After, it will be lifted to allow the second stage to start. Once the whole structure is moved up, the robotic arm will have access and space to move around the base to print the columns. These will be made using the spiral method mentioned earlier.

Top view. Roof system: Triangulation

8 4

Side view. Column system: Spiral


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

S ira co mn

rian

ate

ri roo

S atia or ani ation

8 5


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Polylactide extrusion_Model [2] Model extruded from the top to the bottom. The method can be simplified in two stages. The first one is to print the roof following a grid system with diagonals. After, it will be lifted to allow the second stage to start. Once the whole structure is moved up, the robotic arm will have access and space to move around the base to print the columns. These will be made using the spiral method mentioned earlier.

Top view. Roof system: Grid + diagonals

Side view. Column system: Spiral

8 6


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Spiral column

Diagonal grid roof

Spatial organization

8 7


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

L 8 8

o y acti e e tr sion


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Branching a in into consi eration t e revio s str ct ra test ma e to e ements it ifferent ei ts severa ranc in systems are enerate it connections every 6- cm.

1

T RI AN G U L AT I O N

ertica e ements connecte it a trian ation a ern. ac in ivi a at is connecte to t e rest o o in t e same rocess.

Density Path complexity Strength

2

G RO U P I N G

Severa vertica e ements connecte to eac ot er an a er connecte to t e rest it iaona s. erarc y o e ements.

Density Path complexity Strength

3

HIERARCHY

Severa vertica e ements connecte to eac ot er it ia ona s ormin ro s o e ements. ese are ater connecte to t e rest in t e ase o t e entire str ct re.

Density Path complexity Strength

8 9


M AT ERI AL 0 1 | G EO M ET RI C AL D EV EL O P M EN T

1

9 0


M AT ERI AL 0 1 | G EO M ET RI C AL D EV EL O P M EN T

9 1


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Polylactide extrusion e mo e as ma e sin t e minima n m er o vertica e ements an connectin t em a er. e main eat re is t at t e s a is rinte rst it a contro e t ic ness y sin materia eavio r. er i in t e s a vertica e ements are rinte to - o n it a contro e t ist an connecte a er ar s. e res tant str ct re is not consi ere sta e e to t e n m er o e ements t at s ort t e entire eometry.

9 2


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Polylactide extrusion e mo e as ma e sin severa vertica e ements an connectin t em a er sin a trian ation a ern. e main eat re is t at t e s a is rinte rst it o t t ic ness an t en i e 3 meters. ertica e ements are rinte to - o n an o n-to it a contro e t ist an connecte a er ar s. e res tant str ct re is consi ere sta e e to t e n m er o e ements t at s ort t e entire eometry.

9 3


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Polylactide extrusion The model was made using a large number of vertical elements that were connected later following a triangulation process. After lifting the slab up, vertical elements are printed top-down with a controlled twist. The resultant structure works for larger supports as walls and it is structurally working as the previous column.

9 4


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Polylactide extrusion The model was made using several vertical elements and connecting them after using a triangulation pattern. The main feature is that the slab is printed first without thickness and then lifted 3 meters. Vertical elements are printed top-down and down-top with a controlled twist and connected afterwards. The resultant structure is considered stable due to the number of elements that support the entire geometry.

9 5


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Spatial arrangement Different spaces can be made by modifying the arrangement of the supports. The fact that the slab is printed in small pieces and then lifted allows the system to develop the house layout in several ways.

T op v iew

Spatial arragement_ Stair case 9 6


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

9 7


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

9 8


AT AL ERI 0 AL1 || GG EO EO MM ET ET RI RI CC AL AL DD EV EV EL EL OO PP MM EN EN TT M 0 2 AT M ERI

9 9


0M 2 ATM ERI AT ERI AL AL 0 1 | |G G EOEO M M ETET RIRI C C ALAL D D EVEV ELEL O O P P M M ENEN T T

2

1 0 0


AT AL ERI 0 AL1 || GG EO EO MM ET ET RI RI CC AL AL DD EV EV EL EL OO PP MM EN EN TT M 0 2 AT M ERI

1 0 1


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Simulation path After obtaining the particles simulation, the final geometry is tested in digital softwares and printed with physical materials. This process checks the printability of the geometry and allows us to test its structural resistance. The result, which is very accurate, will be printed as well in PCL to check the real stability of the system.

Particles simulation

The part of the structure pointed in red will be checked in a later test to obtain real structural results that can be applied to our research. 1 0 2


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Digital path

Real printed geometry

1 0 3


0 2 M AT ERI AL | G EO M ET RY T ES T _ P C L

Polycaprolactone extrusion After obtaining the digital path, a piece of the entire structure is printed in PCL to test its geometrical resistance. The element is printed following a triangular grid that allows the robot to reach all the points from one single position with a continuous extrusion. Connections are completely relevant to its final stability.

Printing sequence

Sim ation at

1 0 4

rinte

at


0 2 M AT ERI AL | G EO M ET RY T ES T _ P C L

2 8 c m

3 5 c m

Simulated geometry

3 0 c m

-Method: Execution of the code path -Material: PCL -Number of vertical elements: 12 -Load: 70 kg -Date of testing: 10/11/2015

S ta te 1

S ta te 2

entra e ormation 6cm

S ira eometry

-Method: Twisting lines -Material: PCL -Number of vertical elements: 15 -Load: 70 kg -Date of testing: 10/06/2015

S ta te 1

S ta te 2

1 0 5


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

3

1 0 6


AT AL ERI 0 AL1 || GG EO EO MM ET ET RI RI CC AL AL DD EV EV EL EL OO PP MM EN EN TT M 0 2 AT M ERI

1 0 7


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Simulation path After obtaining the particles simulation, the final geometry is tested in digital softwares and printed with physical materials. This process checks the printability of the geometry and allows us to test its structural resistance.

Particles simulation

Polylactide extrusion

1 0 8


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Digital path

Real printed geometry

1 0 9


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

Printing sequence

1 1 0


0 2 M AT ERI AL | G EO M ET RI C AL D EV EL O P M EN T

S c al e 1 / 2 0

1 1 1


END-EFFECTOR 04


EN D EF F EC T O R

oto. n -effector

2.

mo

2 D


0 3 EN D EF F EC T O R| D EV EL O P M EN T End-effector V 1.0_mod_11 e en -effector e o as esi ne or t e st io tri in or er to test strate ies or t e vertica e tr sion. ne o t e main criteria as a sma si e so it can e easi y trans orte . e en -effector as se in D an . e core o en -effector is a oo er en ic can e tr e L an S astics. e iameter o an e tr sion is mm o ever no e can e re ace it ifferent si e.

n -effector 1 1 4

.0 mo

1


0 3 EN D EF F EC T O R| D EV EL O P M EN T End-effector V 1.5_mod_11 is en -effector as never i it as one o t e rst a em ts to create a niversa e tr in a orm. e rinci e is t e same as in t e na mo e t instea o t e eatin cor s ere se eat ns. D e to t e o er t erma con ctivity o t e air t e system i e ess effective. t o re ire more s ace in t e ront art to mo nt eatin system t at is ase on t e eat ns.

o ntin H e a t g u n

ir s

y

ate

M o to r

D r ill b it

N o z z le

n -effector

.5 mo

1 1 1 5


0 3 EN D EF F EC T O R| D EV EL O P M EN T End-effector V 2.0_mod_11 is en -effector as never i t state a t e eat res o t e na effector. - om act si e - i ity to ave contro over t e tem erat re - M i x i n g m a t e r i al

S an

d

o o r in ication i ment M o to r

I so ation

P C L

ate ate or ro otic arm

eatin cor

N o z z le eta rame em erat re contro er

C o v e r

n -effector 1 1 6

2.0 mo

1


0 3 EN D EF F EC T O R| D EV EL O P M EN T End-effector holder V 1.0_mod_1 is mo e o t e en -effector as se rin t e a rication o t e na rototy e. e system as meant to e se y t e secon ro otic arm or o in t e re a ricate arts. D e to t e act t at e i n t ave a secon ro otic arm rin t e a rication rocess o er .0 mo as mo nte on t e camera tri o . ate or ro otic arm

enin s

eta i e

n -effector o er

.0 mo

1 1 1 7



Photo. End-effector V 2.1_mod_1


0 3 EN D EF F EC T O R| D EV EL O P M EN T End-effector V 2.1_mod_1 is is a re- na version o t e en -effector. F e a tu re s: - om act si e - o e t at a o to a roac imite s aces - i ity to se m ti e materia s - Li t ei t

Disa vanta es com are to t e na version - ver eatin o t e motor -De ormation o t e motor ear o - o a i ity to i ita y contro an e tr sion rocess - aria e no e si e ty e

Assembly process of End-effector V 2.1_mod_1

Sta e .

eta rame

Sra e2. ectronics 1 2 0


03 END EFFECTOR| DEVELOPMENT

Photo. Assemblage process End-effector V 2.1_mod_1


0 3 EN D EF F EC T O R| D EV EL O P M EN T D GR

.

D

R

R LS

.

RS

2.

Motor PCL Cover Switches for manual control

Heating Cord

Isolation wooden Plate

12V Power supply Drill bit

Solid state Relay Module

D

2 D

L

D


0 3 EN D EF F EC T O R| D EV EL O P M EN T

END - EFFECTOR

Fans

Metal frame

VERSION 2.1

Features: -Compact Size -Nozzle that allows to approach limited spaces -Ability to use multiple materials -Light weight -Variable nozzle size/type -Ability to print from top to the bottom -Easy to upgrade

Arduino

Switches for manual control

Relay

DC Motor controller

Openings for attaching plate Temperature Controller 1 2 3


0 3 EN D EF F EC T O R| V O RT EX T U B E Cooling tool based on the principle of the vortex tube. e vorte t e is ase on t e effect o Ran e- i sc . t is a mec anica evice t at as no movin arts ic ivi es ress rise air into co an ot o s. ne o t e eat res o t is evice is t at it re ire constant i ress re aro n 0 ars. e ere a e to se t is ty e o com ressor in D an mana e to ac ieve tem erat re e o ero.

om resse air orte S in

am er H o t ai r

C o l d ai r

H o t ai r

is vorte t

e rovi e to -30 tem erat re ro a im m or in ress re ar

om resse air

H o t ai r M ag n e t

C o l d ai r


Photo. End-effector V 2.1_mod_1 with mounted Vortex tube


0 3 EN D EF F EC T O R| F I N AL V ERS I O N Funnel 3d section. e s eci c s a e o t e nne a o s s to rint ee in en -effector si e o n. e nne a o s a certain amo nt o e ets to remain in t e oa in s ot i e t e e tr er is in vertica osition. is rovi es eno materia to start rintin in t e to osition an as e tr er moves ravity e s t e e ets to reac t e o enin .

nne 3 section.

tr sion in norma osition

n -effector mo nte on t e ro otic arm 1 2 6

tr sion in t e osition

si e o n


0 3 EN D EF F EC T O R| F I N AL V ERS I O N End-effector with control station. Version 2.1 modification 2CDC (final modification). e en -effector is a niversa e tr in a orm t at a o s to e mo i e accor in to c an in re irements o t e rocess. t a o s to c an e no es e en in on a re ire e osition strate y. t a so as contro over t e tem erat re an s ee o an e tr sion.

INPUT

CODE

ROBOT KINECT

END-EFFECTOR

F e a tu re s: - om act si e - o e t at a o to a roac imite s aces - i ity to se m ti e materia s - Li t ei t - aria e no e si e ty e - i ity to rint rom to to t e o om - ontro station - asy to ra e

oto. n -effector it contro station. ersion 2. mo i cation 2 D 1 2 7



N O Z Z L E D EV EL O P M EN T

oto. o

es. 1 2 9


0 3 EN D EF F EC T O R | N O Z Z L E D EV EL O P M EN T Nozzles e ave st ie ifferent ays o e ositin materia rom sin e to m ti e no es. ti e no es a o to incor orate a i er ra e o emer ent materia e avior o ever it ma es it im ossi e to create a system t at is ca a e or res on in to com e arameters. sin e no e it varia e e tr sion t ic ness a o s s to ave a more contro over e tr sion ic creates a com e system it more re icta e res ts. or creatin enc os re e are sin a at no e t at a o s to e tr e s r ace even y it i t cm.

Process diagram

ti e no

e

S T RU C T U RE

-6 m m

S in g le n o z z le

-1 3 m m

S r ace e tr sion

EN C L O S U RE

- T h ic k n e s s 2 m m - W id t h 1 0 0 m m

1 3 0


0 3 EN D EF F EC T O R | N O Z Z L E D EV EL O P M EN T

ti e no

e

-6 m m

o

ti e no

e

- V ar i ab

e it contro on t ic ness

le 1 6 m m - 5 m m

- C e n t r a l n o z z le 1 6 m m - 5 m m - S u b - n o z z le s 6 m m - 0 m m - i ity to c ose an o en no

es

S r ace e tr sion

-

ic ness .5mm - W id t h 1 2 0 m m

1 3 1


0 3 EN D EF F EC T O R | N O Z Z L E D EV EL O P M EN T Printing the structure D rin t e researc m ti e ty es o no main ty es escri e e o .

es ere eve o e

a o t em to ifferent e tent incor orate materia

Multiple nozzles with control on thickness o to incor orate an emer ent e avio r o materia . onnections i a en i e ro ot e ec te sin e e tr sion at it o t avin a com e i ita at .

- 3 N o z z le s - ic ness o centra no e 6mm-5mm - T h ic k n e s s o n s u b - n o z z le s 6 m m - 0 m m - i ity to c ose an o en no es

Single nozzles with control on thickness. Final version. Sin e e tr sion a o s to ave more contro over materia e avio r an e s to ne otiate materia e avio r it a orit m.

- V ar i ab

1 3 2

le e x t r u s io n t h ic k e n s 1 6 m m - 5 m m

e avio r.

o


0 3 EN D EF F EC T O R | N O Z Z L E D EV EL O P M EN T Surface extrusion n or er to ac ieve enc os re e researc e ifferent ays o creatin s r aces rom eatin no es t at a o e to e tr e s r aces even y. First flat nozzle prototype. rove t e conce t o s r ace e tr sion o ever i n t rovi e even s r aces.

- T h ic k n e s s 2 m m - W id t h 1 0 0 m m

Flat nozzle for extruding the surface. Final version. o e s to e tr e s r aces even y an re ative y ast.

-

ic ness .5mm - W id t h 1 2 0 m m

ates o materia to e eriments it


M AT ERI AL 0 1 | P O L YC AP RO L AC T O N E EX T RU S I O N

1 3 4


M AT ERI AL 0 1 | P O L YC AP RO L AC T O N E EX T RU S I O N

L

o yca ro actone e tr sion 1 3 5


0 4 P C L EX T RU S I O N

| I N T RO D U C T I O N

Geometry research e ave starte t e i ita an ysica e oration o t e eometry in ara e . n t e ysica si e e ere researc in materia riven systems. n t e i ita si e e researc e systems t at are ca a e to create a com e a a ta e str ct re t at ave a ca acity to ti i e materia e avior. e na system is a com romise et een enerative a orit m ro otic constraints an materia system.

P H YS I C AL

rian ation B r ac i n g an d t istin

ncor oratin e ormation

c h in g

D I G I T AL

B r an

S lim e m o u ld

1 3 6

S ta g e 4

S ta g e 3

S ta g e 2

S ta g e 1

Process diagram


| I N T RO D U C T I O N

S ta g e 9

S ta g e 8

S ta g e 7

S ta g e 6

S ta g e 5

0 4 P C L EX T RU S I O N

1 3 7


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Free-form extrusion_Cantiliver Leaving the material to deform by itself and cooling it down as fast as it is printed with the extruder.

Front view

Top view

32ยบ

high

P AT H C O M P L EX I T Y

S T REN G T H

35ยบ

50ยบ

Deformation Expected geometry

1 3 8

25 cm

low

AC C U RAC Y

16 cm

Front view

16 cm

Top view


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Pyramidal extrusion The pyramid is made following a continuous extrusion. The freeze spray is essential in this structure due to the lack of additional supports.

Front view

low

AC C U RAC Y

Top view

high

17

cm

cm

19 cm

17

P AT H C O M P L EX I T Y

S T REN G T H

Deformation Expected geometry

17 cm

Front view

17 cm

Top view

1 3 9


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Pyramidal extrusion The pyramid is made following a continuous extrusion until the first level is made. After, a second level is made using the same technique and cooling it down to get a more resistant result.

Top view

Front view

low

AC C U RAC Y

high

cm 12

1 5 c m

S T REN G T H

Deformation Expected geom-

1 40

cm

24 cm

12

P AT H C O M P L EX I T Y

12 cm

Front view

12 cm

Top view


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Framework extrusion The frame is made by using additional supports to keep the vertical elements in their positions. The diagonals are printed between them once those are extruded and solidified. The second level is made following the same methodology.

Front view

Top view

low

AC C U RAC Y

high

15 cm

150 mm

S T REN G T H

15 cm

15 cm

P AT H C O M P L EX I T Y

45ยบ

Deformation Expected geom-

17 cm

Front view

17 cm

Top view

1 41


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Framework extrusion The frame is made by using additional supports to keep the vertical elements in their positions. The diagonals are printed between them once those are extruded and solidified. The second level is made following the same methodology.

low

AC C U RAC Y

high

Top view

15 cm

Front view

S T REN G T H

Deformation Expected geometry 1 42

30 cm

30 cm

P AT H C O M P L EX I T Y

30 cm

Front view

30 cm

Top view


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Slime mold path The structure is made by printing each individual element separately and cooling it down really fast to make it harden. Additional elements are needed and the path follows the logic of the slime mold growth.

Front view

high

16 cm

P AT H C O M P L EX I T Y

45 cm

low

AC C U RAC Y

Top view

S T REN G T H

Deformation Expected geometry

27 cm

27 cm

1 43


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Surface strategies This test was made with horizontal elements connected using different strategies without freeze spray.

Polymorph (PCL)

[1 ]

00:06:10

[2 ]

00:10:09

[3 ]

00:12:25

[ 4]

00:19:40

[5 ]

00:23:20

[6 ]

00:27:00

ront vie

19 cm

9 cm

47 cm

2.5

7 cm 7 cm

2

o vie

47 cm

Deformation Expected geometry 1 44


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Surface strategies This test was made with horizontal elements connected using different strategies without freeze spray.

Polymorph (PCL)

[1 ]

00:03:10

[2 ]

00:06:09

[3 ]

00:11:07

[ 4]

00:12:28

[5 ]

00:15:20

[6 ]

00:17:30

ront vie

19 cm

12cm

47 cm 5cm 5cm 5cm

o vie

47 cm

Deformation Expected geom1 45


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Surface strategies This test was made with horizontal elements connected using different strategies with and without cooling spray. With the freeze spray it is possible to control the final deformation of the structure. The result is a self-supported structure. Polymorph (PCL) + Sand

[1 ]

00:02:10

[2 ]

00:03:30

[3 ]

00:07:25

[ 4]

00:09:50

[5 ]

00:11:20

[6 ]

00:13:00

Front view

30 cm 12 cm

34 cm

Deformation Expected geometry 1 46

8 cm

6 .5 cm 5.5 cm

Top view

10.5 cm

12 cm

34 cm


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Surface strategies This test was made with vertical elements connected with horizontal elements without the use of freeze spray. The path follows the basic diagonal between the first two vertical elements and it is deformed afterwards due to the weight of the mixture. The result is a structure that can be supported by itself. o ymor

L

S a n d

[1 ]

00:01:10

[2 ]

00:03:09

[3 ]

[ 4]

00:05:15

[5 ]

00:06:50

[6 ]

00:04:25

00:08:50 3 cm

4.5 cm

38 cm

Front view

Top view

19 cm

22 cm

22 cm

Deformation Expected geometry 1 47


M AT ERI AL 0 1 | M EC H AN I C AL EX T RU S I O N

Surface strategies This test was made with vertical elements connected with a continuous extrusion with cooling spray. The final deformation is minimal if it is compared to not cooled Polymorph (PCL)

[1 ]

00:00:05

[2 ]

00:00:50

[3 ]

00:01:50

[ 4]

00:04:30

[5 ]

00:06:20

[6 ]

00:07:45 7.5 cm

7 cm

25 cm

ront vie

16 cm

2 cm 2 cm

o vie

De ormation ecte

1 48

eometry


M AT ERI AL 0 1 | M EC AN I C AL EX T RU S I O N

Surface strategies Test made with vertical elements connected with a continuous extrusion of PCL without a cooling system. The material used in the conexion dropped by itself beo ymor

L

[1 ]

00:00:10

[2 ]

00:02:09

[3 ]

00:02:30

[ 4]

00:04:20

[5 ]

00:06:20

[6 ]

00:07:30 3 cm

8 cm

25 cm

ront vie

1.5 cm

o vie

2.5 cm

16 cm

16 cm

De ormation ecte

eometry

1 49


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

PCL extrusion Vertical extrusion process made with three different elements. The first stage is to print a central element that will be attached later to the rest of items. After connecting the structure with the internal element, it is connected from the outside as well. That will create a more resistant conection between all the individual elements. Polymorph (PCL)

[1 ]

00:00:35

[2 ]

00:01:20

[3 ]

00:03:09

[ 4]

00:05:15

[5 ]

00:08:57

[6 ]

00:12:49

[7 ]

00:17:08

[8 ]

00:23:45

[9 ]

0027:28

1 5 0


0 4 P C L EX T RU S I O N

1

2 6

4 13

5

3

11 10

| G EO M ET RY_ S T RU C T U RE

8 12

9

7

Material order deposition

Vertical elements Internal connections External connections

Extrusion path

1 5 1


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

PCL extrusion Vertical extrusion process made with elements that follow a spiral path. The different items are twisted following the spiral and after connected to the rest with diagonals from one to the other. The process can be repeated as many times as needed to make it thicker and, therefore, more resistant and stable. Polymorph (PCL)

[1 ]

00:02:20

[2 ]

00:05:30

[3 ]

00:08:33

[ 4]

00:12:07

[5 ]

00:15:20

[6 ]

00:18:40

[7 ]

00:22:05

[8 ]

00:26:10

[9 ]

00:28:15

1 5 2


0 4 P C L EX T RU S I O N

1

6

2

19

9 4

17

16

| G EO M ET RY_ S T RU C T U RE

3

14

18 13

5 8

11 15

7 12 10

Material order deposition

Vertical elements Internal connections External connections

Extrusion path

1 5 3


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

PCL extrusion Vertical extrusion process made with elements that follow a spiral path. The different items are twisted following the spriral and after connected to the rest with diagonals from one to the other. The process can be repeated as many times as needed to make it thicker and, therefore, more resistant and stable. The printed path goes from the top to the bottom, which means the whole structure can be lifted and extended to larger dimensions. Polymorph (PCL)

[1 ]

00:03:21

[2 ]

00:08:10

[3 ]

00:12:20

[ 4]

00:17:40

[5 ]

00:20:05

[6 ]

00:23:30

[7 ]

00:28:05

[8 ]

00:31:50

[9 ]

00:35:20

1 5 4


0 4 P C L EX T RU S I O N

38 39

40 26 27

37 35

22

23

20

11 9

21

30 15 18 2

8

10 12

26

13

4 3

7

24

36

14

6 5

25

1

28

19

34

| G EO M ET RY_ S T RU C T U RE

29 31 16 33 32

Material order deposition

Vertical elements Internal connections External connections

Extrusion path

1 5 5


| G EO M ET RY_ S T RU C T U RE

0 4 P C L EX T RU S I O N

Polycaprolactone extrusion Vertical extrusion process based on self-supporting elements. The first stage is to print the slab creating a grid that will generate an order. This horizontal element will be lifted after mechanically and the robot will be able to access to the points below the slab and start printing vertical elements by dropping. The dropping process is based on material behaviour without any order in the deposition.

Top view Slap order deposition

Horizontal grid with cooling system Vertical elements based on material behaviour without cooling system

Extrusion process

Slab 3D printing 1 5 6

Structure lifted on a controlled distance

Dropping stage that create a self-supported structure


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

1 5 7


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Polycaprolactone extrusion Vertical process based on a continuous extrusion. The first stage is to print one vertical element from the top to the bottom and with a continuous extrusion print the second vertical element from the bottom to the top. After printing these two vertical elements the robot will connect both with a continuous extrusion without any order by using diagonals.

o vie

tr sion rocess

o - o om vertica e tr sion it a contin o s rintin in t e ase

1 5 8

ontin o s conection o t e vertica e ements an ne t item rinte

revio s ste s re eate m ti e times


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

1 5 9


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Polycaprolactone extrusion Vertical extrusion scale 1:1 Based on the structural and geometrical tests developed earlier, the first large model was made. Structure based on twisted elements connected to each other with diagonals making internal and external connections. It has a larger number of items, therefore, more resistance and stability. The deposition sequence was simple to be executed and the material behaviour helped it to be printed from top to bottom.

[1 ]

00:05:10

[2 ]

00:14:36

[3 ]

00:20:40

[ 4]

00:30:20

[5 ]

00:35:27

[6 ]

01:00:10

[7 ]

01:15:20

[8 ]

01:30:40

[9 ]

01:50:08

1 6 0


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

[1 0 ]

02:10:04

[1 1 ]

02:30:25

[1 2 ]

02:55:20

[1 3 ]

03:10:01

[ 1 4]

03:20:40

[1 5 ]

03:30:30

[1 6 ]

03:50:40

[1 7 ]

04:20:09

[1 8 ]

04:50:07 1 6 1


M AT ERI AL 0 1 | M EC H AN I C AL EX T RU S I O N

o 1 6 2

ri .

ateria or er e osition


M AT ERI AL 0 1 | M EC H AN I C AL EX T RU S I O N

11 10

2 6

3

1

5

9

4

7

8

Material order deposition

Vertical elements Internal connections External connections

Extrusion path

T IM E

PAT H C O M PL E X I T Y

ST R E N G T H

1 6 3


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

PCL extrusion Extrusion process made in order to give thickness to a horizontal element. Two stages are involved, the first one is printing a slab in a horizontal plane and lifting it a certain distance. The second stage is based on material behaviour, several self-supporting elements are created by dropping and solidified in atmospheric conditions.

[1 ]

[2 ]

[3 ]

[ 4]

[5 ]

[6 ]

[7 ]

[8 ]

[9 ]

1 6 4

[ 0 1 : 0 9 : 3 4]


| G EO M ET RY_ S T RU C T U RE

30 cm

0 4 P C L EX T RU S I O N

S a or er e osition

30 cm

o vie

8 0 cm

ori onta ri

it coo in system

ertica e ements ase on materia ne avio r it o t coo in system

tr sion rocess

S a 3D rintin

Str ct re i te

it a contro e

istance

Dro

in sta e t at create a se -s

ortin str ct re

1 6 5


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

PCL extrusion_Vertical extrusion Extrusion process made in order to give thickness to a horizontal element. Two stages are involved, the first one is printing a slab in a horizontal plane and lifting it a certain distance. The second stage is based on material behaviour, several self-supporting elements are created by dropping and solidified in atmospheric conditions. rintin se

ence

[1 ]

[2 ]

[3 ]

[ 4]

[5 ]

[6 ]

[7 ]

[8 ]

[9 ]

Extrusion process

Top-bottom vertical extrusion. Central element printed first and connected with the next item

1 6 6

Continuous connection of the vertical elements Previous steps repeated multiple times to based on material behaviour with a twist of reach the needed thickness of the entire structure 270o


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

Slab order deposition Top view

Front view

Vertical elements made with a twist of 270o Sequence of deposition with a continuous extrusion

1 6 7


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

PCL extrusion_Shell structure Several stages are involved in order to create a shell. The main feature is the use of two different systems, the first one is using prefabricated components as triangles, while the second is real time printing. After locating the first elements in the correct position, vertical elements are continuously printed in order to stand the structure. Subsequently, a second prefab element is added to the previous one and connected following a triangulation pattern. Vertical lines will be printed in each of the vertices of the triangle and they later on will be connected to the rest getting some stability and resistance. This process will be repeated in order to reach a higher level in the printing process.

onstr ction se

S t ag e 1

S t ag e 2

S t ag e 3

S t ag e 4

S t ag e 5

S t ag e 6

Genera vie s

1 6 8

ence


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S T RU C T U RE

P r in t e d s t r u c t u r e e str ct re onnection onnection 2

1 6 9


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S U RF AC E

Polycaprolactone extrusion Connections are made with an special nozzle adapted to the end-effector. The result is a triple extrusion path that allow the system to vary the density of the extrusion. The multiple nozzles have a different thickness which will helps the system to cool them out in a faster way. It is possible to get several connections between the three elements by rotating the end-effector 180ยบ.

ti e no

e

Ro otic contro e rotation o t e en -effector

18 0ยบ

Numerous connections in the printing path

1 7 0


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S U RF AC E

PCL extrusion_Surface technique_On site system After making the vertical supports, a spatial frame is created to connect both elements. The next step is how to create enclosure to both elements. Leaving material to drop in a mold and streching it carefully with cooling system is possible to create this envelope around. This gives some rigidity to the whole structure and a dynamic surface able to control lightening.

[1 ]

[2 ]

[3 ]

[ 4]

[5 ]

[6 ]

1 7 1


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S U RF AC E

Polycaprolactone extrusion An important aspect of the project is to create enclosure. An adaptive stretching technique has been developed in order to create habitable spaces. By applying several layers of extrusion it is possible to control lightning and privacy. Surfaces are made with an special nozzle adapted to the end-effector. The result is homogeneous and smooth. The idea is to connect a spatial frame made with elements printed horizontally and vertically without cooling system.

Horizontal technique

Vertical technique

1 7 2


0 4 P C L EX T RU S I O N

| G EO M ET RY_ S U RF AC E

PCL extrusion_Surface technique_Hybrid system After studying deeply the behaviour of the stretching technique, it was important to analyse its final performance in a real architectural frame. Concluding at this point the need of a hybrid system in order to get an enclosure that will create habitable spaces for users and their needs. Several elements would be created in a factory and delivered later to the site. These elements are plastic components as well but with the advantage that they can be combined and mixed with other plastics with better isolation properties. Another advantage is the fact that the process will be faster and more precise.

1 7 3


0 4 P C L EX T RU S I O N | RO B O T I C P RI N T I N G Printing vertical elements using robotic arm. rintin com e str ct re ase on t e materia e avio r. Printing sequence: . rintin s a on t e ro n

3. ontro e

5.

4. Li in t e s a an

e ormation

ition. Re etition o t e same rocess

. Re etition o t e rocess 4

1 7 4

2. Li in

-3

rintin

rom to to t e o om

6. Li in t e s a an connectin stru c tu re

it t e e istin


0 4 P C L EX T RU S I O N | RO B O T I C P RI N T I N G

0 0 :0 1 :0 0

0 0 :0 3 :3 0

0 0 :0 5 :3 0

0 0 :1 5 :0 0

0 0 :3 0 :3 0

0 1 :0 5 :0 0

0 2 :0 0 :0 0

1 7 5


1 7 6


oto.

ence. 1 7 7


1 7 8


RO B O T I C RES EARC H

The robotic arm is an integral part of the research. Commonly used in factories, the robotic arm is known for its precision, speed and efficiency. However this thesis will push the notion of the robot well beyond that of the basic tool of repetitive actions. The arm will become a spacial enabler, one that has full degrees of freedom. Its ability to navigate space three-dimensionally using the inverse kinematics coordinate system will open the door for an entirely new type of architecture. The project will make use of the established qualities of the traditional robotic arm for prefabricated elements while also testing new scenarios for this tool. Moving beyond the walls of the factory, the robot will be actively participating in the on-site construction process. Allowing for collaboration between two robots will find the balance between cost and time efficiency while eliminating the need for scaffolding. Furthermore, intelligence will be embedded in the system through a scanning process that provides a constant feedback loop. This way, a fully capable and adaptable system will emerge.

1 7 9


0 5 RO B O T I C RES EARC H | D ES K T O P RO B O T C O N T RO L

1 8 0


0 5 RO B O T I C RES EARC H | D ES K T O P RO B O T C O N T RO L Desktop Robot Basic robotic arm control and real-time feedback

n t e ro ect a Lyn otion es to ro otic arm it 6- e ree o ree om as se or s to rimari y n erstan t e n amenta contro in o a enera ro otic arms as e as an e ercise to eve o o r o n so are. o rea t e imitation o c ose -so rce so are o ere y man act rer e ac e t is es to ro ot y re acin its mot er oar y an r ino oar ic is an o en-so rce niversa contro er. n a orit m si e e se aya s oint System to sim ate nverse inematic system o ro otic arm. e i t ree sta e o e eriment on t e es to ro ot. irst e e orte ifferent re e ne at s as G-co e an im orte it into contro er o ro ot to et it e ec te. n secon e eriment e trie to se aya to c o n t r o l t e ro ot in rea time y contin o s y sen in o t oint rotation ata. e ast e eriment e connect an tra sonic sensor to t e ro ot ivin it a i ity o rea -time ee ac .

RG

R

t r an s l a t e d b y I K Al g o r i t h m

R

se n t th ro u g h Ar d u i n o B o ra d

S R

S

eriment . re- e ne

at

Strai t l i n e s

1 8 1


0 5 RO B O T I C RES EARC H | D ES K T O P RO B O T C O N T RO L

Experiment 1.2 Pre-defined Path_Circle

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

Experiment 1.3 Pre-defined Path_Free Curve

1 8 2


0 5 RO B O T I C RES EARC H | D ES K T O P RO B O T C O N T RO L

Experiment 2 Real-time control through Maya

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

Experiment 3 Real time feedback control with ultra sonic sensor

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

0 0 :0 0 :0 0

1 8 3


0 5 RO B O T I C RES EARC H | AN AL YS I S EXISTING ROBOTS an a are e no n ro otics com anies t at can rovi e a i e variety o in stria ro otic arms. stomi e or ifferent tas s t ese ro ots offer i s ee an recision. eir reac can ran e rom 0.5m to an astonis in 3.5m.

A

B

C

D

IRB 120 Reach: 0.58m Payload: 3 kg

IRB 1600 Reach: 1.2m, 1.45m Payload: 6-10 kg

IRB 6640 Reach: 2.55m, 2.75m, 3.2m Payload: 130 -235 kg

IRB 6650S Reach: 3.0m, 3.5m Payload: 125 - 200 kg

RO B O T C H O I C E

U S ER N EED S

S P AC I AL REQ U I REM EN T S

In the context of this research, the robot has to perform best at the scale of the house. Therefore, the appropriate robot is chosen based on the spacial requirements for the user - with an optimal reach of 3.5 meters and the capacity to carry a load of over 200 kg. Considering that the industry is advancing at an incredible pace, the project speculates on potentially using a robot that can move on site, with a reduced self-weight than the current existing robots.

1 8 4


0 5 RO B O T I C RES EARC H | D ES K T O P RO B O T AN AL YS I S ROBOTIC RESEARCH e c osen ro ot as een se as art o t e researc a en a eca se o its ar e s an reac an a i ity to i a eavy oa . e arm as si e rees o ree om an ses inverse inematics or motion. series o reac a i ity st ies ave een con cte to see o t e ro ot er orms n er ifferent circ mstances.

M AX I M U M

10 sec

W ID T H

R= 1 8 0 c m 80

60

R= 1 5 0 c m

m o v e m e n t r an

g e T O P V I EW

T O P V I EW

ROBOT MOVEMENT ANALYSIS ne o t e main sensi i ities o t e ro ot is t e sin arity. is a ens en a si a is o t e ro ot are a i ne reventin t e arm to move. e intent is to iscover t e scenarios en t ese sin arities occ r in or er to avoi t em. e i ea rintin ocation an met o as een e ce rom ana y in t e ay in ic t e ro ot is a e to move.

I D EAL P RI N T I N G RAN G E

H = 3 2 0 c m 2 40 c m

3 2 0 c m

6 0 c m 9 0 c m

1 8 0 c m

min 45

1 2 0 c m

S I D E V I EW

1 8 5


0 5 RO B O T I C RES EARC H | AN AL YS I S e ro ect a so oo s at t e a i ity o t e ro ot o rintin en it is in a static osition en it rotates aro n its o n a is an en it c an es ocation on site. ese st ies are s it into oca an o a movement tryin to ma imi e t e reac a i ity t ro oca action i e ee in t e o a to a minim m. is re ces t e ris o co ision an t e com e ity o co a oration en m ti e ro ots are invo ve .

0.

RO B O T 1 P O S IT IO N

RO T AT E ARO U N D AX I S

L O C AL M O V EM EN T

1 8 6


0 5 RO B O T I C RES EARC H | AN AL YS I S

RO B O T M O V EM EN T

G L O B AL M O V EM EN T

1 8 7


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N sin t e o om- to- to rintin strate y ifferent sca es o t e same eometry are ein teste . e com e ity o t e eometry a o s or t e ar est mo e to ave 0.5m 0.5m imensions ereas rintin a m ti e sma er nits stac e on eac -ot er roves to reac si ni cant y ar er ei ts.

Medium Scale

Small Scale 30-60 R F O R EX T RU D ER

S R R B REAK P AT H

D

Large Scale

S T ART AT F U RT H ES T D I S T AN C E F RO M RO B O T

G

S

S R R B REAK P AT H

D

30-60 R F O R EX T RU D ER

S

S R R B REAK P AT H

D

2 2 c m

1 8 8

S

5 5 c m

6 6 c m 2 2 c m

G

2 2 c m

5 5 c m


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N

Small Scale Stacked S T ART AT F U RT H ES T D I S T AN C E F RO M RO B O T

S R R B REAK P AT H

D

S

1 1 0 c m 2 2 c m

1 8 9


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N not er ty e o eometry rinte is t e t ist. s o ose to t e revio s e eriment t is eometry ti i es contin o s vertica at s. e a vanta e o t is eometry is t at ravity a o s or t e e tr e at s to nat ra y connect n er t e in ence o ravity. is creates a stron str ct ra a ce a e to s ort i oa s. ryin to rint ifferent t istin e ements it t e ro ot in one e osition it as iscovere t at t e si e o t e ase is inverse y ro ortiona to t e amo nt o t istin . ence t e more t istin t e sma er t e iameter o t e rinte e ement. is ty e o eometry a so re ires more care ro otic c oreo ra y in or er or t e ro otic arm to avoi co ision it t e rinte eometry.

1 9 0

S EQ U EN C E O F P RI N T I N G A S P I RAL


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N e ase o t e rinte vertica e ement can vary rom 0 cm to 30 cm i e oin a 80 e ree t ist. i e t is is com orta e or t e ro ot to reac it a so ro ces a stron s acia rame y avin t e ro ot connect a t e vertica at s to one anot er. e se ence o rintin is im ortant as e startin rom t e ine rt est rom t e ro ot eac vertica ine is e tr e an imme iate y connecte to its nei o r t ro a i a at .

S 0.5

S 0.25

S 0.25

1 0 c m

1 0 c m

3 0 c m

2 8 0 c m

2 8 0 c m

2 8 0 c m

S R L

0

S

S R L

80

S

3 0 c m

S R L

0

S

S I D E V I EW

T O P V I EW

1 9 1


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N Loo in at rintin m ti e nits it sim e ro otic movement e start to et a sense o t e s aces t at can e ac ieve . e ro ot is a e to rint 0 sma s ira nits rom t e same ocation i e rotatin aro n its a is. n or er to con orta y reac a t e rintin at s t e nits ave to e 0 cm a art. t is a so im ortant to ee in min t at t e ro ot nee s eno s ace to e a e to e it t e enc os re.

I D EAL P RI N T I N G RAD I U S

R= 1 2 0 c m

S P AC E REQ U I RED F O R RO B O T T O EX I T S P AC E

1 9 2

M IN IM U M

cm 7 0

D I S T AN C E B ET W EEN 2 U N IT S

M AX I M U M N U M B ER O F U N I T S P RI N T ED F RO M O N E L O C AT I O N

1 0 U N IT S


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N nce t e ocation o t e ro ot on site is c an e in a sim e inear manner ne s aces are create . n oin so s eci c ty es o s acia a ities emer e.

L I N EAR M O V EM EN T

P O S IT IO N 1

P O S IT IO N 2

T RI AN G U L AR M O V EM EN T

P O S IT IO N 1

P O S IT IO N 3

P O S IT IO N 2

1 9 3


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N n t e case o t e ar e s ira on y 4 nits can e rinte increase to 40 cm.

I D EAL P RI N T I N G RAD I U S

rom one ocation.

M IN IM U M

14 0 c m

4U N IT S

1 9 4

D I S T AN C E B ET W EEN 2 U N IT S

M AX I M U M N U M B ER O F U N I T S P RI N T ED F RO M O N E L O C AT I O N

4U N IT S

R= 1 0 0 c m

S P AC E REQ U I RED F O R RO B O T T O EX I T S P AC E

e istance et een t o e ements is si ni cant y


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N

V - P AT H M O V EM EN T

P O S IT IO N 1 P O S IT IO N 2

Y- P AT H M O V EM EN T

P O S IT IO N 1

P O S IT IO N 3

P O S IT IO N 2

1 9 5


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N series o tests ave een one to in o n t e ty es o ines an arc es t e ro ot can rint. y ma in t e ro ot move aro n a oint 8 2 an 24 times i e motionin t ese arc es e start to see t e otentia ty es o s aces create .

s o ose to t e t istin strate y t at restricts t e ossi i ities o at s rinta e y t e ro ot t is met o a o s or t e same str ct ra com e ity i e re cin t e ris o co ision. e at s are com e t t ey r n more ara e to eac ot er. e ro ot can start rintin t e at s rt est a ay rom itse an s o y movin c oser it o t inter erin it t e revio s y e tr e eometry.

Goin eyon t e asic arc es an vertica at s more com e eometries can e ac ieve t ro t e o a motion o t e ro ot. n t is ay t e arc can e e on ate to accommo ate ro rammatic nee s or create a s ecia vis a effect.

1 9 6


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N

1 8

1 9

2 0

1 7

2 1 1 8

1 6

1 9

2 0

1 7

2 2

1 5

2 1

1 6

2 3

1 4

24

1 3

P O S IT IO N 1 1 2

2 2

1 5

2

2 3

1 4

24

1 3

P O S IT IO N 1 1 2

2 3

1 1

3

1 1 4

1 0 9

5 8 7

4

1 0 9 8

5 7

6

6

3 D EX T RU S I O N W I T H AB B RO B O T

1 9 7


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N Researc as een con cte to see i t o ro ots can co a orate to et er to rint one e ement in or er to s ee t e constr ction rocess. Different arran ements ave een e ore it t e o tima res t yie in rom an i ne orientation.

P O I N T REAC H AB I L I T Y REAC H AB I L I T Y AREA C O L L I S S I O N AREA

R2

R2 R2

R1

R1

R2 R1

R1 AC RO S S

1 9 8

AL I G N ED

GL D

20 e rees


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N

Two robots printing the same element requires a complex choreography to be performed in order for collision to be avoided. As a result, collaboration will be used only when robots are performing different functions. In this case, they are printing different elements to speed up the construction process. Further in the research, one robot will be used as the “holder� while the other is printing.

1 9 9


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N

M a x im u m

h e ig h t 3 ,2 m

o om- o e tr sion

G r a v it y rintin

irection

o om- o e tr s i o n Ad v a n t ag e s : - Goo s y o materia in t e en -effector D i s ad v an t ag e s : - De ormation enerate y ravity e osition - Limitations in t e ei t o t e str ct re 2 0 0


0 5 RO B O T I C RES EARC H | P RI N T I N G S I M U L AT I O N

Str ct re i e mec anica y

o - o om e tr sion

G r a v it y rintin

irection

o - o om e tr s i o n Ad v an t ag e s : - o imitations in t e ei t o t e str ct re. D i s ad v an t a g e s : - ore i c ties in t e materia s y rocess - Gravity e s to rint t e at

L

2 0 1


2 0 2


AL G O RI T H M

2 0 3


0 6 AL G O RI T H M

| I N T RO D U C T I O N

Digital Methodology o accommo ate t e ase-c an in materia -rea ity o L. e c ose s ime mo sim ation as o r core a orit m to enerate rintin eometries. e starte to oo at s ime mo as io o ica re erence ic as a i ity to create e cient net or an a i ity to ynamica y a a t to c an in environment. y n erstan in t e c emica mec anism o s ime mo ce s e s ccessy re ro ce t e net or in an a a tin e avior o s ime mo in i ita 3-D s ace. e set oa oints an s ort oints as oo so rces or i ita s ime mo ce s e n t em create e cient 3 net or str ct res. e mana e to traine s ime mo sim ation to ro ce ot str ct ra an rinta e str ct res y means o ar e amo nt o arameter test an ana yses. e rototy e is a stron roo o o r materia researc an i ita s ec ation.

PHASE I

BIOLOGY REFERENCE

P h y s ar u m

o yce

3D SPATIAL NETWORK

3 D S lim e M o ld

a m

D i g i t al S l i m e M o l d

nitia set

test

I n t e r ac t i v e P r i n t i n g I


0 6 AL G O RI T H M

PHASE II

PRINTABLE GEOMETRY GENERATING

8 .0 _ 3 c _ h x g _ h g d B t s _ 0 6 1 1 1 . d e p Am t 2. Sensor offset 3 . N u m b e r o f Ag e n t s 4. Restriction 5. Gravity 6. DistanceLimit

P ar am

S t r u c t u r al T e s t

INTERACTIVE PRINTING SIMULATION

0 .0 1 0 0 5.0000 2 0 0 0 0.3000 -0.0500 28.6250

e t e r C a t al o g

P r i n t ab

I n t e r ac t i v e P r i n t i n g I I

ilit y T e s t

| I N T RO D U C T I O N


0 6 AL G O RI T H M

| B I O L O G Y REF EREN C E

Physarum polycephalum (Slime Mold)

ysar m o yce a m a so in orma y re erre as s l i m e m o l d , i s a s i n g l e - c e l l c r e a t u r e t h a t i n h ab i t s s h ad y , coo moist areas s c as ecayin eaves an o s. c ster o s ime mo ce s co orm m tice ar re ro ctive str ct res. t er orms emer ent inte ience to accom is tas s s c as e orin environment searc in oo so rces esta is in e cient net or to trans ort n tritions. io o ica y t e inte i ent e avio r o s ime mo c ster comes rom a re ation o sim e oca mec anism o ysar m o yce a m ce s. e movement o t ese ce s is terme s e streamin ic is t e r yt mic ac -an - ort o o t e roto asm t e time interva is a ro imate y t o min tes. e orce in amoe oi micro asmo ia is enerate y contraction an re a ation o a mem rano s ayer ro a y consistin o actin ty e o ament associate it contraction . e eromone ifference in environment i stim ate actins to create tension ifference on mem rano s ayer ic event a y ca ses a steerin o a ce . ese c emica mec anisms ive e ac h c e l l a i ity to sense an navi ate in t e environment. t t e same time i e movin aro n eac ce i eave its oota e eromones in environment or ot er ce s to o o creatin a oc in e avio r o ce s.

2 0 6


0 6 AL G O RI T H M

| B I O L O G Y REF EREN C E

S ime mo as een s o n to e i it inte i ent c aracteristics simi ar to t ose seen in sine-ce e creat res an e socia insects. or e am e a team o a anese an n arian researc ers ave s o n ysar m o yce a m can so ve t e S ortest at ro em. en ro n in a ma e it oatmea at t o s ots ysar m o yce a m rst y searc every corners in t e ma e. er it n s t e oo it s rin a t e re n ant ranc es to a minimi e at et een t o oo so rces1 .

en resente it more t an t o oo so rces ysar m o yce a m a arent y so ves a more com icate trans ortation ro em. it more t an t o so rces. n a 20 0 a er oa a es ere is erse to re resent o yo an 36 s rro n in to ns. er 26 o rs ysar m o yce a m create a net or simi ar to t e e istin train system an it com ara e e ciency a t to erance an cost 2 .

1 See Science 327, 439 (2010) by Atsushi Tero. The experiment was performed by Seiji Takagi. 2 See Intelligence: Maze-solving by an amoeboid organism (2000) by Toshiyuki Nakagaki, Hiroyasu Yamada & Ágota Tóth.

2 0 7


0 6 AL G O RI T H M

| 2 D S L I M E M O L D S I M U L AT I O N

Slime Mold Simulation

e i ita sim ation o s ime mo is ase on interaction et een a ents i ita s ime mo s an environment i e s . ion rotant gle a

Ag e n t s : n sim ation ar e o ation o a ents are set as re resentative o s ime mo ce s it mo i ity an a i ity to sense navi ate. t as t ree sensor oints in ront o its movin irection L or ar e orar ront R or ar e et een ic t e ane are set as S Sensor n e constant . ccor in to com arison o eromone ensity at t ese sensor oints t e a ent i ma e ecision to er orm a steerin at an an e o R rotation an e constant . D rin eac ste o movin a ents i re ease certain amo nt o eromone ic co e sense y ot er a ents.

En v i r o n m e n t : e environment is re resente as a i e i e ri . n t is ri eac i e as a oat varia e re resentin amo nt o eromone in t is area. D rin eac rame o sim ation t e eromone iff ses to neary i e s o o in t e rinci e o reaction- iff sion system. n t is sim ation t e a ents navig a t e ac c o r d i n g t o environment at same time re-s a in environment y eavin its oot rint. s t e a ents an environment ave a m t a -affecte interactive re ations i .

2 0 8

FF FL

FR

forward front

forward left

forward left

AGENT

sen

sor

o

set

or sensgle an

0.0

0.1

0.1

0.1

0.1

0.2

1.0

0.1

0.2

0.7

0.8

0.1

0.5

0.6

0.2

0.0


0 6 AL G O RI T H M

S A: 6 0 RA: 6 0 T im e :1 0 s

S A: 6 0 RA: 6 0 T im e :2 0 s

S A: 6 0 RA: 6 0 T im e :3 0 s

S A: 6 0 RA: 6 0 T i m e : 40 s

S A: 6 0 RA: 6 0 T im e :5 0 s

S A: 6 0 RA: 6 0 T im e :6 0 s

S A: 6 0 RA: 6 0 T im e :7 0 s

S A: 6 0 RA: 6 0 T im e :8 0 s

S A: 6 0 RA: 6 0 T im e :9 0 s

| 2 D S L I M E M O L D S I M U L AT I O N

2 0 9


0 6 AL G O RI T H M

| 2 D S L I M E M O L D S I M U L AT I O N S A 1 5

Parameter Catalog is is a cata o o sim ation a er min n er se n o i erent com ination o S sensor an e an R rotation an e . Different ensity an to o o y o net or ere res te . 2 1 0

3 0

45

6 0

7 5


0 6 AL G O RI T H M

9 0

1 0 5

1 2 0

1 3 5

| 2 D S L I M E M O L D S I M U L AT I O N

1 5 0

RA

1 5 3 0 45 6 0 7 5 9 0 1 0 5 1 2 0 1 3 5 1 5 0

2 1 1


0 6 AL G O RI T H M

| 3 D S L I M E M O L D S I M U L AT I O N

Three-Dimensional Slime Mold Simluation

y c an in i e to vo e vo me - i e e ma e s ime mo sim ation t ree- imensiona . y systematica y a stin arameters s c as S sensor offset an sensor actor sensor offset sensor an e it e oo so rces at en corners o a c ic s ace s atia net or str ct re it vario s e ciency o connection ere ro ce . ese res ts s o t e otentia or s ime mo sim ation to enerate s atia net or str ct re it inten e re n ancy.

2 1 2


0 6 AL G O RI T H M

| 3 D S L I M E M O L D S I M U L AT I O N

Parameter Catalog

S O = 1

S O = 2

S O = 3

S O = 4

S O = 5

F A .00

F A .25

F A .50

F A . 5

F A 2.00

2 1 3


0 6 AL G O RI T H M

| 3 D S L I M E M O L D S I M U L AT I O N

Parameter Catalog

S O = 1

F A .00

F A .25

F A .50

F A . 5

F A 2.00

2 1 4


0 6 AL G O RI T H M

| 3 D S L I M E M O L D S I M U L AT I O N

S O = 2

F A .00

F A .25

F A .50

F A . 5

F A 2.00

2 1 5


0 6 AL G O RI T H M

| 3 D S L I M E M O L D S I M U L AT I O N

Parameter Catalog

S O = 3

F A .00

F A .25

F A .50

F A . 5

F A 2.00

2 1 6


0 6 AL G O RI T H M

| 3 D S L I M E M O L D S I M U L AT I O N

S O = 4

F A .00

F A .25

F A .50

F A . 5

F A 2.00

2 1 7


0 6 AL G O RI T H M

| 3 D S L I M E M O L D S I M U L AT I O N

Optimization Under Physical Rules

n 0s rei o Di t e amo s oo rea ro ect ic as a so een re erre as etGri . n t is ro ect t o ass a orm connecte it oose oo t rea ires ere i e an s a e in ater. er ta en o t o ater t e oo t rea s se -or anise into ranc in systems eca se o ravity an s r ace tension o ater. ccor in to meas rement t e tota en t o t is ranc in system is 30 ercent sma er t an se arate ori ina en t en oo t rea s ere se arate . e res te str ct re can e consi ere as an o timi e ysica ra o orce o . S arin simi ar rinci e o rei o s oo rea ro ect in o r sim ation t e s ime ce s movin across t e at can e re ar e as ater ro s o a on oo t rea s t e a ractin orce et een ce s ays simi ar ro e o s r ace tension o ater ic o s oo t rea s to et er. n er affection i ravity s ime ce s are a e to enerate ysica -o timi e net or eometry re ar in .

2 1 8


0 6 AL G O RI T H M

| 3 D S L I M E M O L D S I M U L AT I O N

Catalog of Initial Setups

initia set

.

initia set

.2

initia set

.3

initia set

.4

initia set

2.

initia set

2.2

initia set

2.3

initia set

2.4

initia set

3.

initia set

3.2

initia set

3.3

initia set

3.4

initia set

4.

initia set

4.2

initia set

4.3

initia set

4.4

initia set

5.

initia set

5.2

initia set

5.3

initia set

5.4

initia set

6.

initia set

6.2

initia set

6.3

initia set

6.4

initia set

.

initia set

.2

initia set

.3

initia set

.4

2 1 9


0 6 AL G O RI T H M

| 3 D S L I M E M O L D S I M U L AT I O N

Translating Slime Mold Path to Printing Path

onsi erin i c ty to strict y e ec te t e enerate rintin at in case o ro ot reac -a i ity in eometry an materia e ormation. e esi ne anot er rintin sim ation to a ro imate t e enerate at . n rintin sim ation a sin e a ent is set as re resentative o rea rintin e tr er. is a ent i move a on t e s ime mo net or t at same time restricte y reac -a i ity o ro ot in rea sit ation or e am e avoi in co ision it rinte eometry. e rintin sim ation an s ime mo sim ation i r n to et er in rea -time. s en rinter a ent as to c ose anot er rintin at or even en it m ak e s e r r o r s , t h e s l i m e m o l d s i m ation i e a e to ast res onse an re- an a ne s ita e rintin at .

2 2 0


0 6 AL G O RI T H M

G REY - S L I M E M O L D T h e g e o m e try g e n e m o l d sim ation is c an in accor in

| 3 D S L I M E M O L D S I M U L AT I O N

P AT H r a t e d b y s lim e ynamica y to rinte at

B L U E - P RI N T I N G P AT H e rinter sim ation is an a ro imate o enerate at n er restriction o ro ot imitation in rea ity

2 2 1


0 6 AL G O RI T H M

2 2 2

| 3 D S L I M E M O L D S I M U L AT I O N

0 0 :0 0 :0 5

0 0 :0 0 :1 0

0 0 :0 0 :1 5

0 0 :0 0 :2 0

0 0 : 0 0 : 45

0 0 :0 0 :5 0

0 0 :0 0 :5 5

0 0 :0 1 :0 0

0 0 :0 1 :2 5

0 0 :0 1 :3 0

0 0 :0 1 :3 5

0 0 : 0 1 : 40


0 6 AL G O RI T H M

0 0 :0 0 :2 5

0 0 :0 0 :3 0

0 0 :0 0 :3 5

0 0 : 0 0 : 40

0 0 :0 1 :0 5

0 0 :0 1 :1 0

0 0 :0 1 :1 5

0 0 :0 1 :2 0

0 0 : 0 1 : 45

0 0 :0 1 :5 0

| 3 D S L I M E M O L D S I M U L AT I O N

e act o t o sim ations m ta y affect an res onse to eac ot er ma es t e rintin rocess interactive an a a tive. e in ormations a o t str ct ra re irement s c as ensity an re an ency o net or eometry i e ee into ysar m o yce a m sim ation t e in ormations a o t man act rin s c as imitation o ro ot motion an e tr sion s ee i e ee into rintin simation. o sim ations interact it eac ot er creatin an a a ta e constr ction rocess an emer ent str ct ra orm.

2 2 3


0 6 AL G O RI T H M

| P RI N T I N G S T RU C T U RE G EN ERAT I N G

Printable Structure Generating

o train s ime mo sim ation to e er serve t e r ose o rinta e str ct re eneratin e re ister t e inten e oa oints an s ort oints as oo so rces or s ime mo ce s ma in t em create emer ent at net or amon t ese oints. e e t on e orin t e arameter s ace o s ime mo simation y systematica y a stin arameters an cata o in . y oin t is e starte to et a e er n erstan in o t e re ations i et een arameter se n s an ro ce eometries. e cata o e o is s o in t e a i ity o t e simation to s est ifferent str ct re accor in to ifferent iven amo nt o materia . en iven t e eno o ation o a ents ic can e re ate to amo nt o materia t e sim ation i a ays esta is y trian ate str ct re. s t e o ation ecreases t e net or str ct re e ins to mer e an s rin . t e o ation is not eno t e net or i ai to connect a o t e oa an s ort oints.

2 2 4


0 6 AL G O RI T H M

F r am

F r am

e 0 1 0

F ra m e 0 1 5

F r am

e 0 2 0

F ra m e 0 2 5

F r am

e 0 3 0

P ARAM ET ER EX P L AN AT I O N

T ES T 0 0 0 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

e 0 0 5

| P RI N T I N G S T RU C T U RE G EN ERAT I N G

0.0 00 5.0000 2000 0.3800 -0.0500 40.0000

c emica e osition amo nt o a ents en movin Sensor ran e o a ents o ation o a ents restriction orce on a ents to ar its tar et oo ravity intensity a ie on a ents rt est istance t at an a ent can trave t ro s ace

2 2 5


0 6 AL G O RI T H M

| P ARAM ET ER C AT AL O G U E

T ES T 0 0 2

T ES T 0 0 1 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.4600 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.3000 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 0 5 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

2 2 6

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.3000 -0.0500 30.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 0 6

T ES T 0 0 9 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 0 3 0.0 00 5.0000 2000 0.3800 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0. 000 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 0 7

T ES T 0 1 0 0.0 00 5.0000 2000 0. 000 -0.0500 40.0000

T ES T 0 0 4 0.0 00 5.0000 2000 0.4000 -0.0500 40.0000

T ES T 0 0 8

T ES T 0 1 1 0.0 00 5.0000 2000 0.0 00 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.6000 -0.0500 40.0000

0.0 00 5.0000 2000 0.2000 -0.0500 40.0000

T ES T 0 1 2 0.0 00 5.0000 2000 0.3000 -0.0500 60.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.3000 -0.0500 0.0000


0 6 AL G O RI T H M

T ES T 0 1 3 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 1 4 0.0 00 5.0000 2000 0.3000 -0.0500 20.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.3000 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 1 7 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.3000 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 1 8

T ES T 0 2 1 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 1 5 0.0 00 5.0000 2000 0.3000 -0.0500 50.0000

0.0 00 5.0000 2000 0.3000 -0.0500 400000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 1 6 0.0 00 5.0000 2000 0.3000 -0.0500 80.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.3000 -0.0500 30.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 1 9

T ES T 0 2 2

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.3000 -0.0500 40.0000

T ES T 0 2 0

T ES T 0 2 3 0.0 00 5.0000 2000 0.3000 -0.0500 400000

| P ARAM ET ER C AT AL O G U E

0.0 00 5.0000 2000 0.3000 -0.0500 30.0000

T ES T 0 2 4 0.0 00 5.0000 2000 0.3000 -0.0500 28.6250

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.3000 -0.0500 30.0000

2 2 7


0 6 AL G O RI T H M

| P ARAM ET ER C AT AL O G U E

T ES T 0 2 5 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 2 6 0.0 00 5.0000 2000 0.3000 -0.0500 40.0000

T ES T 0 2 8 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 5000 0.3000 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 0000 0.3000 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 20000 0.3000 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

2 2 8

0.0 00 3.0000 2000 0.3000 -0.0500 40.0000

T ES T 0 3 2

T ES T 0 3 4 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 2.0000 2000 0.3000 -0.0500 40.0000

T ES T 0 2 9

T ES T 0 3 1 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 2 7 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.3000 -0.0500 20.0000

T ES T 0 3 0 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 2000 0.3000 -0.0500 40.0000

T ES T 0 3 3 0.0 00 5.0000 20000 0.3000 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 8.0000 2000 0.3000 -0.0500 40.0000

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

T ES T 0 3 5

0.0 00 5.0000 20000 0.3000 -0.0500 80.0000

T ES T 0 3 6 0.0 00 5.0000 2000 0.3000 -0.0500 60.0000


0 6 AL G O RI T H M

| P ARAM ET ER C AT AL O G U E

T ES T 0 3 7 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 5000 0.3000 -0.0500 40.0000

T ES T 0 3 8 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 5000 0.3000 -0.0500 40.0000

T ES T 0 3 9 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 5000 0.3000 -0.0500 40.0000

T ES T 0 40 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 5000 0.3000 -0.0500 40.0000

2 2 9


0 6 AL G O RI T H M

| P ARAM ET ER C AT AL O G U E

T ES T 0 41 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

2 3 0

0.0 00 5.0000 5000 0.3000 -0.0500 40.0000


0 6 AL G O RI T H M

| P ARAM ET ER C AT AL O G U E

T ES T 0 42 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit

0.0 00 5.0000 5000 0.3000 -0.0500 40.0000

2 3 1


0 6 AL G O RI T H M

| P ARAM ET ER C AT AL O G U E

T ES T 0 43 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 2000 0.3000 -0.0500 400000 2.4

T ES T 0 44 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 2 600 0.3000 -0.0500 400000 3.0

T ES T 0 45 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 2000 0.3000 -0.0500 400000 3.0

T ES T 0 46 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 30000 0.3000 -0.0500 400000 3.

T ES T 0 47 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 30000 0. 200 -0.0500 400000 3.0

T ES T 0 48

2 3 2

. e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 58050 0.3000 -0.0500 400000 3.0


0 6 AL G O RI T H M

| P ARAM ET ER C AT AL O G U E

T ES T 0 49 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 22050 0. 000 -0.0500 400000 3.0

T ES T 0 5 0 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 22050 0. 000 -0.0500 400000 3.0

T ES T 0 5 1 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 22050 0.5000 -0.0500 400000 3.0

T ES T 0 5 2 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 22050 0.44000 -0.0500 400000 3.0

T ES T 0 5 3 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 22050 0.44000 -0.0500 400000 3.0

T ES T 0 5 4 . e mt 2. Sensor offset 3. m ero ents 4. Restriction 5. Gravity 6. DistanceLimit . ro res o

0.0 00 5.0000 22050 0.44000 -0.0500 400000 3.0

2 3 3


0 6 AL G O RI T H M

| G EO M ET RY AN AL YS I S

ro

e

at s

se arate at s

35 e ro e restriction actor 0.2 a ent o ation 2000

54 e ro e restriction actor 0.2 a ent o ation 2000

8 e ro e restriction actor 0.2 a ent o ation 2000

Structrue Analyse o estimate t e str ct re sta i ity o t e enerate eometry. e ran tests to co nt o m c ercenta es o s ime mo at s are e ro e it eac ot er to revent en in . n t e cata o t e e co or means t e at is e ro e t e re co or means t e at is too se arate to revent en in .

2 3 4

6 e ro e restriction actor 0.2 a ent o ation 2000


0 6 AL G O RI T H M

| G EO M ET RY AN AL YS I S

82 recents a roc a e restriction actor 0.2 a ent o ation ines 2000

s m al l e r t h an

1 8 0 d e g r e e - - - - - O U T S ID Et h e g e o m e t r y

68 recents a roc a e restriction actor 0.2 a ent o ation ines 2000

l ar g e r t h an

1 8 0 d e g r e e - - - - - IN D S ID Et h e g e o m e t r y 42 recents a roc a e restriction actor 0.2 a ent o ation ines 2000

Printability Analyse e rinta i ity test c ec s o m c ercenta e o eometry can e a roac e y ro otic arm it o t co ision. n t is test t e reen co or means easy to a roac t e re co or means i c t to a roac . 24 recents a roc a e restriction actor 0.2 a ent o ation ines 2000

2 3 5


0 6 AL G O RI T H M

| G EO M ET RY AN AL YS I S

Negotiation between Structure Stability and Printability e t o tests to a controversia act t at e more str ct ra y sta e eometries are s a y more i c t to rint an t e most rinta e eometries are a ays not str ct ra eno . s it i a ays e a ne otiation et een str ct ra er ormance an rinta i ity. n orme y t e test e con rme a ran e o arameter se n s in ic t e str ct re sta i ity an rinta i ity are ot acce ta e.

P r i n t ab

2 3 6

le


0 6 AL G O RI T H M

| G EO M ET RY AN AL YS I S

Optimal Parameter Range e mt Sensor offset m ero ents Restriction Gravity D i s t an c e L i m i t ro res o

0.0 00 3.0 to 8.0 2000 0.0 to 5.0 -0.0500 1 0 to 8 0 3.0

S t r u c t u r al

2 3 7


0 6 AL G O RI T H M

| P RI N T I N G S I M U L AT I O N

Digital Simulation of Printing Process The simulation shows the full digital-physical feedback loop : slime mold simulation generate structure instruction => robot analyses, adjusts and prints according to generated geometry => robot uses sensor to scan the printed geometry(including deformation because of material behaviour) => the printed geometry feedback to generative system and simulation generate next part of structure according to structural requirement and printed geometry.

2 3 8

0 1

0 6

0 2

0 7

0 3

0 8

0 4

0 9

0 5

1 0


0 6 AL G O RI T H M

| P RI N T I N G S I M U L AT I O N

1 1

1 6

1 2

1 7

1 3

1 8

1 4

1 9

1 5

2 0

2 3 9


0 6 AL G O RI T H M

| S O F T W ARE I M P L I C AT I O N S

Initial Mesh(food source) Input

SLIME MOLD SIMULATION CLASS

Slime Mold Cells(Agents)

P ARAM ET ERS e mt Sensor offset Restriction G r a v it y D i s t an c e L i m i t ...

Environment

P ARAM ET ERS m er o ents ro res o Reso tion emica iff sion s ee ...

Slime Mold Paths

2 40

rinte eometry affect t e iff sion in environm e n t

Se ect o tima at to rint


0 6 AL G O RI T H M

| S O F T W ARE I M P L I C AT I O N S

Physical Environment

KINNECT SCANNER CLASS

ROBOT CLASS

nverse inematics

PointCloud

Collision Checking Re- ic anot er at i c u r r e n t o n e c na n o t b e rinte it o t co ision

Printing Path

Printed geometry

2 41


2 42


P RO T O T YP E

2 43


0 7 P RO T O T YP E | I N T RO D U C T I O N

rototy e rintin ime 6 r e rototy e is e amination o o r ysica an i ita s ec ations. e aim is to rint a 2-meter- i se -s ortin str ct re y rea ro otic arm inte rate it innect sensor sin o r en -effector an eneratin a orit ms. e rototy e as com ose y t o arts re- a e e ements ic are rinte on ro n as at trian e ieces i e to t e osition t en connecte it ro n y ro otic arm t e secon art is s ime-mo enerate str ct res ic are enerate y s ime-mo sim ation an a ste in rea -time rin rintin rocess.

CODE SIMULATION

DENSITY ANALYSIS

2 44


0 7 P RO T O T YP E | I N T RO D U C T I O N

2 45


0 7 P RO T O T YP E | F EED B AC K L O O P

Di ita -

ysica ee

ac Loo

n t e rintin rocess a er e ec tin eac rintin at t e rinte eometry i e scanne ac into sim ation. n rea time s ime mo net or a a ts to at is rinte an s ests t e ne t rintin at . rt ermore or eac rintin at o r roram is a e to an o tima ro otic c oreo ra ies avoi in co ision it rinte eometry an environment. y com arin atest scans to o er ones t e ro ram is a e to recise y ca c ate racin at s to en orce rinte eometry. s t e system a ays er orms in t e or er o eneratin rintin scannin an re eneratin to scanne ata.

Ste e initia set is in te as mes . e vertices o mes i e oo so rces or s ime mo ce s. e o y ons o mes re resent re- a ricate ieces.

Ste 2 Start s ime mo sim ation to enerate rintin at . e sim ation i ee r nnin t ro t e entire rintin rocess.

Ste 3 e re- a ricate ieces i e i e to t e corres on in osition on mes t en t e ysica environment i e sanne into sim ation.

2 46


0 7 P RO T O T YP E | F EED B AC K L O O P

Ste 4 ffecte y scanne at is scanne .

ata s ime mo net or a a ts itse to

Ste 5 e system ic s t e o tima rintin at a tomatica y ans ro otic c oreo ra y it o t co ision t en e c te t e rintin at .

Ste 6 e system scans t e atest rinte eometry ca c ates an rints racin e ements. er t is ee ac oo nnis e o ac to ste 3

2 47


0 7 P RO T O T YP E | F AB RI C AT I O N

e a tomatic ee ac oo ives o r system reat e i i ity to res on to a an emer ent res t rom a orit m materia an ro otic e avior.

2 48

in s o

n re icta e sit ations.

e o tcome is


0 7 P RO T O T YP E | F AB RI C AT I O N

2 49


2 5 0


2 5 1


0 7 P RO T O T YP E | F AB RI C AT I O N

O u tc o m e e o tcome o t e rototy e as satis yin . e 2-meter- i s e is i y str ct ra y e cient. e act a rintin time as 2 o rs t e tota ei t o t e str ct re as aro n 35 . t as not on y se -s ortin it co easi y resist one a t s ei t it o t si ni cant e ormation.

3 5 k g

1 2 h o u rs

> 7 5 k g

2 5 2


0 7 P RO T O T YP E | F AB RI C AT I O N

2 5 3



D ES I G N AP P L I C AT I O N ne o t e main c a en es o t e ro ect is to ee emer ent nat re o t e a orit m an materia to ti i e it to t e certain e tent ere system sti as a ca acity to c an e ynamica y t a e to accommo ate str ct ra an ro rammatic re irements.


0 8 D ES I G N AP P L I C AT I O N | I N T RO D U C T I O N Design Application roac in t e arc itect ra a ication o t e system e starte to e ore t e i e esi n s ace ic is ena e y o r researc . om inin t e revio s no e e o materia e eriment ro otic researc i ita sim ation an e erience o rototy in e ere a e to rie y estimate ractica a ri tes o o r esi n s c as rintin time tota str ct re ei t an materia costin . n t is c a ter e starte rom cata o in asic str ct ra e ements ic can e constr cte y ro ots it minima movements t en mer e an mor e t ese e ements s o in a i ity o t e system to a a t to vario s conte t at ast en it cinematic scenario o t o o ses ro in s tractin an interactin it eac ot er.

P REV I O U S RES EARC H

M a t e r i al

Al g o r i t h m

Ro b o t

2 5 6

B AS I C T O P O L O G I ES


0 8 D ES I G N AP P L I C AT I O N | I N T RO D U C T I O N

M ERG ED & M O RP H ED T O P O L O G I ES

C O N T EX T RES P O N D I N G

I N H AB I T AB L E S P AC E

2 5 7


0 8 D ES I G N AP P L I C AT I O N | T O P O L O G I ES C AT AL O G U E

nitia n

2 5 8

t

St ct re Generatin

onstr ction Se

ence


0 8 D ES I G N AP P L I C AT I O N | T O P O L O G I ES C AT AL O G U E

rintin ime r T o t al W e i g h t : 1 1 3 k g M a t e r i al C o s t : ÂŁ 7 8

rintin ime 3 r T o t al W e i g h t : 1 2 9 k g M a t e r i al C o s t : ÂŁ 9 0

rintin ime 24 r T o t al W e i g h t : 2 3 4 k g M a t e r i al C o s t : ÂŁ 1 6 4

t e materia costs are a ro imate y ca c ate accor in to act a cost in rototy e 2 5 9


0 8 D ES I G N AP P L I C AT I O N | T O P O L O G I ES C AT AL O G U E

nitia n

2 6 0

t

St ct re Generatin

onstr ction Se

ence


0 8 D ES I G N AP P L I C AT I O N | T O P O L O G I ES C AT AL O G U E

rintin ime 4 r T o t al W e i g h t : 3 9 2 k g M a t e r i al C o s t : ÂŁ 2 7 4

rintin ime 4 r T o t al W e i g h t : 7 0 8 k g M a t e r i al C o s t : ÂŁ 49 6

rintin ime 35 r T o t al W e i g h t : 3 3 7 k g M a t e r i al C o s t : ÂŁ 7 8

t e materia costs are a ro imate y ca c ate accor in to act a cost in rototy e 2 6 1


0 8 D ES I G N AP P L I C AT I O N | T O P O L O G I ES C AT AL O G U E

nitia n

2 6 2

t

St ct re Generatin

onstr ction Se

ence


0 8 D ES I G N AP P L I C AT I O N | T O P O L O G I ES C AT AL O G U E

rintin ime 48 r T o t al W e i g h t : 46 0 k g M a t e r i al C o s t : ÂŁ 3 2 2

rintin ime 4 r T o t al W e i g h t : 446 k g M a t e r i al C o s t : ÂŁ 3 1 2

rintin ime 33 r T o t al W e i g h t : 3 1 5 k g M a t e r i al C o s t : ÂŁ 2 2 0

t e materia costs are a ro imate y ca c ate accor in to act a cost in rototy e 2 6 3


0 8 D ES I G N AP P L I C AT I O N | T O P O L O G I ES C AT AL O G U E

nitia n

2 6 4

t

St ct re Generatin

onstr ction Se

ence


0 8 D ES I G N AP P L I C AT I O N | T O P O L O G I ES C AT AL O G U E

Printing Time: 23 hr Total Weight: 218 kg Material Cost: £152

Printing Time: 33 hr Total Weight: 320 kg Material Cost: £223

Printing Time: 20 hr Total Weight: 196 kg Material Cost: £137

t e materia costs are a ro imate y ca c ate accor in to act a cost in rototy e 2 6 5


0 8 D ES I G N AP P L I C AT I O N | T O P O L O G I ES C AT AL O G U E

nitia n

t

St ct re Generatin

onstr ction Se

ence

onstr ction Se

ence

STAGE 1 SHELL

nitia n

t

St ct re Generatin

STAGE 2 STAIR

2 6 6


0 8 D ES I G N AP P L I C AT I O N | T O P O L O G I ES C AT AL O G U E

Shell Part Printing Time: 42 hr Total Weight: 734 kg Material Cost: £514

Stair Part Printing Time: 16 hr Total Weight: 154 kg Material Cost: £108

Total Printing Time: 58 hr Total Weight: 888 kg Material Cost: £622

t e materia costs are a ro imate y ca c ate accor in to act a cost in rototy e 2 6 7


0 8 D ES I G N AP P L I C AT I O N | RES P O N S E T O C O N T EX T

Contextual Application Of The System. Elasticity. e e asticity o t e materia a o s s to resist t e ress res o e ements an str ct ra oa . n t e system e asticity is not on y a eat re o t e materia t a so t e e asticity o t e arc itect re a o in it to e i to t e conte t. e ave st ie vario s cases o conte t. Some o t em are -S o e - O n e n e ig h b o u r in g b u ild in g - en s ace - ertica e ements s c as trees - o nei o rin i in s

2 6 8

y a a tive


0 8 D ES I G N AP P L I C AT I O N | RES P O N S E T O C O N T EX T

O n e n e ig h b o u r 2 6 9


0 8 D ES I G N AP P L I C AT I O N | RES P O N S E T O C O N T EX T

2 7 0


0 8 D ES I G N AP P L I C AT I O N | RES P O N S E T O C O N T EX T

O n e n e ig h b o u r 2 7 1


0 8 D ES I G N AP P L I C AT I O N | RES P O N S E T O C O N T EX T

2 7 2


0 8 D ES I G N AP P L I C AT I O N | RES P O N S E T O C O N T EX T

o nei

o rs 2 7 3


0 8 D ES I G N AP P L I C AT I O N | RES P O N S E T O C O N T EX T

2 7 4


0 8 D ES I G N AP P L I C AT I O N | RES P O N S E T O C O N T EX T

T re e s 2 7 5


0 8 D ES I G N AP P L I C AT I O N | RES P O N S E T O C O N T EX T

2 7 6


0 8 D ES I G N AP P L I C AT I O N | RES P O N S E T O C O N T EX T

So e 2 7 7


0 8 D ES I G N AP P L I C AT I O N | G RO W T H S T RAT EG I ES

EXTERIOR GROWTH Startin rom a centra core t e o se i e an to ar s t e e terior

INTERIOR GROWTH Startin rom a rin t e o se i to ar s its centre

ro

VERTICAL EXTERIOR GROWTH is strate y invo ves ro in vertica y an e an in e terna y

VERTICAL INTERIOR GROWTH is strate y invo ves ro in vertica y an e an in interna y

BRIDGING is strate y invo ves connectin t o e istin eometries

2 7 8


0 8 D ES I G N AP P L I C AT I O N | G RO W T H S T RAT EG I ES

2 7 9


0 8 D ES I G N AP P L I C AT I O N | P RO G RAM M AT I C C H AN G ES

CORE REQUIREMENTS

n or er or t e o se ro t to res on to t e nee s o t e ser e ave to rst y n erstan t e c an es t at occ r over t e i etime o a erson an o t ese c an es trans ate s atia y. co rse t ere are some core re irements t at eac o se m st ave as a asic ase s aces i e itc en ivin room at room an stora e. erson a so nee s a ersona s ace t at comes in t e orm o a e room. rom c i oo to a t oo t e si e o t e e room increases to accommo ate t e increase in activities an o ies o t e ser. rom t e ear y 20s to 50s t e ami y is very ynamic as t e ser mi t et marrie an ave c i ren. s

S T O RAG E

L I V I N G S P AC E

K I T C H EN

20

SPACE REQUIREMENTS

CHANGE TIMELINE

10

B AT H RO O M

+

BEDROOM

+

BEDROOM

ADDITION

2 8 0

+

BEDROOM

30


0 8 D ES I G N AP P L I C AT I O N | P RO G RAM M AT I C C H AN G ES a res t more s ace is necessary to e a e to t e o se. t is interestin to note t at t is s ace is s a y anot er e room or stora e s ace i e t e rest o t e o se remains n ist r e . n y a er t e 50s en t e c i ren start movin o t an t e sers ro o er t ere is a nee to re ce t e s ace o t e o se. et er it is or economica or or convenience reasons t in s i e stairs an e tra e rooms can e ta en o t. r system a o s or t ese c an es to occ r y sin astics t at can e me te an re i t an an a orit m t at a o s a a ta e esi n c an es.

AGE 40

+

BEDROOM

50

BEDROOM

60

-

BEDROOM

BEDROOM

70

-

STAIRS

SUBTRACTION

2 8 1


0 8 D ES I G N AP P L I C AT I O N | P RO G RAM M AT I C C H AN G ES e c an es t at occ r over t e i es an o a erson means a o in or a i iary s aces to e a e or remove it o t necessari y affectin t e core s aces. is ay t e o se can e in constant c an e it minim m im act on e istin eometry.

ACCESS

t is interestin to see at a ens en t e system starts to ne otiate at a ar er sca e. avin t o o ses startin rom ifferent initia con itions an c an in over time can or to et er to create a ance in t e system. i e one o se nee s to ro an t e ot er nee s to s rin an e c an e o materia can occ r.

2 8 2


0 8 D ES I G N AP P L I C AT I O N | P RO G RAM M AT I C C H AN G ES

HOUSE 2

HOUSE 1

YEAR 1

YEAR 5

YEAR 10 2 8 3


0 8 D ES I G N AP P L I C AT I O N | C O N S T RU C T I O N S EQ U EN C E e met o intro ces ro otic a rication as a y ri system com inin t e recision o re a ricate e ements it t e a a ta i ity o on-site a rication. Different tec ni es o s acia e tr sion are inte rate it t e e avio r o t e materia to rive a rocess t at e iminates t e nee or scaffo in

+

PREFABRICATION

- PROCESS OF CONSTRUCTION -

ON-SITE DEPOSITION

FOUNDATION

FLOORING

1.

D I G F O U N D AT I O N H O L ES

4.

P L AC E P REF AB RI C AT ED F L O O RI N G EL EM EN T S

2.

F I L L F O U N D AT I O N H O L ES W I T H P C L

5.

D EL I M I T AT E L AYO U T

AT T AC H F L O O RI N G T O F O U N D AT I O N

6.

C O N N EC T T H E F L O O RI N G EL EM EN T S

2 8 4 3.


0 8 D ES I G N AP P L I C AT I O N | C O N S T RU C T I O N S EQ U EN C E

SHELL

7.

P L AC E EN V EL O P E P REF AB EL EM EN T S

10.

AT T AC H N EW

8.

C O N N EC T P REF AB W I T H V ERT I C AL EX T RU S I O N

11.

AD D M O RE EL EM EN T S

9.

C O N N EC T V ERT I C AL EL EM EN T S

12.

C REAT E D ES I RED S H AP E

P REF AB EL EM EN T AN D C O N N EC T

2 8 5


0 8 D ES I G N AP P L I C AT I O N | C O N S T RU C T I O N S EQ U EN C E e rocess o constr ction as een o timi e ase on a t e in ivi a st ies o ro otic reac a i ity an materia e avio r. e ro ots co a orate to i str ct re an enve o e in t e sim est most e cient manner i e ro cin e treme y com e res ts. ariety comes rom t e a i ity o t e ro ot to rint c rve at s an create s r aces o ifferent o acities. e act t at t is is a y ri system mi t a o or t e inter acin it n mero s ot er materia s as e .

P H YS I C AL M O D EL O F S U RF AC E W I T H D I F F EREN T O P AC I T I ES

- PROCESS OF CONSTRUCTION -

RO B O T C O L L AB O RAT I O N

2 8 6

S H EL L C O N S T RU C T I O N

V ERT I C AL S U P P O RT C O N S T RU C T I O N


0 8 D ES I G N AP P L I C AT I O N | C O N S T RU C T I O N S EQ U EN C E

O P AQ U E S U RF AC E S EM I - T RAN S P AREN T T RAN S P AREN T

I N F I N I T E N U M B ER O F O P T I O N S F O R F AC AD E D ES I G N

AD AP T AT I O N T O S L O P E

EN V EL O P E

2 8 7


0 8 D ES I G N AP P L I C AT I O N | AD D I T I O N AN D S U B T RAC T I O N e system is a e to maintain its entro y t ro t e constant e c an e o materia . Loo in more in e t at t o o ses interactin it eac ot er it can e seen t at one o se can ro i e t e ot er s rin s ormin an e cient a ance system t at a a ts to c an e in ro ram conte t an scenario.

EXTRUSION printing process INITIAL STATE granules

NEW STATE solid strands

DECOMPOSITION recycling process

YEAR 1

3

4

5 1

2

5

1 2

5 3

3 3

3

Kitchen Living room Bedroom Cabinet Toilet

3

1 2 3 4 5

YEAR 2

2 8 8

AD D I T I O N

S U B T RAC T I O N


0 8 D ES I G N AP P L I C AT I O N | AD D I T I O N AN D S U B T RAC T I O N

YEAR 3

YEAR 4

AD D I T I O N

S U B T RAC T I O N

S U B T RAC T I O N

AD D I T I O N

2 8 9


0 8 D ES I G N AP P L I C AT I O N | P RI N T I N G G EO M ET RY B EYO N D RO B O T I C REAC H Strate y o

rintin

eometry t at is eyon ro otic reac . Sta es

o

S t ag e 1 it in ro otic reac

art o eometry rinte

o

2 9 0

S t ag e 2 art is een i e


0 8 D ES I G N AP P L I C AT I O N | P RI N T I N G G EO M ET RY B EYO N D RO B O T I C REAC H

S t ga e 3 om etin t e str ct re

2 9 1


e o se is a contin o s s a e. n terms o t e str ct ra erormance eac art can e consi ere as t e nity o m ti e ormations s c as s e a s a co mn an artition a .

2 9 2


o se 2 9 2. 3


House 1. Elevation

4

4

1

1

2

3

1 Kitchen 2 Living room 3 Bedroom 4 Toilet.

2 9 4

4

4

2

4

1 2

3

4 3

3 3

3

3

3

Schematic plan demonstrating interrelation of the program and space at different stages.


House 2. Elevation

5 3

1

1 2

1 Kitchen 2 Living room 3 Bedroom 4 Cabinet 5 Toilet.

2

5 5

3 3

4

5 1 2

3 3

Schematic plan demonstrating interrelation of the program and space at different stages.

Perspective view 2 9 5


e researc a o s s to s ec ate a o t arc itect ra s ace at t e sca e o t e o se ormin com e ro in systems.

2 9 6


2 9 7 In t e r io r


0 8 D ES I G N AP P L I C AT I O N | 3 D P RI N T ED M O D EL S

oto. 3D rinte e ements

2 9 8


0 8 D ES I G N AP P L I C AT I O N | 3 D P RI N T ED M O D EL S

oto. 3D rinte

na o ses.

oto. 3D rinte conte t a st 2 ies 9 9


0 9 AD D I T I O N AL I N F O RM AT I O N

| EX H I B I T I O N S AN D P U B L I C AT I O N S

ina resentation.

22 an 20 6

Synt etic e i ition. rance 3 0 0


0 9 AD D I T I O N AL I N F O RM AT I O N

| EX H I B I T I O N S AN D P U B L I C AT I O N S

i ition . rc itect ra

ssociation

EX H I B I T I O N S AN D P U B L I C AT I O N S F I N AL P RES EN T AT I O N , ARC H I T EC T U RAL AS S O C I AT I O N 22 an 20 6

AAE C O N F EREN C E, B ART L ET T U N I V ERS I T Y r 20 6

AA EX H I B I T I O N , ARC H I T EC T U RAL AS S O C I AT I O N 0 - 30 ne 20 5

T O B E P U B L I S H ED AS P ART O F RAF | A F RAM EW O RK F O R S YM B I O T I C AG EN C I ES I N RO B O T I C - AI D ED F AB RI C AT I O N icia a ma a e e s Sc oo o rc itect re ar iff niversity. Dr. assim a i e s Sc oo o rc itect re ar iff niversity

R

ication . ar iff 3 0 1


3 0 2


rom e to ri t Li

en

a is av e -

atov

arta erme o Rosi

oto. R L team. 3 0 3 e R an ra atei


G RO W I N G S YS T EM S | REF EREN C ES

3 0 4


G RO W I N G S YS T EM S | REF EREN C ES

Rocin a ave a in Rio e aneiro s omostroenie ave a ver o ate c inese city. i ismi e.com 20 2 05

. 0

ra i .

rim i e in an over o

ate

c inese city 22

oto ra o rn t on s mo e or a s orts sta i m in e a Sa create in 6 as s o n at t e t on e i ition in enice 2008. . ic r.com otos seier 38 3 0630

i ra ia.

ics. tm e mo e

. 2

e mo ntain D e in G rc itects. o en a e Denmar . 2008 rc ai y .arc ai y.com 5022 mo ntain- e in s- i a a in a s e o er is o ro a a. o yo a an. 2. rc ai y .arc ai y.com 0 45 a -c assics-na a in-ca s e-to er- is o- ro a a

ti ami y o sin a itat 6 Great i in s on ine i e

os e Sa ie. ontrea ana a. 6 . reat i in s.com i in s a itat 6 . tm

se c ster y Ser ey e omnyas c i. e eny Goro reen-city.s rossi s aya-teoriya-vo- a o- o ne esno

is e in 28

astic o se y tienne enea s. otos De een a a ine. oste on on ay an ary 2 st 2008 at 0 m y Rose t erin ton. . e een.com 2008 0 2 e astic- o ses- y-etienne-menea

. 3

ay 20 4.

. 20

3 0 5


3 0 6


AC K N O W L ED G M EN T S S ecia t an yo to S h aj a y B h o o s h an eo ore S yro o os Ro b S t u ar t - S m i t h P a t r i k S c h u m ac h e r Al i c i a N ah m ad V i s h u B h o o s h an As b j o r n S o n d e r g ar d e e erin a AK T O d ic o

P h as e 1 :

F e r n an

I s h an V o r a N i c h o l as T o r Q i C ao d o D ah e r Al v r e n g a Ley an ian 3 0 7


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.