Josep m

Page 1

Setembre 2014

Taming the road


Housing + housing mixt


Specialized


Natural productive


Natural non-productive


Housing + Housing mixt + Specialized


Natural non productive + Natural productive


Road network: all


Road network: paved


Road network: non-paved


Road network: non-secreted


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6









CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6










CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


viatges/m2s

viatges/m2st

m2st

m2s

viatges

Decret mobilitat + Trip generation Manual. Aproximadament idea (“pesos”) de intensistat/densitat de l’activitat

m2st/m2s (1 si és sòl)

Trip generation based

180_Centre urbà 181_Eixample 182_Habitatges unifamiliars 179_Urbanitzacions 183_Colònies i nuclis aïllats 184_Cases aïllades

7,00 7,00 7,00 7,00 7,00 7,00

80,00 90,00 120,00 140,00 90,00 140,00

0,09 0,08 0,06 0,05 0,08 0,05

2,65 1,50 0,35 0,35 2,00 0,35

0,2319 0,1167 0,0204 0,0175 0,1556 0,0175

185_Polígon industrial ordenat 186_ 187_Indústries aïllades

5,00 5,00 5,00

100,00 100,00 100,00

0,05 0,05 0,05

0,50 0,50 0,50

0,0250 0,0250 0,0250

189_Complexos comercials i d'oficines

20,00

100,00

0,20

1,00

0,2000

213_Complexos administratius 214_Equipaments sanitaris 215_centres educatius 216_centres penitenciaris 217_centres religiosos 218_centres culturals 195_cementiris

15,00 20,00 20,00 20,00 20,00 20,00 0,00

100,00 100,00 100,00 100,00 100,00 100,00

0,15 0,20 0,20 0,20 0,20 0,20

1,00 1,00 0,90 0,90 0,90 0,90

0,1500 0,2000 0,1800 0,1800 0,1800 0,1800

1,00

0,0012

cemetery


R1 land use-based


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


Gini–Simpson index The original Simpson index λ equals the probability that two entities taken at random from the dataset of interest (with replacement) represent the same type. Its transformation 1 − λ therefore equals the probability that the two entities represent different types. This measure is also known in ecology as the probability of interspecific encounter (PIE) and the Gini–Simpson index. It can be expressed as a transformation of true diversity of order 2:

The Gibbs–Martin index of sociology, psychology and management studies,[11] which is also known as the Blau index, is the same measure as the Gini–Simpson index.



CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


Distance to Road network: non-secreted


Distance to Train Station : 0-1000; 1000-2000;>2000


Distance to Train Station : 0-2000; 2000-5000;>5000


Distance to Train Station : 0;0-2000;>2000


Distance to Train Station : 0;0-2000;>2000


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


W[i] +

Shortest path tree

Reach

>

Upstream visualization


R= 300 m


R= 300 m


R= 300 m


R= 300 m


R= 300 m


R= 300 m


R= 500 m


R= 500 m


R= 500 m


R= 500 m


R= 500 m


R= 500 m


R= 1.000 m


R= 1.000 m


R= 1.000 m


R= 1.000 m


R= 1.000 m


R= 1.000 m


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


R= 1.000 m


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


Gini–Simpson index The original Simpson index λ equals the probability that two entities taken at random from the dataset of interest (with replacement) represent the same type. Its transformation 1 − λ therefore equals the probability that the two entities represent different types. This measure is also known in ecology as the probability of interspecific encounter (PIE) and the Gini–Simpson index. It can be expressed as a transformation of true diversity of order 2:

The Gibbs–Martin index of sociology, psychology and management studies,[11] which is also known as the Blau index, is the same measure as the Gini–Simpson index.


R= 1.000 m


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


Animation


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


B; R= 500 m


B; R= 500 m


B; R= 1000 m


B; R= 2000 m


B; R= 5000 m


B; R= 10.000 m


B; R= global


C; R= 300 m


C; R= 500 m


C; R= 1.000 m


C; R= 2.000 m


C; R= 5.000 m


C; R= 10.000 m


C; R= global


R; R= 300 m


R; R= 500 m


R; R= 1.000 m


R; R= 2.000 m


R; R= 5.000 m


R; R= 10.000 m


R; R= global


S; R= 300 m


S; R= 500 m


S; R= 1.000 m


S; R= 2.000 m


S; R= 5.000 m


S; R= 10.000 m


S; R= global


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


Activity trip-generation based


Kernel density B: 300, 500, 1000, 2000, 5000, 10000


Kernel density C: 300, 500, 1000, 2000, 5000, 10000


Kernel density R: 300, 500, 1000, 2000, 5000, 10000


Kernel density S: 300, 500, 1000, 2000, 5000, 10000


ols

predictor Reach

Betweenness

Straightness

Closeness ĂŠs l'invertit

search radius 300 500 1000 2000 5000 10000 infinite 300 500 1000 2000 5000 10000 infinite 300 500 1000 2000 5000 10000 infinite 300 500 1000 2000 5000 10000 infinite

kernel tg_total absolute 0,8315 0,8502 0,8703 0,7852 0,5108 0,3978 0,3628 0,7961 0,8462 0,8740 0,8144 0,5466 0,3102 0,1223 0,8278 0,8496 0,8744 0,7987 0,5385 0,4197 0,3996 0,8356 0,8550 0,8705 0,7277 0,4127 0,3543 0,2764

area/ segment length tg_total 0,1270 0,1999 0,2258 0,1970 0,1050 0,0708 0,0427 0,0008 0,0405 0,0821 0,0565 0,0141 0,0034 0,0007 0,1053 0,1869 0,2197 0,1990 0,1144 0,0790 0,0539 0,1829 0,2104 0,2152 0,1563 0,0646 0,0519 0,0213


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


Housing mixt. R=1.000 m


Housing monoculture. R= 1.000m


Industrial park. R= 1.000 m


Comercial + Offices Park. R= 1.000 m


Hotel complex + Camping. R= 1.000 m


Esports + Parcs Urbans. R= 1.000 m


Equipaments. R=1.000 m


Agriculture. R= 1.000 m


Forest. R= 1.000 m


Water. R= 1.000 m


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

creuaments nous 5x6


2D: Diversity + BT 2000


3D: Diversity + Density + Centrality BT 2000


CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

Queries


1000 DENSITAT DESITJADA

25 hab ha

1 ha 10000 m2

3141590 m2

g101

7853,975 hab

100 m2st 1 hab

g102

7853,975 hab

100 m2st 1 hab

g103

7853,975 hab

150 m2st 1 hab

1 m2s 0,35 m2st/m2s

g104

7853,975 hab

150 m2st 1 hab

1 m2s 0,35 m2st/m2s

g101

1 hab

100 m2st 1 hab

g102

1 hab

g103

g104

7.854 habitatges en un radi de 1km

1 m2s 296.376 m2sòl mínim de massa crítica 2,65 m2st/m2s

0,08805

0,09

1 m2s 523.598 m2sòl mínim de massa crítica 0,155556 1,5 m2st/m2s

0,15

3.365.98 9 m2sòl mínim de massa crítica

1

1

3.365.98 9 m2sòl mínim de massa crítica

1

1

1 m2s 2,65 m2st/m2s

38 m2sòl mínim de massa crítica 1,12E-05

0,09

100 m2st 1 hab

1 m2s 1,5 m2st/m2s

67 m2sòl mínim de massa crítica 1,98E-05

0,15

1 hab

150 m2st 1 hab

1 m2s 0,35 m2st/m2s

429 m2sòl mínim de massa crítica 0,000127

1

1 hab

150 m2st 1 hab

1 m2s 0,35 m2st/m2s

429 m2sòl mínim de massa crítica

1

1

SELECTION ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 0 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 250 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 1000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 2000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 4000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 15000

QUERY H1 H2 H3 H4 H5 H6 H7

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 300000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 100000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 50000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 25000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 10000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 2000

H3_I1 H3_I2 H3_I3 H3_I4 H3_I5 H3_I6

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 50000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 25000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 12500 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 6000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 3000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 1000

H3_T1 H3_T2 H3_T3 H3_T4 H3_T5 H3_T6

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 250000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 125000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 60000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 30000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 15000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 5000

H3_AI1 H3_AI2 H3_AI3 H3_AI4 H3_AI5 H3_AI6


SELECTION ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 0 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 250 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 1000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 2000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 4000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 15000

QUERY H1 H2 H3 H4 H5 H6 H7

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 300000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 100000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 50000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 25000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 10000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 2000

H3_I1 H3_I2 H3_I3 H3_I4 H3_I5 H3_I6

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 50000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 25000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 12500 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 6000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 3000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 1000

H3_T1 H3_T2 H3_T3 H3_T4 H3_T5 H3_T6

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 250000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 125000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 60000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 30000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 15000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 5000

H3_AI1 H3_AI2 H3_AI3 H3_AI4 H3_AI5 H3_AI6









SELECTION ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 0 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 250 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 1000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 2000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 4000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 15000

QUERY H1 H2 H3 H4 H5 H6 H7

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 300000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 100000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 50000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 25000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 10000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 2000

H3_I1 H3_I2 H3_I3 H3_I4 H3_I5 H3_I6

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 50000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 25000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 12500 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 6000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 3000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 1000

H3_T1 H3_T2 H3_T3 H3_T4 H3_T5 H3_T6

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 250000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 125000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 60000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 30000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 15000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 5000

H3_AI1 H3_AI2 H3_AI3 H3_AI4 H3_AI5 H3_AI6







SELECTION ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 0 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 250 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 1000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 2000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 4000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 15000

QUERY H1 H2 H3 H4 H5 H6 H7

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 300000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 100000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 50000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 25000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 10000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 2000

H3_I1 H3_I2 H3_I3 H3_I4 H3_I5 H3_I6

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 50000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 25000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 12500 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 6000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 3000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 1000

H3_T1 H3_T2 H3_T3 H3_T4 H3_T5 H3_T6

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 250000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 125000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 60000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 30000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 15000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 5000

H3_AI1 H3_AI2 H3_AI3 H3_AI4 H3_AI5 H3_AI6








SELECTION ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 0 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 250 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 1000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 2000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 4000 ("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 15000

QUERY H1 H2 H3 H4 H5 H6 H7

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 300000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 100000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 50000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 25000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 10000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g201" > 2000

H3_I1 H3_I2 H3_I3 H3_I4 H3_I5 H3_I6

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 50000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 25000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 12500 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 6000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 3000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g301" > 1000

H3_T1 H3_T2 H3_T3 H3_T4 H3_T5 H3_T6

(("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 250000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 125000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 60000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 30000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 15000 (("g101"/40 + "g102"/70+ "g103"/450+ "g104"/450) > 500 ) AND "g1101" > 5000

H3_AI1 H3_AI2 H3_AI3 H3_AI4 H3_AI5 H3_AI6








CASES

CH 5

METHODS

RESULTS

DISCUSSION 1

DICUSSION 2

CH 4

CH 5, 6, 7

CH 5, 6, 7

CH 8, 9

CH 9

M

R

D

C

C

Visualizing

M1 Voronoi-based

R1 land use-based

activity

micro-catchement areas

C1 MACRO NODES R2 trip generation-based

dibuxiar rodones als valors

M2 downstream visualization based on catchement areas

alts de trip g i de diversitat R3 diversity-based

tb fer-ho en relació al r4 ono

R4 distance-based D1 Activity cells identification M3 upstream visualization

R4 land use-based

based on reach/shortest path tree R5 trip generation-based

C3 "TAMING THE ROAD"

housing-mixed vs mono-culture working industrial

smart-table

working terciari

strategies i intervencions along the road smartgrowth

working regadiu-secà R6 diversity-based

natural no productiu DX Density

R7 route animation-based

3d_gini D2 Diversity cells identification

CH 6

centrality

M4 centrality measures

R8 centrality and search radius

measures

D3 Micro centralities identification bt 500-1000 bt 2000-tendencia del 5000

CH 7

Correlation

M5 segment density + R2

R9 correlation

M6 kernel density + R2

R10 correlation

Centrality-Activity

C2 MICRO STRUCTURES

D4 Centrality measures* validation escriure les bondats de la centralitat com a predictor de localització d'activitat

Queries


STRATEGIES PARAMETERS

VALUES

DOWNSTREAM

REACH HOUSING MIX

DIVERSITY

ACTIVITY DENSITY

CENTRALITY

TRAIN STATION

HIGH WAY

PEIN

IMD

PLANNING UNIT

NONE HIGH NONE HOUSING MIX H2 H3 H4

1

I

0- NAT BREAK NAT BREAK - NAT BREAK NAT BREAK - 1

LOW MEDIUM HIGH

I

0- NAT BREAK NAT BREAK - NAT BREAK NAT BREAK - 1

LOW MEDIUM HIGH

I

0- NAT BREAK NAT BREAK - NAT BREAK NAT BREAK - 1

LOW MEDIUM HIGH

I

0 - 1000 m 1000 - 2000 m > 2000 m

0 1 2

I

0 - 2000 2000 - 5000 > 5000

0 1 2

I

0m 0 - 2000 > 2000

0 1 2

I

0 - 1000 v

LOW LOW MEDIUM MEDIUM MEDIUM HIGH HIGH VERY HIGH

I

MICRONODALITY

D1

INTERVENCIONS D2

D3

WALKABILITY

TRAFFIC CALMING

RETROFITTING


Taming the ROAD 1. Introduction. Introducció 2. Related Works: Towards an intermediate urban mosaic. Vers un Mosaic Urbà Intermedi 2.1.Vers la decantació d’un Mosaic Urbà Intermedi 2.1.1.El mosaic urbà intermedi 2.1.2.La xarxa viària intermèdia com a element central del medi urbà dels fragments 2.1.3.Les forces descentralitzadores de la dispersió i la metropolinització 2.1.4.Evidències sobre la necessitat d’una (re)construcció del mosaic urbà intermedi. 2.2.L’emergència del Mosaic Urbà Intermedi en el marc del “cicle de vida urbà” 2.2.1.Caracterització del cicle de vidà urbà 2.2.2.L’aparició del Mosaic territorial Intermedi en les etapes de sub-urbanització i contra-urbanització 2.3.Lectura del mosaic urbà intermedi des d’una aproximació transversal als espais oberts 2.3.1.La percepció com a mitjà de reconeixement dels espais oberts 2.3.2.La morfologia dels intersticis 2.3.3.La necessitat d’una interacció amb el “verd” proveïdor de serveis socials 2.3.4.Els serveis ecològics del mosaic territorial i llurs limitacions en el mosaic urbà del viari intermedi 2.3.5.Vers una activació transversal del espais oberts 2.4.La caracterització del mosaic urbà intermedi a través de patrons de localització d’activitats des d’una perspectiva morfològica. Alguna cosa d’informació STOCKS 2.4.1.Cartografia i Taxonomia del medi urbà 2.4.2.La identificació dels mecanismes de producció del mosaic urbà intermedi i la seva relació amb la xarxa viària intermèdia 2.5.La caracterització del Mosaic Urbà Intermedi a través dels patrons relacionals espacials en el marc de la informació. Vers una aproximació morfotopològica FLOWS crowdsourcing, agent-based, altres..., tema anàlisi espaial 2.5.1.Evolució del binomi “ciutat-transport/mobilitat” 2.5.2.La identificació de patrons relacionals espacials 2.5.3.Vers una lectura morfotopològica de la ciutat dels fragments servida per la xarxa viària intermèdia 2.6.Vers una lectura morfotopològica de la ciutat dels fragments servida per la xarxa viària intermèdia


3. Problem Statement. Problema 4. Data and Methods. Dades i Mètodes 4.1.Data 4.1.1.Land Covers 4.1.2.Road Network 4.1.3.Altres ptmb, pein, ‌. 4.2.Methodology 4.2.1.Voronoi-based on land use micro-catchement areas (M1) 4.2.2.Downstream visualization based on land use catchement areas (M2) 4.2.3.Upstream visualization based on catchement areas (M3) 4.2.4.Centrality measures (M4) 4.2.5.Activity-density/Centrality measures correlation (M5, M6)


5.

Visualizing land uses/ road-network/ proximity scale. Visualització de les estructures d’activitat de proximitat que suporta la xarxa viària intermèdia

5.1.Data preparation. Prepacració de dades 5.2.“Downstream” activity on the road visualization. Visualització de l’activitat de proximitat sobre la xarxa viària “aigüesavall”. 5.3.“Upstream” activity visualization. Visualització de l’activitat de proximitat sobre la xarxa viaria “aigüesamunt”. 5.4.On the road activity Animation 5.5.Classification 5.6.Results 5.7.Summary / Discussion


6. Identification of / centrality measures. La Identificació dels potencials àmbits supramunicipals d’activitat mitjançant les mesures de centralitat

6.1.Data preparation 6.2.Reach centrality 6.3.Closeness centrality 6.4.Betweenness centrality 6.5.Straightness centrality 6.6.Results 6.7.Summary / Discussion


7. OLS Correlation. Les mesures de centralitat com a predictors de les estructures d’activitat de proximitat 7.1.Setting dependant variables. L’establiment de variables dependents 7.2.Setting Independant variables. L’establiment de variables independents 7.3.Correlation OLS, ODS ..... Ordinary Linear... 7.4.Results. Resultats 7.5.Summary / Discussion. Discussió


8. Taming the road: . Domesticant la carretera: La delimitació i planejament dels àmbits territorials de proximitat del mosaic urbà intermedi 8.1.Macro Nodes (C1). L’establiment i delimitació d’enclavaments estratègics en el si dels territoris supramunicipals de proximitat segons llur naturalesa i potencial endògen 8.2.Micro Structures (C2). L’establiment i delimitació d’àmbits per a l’ordenament i projecte dels territoris supramunicipals segons llurs naturalesa i potencial endògen 8.3.Strategies and interventions along the road for proximity smartgrowth territories (C3). Estratègies per a l’ordenament i projecte dels territoris de proximitat d’abast supramunicipal per a la (re)construcció del mosaic urbà intermedi


9. Discussion 9.1.Research Summary. Sumari de la recerca 9.2.Contributions. Contribucions principals per a una visualitzaci贸, delimitaci贸 i planejament del territoris supramunicipals de proximitat mecanitzada i no mecanitzada 9.3.Limitations. Limitacions 9.4.Future Research Directions. Futures l铆nies de recerca Glossary Appendix Appendix A: Publications Appendix B: Used Datasets: Appendix C: Code and Processes References


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.