ELECTRONICA POTENCIA

Page 1

ELECTRONICA DE POTENCIA

PRESENTADO POR: DIEGO PINZON ALEXIS BLANCO

MANTENIMIENTO ELECTRONICO E INTRUMENTAL INDUSTRIAL C.I.E.S. CUCUTA, NORTE DE SANTANDER CONCEPTO


Se denomina electrónica de potencia a la rama de la ingeniería eléctrica que consigue adaptar y transformar la electricidad, con la finalidad de alimentar otros equipos, transportar energía, controlar el funcionamiento de maquinas eléctricas, etc. Se refiere a la aplicación de dispositivos electrónicos, principalmente semiconductores, al control y transformación de potencia eléctrica. Esto incluye tanto aplicaciones en sistemas de control como de suministro eléctrico a consumos industriales o incluso la interconexión sistemas eléctricos de potencia. El principal objetivo de esta disciplina es el procesamiento de energía con la máxima eficiencia posible, por lo que se evitan utilizar elementos resistivos, potenciales generadores de pérdidas por efecto Joule. Los principales dispositivos utilizados por tanto son bobinas y condensadores, así como semiconductores trabajando en modo corte/saturación (on/off).

DISPOSITIVOS SEMICONDUCTORES DE POTENCIA


Para estas aplicaciones se han desarrollado una serie de dispositivos semiconductores de potencia, todos los cuales derivan del diodo o el transistor. Entre estos se encuentran los siguientes: • •

Rectificador controlado de silicio (SCR en inglés) Triac

IGBT

IGCT


CONVERTIDORES DE LA ENERGÍA ELÉCTRICA Conversión de potencia es el proceso de convertir una forma de energía en otra, esto puede incluir procesos electromecánicos o electroquímicos. Dichos dispositivos son empleados en equipos que se denominan convertidores estáticos de potencia, clasificados en:  Rectificadores: convierten corriente alterna en corriente continua  Inversores: convierten corriente continua en corriente alterna  Cicloconversores: convierten corriente alterna en corriente alterna  Choppers: convierten corriente continua en corriente continua En la actualidad esta disciplina está cobrando cada vez más importancia debido principalmente a la elevada eficiencia de los convertidores electrónicos en comparación a los métodos tradicionales, y su mayor versatilidad. Un paso imprescindible para que se produjera esta revolución fue el desarrollo de dispositivos capaces de manejar las elevadas potencias necesarias en tareas de distribución eléctrica o manejo de potentes motores.


APLICACIONES Las principales aplicaciones de los convertidores electrónicos de potencia son las siguientes:  Fuentes de alimentación: En la actualidad han cobrado gran importancia un subtipo de fuentes de alimentación electrónicas, denominadas fuentes de alimentación conmutadas. Estas fuentes se caracterizan por su elevado rendimiento y reducción de volumen necesario. El ejemplo más claro de aplicación se encuentra en la fuente de alimentación de los ordenadores.  Control de motores eléctricos: La utilización de convertidores electrónicos permite controlar parámetros tales como la posición, velocidad o par suministrado por un motor. Este tipo de control se utiliza en la actualidad en los sistemas de aire acondicionado. Esta técnica, denominada comercialmente como "inverter" sustituye el antiguo control encendido/apagado por una regulación de velocidad que permite ahorrar energía. Asimismo, se ha utilizado ampliamente en tracción ferroviaria, principalmente en vehículos aptos para corriente continua (C.C.)durante las décadas de los años 70 y 80, ya que permite ajustar el consumo de energía a las necesidades reales del motor de tracción, en contraposición con el consumo que tenían los vehículos controlados por resistencias de arranque y frenado. Actualmente el sistema chopper sigue siendo válido, pero ya no se emplea en la fabricación de nuevos vehículos, puesto que actualmente se utilizan equipos basados en el motor trifásico, mucho más potente y fiable que el motor de colector.  Calentamiento por inducción: Consiste en el calentamiento de un material conductor a través del campo generado por un inductor. La alimentación del inductor se realiza a alta frecuencia, generalmente en el rango de los kHz, de manera que se hacen necesarios convertidores electrónicos de frecuencia. La aplicación más vistosa se encuentra en las cocinas de inducción actuales.  Otras: Como se ha comentado anteriormente son innumerables las aplicaciones de la electrónica de potencia. Además de las ya comentadas destacan: sistemas de alimentación ininterrumpida, sistemas de control del factor de potencia, balastos electrónicos para iluminación a alta frecuencia, interface entre fuentes de energía renovables y la red eléctrica, etc. Las líneas de investigación actuales buscan la integración de dispositivos de potencia y control en un único chip, reduciendo costes y multiplicando sus potenciales aplicaciones. No obstante existen dificultades a salvar como el aislamiento entre zonas trabajando a altas tensiones y circuitería de control, así como la disipación de la potencia perdida.


DIODO RECTIFICADOR

Un diodo rectificador es uno de los dispositivos de la familia de los diodos más sencillos. El nombre diodo rectificador” procede de su aplicación, la cual consiste en separar los ciclos positivos de una señal de corriente alterna. Si se aplica al diodo una tensión de corriente alterna durante los medios ciclos positivos, se polariza en forma directa; de esta manera, permite el paso de la corriente eléctrica. Pero durante los medios ciclos negativos, el diodo se polariza de manera inversa; con ello, evita el paso de la corriente en tal sentido. Durante la fabricación de los diodos rectificadores, se consideran tres factores: la frecuencia máxima en que realizan correctamente su función, la corriente máxima en que pueden conducir en sentido directo y las tensiones directa e inversa máximas que soportarán. Una de las aplicaciones clásicas de los diodos rectificadores, es en las fuentes de alimentación; aquí, convierten una señal de corriente alterna en otra de corriente directa.


RECTIFICADOR DE MEDIA ONDA El rectificador de media onda es un circuito empleado para eliminar la parte negativa o positiva de una señal de corriente alterna de entrada (Vi) convirtiéndola en corriente directa de salida (Vo). Es el circuito más sencillo que puede construirse con un diodo.

ANÁLISIS DEL CIRCUITO (DIODO IDEAL) Los diodos ideales, permiten el paso de toda la corriente en una única dirección, la correspondiente a la polarización directa, y no conducen cuando se polarizan inversamente. Además su voltaje es positivo

POLARIZACIÓN DIRECTA (VI > 0) En este caso, el diodo permite el paso de la corriente sin restricción, provocando una caída de potencial que suele ser de 0,7 V. Este voltaje de 0,7 V se debe a que usualmente se utilizan diodos de silicio. En el caso del germanio, que es el segundo más usado, la caída de potencial es de 0,3 V. Vo = Vi - VD → Vo = Vi - 0,7


y la intensidad de la corriente puede fácilmente calcularse mediante la ley de Ohm:

POLARIZACIÓN INVERSA (VI < 0)

En este caso, el diodo no conduce, quedando el circuito abierto. La tensión de salida es igual a la tensión de entrada, y la intensidad de la corriente es nula: Vo = Vi I=0

[editar] Tensión rectificada


RECTIFICADOR DE ONDA COMPLETA Un Rectificador de onda completa es un circuito empleado para convertir una señal de corriente alterna de entrada (Vi) en corriente continua de salida (Vo) pulsante. A diferencia del rectificador de media onda, en este caso, la parte negativa de la señal se convierte en positiva o bien la parte positiva de la señal se convertirá en negativa, según se necesite una señal positiva o negativa de corriente continua. Existen dos alternativas, bien empleando dos diodos o empleando cuatro (puente de Graetz).

RECTIFICADOR CON DOS DIODOS.

En el circuito de la figura, ambos diodos no pueden encontrarse simultáneamente en directa o en inversa, ya que las diferencias de potencial a las que están sometidos son de signo contrario; por tanto uno se encontrará polarizado inversamente y el otro directamente. La tensión de entrada (Vi) es, en este caso, la mitad de la tensión del secundario del transformador. TENSIÓN DE ENTRADA POSITIVA.

El diodo 1 se encuentra en directa (conduce), mientras que el 2 se encuentra en inversa (no conduce). La tensión de salida es igual a la de entrada. El diodo 2 ha de soportar en inversa la tensión máxima del secundario.


TENSIÓN DE ENTRADA NEGATIVA.

El diodo 2 se encuentra en directa (conduce), mientras que el diodo 1 se encuentra en inversa (no conduce). La tensión de salida es igual a la de entrada pero de signo contrario. El diodo 1 ha de soportar en inversa la tensión máxima del secundario .

PUENTE DE GRAETZ O PUENTE RECTIFICADOR DE DOBLE ONDA

En este caso se emplean cuatro diodos con la disposición de la figura. Al igual que antes, sólo son posibles dos estados de conducción, o bien los diodos 1 y 3 están en directa y conducen (tensión positiva) o por el contrario son los diodos 2 y 4 los que se encuentran en inversa y conducen (tensión negativa). A diferencia del caso anterior, ahora la tensión máxima de salida es la del secundario del transformador (el doble de la del caso anterior), la misma que han de soportar los diodos en inversa, al igual que en el rectificador con dos diodos. Esta es la configuración usualmente empleada para la obtención de onda continua.

TENSIÓN RECTIFICADA. Vo = Vi = Vs/2 en el rectificador con dos diodos. Vo = Vi = Vs en el rectificador con puente de Graetz.


Si consideramos la ca铆da de tensi贸n t铆pica en los diodos en conducci贸n, aproximadamente 0,6V; tendremos que para el caso del rectificador de doble onda la Vo = Vi - 1,2V.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.