Can we trust subjective logic for information fusion? Jean Dezert
Albena Tchamova
The French Aerospace Lab Chemin de la Huni`ere F-91761 Palaiseau, France. jean.dezert@onera.fr
Abstract—In this paper, we provide a deep examination of the main bases of Subjective Logic (SL) and reveal serious problems with them. A new interesting alternative way for building a normal coarsened basic belief assignment from a refined one is also proposed. The defects in the SL fusion rule and the problems in the link between opinion and Beta probability density functions are also analyzed. Some numerical examples and related analyses are provided to justify our viewpoints. Keywords—Subjective logic, belief functions, Information fusion.
I.
I NTRODUCTION
Subjective Logic (SL) was introduced by Jøsang in 1997 [1] as a logic which operates on subjective beliefs about the world. SL is essentially based on the belief functions (BF) introduced in 1976 by Shafer in the development of his Mathematical Theory of Evidence, known as Dempster-Shafer Theory (DST) [2]. According to [3], SL can be seen as an extension of standard (binary) logic and probability calculus. SL introduces new terminologies (like opinions, disbelief, etc) of well-known concepts drawn from DST. Our examination of SL literature reveals that definitions and even notations used in SL have slightly changed over the years that make SL a bit difficult to follow for readers unfamiliar with belief functions basis. The main goal of this paper is to clarify and discuss some bases of SL that appear to us questionable in order to identify the real benefit and innovation of SL with respect to what has been already proposed elsewhere using different notation and terminologies. This paper is organized as follows. Because SL is based on BF, we first recall the basics of BF in Section II. Section III recalls the two main opinion models (simple and “normalâ€?) proposed in [1], [4]. We present also in the section III a new alternative “normalâ€? model for building a coarsened basic belief assignment (BBA) based on a strong justification. In Section IV, we discuss the opinion SL fusion rule and in Section V we examine the link between opinion and Beta probability density functions (pdf’s). Section VI concludes this paper with general remarks and suggestions. II.
BASICS
Deqiang Han
Jean-Marc Tacnet
Institute for IC&Tech. Inst. of Integrated Automation Irstea, UR ETGR Bulgarian Acad. of Sci. Xi’an Jiaotong University 2 Rue de la Pap´eterie - BP 76 Sofia, Bulgaria. Xi’an, China 710049. F-38402 St-Martin-d’H`eres, France. tchamova@bas.bg deqhan@gmail.com jean-marc.tacnet@irstea.fr
OF BELIEF FUNCTIONS
The Belief Functions were introduced in DST [2] to model epistemic uncertainty. We briefly recall in this section the basic definitions of belief functions to make the presentation of Subjective Logic easier to follow. Let Θ be a frame of discernment of a problem under consideration. More precisely,
the set Θ = {đ?œƒ1 , đ?œƒ2 , . . . , đ?œƒđ?‘ } consists of a list of đ?‘ exhaustive and mutually exclusive elements đ?œƒđ?‘– , đ?‘– = 1, 2, . . . , đ?‘ . Each đ?œƒđ?‘– represents a possible state related to the problem we want to solve. The assumption of exhaustivity and mutual exclusivity of elements of Θ is classically referred as Shafer’s model of the frame Θ. A classical1 basic belief assignment (BBA), also called a belief mass function (or just a mass for short), is a mapping2 đ?‘šÎ˜ (.) : 2Θ → [0, 1] from the power set3 of Θ denoted 2Θ to [0, 1], that verifies [2]: ∑ đ?‘šÎ˜ (đ?‘‹) = 1 (1) đ?‘šÎ˜ (∅) = 0 and đ?‘‹âˆˆ2Θ
The quantity đ?‘šÎ˜ (đ?‘‹) represents the mass of belief exactly committed to đ?‘‹. An element đ?‘‹ ∈ 2Θ is called a focal element if and only if đ?‘šÎ˜ (đ?‘‹) > 0. The set â„ą (đ?‘šÎ˜ ) ≜ {đ?‘‹ ∈ 2Θ âˆŁđ?‘šÎ˜ (đ?‘‹) > 0} of all focal elements of a BBA đ?‘šÎ˜ (.) is called the core of the BBA. A BBA đ?‘šÎ˜ (.) is said Bayesian if its focal elements are singletons of 2Θ . The vacuous BBA characterizing the total ignorance denoted4 by đ??źđ?‘Ą = đ?œƒ1 âˆŞ đ?œƒ2 âˆŞ . . . âˆŞ đ?œƒđ?‘ is defined by đ?‘šđ?‘ŁÎ˜ (.) : 2Θ → [0; 1] such that đ?‘šđ?‘ŁÎ˜ (đ?‘‹) = 0 if đ?‘‹ ∕= Θ, and đ?‘šđ?‘ŁÎ˜ (đ??źđ?‘Ą ) = 1. From any BBA đ?‘šÎ˜ (.), the belief function đ??ľđ?‘’đ?‘™Î˜ (.) and the plausibility function đ?‘ƒ đ?‘™Î˜ (.) are defined for ∀đ?‘‹ ∈ 2Θ as: ∑ đ?‘šÎ˜ (đ?‘Œ ) (2) đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) = đ?‘Œ ∈2Θ âˆŁđ?‘Œ ⊆đ?‘‹
đ?‘ƒ đ?‘™Î˜ (đ?‘‹) =
∑
đ?‘šÎ˜ (đ?‘Œ )
(3)
đ?‘Œ ∈2Θ âˆŁđ?‘‹âˆŠđ?‘Œ ∕=∅
đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) represents the whole mass of belief that comes from all subsets of Θ included in đ?‘‹. It is usually interpreted as the lower bound of the probability of đ?‘‹, i.e. đ?‘ƒÎ˜min (đ?‘‹). đ?‘ƒ đ?‘™Î˜ (đ?‘‹) represents the whole mass of belief that comes from all subsets of Θ compatible with đ?‘‹ (i.e., those intersecting đ?‘‹). đ?‘ƒ đ?‘™Î˜ (đ?‘‹) is usually interpreted as the upper bound of the probability of ∑ đ?‘‹, i.e. đ?‘ƒÎ˜max (đ?‘‹). đ??ľđ?‘’đ?‘™Î˜ (.) is a sub-additive measure since đ?œƒâˆ‘ đ??ľđ?‘’đ?‘™Î˜ (đ?œƒđ?‘– ) ≤ 1, whereas đ?‘ƒ đ?‘™Î˜ (.) is superđ?‘– ∈Θ additive because đ?œƒđ?‘– ∈Θ đ?‘ƒ đ?‘™Î˜ (đ?œƒđ?‘– ) ≼ 1. đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) and đ?‘ƒ đ?‘™Î˜ (đ?‘‹) 1 Some authors prefer to work with unconventional BBAs allowing đ?‘šÎ˜ (∅) > 0. We don’t use them in this work. 2 Here we put Θ as subscript to explicitly shows the frame of discernment on which the BBA is referring. 3 The power set is the set of all subsets of Θ, empty set included. 4 The set {đ?œƒ , đ?œƒ , . . . , đ?œƒ } and the complete ignorance đ?œƒ âˆŞ đ?œƒ âˆŞ . . . âˆŞ đ?œƒ 1 2 1 2 đ?‘ đ?‘ are both denoted Θ in DST.
defined previously are classically seen [2] as lower and upper bounds of an unknown probability đ?‘ƒÎ˜ (.), and one has the following inequality satisfied: ∀đ?‘‹ ∈ 2Θ , đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) ≤ đ?‘ƒÎ˜ (đ?‘‹) ≤ đ?‘ƒ đ?‘™Î˜ (đ?‘‹). The belief function đ??ľđ?‘’đ?‘™Î˜ (.) (and the plausibility function đ?‘ƒ đ?‘™Î˜ (.)) built from any Bayesian BBA đ?‘šÎ˜ (.) can be interpreted as a (subjective) conditional probability measure provided by a given source of evidence, because if the BBA đ?‘šÎ˜ (.) is Bayesian one has [2]: đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) = đ?‘ƒ đ?‘™Î˜ (đ?‘‹) = đ?‘ƒÎ˜ (đ?‘‹). In DST, the combination (fusion) of several independent sources of evidences is done with Dempster-Shafer5 (DS) rule of combination, assuming that the sources are not in total conflict6 . DS combination of two independent BBAs đ?‘š1Θ (.) Θ and đ?‘š2Θ (.) is defined by đ?‘šđ??ˇđ?‘† Θ (∅) = 0, and for all đ?‘‹ ∈ 2 ∖{∅} by: đ?‘šđ??ˇđ?‘† Θ (đ?‘‹) =
with
1 đ??ž đ??ˇđ?‘†
đ??ž đ??ˇđ?‘† = 1 −
∑
đ?‘š1Θ (đ?‘‹1 )đ?‘š2Θ (đ?‘‹2 )
(4)
Θ
đ?‘‹1 ,đ?‘‹2 ∈2 đ?‘‹1 ∊đ?‘‹2 =đ?‘‹
∑
đ?‘š1Θ (đ?‘‹1 )đ?‘š2Θ (đ?‘‹2 )
A. Belief, disbelief and uncertainty These functions are mathematically defined as follows [1], [3], [4], [8], [9]: ∀đ?‘‹ ∈ 2Θ ∑ đ?‘?(đ?‘‹) ≜ đ?‘šÎ˜ (đ?‘Œ ) (6) đ?‘Œ ∈2Θ âˆŁđ?‘Œ ⊆đ?‘‹
đ?‘‘(đ?‘‹) ≜
đ?‘˘(đ?‘‹) ≜
(7)
∑
đ?‘šÎ˜ (đ?‘Œ )
(8)
đ?‘Œ ∈2Θ âˆŁđ?‘Œ ∊đ?‘‹âˆ•=∅ and đ?‘Œ ∕⊆đ?‘‹
These notions appeal few comments7 . 1)
2) 3)
(5)
đ?‘‹1 ,đ?‘‹2 ∈2 đ?‘‹1 ∊đ?‘‹2 =∅
In the next sections, we present and discuss the main concepts and definitions introduced by Jøsang in the development of SL. Our goal is to show that some aspects of SL appear in our standpoint ill-justified and questionable. The three main bases of SL are: 1) the construction of a model for so-called “opinionsâ€? from BF, 2) the link made between opinions and Beta probability density functions (pdfs) and 3) a fusion rule to combine opinions provided by different sources. SL proposes also additional propositional operators [4] (simple or normal multiplications, comultiplications,etc) that will not be analyzed nor discussed in the sequel because our main goal here is only to examine the interest of SL for fusion applications.
đ?‘šÎ˜ (đ?‘Œ )
đ?‘Œ ∈2Θ âˆŁđ?‘Œ ∊đ?‘‹=∅
Θ
A discussion on the validity of DS rule and its incompatibility with Bayes fusion rule for combining Bayesian BBAs can be found in [5], [6], [7].
∑
4)
5) 6)
In the sequel, we prefer to denote them đ?‘?Θ (đ?‘‹), đ?‘‘Θ (đ?‘‹) and đ?‘˘Î˜ (đ?‘‹) to show explicitly the underlying frame we are referring to when manipulating these functions. đ?‘?Θ (đ?‘‹) = đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) since they have same definitions. ÂŻ where đ?‘‹ ÂŻ denotes the compleđ?‘‘Θ (đ?‘‹) = đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), ment of the set đ?‘‹ in Θ. The disbelief function đ?‘‘Θ (.) corresponds to the doubt function đ??ˇđ?‘œđ?‘˘Î˜ (.) already introduced by Shafer in [2], p. 43. More precisely, for all đ?‘‹ ∈ 2Θ one has ÂŻ = 1 − đ?‘ƒ đ?‘™Î˜ (đ?‘‹) đ?‘‘Θ (đ?‘‹) = đ??ˇđ?‘œđ?‘˘Î˜ (đ?‘‹) ≜ đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) (9) đ?‘˘Î˜ (đ?‘‹) can just be defined more simply by đ?‘˘Î˜ (đ?‘‹) ≜ đ?‘ƒ đ?‘™Î˜ (đ?‘‹)− đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) which is a standard definition to characterize the uncertainty on đ?‘‹ in the framework ÂŻ (see [2] of BF. Because đ?‘ƒ đ?‘™Î˜ (đ?‘‹) = 1 − đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) Chap. 2 for proof), one always has đ?‘˘Î˜ (đ?‘‹) = 1 − ÂŻ − đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) as well. đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) For all đ?‘‹ ∈ 2Θ , đ?‘?Θ (đ?‘‹) + đ?‘‘Θ (đ?‘‹) + đ?‘˘Î˜ (đ?‘‹) = 1 ÂŻ and because đ?‘?Θ (đ?‘Ľ) = đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), đ?‘‘Θ (đ?‘‹) = đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) ÂŻ đ?‘˘Î˜ (đ?‘‹) = 1 − đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) − đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹). Because đ?‘?(đ?‘‹) + đ?‘‘(đ?‘‹) + đ?‘˘(đ?‘‹) = 1, the characterization of belief of đ?‘‹ requires theoretically the knowledge of two values only, typically the belief interval [đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), đ?‘ƒ đ?‘™Î˜ (đ?‘‹)], from which other couples of values can be easily ÂŻ (đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), đ?‘˘(đ?‘‹)), drawn, i.e (đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹)), ÂŻ đ?‘˘(đ?‘‹)), etc. In SL, the author works ex(đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), plicitly also with the third redundant component.
B. Atomicity of elements of the frame III.
O PINION
MODELS IN
S UBJECTIVE L OGIC
SL logic starts with the definitions of two opinion models (the simple and normal models) based on Shafer’s belief functions introduced in the previous section, and the coarsening of a frame of discernment. Before presenting these models, one must recall three basic notions involved in the definition of opinions: the belief function đ?‘?(đ?‘‹), the disbelief function đ?‘‘(đ?‘‹) and the uncertainty function đ?‘˘(đ?‘‹). 5 Although the rule has been proposed originally by Dempster, we call it Dempster-Shafer rule because it has been widely promoted by Shafer in DST. 6 otherwise DS rule is mathematically not defined because of 0/0 indeterminacy.
The relative atomicity of a set đ?‘‹ with respect to another set đ?‘Œ (assuming đ?‘Œ ∕= ∅) plays an important role in SL because it is involved in the definition of the pignistic probability (which is also used in SL) as shown in the next subsection. The relative atomicity is defined by [1] đ?‘Ž(đ?‘‹âˆŁđ?‘Œ ) ≜
âˆŁđ?‘‹ ∊ đ?‘Œ âˆŁ âˆŁđ?‘Œ âˆŁ
(10)
where âˆŁđ?‘‹âˆŠđ?‘Œ âˆŁ and âˆŁđ?‘Œ âˆŁ are the cardinalities of sets đ?‘‹âˆŠđ?‘Œ and đ?‘Œ , respectively. Obviously đ?‘Ž(đ?‘‹âˆŁđ?‘Œ ) ∈ [0, 1] because (đ?‘‹âˆŠđ?‘Œ ) ⊆ đ?‘Œ , so that âˆŁđ?‘‹ ∊ đ?‘Œ âˆŁ ≤ âˆŁđ?‘Œ âˆŁ always holds. If đ?‘Œ corresponds to the whole frame Θ = {đ?œƒ1 , . . . , đ?œƒđ?‘ } with đ?‘ > 1 mutually 7 some of them have been given already by Jøsang himself but are worth to be recalled here.
exclusive atomic elements đ?œƒđ?‘– , then for any set đ?‘‹ ∈ 2Θ , one has always đ?‘Ž(đ?‘‹âˆŁÎ˜) ≜
âˆŁđ?‘‹ ∊ Î˜âˆŁ âˆŁđ?‘‹âˆŁ âˆŁđ?‘‹âˆŁ = = âˆŁÎ˜âˆŁ âˆŁÎ˜âˆŁ đ?‘
(11)
Focal Elem. đ?‘šÎ˜ (.) đ?‘?(.) đ?‘‘(.) đ?‘˘(.) đ?‘Ž(.âˆŁÎ˜) đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (.) TABLE I.
đ??´ đ??ľ đ??ś đ??´âˆŞđ??ľ đ??´âˆŞđ??ś đ??ľâˆŞđ??ś Θ 0.10 0.15 0.05 0.10 0.10 0.20 0.30 0.10 0.15 0.05 0.35 0.25 0.40 1 0.40 0.25 0.35 0.05 0.15 0.10 0 0.50 0.60 0.60 0.60 0.60 0.50 0 1/3 1/3 1/3 2/3 2/3 2/3 1 0.30 0.40 0.30 0.70 0.60 0.70 1 C OMPUTATIONS OF đ?‘?(đ?‘‹), đ?‘‘(đ?‘‹), đ?‘˘(đ?‘‹), đ?‘Ž(đ?‘‹âˆŁÎ˜) AND đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹).
because âˆŁđ?‘‹ ∊ Î˜âˆŁ = âˆŁđ?‘‹âˆŁ since đ?‘‹ ⊆ Θ. The relative atomicity đ?‘Ž(đ?‘‹âˆŁÎ˜) of đ?‘‹ w.r.t8 Θ is just called atomicity of đ?‘‹ in SL and it is usually denoted đ?‘Ž(đ?‘‹), see [4] for details. We prefer to keep the rigorous notation đ?‘Ž(đ?‘‹âˆŁÎ˜) in the sequel to explicitly denote the underlying frame on which the atomicity is computed. It is worth noting that the knowledge of the numerical value đ?‘Ž(đ?‘‹âˆŁÎ˜) alone does not bring a very useful information on đ?‘‹ if we don’t know jointly the cardinality of Θ. For example, from the given numerical value đ?‘Ž(đ?‘‹âˆŁÎ˜) = 0.5, we can only infer that the size (cardinality) of đ?‘‹ is only half of the size of the frame Θ. Without knowing the cardinality of Θ itself, the cardinality of đ?‘‹ cannot be known from the given value of đ?‘Ž(đ?‘‹âˆŁÎ˜).
Example 1: Let us consider the frame Θ = {đ??´, đ??ľ, đ??ś} with Shafer’s model. Table I gives the values of đ?‘?(đ?‘Ľ) = đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), ÂŻ đ?‘˘(đ?‘‹) = 1−đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹)−đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), ÂŻ đ?‘Ž(đ?‘‹âˆŁÎ˜) đ?‘‘(đ?‘‹) = đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), Θ and đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹) for all elements đ?‘‹ ∈ 2 ∖ {∅} for the BBA đ?‘šÎ˜ (.) given in the second row of the Table.
C. Pignistic probability
D. Subjective Opinion
9
mathematically the lower and upper bounds of a consistent subjective probability measure đ?‘ƒÎ˜ (đ?‘‹) for all đ?‘‹ ∈ 2Θ as explained by Shafer in [2] as soon as a BBA đ?‘šÎ˜ (.) is precisely known or given.
The pignistic probability measure, denoted by đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (.), is a particular subjective probability measure consistent with belief intervals computed from any BBA đ?‘šÎ˜ (.) defined on 2Θ , i.e. such that đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) ≤ đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹) ≤ đ?‘ƒ đ?‘™Î˜ (đ?‘‹) for all đ?‘‹ ⊆ Θ. đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (.) was proposed and coined by Smets and Kennes in [10] and its justification is based on the principle of insufficient reason defended by the authors. It has been renamed probability expectation, and denoted by đ??¸[.] in SL [1], [8]. In fact, there exists many other ways to construct (subjective) probability measures đ?‘ƒÎ˜ (.) that are also consistent with belief intervals for approximating any BBA đ?‘šÎ˜ (.) as already reported in [11], Chap. 3. All methods of construction of đ?‘ƒÎ˜ (.) are based on different justifications and there is no consensus on which one is the most efficient and useful one, even if the pignistic probability is very often adopted in practice. In our opinion, there is no unique “expected probabilityâ€?, and that is why it seems more judicious to keep the original name (pignistic probability) in the sequel in order to refer precisely to the probability transformation used. The pignistic probability đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (.) is defined10 by: ∑ đ?‘Ž(đ?‘‹/đ?‘Œ )đ?‘šÎ˜ (đ?‘Œ ) (12) đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹) =
Originally in [1], an opinion about đ?‘‹, denoted đ?œ”đ?‘‹ is an ordered triple of real values (đ?‘?(đ?‘‹), đ?‘‘(đ?‘‹), đ?‘˘(đ?‘‹)) in [0, 1]3
đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (.) satisfies all three Kolmogorov probabilities axioms and its consequences; in particular one always has đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹ âˆŞ đ?‘Œ ) = đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹) + đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘Œ ) if đ?‘‹ ∊ đ?‘Œ = ∅, đ?‘‹, đ?‘Œ ⊆ Θ.
ÂŻ = 1 − đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹) = đ?‘šÎ˜đ?‘‹ (đ?‘‹) ÂŻ (16) đ?‘‘Θđ?‘‹ (đ?‘‹) ≜ đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹) ÂŻ (17) đ?‘˘Î˜đ?‘‹ (đ?‘‹) ≜ đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹) − đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹) = đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ đ?‘‹)
đ?‘Œ ∈2Θ ∖{∅}
Remark 1: According to [3], p. 5, the “belief functions can only be used to estimate probability values and not to set bounds, because the probability of a real event can never be determined with certainty, and neither can upper and lower bounds to it.â€? This interpretation is unconventional and disputable because the definitions of đ??ľđ?‘’đ?‘™Î˜ (.) and đ?‘ƒ đ?‘™Î˜ (.) functions from a BBA đ?‘šÎ˜ (.) allow to compute 8 with
respect to; epithet comes from pignus in Latin which means bet. That is why đ??ľđ?‘’đ?‘Ąđ?‘ƒ notation is used to refer to this betting commitment probability. 10 when working with normal BBA, i.e. when đ?‘š (∅) = 0. Θ 9 pignistic
đ?œ”đ?‘‹ ≜ (đ?‘?(đ?‘‹), đ?‘‘(đ?‘‹), đ?‘˘(đ?‘‹))
(13)
with the constraint đ?‘?(đ?‘‹) + đ?‘‘(đ?‘‹) + đ?‘˘(đ?‘‹) = 1 where đ?‘?(đ?‘‹) is the belief component of the opinion đ?œ”đ?‘‹ , đ?‘‘(đ?‘‹) is its disbelief, and đ?‘˘(đ?‘‹) is its uncertainty. It is clear that đ?œ”đ?‘‹ as given by Eq. (13) corresponds exactly to a simple BBA ÂŻ đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ đ?‘‹)) ÂŻ defined on đ?‘šÎ˜đ?‘‹ (.) = (đ?‘šÎ˜đ?‘‹ (đ?‘‹), đ?‘šÎ˜đ?‘‹ (đ?‘‹), ÂŻ the power-set of the 2D frame Θđ?‘‹ ≜ {đ?‘‹, đ?‘‹}, and it is a trivial instance of DST, see [1], p. 3. Actually for technical reasons that will appear clear in the sequel, we prefer to adopt a more rigorous notation and introduce explicitly the frame Θđ?‘‹ in the notation. Hence, we denote an opinion as: đ?œ”Θđ?‘‹ (đ?‘‹) ≜ (đ?‘?Θđ?‘‹ (đ?‘‹), đ?‘‘Θđ?‘‹ (đ?‘‹), đ?‘˘Î˜đ?‘‹ (đ?‘‹))
(14)
ÂŻ + đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ đ?‘‹) ÂŻ = 1, Because đ?‘šÎ˜đ?‘‹ (đ?‘‹) + đ?‘šÎ˜đ?‘‹ (đ?‘‹) one component is redundant, and in fact an opinion đ?œ”Θđ?‘‹ (đ?‘‹) is mathematically equivalent to the knowledge of only two components expressed as a belief interval, i.e. đ?œ”Θđ?‘‹ (đ?‘‹) ≥ [đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹), đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹)] with: đ?‘?Θđ?‘‹ (đ?‘‹) ≜ đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹) = đ?‘šÎ˜đ?‘‹ (đ?‘‹)
(15)
đ?‘šÎ˜đ?‘‹ (đ?‘‹) can be interpreted as the percentage of truth of ÂŻ the proposition đ?‘‹ = “The solution is in the set đ?‘‹â€?, đ?‘šÎ˜đ?‘‹ (đ?‘‹) as the percentage of falsehood of the proposition đ?‘‹, and ÂŻ as the percentage of subjective uncertainty about đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ đ?‘‹) the proposition đ?‘‹. By construction of belief functions, one always has: đ?‘˘Î˜đ?‘‹ (đ?‘‹) = đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹) − đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹) ÂŻ − (1 − đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹)) ÂŻ = (1 − đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹)) ÂŻ − đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹) ÂŻ = đ?‘˘Î˜đ?‘‹ (đ?‘‹) ÂŻ = đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹)
(18)
It is worth noting that the knowledge of the belief interval [đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹), đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹)], or equivalently the knowledge of
đ?‘šÎ˜đ?‘‹ (.), doesn’t require the knowledge of cardinalities of ÂŻ nor Θđ?‘‹ . The knowledge of these cardinalities is đ?‘‹, đ?‘‹, necessary only to estimate a compatible pignistic probability measure đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜đ?‘‹ (đ?‘‹) ∈ [đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹), đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹)] because it needs the relative atomicities for its derivation. Moreover, any ordered triple (đ?‘?(đ?‘‹), đ?‘‘(đ?‘‹), đ?‘˘(đ?‘‹)) in [0, 1]3 with đ?‘?(đ?‘‹) + đ?‘‘(đ?‘‹) + đ?‘˘(đ?‘‹) = 1 can always be identified directly as a simple BBA đ?‘šÎ˜đ?‘‹ (.) according to (15)–(17), without the necessity of referring to a refined11 BBA đ?‘šÎ˜ (.) through (6)–(8). In practice, the belief assessments are preferentially expressed by human experts directly with simple (coarsened) BBAs rather than with refined BBA because the latter are much more difficult to establish. Therefore the definition of an opinion model based on a refined BBA according to (6)–(8), although receivable, is not fundamental in the strict definition of an opinion since it should be directly given by (15)–(17). ÂŻ with Example 2: let us consider the 2D-frame Θđ?‘‹ ≜ {đ?‘‹, đ?‘‹} the BBA đ?‘šÎ˜đ?‘‹ (.) given by: ⎧ ⎨đ?‘šÎ˜đ?‘‹ (đ?‘‹) = 0.10 ÂŻ = 0.40 đ?‘š (đ?‘‹) ⎊ Θđ?‘‹ ÂŻ = 0.50 đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ đ?‘‹)
which corresponds to the belief intervals (opinions) đ?œ”Θđ?‘‹ (đ?‘‹) ≥ [đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹), đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹)] = [0.10, 0.60] and ÂŻ ≥ [đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹), ÂŻ đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹)] ÂŻ = [0.40, 0.90]. Without đ?œ”Θđ?‘‹ (đ?‘‹) ÂŻ there is no way to compute extra assumptions on âˆŁđ?‘‹âˆŁ and âˆŁđ?‘‹âˆŁ đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜đ?‘‹ (đ?‘‹). One can nevertheless apply the pignistic transformation of đ?‘šÎ˜đ?‘‹ (.) with different assumptions to get a compatible probability measure with the belief intervals. For example, ∙ By taking the pignistic transformation and making the naive ÂŻ so that đ?‘Ž(đ?‘‹âˆŁÎ˜đ?‘‹ ) = assumption (by default) âˆŁđ?‘‹âˆŁ = âˆŁđ?‘‹âˆŁ, âˆŁđ?‘‹âˆŁ âˆŁđ?‘‹âˆŁ ÂŻ ÂŻ = 1/2 = đ?‘Ž(đ?‘‹âˆŁÎ˜đ?‘‹ ), one will get: âˆŁÎ˜đ?‘‹ âˆŁ = âˆŁđ?‘‹âˆŁ+âˆŁđ?‘‹âˆŁ { ÂŻ = 0.35 đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜đ?‘‹ (đ?‘‹) = đ?‘šÎ˜đ?‘‹ (đ?‘‹) + 12 đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ đ?‘‹) ÂŻ = đ?‘šÎ˜đ?‘‹ (đ?‘‹) ÂŻ + 1 đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ đ?‘‹) ÂŻ = 0.65 đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜đ?‘‹ (đ?‘‹) 2 Note that this probability measure doesn’t require the full ÂŻ but only that the knowledge of the values of âˆŁđ?‘‹âˆŁ and âˆŁđ?‘‹âˆŁ, ÂŻ holds. equality âˆŁđ?‘‹âˆŁ = âˆŁđ?‘‹âˆŁ ∙ By taking the pignistic transformation and assuming some ÂŻ say for example extra knowledge of cardinalities âˆŁđ?‘‹âˆŁ and âˆŁđ?‘‹âˆŁ, âˆŁđ?‘‹âˆŁ ÂŻ let assume âˆŁđ?‘‹âˆŁ = 1 and âˆŁđ?‘‹âˆŁ = 2 so that đ?‘Ž(đ?‘‹âˆŁÎ˜đ?‘‹ ) = âˆŁÎ˜ = đ?‘‹âˆŁ âˆŁđ?‘‹âˆŁ ÂŻ = 1/3 and đ?‘Ž( đ?‘‹âˆŁÎ˜ ) = 2/3, one will get: đ?‘‹ ÂŻ âˆŁđ?‘‹âˆŁ+âˆŁđ?‘‹âˆŁ
{
ÂŻ ≈ 0.267 đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜đ?‘‹ (đ?‘‹) = đ?‘šÎ˜đ?‘‹ (đ?‘‹) + 13 đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ đ?‘‹) 2 ÂŻ = đ?‘šÎ˜đ?‘‹ (đ?‘‹) ÂŻ + đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ đ?‘‹) ÂŻ ≈ 0.733 đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜đ?‘‹ (đ?‘‹) 3
E. Building opinions from a refined BBA If one has a refined BBA đ?‘šÎ˜ (.) defined on the power-set of a frame Θ, it is always possible to compute the belief interval [đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), đ?‘ƒ đ?‘™Î˜ (đ?‘‹)] for all đ?‘‹ ∈ 2Θ according to (2)-(3). Reciprocally, from all belief đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) values (or plausibility values đ?‘ƒ đ?‘™Î˜ (đ?‘‹)), one can always compute the 11 We
call the BBA đ?‘šÎ˜ (.) refined because âˆŁÎ˜âˆŁ > âˆŁÎ˜đ?‘‹ âˆŁ.
BBA đ?‘šÎ˜ (.) thanks to M¨obius transform [2]. Moreover, if one has đ?‘šÎ˜ (.) and if one knows the cardinality of the element đ?‘‹ for all đ?‘‹ ∈ 2Θ , one can easily compute the pignistic probability đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹) thanks to (12). From the knowledge of a given BBA đ?‘šÎ˜ (.), how to build a simpler (coarsened) BBA đ?‘šÎ˜đ?‘‹ (.) (called “opinionâ€? in SL) for any chosen đ?‘‹ ∈ 2Θ ? Several methods are possible for doing this. We briefly present them, and propose a new one based on a strong mathematical justification. ∙ Simple model [12]: the knowledge of the belief interval [đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), đ?‘ƒ đ?‘™Î˜ (đ?‘‹)] allows to define very simply đ?‘šÎ˜đ?‘‹ (.) on ÂŻ by taking trivially: the coarsened 2D-frame12 Θđ?‘‹ ≜ {đ?‘‹, đ?‘‹} ⎧ đ?‘šÎ˜đ?‘‹ (đ?‘‹) = đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹)   ⎨ ÂŻ ÂŻ đ?‘šÎ˜đ?‘‹ (đ?‘‹) = 1 − đ?‘ƒ đ?‘™Î˜ (đ?‘‹) = đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) (19) ÂŻ đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ đ?‘‹) = đ?‘ƒ đ?‘™Î˜ (đ?‘‹) − đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹)  ⎊ ÂŻ = 1 − đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹) − đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹)
In 2001, Jøsang did reconsider this simple model by taking also into account the atomicity of element đ?‘‹ in the extended definition of an opinion. Such extension was probably motived by the main role taken by the atomicities in the computation of the pignistic probabilities. The (extended) opinion definition used in SL from 2001 is as follows [3] đ?œ”đ?‘‹ ≜ (đ?‘?(đ?‘‹), đ?‘‘(đ?‘‹), đ?‘˘(đ?‘‹), đ?‘Ž(đ?‘Ľ))
(20)
In our point of view, even if atomicity is an important information about the structure of the frame, an opinion including such information should be expressed more rigorously by one of the two formulae depending on which underlying frame the BBA we are directly referring đ?œ”Θ (đ?‘‹) ≜ ([đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), đ?‘ƒ đ?‘™Î˜ (đ?‘‹)], đ?‘Ž(đ?‘‹âˆŁÎ˜))
(21)
đ?œ”Θđ?‘‹ (đ?‘‹) ≜ ([đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹), đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹)], đ?‘Ž(đ?‘‹âˆŁÎ˜đ?‘‹ ))
(22)
It is worth noting that imposing [đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹), đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹)] = [đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), đ?‘ƒ đ?‘™Î˜ (đ?‘‹)] and đ?‘Ž(đ?‘‹âˆŁÎ˜đ?‘‹ ) = đ?‘Ž(đ?‘‹âˆŁÎ˜) does not help to get đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜đ?‘‹ (đ?‘‹) = đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹) when working with đ?‘šÎ˜ (.) or when working with the coarsened BBA đ?‘šÎ˜đ?‘‹ (.) built with (19). This is not surprising at all because on the one hand of the distinct granularities of the frames Θ and Θđ?‘‹ and on the other hand of the probabilistic formula (12) itself. This remark is perfectly illustrated in the following example. Example 3: Let us consider Θ = {đ??´, đ??ľ, đ??ś} with Shafer’s model and the BBA đ?‘šÎ˜ (.) as given in Table I, and let’s take đ?‘‹ = đ??´ so that đ?‘šÎ˜đ?‘‹ (.) corresponds exactly to the BBA given in example 2 according to (19). As already shown in example 1, one has with đ?‘šÎ˜ (.), đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹ = đ??´) = 0.30 and ÂŻ = đ??ľ âˆŞ đ??ś) = đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ??ľ) + đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ??ś) = 0.70. đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹ If we assume same exact atomicity values đ?‘Ž(đ?‘‹âˆŁÎ˜đ?‘‹ ) = ÂŻ đ?‘‹ ) = đ?‘Ž(đ?‘‹âˆŁÎ˜) ÂŻ đ?‘Ž(đ?‘‹âˆŁÎ˜) = 1/3 and đ?‘Ž(đ?‘‹âˆŁÎ˜ = 2/3, we obtain with đ?‘šÎ˜đ?‘‹ (.) given in example 2 đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜đ?‘‹ (đ?‘‹ = đ??´) = 0.267 ÂŻ = 0.733. We clearly get different pignistic and đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜đ?‘‹ (đ?‘‹) probability values with đ?‘šÎ˜ (.) and with đ?‘šÎ˜đ?‘‹ (.), even if 12 also
called the focused frame in [8].
we use the same exact atomicities in BetP formulae and if we impose [đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹), đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹)] = [đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), đ?‘ƒ đ?‘™Î˜ (đ?‘‹)], which is perfectly normal.
see solid arguments for supporting it, mainly because a better (simpler) and more strongly justified model can be easily established as it will be shown in the next paragraph.
In order to circumvent this inherent incompatibility problem, Jøsang proposed to redefine the “atomicityâ€? of đ?‘‹ with respect to Θđ?‘‹ from the knowledge of the pignistic probability đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (.) computed from the BBA đ?‘šÎ˜ (.). More precisely, to get đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜đ?‘‹ (đ?‘‹) = đ?‘šÎ˜đ?‘‹ (đ?‘‹) + đ?‘Ž Ëœ(đ?‘‹âˆŁÎ˜đ?‘‹ )đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ ÂŻ = đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹) when imposing [đ??ľđ?‘’đ?‘™Î˜đ?‘‹ (đ?‘‹), đ?‘ƒ đ?‘™Î˜đ?‘‹ (đ?‘‹)] = đ?‘‹) [đ??ľđ?‘’đ?‘™Î˜ (đ?‘‹), đ?‘ƒ đ?‘™Î˜ (đ?‘‹)], one must trivially take ÂŻ (23) đ?‘Ž Ëœ(đ?‘‹âˆŁÎ˜đ?‘‹ ) ≜ (đ??ľđ?‘’đ?‘Ąđ?‘ƒÎ˜ (đ?‘‹) − đ?‘šÎ˜đ?‘‹ (đ?‘‹))/đ?‘šÎ˜đ?‘‹ (đ?‘‹ âˆŞ đ?‘‹)
∙ A new and better “normalâ€? model: this new model derives from one of Shannon’s entropy properties which states that entropy decreases when the size of the probability space decreases because the number of possible states taken by the random variable (governed by the underlying probability measure) diminishes. The basic idea to build a better new “normalâ€? model is to use this property to quantify precisely the gain in the reduction of uncertainty that one has to consider when working in the coarsened frame Θđ?‘‹ . Before going further in the formulation of our new “normalâ€? model, one needs to first recall few bases about Shannon entropy.
ÂŻ > 0. with assuming13 đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) Remark 2: This redefinition of the relative atomicity of the element đ?&#x2018;&#x2039; of the coarsened frame Î&#x2DC;đ?&#x2018;&#x2039; doesnâ&#x20AC;&#x2122;t of course reflect the true relative atomicity of đ?&#x2018;&#x2039;, but it defines a (a posteriori14) ÂŻ redistribution factor of the mass of uncertainty đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) to đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) for calculating a subjective probability measure đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;). In fact, the knowledge of đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) or đ?&#x2018;&#x17D; Ë&#x153;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) are strictly equivalent as soon as the BBA đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (.) is given. Therefore, the (extended) opinion defined by (20) could be also replaced more judiciously by: ÂŻ đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;), ÂŻ đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)) đ?&#x153;&#x201D;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) â&#x2030;&#x153; (đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), â&#x2030;Ą ([đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)], đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)) where đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) could be any subjective probability measure compatible with the belief interval [đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)], or eventually computed from đ?&#x2018;&#x161;Î&#x2DC; (.), if known. â&#x2C6;&#x2122; Jøsangâ&#x20AC;&#x2122;s â&#x20AC;&#x153;normalâ&#x20AC;? model: Later in 2003, Jøsang did propose in [4], [14], [15] another model to build đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (.) from the belief interval [đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;), đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;)], the atomicity đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;) and from đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;). The motivation was to preserve the same atomicities values, i.e. đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) = đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;) in the model and to get same pignistic probabilities value đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) = đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;), and that is why it has been called the â&#x20AC;&#x153;normalâ&#x20AC;? model. This model is given by the following formulae â&#x20AC;&#x201C; For đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x2030;Ľ đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) + đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;)đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x17D;§ Î&#x2DC; (đ?&#x2018;&#x2039;)â&#x2C6;&#x2019;đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;)đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;) đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) â&#x2030;&#x153; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) + đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;)â&#x2C6;&#x2019;đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;  1â&#x2C6;&#x2019;đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;)   â&#x17D;¨ ÂŻ â&#x2030;&#x153; đ?&#x2018;&#x2018;Î&#x2DC; (đ?&#x2018;&#x2039;) = đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) ÂŻ đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;)â&#x2C6;&#x2019;đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;)â&#x2C6;&#x2019;đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;)đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;) ÂŻ  đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) â&#x2030;&#x153; đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2019;  1â&#x2C6;&#x2019;đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;)  â&#x17D;Š đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) â&#x2030;&#x153; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;) (24) â&#x20AC;&#x201C; For đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;) < đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) + đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;)đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x17D;§ đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) â&#x2030;&#x153; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;)    â&#x17D;¨đ?&#x2018;&#x161; (đ?&#x2018;&#x2039;) ÂŻ â&#x2030;&#x153; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) ÂŻ + đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;)+đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;)đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;)â&#x2C6;&#x2019;đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;) Î&#x2DC;đ?&#x2018;&#x2039; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;) đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;)+đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;)đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;)â&#x2C6;&#x2019;đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;) ÂŻ  đ?&#x2018;&#x161; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) â&#x2030;&#x153; đ?&#x2018;˘ (đ?&#x2018;&#x2039;) â&#x2C6;&#x2019; Î&#x2DC;đ?&#x2018;&#x2039; Î&#x2DC;  đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;)  â&#x17D;Š đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) â&#x2030;&#x153; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;) (25)
Remark 3: This mathematical â&#x20AC;&#x153;normal modelâ&#x20AC;? has never been seriously justified in SL literature, and in fact we donâ&#x20AC;&#x2122;t 13 if đ?&#x2018;&#x161; ÂŻ Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) = 0, then it means from (19) that đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) = đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) = đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;) = đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;). 14 assuming the given knowledge of đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192; (đ?&#x2018;&#x2039;). Î&#x2DC;
Shannon entropy [16], usually expressed in bits (binary digits), of a probability measure đ?&#x2018;&#x192;đ?&#x2018; (đ?&#x2018;&#x2039;) â&#x2030;&#x153; [đ?&#x2018;?1 , đ?&#x2018;?2 , . . . , đ?&#x2018;?đ?&#x2018; ] of a random variable đ?&#x2018;&#x2039; over a discrete finite set Î&#x2DC;đ?&#x2018; = {đ?&#x153;&#x192;1 , . . . , đ?&#x153;&#x192;đ?&#x2018; } is defined by15 đ??ť(đ?&#x2018;&#x192;đ?&#x2018; ) = đ??ťđ?&#x2018; (đ?&#x2018;?1 , đ?&#x2018;?2 , . . . , đ?&#x2018;?đ?&#x2018; ) â&#x2030;&#x153; â&#x2C6;&#x2019;
đ?&#x2018; â&#x2C6;&#x2018;
đ?&#x2018;?đ?&#x2018;&#x2013; log2 đ?&#x2018;?đ?&#x2018;&#x2013;
(26)
đ?&#x2018;&#x2013;=1
where đ?&#x2018;?đ?&#x2018;&#x2013; â&#x2030;&#x153; đ?&#x2018;&#x192; (đ?&#x2018;&#x2039; = đ?&#x153;&#x192;đ?&#x2018;&#x2013; ). The entropy đ??ť(đ?&#x2018;&#x192;đ?&#x2018; ) measures the degree of randomness carried by a given distribution of probabilities of đ?&#x2018;&#x2039; over the set Î&#x2DC;đ?&#x2018; of cardinality đ?&#x2018; . The entropy is minimal if there exists a đ?&#x153;&#x192;đ?&#x2018;&#x2013; â&#x2C6;&#x2C6; Î&#x2DC; such that min đ?&#x2018;&#x192; (đ?&#x2018;&#x2039; = đ?&#x153;&#x192;đ?&#x2018;&#x2013; ) = 1 so that đ??ťđ?&#x2018; = 0. It is maximal when the distribution of probabilities of đ?&#x2018;&#x2039; is uniform on Î&#x2DC;đ?&#x2018; , that is when đ?&#x2018;&#x192; (đ?&#x2018;&#x2039; = đ?&#x153;&#x192;đ?&#x2018;&#x2013; ) = 1/đ?&#x2018; , đ?&#x2018;&#x2013; = 1, 2, . . . , đ?&#x2018; . In that case, max đ??ťđ?&#x2018; = log2 (đ?&#x2018; ). Therefore, đ??ť(đ?&#x2018;&#x192;đ?&#x2018; ) â&#x2C6;&#x2C6; [0, log2 (đ?&#x2018; )] when expressed in bits. An interesting recursive property of Shannon entropy is that [16], [17] if đ?&#x2018;?1 + đ?&#x2018;?2 > 0 đ??ťđ?&#x2018; (đ?&#x2018;?1 , đ?&#x2018;?2 , . . . , đ?&#x2018;?đ?&#x2018; ) = đ??ťđ?&#x2018; â&#x2C6;&#x2019;1 (đ?&#x2018;?1 + đ?&#x2018;?2 , đ?&#x2018;?3 . . . , đ?&#x2018;?đ?&#x2018; ) đ?&#x2018;?1 đ?&#x2018;?2 + (đ?&#x2018;?1 + đ?&#x2018;?2 )đ??ť2 ( , ) (27) đ?&#x2018;?1 + đ?&#x2018;?2 đ?&#x2018;?1 + đ?&#x2018;?2 The quantity đ??ťđ?&#x2018; â&#x2C6;&#x2019;1 (đ?&#x2018;?1 +đ?&#x2018;?2 , đ?&#x2018;?3 . . . , đ?&#x2018;?đ?&#x2018; ) represents the entropy of the probability measure đ?&#x2018;&#x192;đ?&#x2018; â&#x2C6;&#x2019;1 (đ?&#x2018;&#x2039;) â&#x2030;&#x153; [đ?&#x2018;?1 + đ?&#x2018;?2 , đ?&#x2018;?3 . . . , đ?&#x2018;?đ?&#x2018; ] of the random variable đ?&#x2018;&#x2039; over the discrete coarsened finite set Î&#x2DC;đ?&#x2018; â&#x2C6;&#x2019;1 â&#x2030;&#x153; {đ?&#x153;&#x192;1 â&#x2C6;Ş đ?&#x153;&#x192;2 , đ?&#x153;&#x192;3 , . . . , đ?&#x153;&#x192;đ?&#x2018; } having now đ?&#x2018; â&#x2C6;&#x2019; 1 elements. 1 The term (đ?&#x2018;?1 + đ?&#x2018;?2 )đ??ť2 ( đ?&#x2018;?1đ?&#x2018;?+đ?&#x2018;? , đ?&#x2018;?2 ) â&#x2030;Ľ 0 reflects the increase 2 đ?&#x2018;?1 +đ?&#x2018;?2 of entropy due to the refinement process when splitting đ?&#x153;&#x192;1 â&#x2C6;Şđ?&#x153;&#x192;2 into two separate states đ?&#x153;&#x192;1 and đ?&#x153;&#x192;2 . The increase of entropy is normal because the refinement process generates more uncertainty on the choice to make due to the increase of granularity of the frame. We define the entropy reduction factor đ?&#x203A;źđ?&#x2018; (đ?&#x2018; , đ?&#x2018; â&#x2C6;&#x2019; 1) â&#x2C6;&#x2C6; [0, 1] by: đ?&#x203A;źâ&#x2030;&#x153;
đ??ťđ?&#x2018; â&#x2C6;&#x2019;1 đ??ťđ?&#x2018;
(28)
So letâ&#x20AC;&#x2122;s now consider a BBA đ?&#x2018;&#x161;Î&#x2DC; (.) defined on 2Î&#x2DC; and a subjective probability measure, say đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (.) with the pignistic transformation, over the frame Î&#x2DC; of cardinality đ?&#x2018; . Based on đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (.), we are able to compute its corresponding Shannon entropy đ??ťđ?&#x2018; (đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; ), that we just denote as đ??ťđ?&#x2018;&#x201C; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2019; to specify 15 with
convention 0 log2 0 = 0.
that it has been computed from the probability defined over a refined frame. Letâ&#x20AC;&#x2122;s consider an element đ?&#x2018;&#x2039; â&#x2C6;&#x2C6; 2Î&#x2DC; and ÂŻ We are its corresponding coarsened frame Î&#x2DC;đ?&#x2018;&#x2039; = {đ?&#x2018;&#x2039;, đ?&#x2018;&#x2039;}. able from the set of values đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x153;&#x192;đ?&#x2018;&#x2013; ), đ?&#x2018;&#x2013; = 1, 2, . . . , đ?&#x2018; to compute also the â&#x2C6;&#x2018; coarsened probability measureÂŻ by taking đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;) = đ?&#x153;&#x192;đ?&#x2018;&#x2013; â&#x2C6;&#x2C6;đ?&#x2018;&#x2039; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x153;&#x192;đ?&#x2018;&#x2013; ) and đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;) = 1 â&#x2C6;&#x2019; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;). This subjective (coarsened) probability measure yields a new (smaller) Shannon entropy value denoted đ??ťđ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;&#x17D;đ?&#x2018;&#x;đ?&#x2018; đ?&#x2018;&#x2019; because of the coarsening effect as shown through (27). Hence the entropy reduction factor đ?&#x203A;ź = đ??ťđ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;&#x17D;đ?&#x2018;&#x;đ?&#x2018; đ?&#x2018;&#x2019; /đ??ťđ?&#x2018;&#x201C; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2019; is easily obtained. This reduction factor will be used to reduce the uncertainty degree in our new normal model by trivially taking: đ?&#x2018;˘Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) â&#x2030;&#x153; đ?&#x203A;ź â&#x2039;&#x2026; đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;) =
đ??ťđ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;&#x17D;đ?&#x2018;&#x;đ?&#x2018; đ?&#x2018;&#x2019; â&#x2039;&#x2026; (đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2019; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;)) (29) đ??ťđ?&#x2018;&#x201C; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2019;
đ?&#x2018;˘Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2C6; [0, 1], because đ?&#x203A;ź â&#x2C6;&#x2C6; [0, 1] and đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2C6; [0, 1]. ÂŻ From any BBA đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (.) defined in Î&#x2DC;đ?&#x2018;&#x2039; = {đ?&#x2018;&#x2039;, đ?&#x2018;&#x2039;}, it is always possible to compute the pignistic probabilities ÂŻ = 1 â&#x2C6;&#x2019; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) by the đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) and đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) probability transformation given in (12). More precisely, by { ÂŻ đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) = đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) + đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; )đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) ÂŻ ÂŻ = đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) ÂŻ + đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC; ÂŻ đ?&#x2018;&#x2039; )đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) (30) Conversely, from any given set of consistent16 probabilities ÂŻ and any chosen value đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş (đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)) ÂŻ đ?&#x2018;&#x2039;) in [0, 1], we can always establish a well-defined BBA by ÂŻ from (30) by taking computing đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) and đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) { ÂŻ đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) = đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2019; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; )đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) ÂŻ = đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) ÂŻ â&#x2C6;&#x2019; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC; ÂŻ đ?&#x2018;&#x2039; )đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) ÂŻ đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) (31) ÂŻ = In particular, in choosing (đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)) ÂŻ and đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) ÂŻ = đ?&#x2018;˘Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) = (đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;), đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;)) ÂŻ is a consisđ?&#x203A;ź â&#x2039;&#x2026; đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;), because (đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;), đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;)) tent couple of probabilities and đ?&#x203A;ź â&#x2039;&#x2026; đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2C6; [0, 1]. Since ÂŻ = 1 â&#x2C6;&#x2019; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;) and đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) = đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;) and đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;) ÂŻ đ?&#x2018;&#x2039; ) = đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;) ÂŻ đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC; = 1 â&#x2C6;&#x2019; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;), we finally obtain thanks to (31) the explicit formulae of our new â&#x20AC;&#x153;normalâ&#x20AC;? model for the well-defined coarsened BBA đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (.) as follows: â&#x17D;§  đ?&#x2018;&#x161; (đ?&#x2018;&#x2039;) â&#x2030;&#x153; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2019; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) â&#x2039;&#x2026; đ?&#x203A;ź â&#x2039;&#x2026; (đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2019; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;))   Î&#x2DC;đ?&#x2018;&#x2039; ÂŻ   đ?&#x2018;&#x161; â&#x17D;¨ Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) â&#x2030;&#x153; (1 â&#x2C6;&#x2019; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;)) â&#x2C6;&#x2019;(1 â&#x2C6;&#x2019; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; )) â&#x2039;&#x2026; đ?&#x203A;ź â&#x2039;&#x2026; (đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2019; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;))   ÂŻ  đ?&#x2018;&#x161; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) â&#x2030;&#x153; đ?&#x203A;ź â&#x2039;&#x2026; (đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2019; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;)) Î&#x2DC;  đ?&#x2018;&#x2039;  â&#x17D;Š đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) = đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;) (32)
where the entropy reduction factor đ?&#x203A;ź is given by đ?&#x203A;ź = đ??ť(đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; )/đ??ť(đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; ) with â&#x2C6;&#x2018; â&#x2C6;&#x2018; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; = [ đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x153;&#x192;đ?&#x2018;&#x2013; ), 1 â&#x2C6;&#x2019; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x153;&#x192;đ?&#x2018;&#x2013; )] (33) đ?&#x153;&#x192;đ?&#x2018;&#x2013; â&#x2C6;&#x2C6;đ?&#x2018;&#x2039;
đ?&#x153;&#x192;đ?&#x2018;&#x2013; â&#x2C6;&#x2C6;đ?&#x2018;&#x2039;
đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; = [đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x153;&#x192;1 ), . . . , đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x153;&#x192;đ?&#x2018; )]
(34)
compute the entropies involved in (28) (instead of log2 , it could be log10 , ln, logđ?&#x2018;? with đ?&#x2018;? > 0 different of 1), because for any real positive numbers đ?&#x2018;&#x17D; and đ?&#x2018;? different of 1 there always exists a constant đ?&#x2018;&#x2DC; such that logđ?&#x2018;? = đ?&#x2018;&#x2DC; logđ?&#x2018;&#x17D; which is given by đ?&#x2018;&#x2DC; = 1/ logđ?&#x2018;&#x17D; (đ?&#x2018;?). Therefore, our model doesnâ&#x20AC;&#x2122;t depend on the choice of the logarithm base involved in the entropy definition. It is also easy to verify that ÂŻ is equal đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) = đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) + đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; )đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) to đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039;) by using formula (32). In summary, this new â&#x20AC;&#x153;normalâ&#x20AC;? model has in our point of view a better construction and strongly justification than Jøsangâ&#x20AC;&#x2122;s â&#x20AC;&#x153;normalâ&#x20AC;? model given in (24)â&#x20AC;&#x201C;(25), even if its practical interest remains to be shown for real applications. Example 4: let us consider Î&#x2DC; = {đ??´, đ??ľ, đ??ś} with Shaferâ&#x20AC;&#x2122;s model and the BBA đ?&#x2018;&#x161;Î&#x2DC; (.), atomicities and BetP values as given in Table I, and letâ&#x20AC;&#x2122;s take đ?&#x2018;&#x2039; = đ??´ so that Î&#x2DC;đ?&#x2018;&#x2039; = {đ?&#x2018;&#x2039; = ÂŻ = đ??ľ â&#x2C6;Ş đ??ś}. Because đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (đ?&#x2018;&#x2039; = đ??´) = 0.30 is greater đ??´, đ?&#x2018;&#x2039; than đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) + đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;)đ?&#x2018;˘Î&#x2DC;(đ?&#x2018;&#x2039;) = 0.10 + (1/3)0.50 â&#x2030;&#x2C6; 0.266, we use the formulae in (24) to find the normal Jøsangâ&#x20AC;&#x2122;s model. Based on (24), one will get: â&#x17D;§ đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) = 0.10 + 0.30â&#x2C6;&#x2019;0.1â&#x2C6;&#x2019;(1/3)â&#x2039;&#x2026;0.5 = 0.15   1â&#x2C6;&#x2019;(1/3)  â&#x17D;¨ ÂŻ đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) = đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ??ľ â&#x2C6;Ş đ??ś) = 0.40 (35) ÂŻ = 0.50 â&#x2C6;&#x2019; 0.30â&#x2C6;&#x2019;0.1â&#x2C6;&#x2019;(1/3)â&#x2039;&#x2026;0.5 = 0.45  đ?&#x2018;&#x161; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) Î&#x2DC;  đ?&#x2018;&#x2039; 1â&#x2C6;&#x2019;(1/3)  â&#x17D;Š đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) = đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;) = 1/3 Based on đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC; (.), one has đ??ťđ?&#x2018;&#x201C; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2019; â&#x2030;&#x2C6; 1.57095 and đ??ťđ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;&#x17D;đ?&#x2018;&#x;đ?&#x2018; đ?&#x2018;&#x2019; â&#x2030;&#x2C6; 0.88129 so that đ?&#x203A;ź â&#x2030;&#x2C6; 0.56099. Applying the new normal model formulae given in (32) we obtain now:
â&#x17D;§ đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) = 0.30 â&#x2C6;&#x2019; (1/3) â&#x2039;&#x2026; đ?&#x203A;ź â&#x2039;&#x2026; (0.60 â&#x2C6;&#x2019; 0.10) â&#x2030;&#x2C6; 0.20650   â&#x17D;¨ ÂŻ = 0.70 â&#x2C6;&#x2019; (2/3) â&#x2039;&#x2026; đ?&#x203A;ź â&#x2039;&#x2026; (0.60 â&#x2C6;&#x2019; 0.10) â&#x2030;&#x2C6; 0.51300 đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) ÂŻ = 0.56099 â&#x2039;&#x2026; (0.60 â&#x2C6;&#x2019; 0.10) â&#x2030;&#x2C6; 0.28050  đ?&#x2018;&#x161; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)  â&#x17D;Š Î&#x2DC;đ?&#x2018;&#x2039; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) = đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;) = 1/3 (36) With our new model, we get a reduction of uncertainty that directly reflects the decrease of Shannon entropy of the pignistic probability measure when working on a coarsened frame. Such reduction level of uncertainty is better justified than the reduction proposed in Jøsangâ&#x20AC;&#x2122;s â&#x20AC;&#x153;ad-hoc normalâ&#x20AC;? model. IV.
F USION
OF
O PINIONS
IN
S UBJECTIVE L OGIC
In this section, we examine the fusion rules proposed in SL to combine two opinions given by two distinct sources of evidence related to the same frame Î&#x2DC;đ?&#x2018;&#x2039; . For notation convenience, 1 in the sequel we denote SL opinions đ?&#x153;&#x201D;đ?&#x2018;&#x2039; = (đ?&#x2018;?1đ?&#x2018;&#x2039; , đ?&#x2018;&#x2018;1đ?&#x2018;&#x2039; , đ?&#x2018;˘1đ?&#x2018;&#x2039; ) 2 2 2 2 and đ?&#x153;&#x201D;đ?&#x2018;&#x2039; = (đ?&#x2018;?đ?&#x2018;&#x2039; , đ?&#x2018;&#x2018;đ?&#x2018;&#x2039; , đ?&#x2018;˘đ?&#x2018;&#x2039; ) using the conventional notation, 1 ÂŻ đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)) ÂŻ and that is đ?&#x153;&#x201D;đ?&#x2018;&#x2039; â&#x2030;Ą đ?&#x2018;&#x161;1 (.) = (đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;), đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;), ÂŻ đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)). ÂŻ đ?&#x153;&#x201D; 2 â&#x2030;Ą đ?&#x2018;&#x161;2 (.) = (đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;), đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;), đ?&#x2018;&#x2039;
Remark 4: it is worth noting that the factor đ?&#x203A;ź â&#x2C6;&#x2C6; [0, 1] is independent of the logarithm base used to define and
A. SL Consensus rule
16 such that (đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192; 2 ÂŻ Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)) â&#x2C6;&#x2C6; [0, 1] , with đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)+ ÂŻ = 1. đ??ľđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)
In 1997, Jøsang did propose in [1] the following associative consensus rule to combine two independent BBAs đ?&#x2018;&#x161;1 (.) and
ÂŻ đ?&#x2018;&#x161;2 (.) defined over the same frame Î&#x2DC;đ?&#x2018;&#x2039; = {đ?&#x2018;&#x2039;, đ?&#x2018;&#x2039;} â&#x17D;§ 1,2 1 ÂŻ + đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)) ÂŻ â&#x17D;¨đ?&#x2018;&#x161; (đ?&#x2018;&#x2039;) = đ??ž â&#x2039;&#x2026; (đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) 1 1,2 ÂŻ ÂŻ ÂŻ ÂŻ ÂŻ đ?&#x2018;&#x161; (đ?&#x2018;&#x2039;) = đ??ž â&#x2039;&#x2026; (đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) + đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)) â&#x17D;Š 1,2 1 ÂŻ ÂŻ ÂŻ đ?&#x2018;&#x161; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) = đ??ž â&#x2039;&#x2026; đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) (37) where the normalization constant đ??ž is given by:
ÂŻ ÂŻ ÂŻ ÂŻ đ??ž = đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)+đ?&#x2018;&#x161; 2 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)â&#x2C6;&#x2019;đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) (38) The combined basic belief assignment đ?&#x2018;&#x161;1,2 (.) â&#x2030;&#x153; ÂŻ đ?&#x2018;&#x161;1,2 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)) ÂŻ is called the consensus (đ?&#x2018;&#x161; (đ?&#x2018;&#x2039;), đ?&#x2018;&#x161;1,2 (đ?&#x2018;&#x2039;), opinion according to Jøsangâ&#x20AC;&#x2122;s definition. 1,2
Contrariwise to most rules developed so far in the BF community, the rule defined by (37) is not able to combine mathematically Bayesian BBAs because the formula (37) ÂŻ = đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) ÂŻ = 0. doesnâ&#x20AC;&#x2122;t work when đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) Later in 2002, the author proposed an adaptation in [13] to handle the Bayesian BBAs case separately when đ??ž = 0 which was mathematically erroneous17. In fact, the Bayesian case which cannot be directly managed by this rule is not a very serious problem because it is easy to prove by taking ÂŻ = đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) ÂŻ = đ?&#x153;&#x2013; with đ?&#x153;&#x2013; > 0 close to zero đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) that the consensus rule reduces to the simple (non associative) averaging rule when taking đ?&#x153;&#x2013; = 0. The proof is left to the reader. A much more serious problem with this SL consensus rule is its illogical construction because it doesnâ&#x20AC;&#x2122;t manage correctly the pure conjunctive consensus expressed by the ÂŻ 2 (đ?&#x2018;&#x2039;). ÂŻ Indeed, in this products đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;) and đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161; rule đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;) is not directly committed to đ?&#x2018;&#x161;1,2 (đ?&#x2018;&#x2039;), and ÂŻ 2 (đ?&#x2018;&#x2039;) ÂŻ is not directly committed to đ?&#x2018;&#x161;1,2 (đ?&#x2018;&#x2039;) ÂŻ either, đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161; which seems a very unreasonable way to process the information given by the sources. Why? because in one hand the ÂŻ (as well as đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)) ÂŻ products đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) directly contribute in the combined mass of đ?&#x2018;&#x2039; because đ?&#x2018;&#x2039; â&#x2C6;Š ÂŻ = đ?&#x2018;&#x2039; which makes sense from the conjunctive stand(đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) point, whereas đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;) does not contribute although one has the conjunction đ?&#x2018;&#x2039; â&#x2C6;Š đ?&#x2018;&#x2039; = đ?&#x2018;&#x2039;. We donâ&#x20AC;&#x2122;t see any serious and logical reason for making a difference in the redistribution of these products because they refer to the same element đ?&#x2018;&#x2039; by conjunctive operation. This appears totally illogical and so we have very serious doubts on the validity and on the interest of such rule for combing simple BBAs as proposed in SL. In fact in this rule, the products đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;) and ÂŻ 2 (đ?&#x2018;&#x2039;) ÂŻ are managed in the same manner as if they were đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161; ÂŻ 2 (đ?&#x2018;&#x2039;) and đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;) ÂŻ true conflicting terms like đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161; through the normalization constant đ??ž, whereas they clearly correspond to pure conjunctive consensus. Our previous claim is directly supported by the fact that one can easily prove ÂŻ 2 (đ?&#x2018;&#x2039;) ÂŻ đ??ž = đ??ž đ??ˇđ?&#x2018;&#x2020; â&#x2C6;&#x2019; đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;2 (đ?&#x2018;&#x2039;) â&#x2C6;&#x2019; đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039;)đ?&#x2018;&#x161;
(39)
In 2001, Jøsang proposed also in [3] the same consensus rule with an extension by adding a separate term to compute the relative combined atomicity of đ?&#x2018;&#x2039; for reflecting the fact that 17 because it is based on a â&#x20AC;&#x153;relative dogmatismâ&#x20AC;? factor đ?&#x203A;ž â&#x2030;&#x153; đ?&#x2018;&#x161; (đ?&#x2018;&#x2039; â&#x2C6;Ş 1 ÂŻ ÂŻ đ?&#x2018;&#x2039;)/đ?&#x2018;&#x161; 2 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) which is also mathematically indeterminate if đ??ž = 0 ÂŻ = đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) ÂŻ = 0 then đ?&#x203A;ž = 0/0 (indeterminacy), because if đ?&#x2018;&#x161;1 (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) see [13] for details.
sources may have different estimates of relative atomicities of đ?&#x2018;&#x2039; in Î&#x2DC;đ?&#x2018;&#x2039; . The need for the computation of this relative combined atomicity of đ?&#x2018;&#x2039; is however disputable. Why? Because if sources have different interpretations (estimations) of relative atomicities of đ?&#x2018;&#x2039;, it means that the structure of Î&#x2DC;đ?&#x2018;&#x2039; is different for each source. In this case, the direct fusion of the BBAs doesnâ&#x20AC;&#x2122;t make sense, because the fusion must apply only in a same common frame. The relative atomicity depends only of the structure of the frame as shown in (10), and not of the sources providing the BBAs. In [3], the author justifies the SL consensus rule from another consensus operator defined from two Beta pdfâ&#x20AC;&#x2122;s mapped with BBAs đ?&#x2018;&#x161;1 (.) and đ?&#x2018;&#x161;2 (.). Because this SL consensus rule is very disputable as we have explained previously, it is very probable that the consensus operator defined for the two Beta pdfâ&#x20AC;&#x2122;s is flawed, or the mapping between Beta pdf and BBA, or both. This point is discussed in the next section. V.
L INK
BETWEEN OPINION AND
B ETA PDF
Let us consider a BBA defined on the power set of ÂŻ and given by đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (.) = the 2D frame Î&#x2DC;đ?&#x2018;&#x2039; = {đ?&#x2018;&#x2039;, đ?&#x2018;&#x2039;} ÂŻ ÂŻ This BBA can be inter[đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;)]. preted as an imprecise subjective probability measure đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (.) ÂŻ = 1 and bounded by the belief verifying đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) + đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) ÂŻ â&#x2C6;&#x2C6; intervals đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2C6; [đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)] and đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) ÂŻ ÂŻ ÂŻ [đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)] with đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) = 1 â&#x2C6;&#x2019; đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) and ÂŻ = 1 â&#x2C6;&#x2019; đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;). So, the unknown probability đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) can be seen as a random variable đ?&#x2018;Ľ that can take its values in the belief interval with some unknown density function (pdf) đ?&#x2018;?(đ?&#x2018;Ľ). Although it is obvious that the knowledge of bounds of the belief interval doesnâ&#x20AC;&#x2122;t suffice to identify the whole shape of the unknown pdf of the random variable đ?&#x2018;Ľ â&#x2030;Ą đ?&#x2018;&#x192;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), Jøsang in 1997 did propose in [1] to make an equivalence (a bijective mapping) between the BBA đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (.) and the Beta18 pdf đ?&#x2018;?(đ?&#x2018;Ľ; đ?&#x203A;ź, đ?&#x203A;˝) defined for real parameters đ?&#x203A;ź > 0 and đ?&#x203A;˝ > 0 by [18]: { 1 đ?&#x2018;Ľđ?&#x203A;źâ&#x2C6;&#x2019;1 (1 â&#x2C6;&#x2019; đ?&#x2018;Ľ)đ?&#x203A;˝â&#x2C6;&#x2019;1 for đ?&#x2018;Ľ â&#x2C6;&#x2C6; [0, 1] đ?&#x2018;?(đ?&#x2018;Ľ; đ?&#x203A;ź, đ?&#x203A;˝) = đ??ľ(đ?&#x203A;ź,đ?&#x203A;˝) (40) 0 for đ?&#x2018;Ľ â&#x2C6;&#x2022;â&#x2C6;&#x2C6; [0, 1] â&#x2C6;Ť1 Î&#x201C;(đ?&#x203A;ź+đ?&#x203A;˝) where đ??ľ(đ?&#x203A;ź, đ?&#x203A;˝) = 0 đ?&#x2018;Ľđ?&#x203A;źâ&#x2C6;&#x2019;1 (1 â&#x2C6;&#x2019; đ?&#x2018;Ľ)đ?&#x203A;˝â&#x2C6;&#x2019;1 đ?&#x2018;&#x2018;đ?&#x2018;Ľ = Î&#x201C;(đ?&#x203A;ź)Î&#x201C;(đ?&#x203A;˝) is the Beta function that allows to normalize the pdf to one, i.e â&#x2C6;Ť1 0 đ?&#x2018;?(đ?&#x2018;Ľ; đ?&#x203A;ź, đ?&#x203A;˝)đ?&#x2018;&#x2018;đ?&#x2018;Ľ = 1. The Beta pdf đ?&#x2018;?(đ?&#x2018;Ľ; đ?&#x203A;ź, đ?&#x203A;˝) is well-known and attractive in statistics because it can model different shapes of distributions of đ?&#x2018;Ľ on the support19 [0, 1]. The Beta pdf family is a flexible way to model random variables on the interval [0,1]. It is often used to model The â&#x2C6;Ť 1 pdfâ&#x20AC;&#x2122;s for proportions. đ?&#x203A;ź expected value of đ?&#x2018;Ľ is đ??¸[đ?&#x2018;Ľ] = 0 đ?&#x2018;Ľđ?&#x2018;?(đ?&#x2018;Ľ; đ?&#x203A;ź, đ?&#x203A;˝)đ?&#x2018;&#x2018;đ?&#x2018;Ľ = đ?&#x203A;ź+đ?&#x203A;˝ . When đ?&#x203A;ź = đ?&#x203A;˝ = 1, the pdf đ?&#x2018;?(đ?&#x2018;Ľ; đ?&#x203A;ź, đ?&#x203A;˝) corresponds to the uniform pdf of đ?&#x2018;Ľ on [0, 1]. The link between đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (.) and parameters đ?&#x203A;ź and đ?&#x203A;˝ of the Beta pdf has been proposed in 1997 in a first parameter mapping (đ?&#x203A;ź1 , đ?&#x203A;˝1 ). In [1], the author considers only20 Beta 18 Beta
pdf is a special case of the multinomial Dirichlet pdf. on any interval in fact by some transformation of the random variable. 20 in order to exclude U-shaped Beta pdfâ&#x20AC;&#x2122;s for obscure reasons. 19 and
pdfâ&#x20AC;&#x2122;s with đ?&#x203A;ź1 â&#x2030;Ľ 1 and đ?&#x203A;˝1 â&#x2030;Ľ 1 chosen as follows21 : â&#x17D;§ đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) â&#x17D;¨đ?&#x203A;ź1 = 1 + đ?&#x2018;?Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) = đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;) đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;)â&#x2C6;&#x2019;đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC; (đ?&#x2018;&#x2039;) đ?&#x2018;&#x2039;
â&#x17D;Š đ?&#x203A;˝1 = 1 +
đ?&#x2018;&#x2039;
đ?&#x2018;&#x2018;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) đ?&#x2018;˘Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)
=
đ?&#x2018;&#x2039;
ÂŻ đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) đ?&#x2018;&#x192; đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)â&#x2C6;&#x2019;đ??ľđ?&#x2018;&#x2019;đ?&#x2018;&#x2122;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;)
R EFERENCES (41)
Later in 2003 and in 2004, the authors did adopt a second parameter mapping (đ?&#x203A;ź2 , đ?&#x203A;˝2 ) in [14], [15], [19] to include the prior information (base-rate) one has (if any) on the ÂŻ This second mapping is given by: cardinalities of đ?&#x2018;&#x2039; and đ?&#x2018;&#x2039;. â&#x17D;§ â&#x17D;¨đ?&#x203A;ź2 = 2 â&#x2039;&#x2026; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) + 2đ?&#x2018;?Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) đ?&#x2018;˘Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) (42) â&#x17D;Šđ?&#x203A;˝2 = 2 â&#x2039;&#x2026; (1 â&#x2C6;&#x2019; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; )) + 2đ?&#x2018;&#x2018;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;) đ?&#x2018;&#x2039;
ÂŻ đ?&#x2018;&#x2039; ) are the where đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) and 1 â&#x2C6;&#x2019; đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) = đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC; ÂŻ w.r.t the frame Î&#x2DC;đ?&#x2018;&#x2039; . relative atomicities of đ?&#x2018;&#x2039; and đ?&#x2018;&#x2039;
Clearly these two mappings are inconsistent so that at least one of them is wrong, because even if we consider same ÂŻ so that đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; ) = đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC; ÂŻ đ?&#x2018;&#x2039;) = cardinalities for đ?&#x2018;&#x2039; and đ?&#x2018;&#x2039; 2đ?&#x2018;?Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) 1/2 then (42) gives us đ?&#x203A;ź2 = 1 + đ?&#x2018;˘Î&#x2DC; (đ?&#x2018;&#x2039;) â&#x2C6;&#x2022;= đ?&#x203A;ź1 and 2đ?&#x2018;&#x2018;
đ?&#x2018;&#x2039;
(đ?&#x2018;&#x2039;)
đ?&#x203A;˝2 = 1 + đ?&#x2018;˘Î&#x2DC;Î&#x2DC;đ?&#x2018;&#x2039;(đ?&#x2018;&#x2039;) â&#x2C6;&#x2022;= đ?&#x203A;˝1 . Note that this second mapping đ?&#x2018;&#x2039; is not bijective22 so that no strict equivalence between the BBA and Beta pdf can be made. More recently, in a book in preparation [20], p. 16, the author uses another mapping đ?&#x2018;&#x160; â&#x2039;&#x2026;đ?&#x2018;? (đ?&#x2018;&#x2039;) (đ?&#x203A;ź3 , đ?&#x203A;˝3 ) by choosing đ?&#x203A;ź3 = 1 + đ?&#x2018;&#x; = 1 + đ?&#x2018;˘Î&#x2DC;Î&#x2DC;đ?&#x2018;&#x2039;(đ?&#x2018;&#x2039;) and đ?&#x2018;&#x160; â&#x2039;&#x2026;đ?&#x2018;&#x2018;
(đ?&#x2018;&#x2039;)
đ?&#x2018;&#x2039;
đ?&#x203A;˝3 = 1 + đ?&#x2018; = 1 + đ?&#x2018;˘Î&#x2DC;Î&#x2DC;đ?&#x2018;&#x2039;(đ?&#x2018;&#x2039;) , where the weight đ?&#x2018;&#x160; is a đ?&#x2018;&#x2039; parameter characterizing the a priori one has on đ?&#x2018;&#x2039;. Clearly this new third mapping is not consistent with the second mapping, and it is consistent with the first mapping only if đ?&#x2018;&#x160; = 1. So, in SL what is the correct mapping (if any)? VI.
C ONCLUSIONS
In this paper, we have examined with attention some bases of SL from the fusion standpoint. SL deals with so-called opinions that are basically just simple basic belief assignments defined over the power set of a 2D frame of discernment obtained from the coarsening of a refined frame. Our analysis justifies the doubts on the validity and the interest of SL for combining opinions about propositions expressed in a common 2D frame because at least two of its main bases (its normal model for building opinions, as well as its consensus fusion rule) appear clearly very perfectible. Therefore, we cannot reasonably recommend the Subjective Logic for fusion applications. ACKNOWLEDGEMENTS This work was supported by Grant for State Key Program for Basic Research of China (973) (No. 2013CB329405), National Natural Science Foundation of China (No.61104214, No. 61203222), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120201120036), and by project AComIn, grant 316087, funded by the FP7 Capacity Programme. ÂŻ > 0. đ?&#x2018;˘Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;) = đ?&#x2018;&#x161;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039; â&#x2C6;Ş đ?&#x2018;&#x2039;) we cannot compute the three free parameters, say (đ?&#x2018;?Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ?&#x2018;&#x2018;Î&#x2DC;đ?&#x2018;&#x2039; (đ?&#x2018;&#x2039;), đ?&#x2018;&#x17D;(đ?&#x2018;&#x2039;â&#x2C6;ŁÎ&#x2DC;đ?&#x2018;&#x2039; )), from the knowledge of the two parameters (đ?&#x203A;ź2 , đ?&#x203A;˝2 ) only. 21 assuming
22 because
[1] A. Jøsang, Artificial reasoning with subjective logic, 2nd Workshop on commonsense reasoning, Australian Comp. Soc., Dec. 1997. [2] G. Shafer, A Mathematical theory of evidence, Princeton University Press, Princeton, NJ, U.S.A., 1976. [3] A. Jøsang, A Logic for uncertain probabilities, Int. J. of Uncert. Fuzz. and Knowledge-Based Syst., Vol. 9(3), pp. 279â&#x20AC;&#x201C;311, June 2001. [4] A. Jøsang, D. McAnally, Multiplication and comultiplication of beliefs, IJAR, Vol. 38, pp.19â&#x20AC;&#x201C;51, 2005. [5] J. Dezert, P. Wang, A. Tchamova, On the validity of Dempster-Shafer theory, Proc. of Fusion 2012 Conf., Singapore, July 9â&#x20AC;&#x201C;12, 2012. [6] A. Tchamova, J. Dezert, On the behavior of Dempsterâ&#x20AC;&#x2122;s rule of combination and the foundations of Dempster-Shafer theory, 6th IEEE Int. Conf. Intell. Syst. (IS 12), pp. 108â&#x20AC;&#x201C;113, Sofia, Bulgaria, 2012. [7] J. Dezert, A. Tchamova A., On the validity of Dempsterâ&#x20AC;&#x2122;s fusion rule and its interpretation as a generalization of Bayesian fusion rule, Int. J. of Intell. Sys., Vol. 29, pp. 223â&#x20AC;&#x201C;252, 2014. [8] A. Jøsang, V.A. Bondi, Legal reasoning with subjective logic, Artificial Intelligence and Law, Vol. 8(4), pp. 289â&#x20AC;&#x201C;315, 2000. [9] A. Jøsang, The consensus operator for combining beliefs, Artif. Intell. J., 142 (1-2), pp. 157â&#x20AC;&#x201C;170, Oct. 2002. [10] P. Smets, R. Kennes, The transferable belief model, Artif. Intell. J., Vol. 66, pp. 191â&#x20AC;&#x201C;243, 1994. [11] F. Smarandache, J. Dezert (Ed.), Advances and applications of DSmT for information fusion, Vol. 3, Amer. Res. Press, USA, 2009. [12] J. Dezert, Autonomous navigation with uncertain reference points using the PDAF, Chap. 9 in Multitarget-Multisensor Tracking: Applications and Advances, Vol. 2, Y. Bar-Shalom Editor, Artech House, 1991. [13] A. Jøsang, Subjective evidential reasoning, Proc. the 9th IPMU Conf., Annecy, France, 1â&#x20AC;&#x201C;5 July, 2002. [14] A. Jøsang et al., Strategies for combining conflicting dogmatic beliefs, Proc. of Fusion 2003 Conf., Cairns, Australia, 8-11 July, 2003. [15] A. Jøsang, T. Grandison, Conditional inference in subjective logic, Proc. of Fusion 2003 Conf., Cairns, Australia, 8-11 July, 2003. [16] C.E. Shannon, A mathematical theory of communication, Bell Syst. Techn. Journal, Vol. 27, pp. 379â&#x20AC;&#x201C;423, July, October, 1948. [17] A. Feinstein, Foundations of information theory, McGraw-Hill, 1958. [18] M. Abramowitz, I.A. Stegun (Eds.), Handbook of mathematical functions, 9th printing, New York, Dover, pp. 944â&#x20AC;&#x201C;945, 1972. [19] A. Jøsang, D. McAnally, Multiplication and comultiplication of beliefs, IJAR, Vol. 38(1), pp.19â&#x20AC;&#x201C;51, 2004. [20] A. Jøsang, Subjective Logic, (book draft), 2013. http://folk.uio.no/josang/papers/subjective logic.pdf