CORONAL LOOPS (VIOLIN)

Page 1

FOR PERUSAL ONLY

Michael-Thomas Foumai

Coronal Loops for Solo Violin

Foumai Foundation www.michaelfoumai.com


Coronal Loops

Violin

for Solo Violin

MICHAEL-THOMAS FOUMAI

q=90                                          

1

p leggiero

                                                              

3

mf

                                        p

6

                                                 

8

                                                       

11

mf

                                                           

15

f

18



p

f

                                                    

mp

mf

p

                                    

21

25



     

sf mp

 

          

mf

                             

 

fp

f

© Copyright 2011 Michael-Thomas Foumai. All Rights Reserved (ASCAP) www.michaelfoumai.com


3

                                                

28

mp

f

più f

sul pont.

                                                               

32

p legato

mf

p

                                                           

36

mf

f

ord.

                                                 

40

p

dim.

                          

44

mp

mf

f

 s.p.   s.p.                                              ord.

f

poco

                                                                 

47 (ord.) s.p.

p

f

p

f

ord.

fp

mf

f

mf

                                                           

50

f

p sub.

f

ord.                                                                             

53

s.p.

p

f mp

cresc.

f

                                                                                sf sf sf sf cresc.           59                                                  56


4

senza misura         

accel.

                     61                               3-5x

 s.p. 

  ff



 

  

  

      

ord.

sfp

 

ff

     ord.

 

sfp

s.p.     

   

ff

   sfp

  ff

   

  

ff sfp

 ord.   



sfp

  ff

 

sfp

 s.p.    sfp

        ord.        s.p.

q=90                                    ff sfp sfz ff sfp ff sfp  sf f s.p.                 65                                           s.p.   ord. 70           ord.                                                     p  

75

 

      fp

                        

                                        mf

77

                  

79

f

                      mf cresc.

                                                    

81



f


               (ossia: arco only)

83

più f

      (x=x)                                                                               

5

   s.p.                  

  (x=x) ord.                                                                          sf sf sf  s.p. (e=e) sim. 94                                                                                                                   89

sf

   ord.                                                                                              sf sf  sf  sf sf sf sf sf sf sf sf

100

ord.

s.p.

sf

ord.

s.p.

106

                                                                    sfp

sfp

110

sfp

sfp

sfp

                                                  f

sfp

s.p.

                                                 sfp  s.p.

113

ord.

f

                                                        

116 ord.

f

120

 

ff

sf

sf sf sf

                           sf

sf

sf

                                                             s.p.

ord.

p sub.

ff

sf

sf

sf

sf


6

                                                                                 mp cresc. s.p. ord.

123

sf

    sim.                                

129

sf sf

sf

sf

sf

sf

sf

sf sf

                                                     fp

s.p.

                                                             

134

f

                                                                  cresc.  più f 

138

ord.

                                                                                         

142

                               ff

                                         fp s.p.

146

 

                                           

149

ord.

ff

                                       

153

3

                          3

                   

                                                        


3

3

3

7

3

                                                                                                                      

157

                                                                                3

161

3

più ff

                             pizz.                                   

165

sfz

più ff

sfz sfz

arco                             più ff

                                                               

170

poco accel.

                                                                                   s.p.

173

sffp

175

 

     

 



  

     

 



  

     

 



   

q=96   ord.                                                                                              6 6 6 6 6 6

178

ff


8





6

6

accel.

 

                               

181

senza misura     185         

fffp

               ord.

fffp

6



                   

gliss.

6

         

fffp

                    s.p.



as fast highest pitch poss. as poss.

6

6

              fff

         

ord.

                                                                5-7x

6

         

fffp

6

6

       

               

                       s.p.

fff

s.p.

ord.  pizz.         fffp

sfffz


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.