THE LANGUAGE OF FLOWERS

Page 1

THE LANGUAGE OF FLOWERS for Violin & Piano

Sporadic* (senza misura, Freely (q=100)

   

pizz.

Violin

 Vln.

Pno.

 Vln.

 

 

    

p

 

 Vln.

Pno.

 



   

s.p.

sf

   

  sf

    

 

fp

 p 

ord.            

s.p.

p

mf

f

s.p.

ord.

fp





p

 p 

              

ff

   

   pp



f

 pizz.         

   p 



  





p

 

f

  

f

p

f

 

sf

 

s.p.

fp

p f * Play approximatly where notated.© 2009 Michael-Thomas Foumai (ASCAP). All Rights Reserved. www.michaelfoumai.com

 

    ord.               

   

f

 

f

molto

arco

sfz

p    

ord.

p

sfz

       

  p 

 

s.p.

  

s.p.

f

p

 

  

 

sfz





    

               f

ord.

fp

poco

ord.

s.p.

 

 sf

     

fp

sfz

  

ord.

  

sf

  

sul pont.

sfz

   

MICHAEL-THOMAS FOUMAI (2009)

f

p

ff

Pno.

 

Sporadic* (senza misura, Freely (q=100)

 

ppp

sffz

 

Piano

 

 

arco



ord.

 



   



 



 

s.p.

fp


               f s.p.

2 ord.

Vln.

Pno.

 

    

Pno.

 Vln.

Pno.

 Vln.

Pno.



p

  

 



poco

p

f

   

7

    

 

 



  

f

       f

       

 

 



     



 

  

dim.

       dim.      



 poco

          

    

   

p



poco



 

  

   

mf

     mf

      

       f

   

mp



p

   

  

 

 

6

f

      

sf

p espress.

f

                  p sub. sf sf sf             

13

 

sfz

  



  

        sf         

sf

sfz

p

        

   

      sf      

      

 sf

Bright and Clear, q=110

  

       

          sf        

Bright and Clear, q=110

1

Vln.



arco        sfp ord. pizz.

  

      

 

  



pp

 

pp



     


3

Flaming, q=120

1

Vln.

    

sul pont.



       pp

sf

Flaming, q=120

  Pno.      f 

                pp

f

sf

                    pp





sfp

            

strum strings w/ plectrum

sf

pp

f

5

                            sfp

sf

 Pno.     f 



sf

ord.



Vln.

Pno.

Vln.

        

sf

sf

13

                         

 



               f

17



 

 

  21          



 



sfz

              sfz

sf

    f

sf

  

        

sf

  

sfz

f

              p f   

 

   



 

p

f

       fp

         f

      Pno.                                                    cresc. sfz

 

            

                                  mf sf

f

            

poco

       p f f 

sfz

 

sf

 Pno.    

                                                           p sf sf sf sf sf



Vln.

f



sfz



Pno.

sfz

      pp 

9

Vln.

                         p p



Vln.

sfz

f

  

sf

 

 


4

                                                                            f più sf sf sul pont.

26

Vln.

sfp

                      Pno.                                

sf

f

sf

sf

sf

sf

sf

30

Pno.

ord.                                                            sfp  cresc. sf sf sf sf



sf

  

 A tempo, q=120

                                                    

39

  

 Pno.   

43

Vln.



 

  

  Pno.   

 

 

 

 

 

  ff

 

 

 



 



   





 



 

 



 

3

 

  

 

 

     5      6                

 

 

p cresc. poco a poco

  

A tempo, q=120

 

 Pno.   

0

  

ff

0

p cresc. poco a poco

ff

Vln.

 

f

34

Vln.

sf



Vln.





  

 

 

3



  

7       

     molto


5

1

Vln.

Splashing, q=120

 

 Vln.

Pno.

 Vln.

Pno.

 Vln.

Pno.

     

         3

p

       

Splashing, q=120

 

Pno.





   



3

3

 

  

          f

                                 

sul pont.

        

      

   

      

   

       

f



sf

      

  

sf

sf



 

  





p espress.

Meno mosso, q=90

       

 





                ff

  pp

     

A tempo, q=120

 

     

f

A tempo, q=120

        f p             

poco rit.           

 poco rit.           ff

 



sf



poco accel.

poco

5

      

             

            

* Gradually tremolo.

poco accel.

                        

sf

  

 p

  0

sfp           

      

 

4

 

sfp

sfp

Meno mosso, q=90

sf

sf





3

    

       f

ord.

3

f

11

   

  

f

3

  

 



17



*

   

sfz

                                

sf

sf

f

7

3

f



arco

pizz.

 

   


Tipsy, q=60

6

22

Vln.

 

 

p dolce molto

  

 

 Vln.

Pno.

 Vln.

Pno.

  

Tipsy, q=60

  

p

poco

 

Fast, q=120 s.p.

ord.

  

      

fp

sfz

    

     

s.p.

Fast, q=120

sfz

     

p

     

Rapid, q=132                                                            fp fp f

2 0

Rapid, q=132

 

Pno.

 

poco

1

Vln.



 

poco

 

Pno.



 

    

sf sempre

    

 

         

  

   

  

                             mf cresc. 

                fp p                 

         

sf

  

9

               

             

       

5

fp

        

 

sfz

   

        

     

 

 

  

fp

f

    

sfz

   

f sempre

f

      

  

     

           

            

p

   

      

            p

        sfz

                     sfz                         

   

sfz

ff

f

sf

    sf

              


                                                                     f più

7

13

Vln.

Pno.

 Vln.

Pno.

          

sfz

   

  

  

f

                                     

18

              

 f

   

 Vln.

Pno.

            f

sfz

sfz

sfz

         

  

  

sfz

sfz

sfz

sfz

                 

                    

    

         

        sfz  sfz       

                                sfz

23

Pno.

ff

                               

                Vln.

ff                 

                        f sf

         ff

      

              fp



      

sfz

     

                             

sul pont.

fp

    sfz

ff

             

 

f

sfz

     Vengeful, q=152      1                                                           molto  sf  sf  fp sf

                              fp sf  sf sf                                   Vengeful, q=152

  

   

               sfz

                                     molto   sfz          

      sfz

    


8

8

Vln.

                               mf fp

 Vln.

Pno.

 Vln.

Pno.

    15                                                        

                mf

         sfz

          

   

   

Pno.

sfz

21

28

Vln.

f

        

                       fp f                                      

Pno.

  

                     

  mf

                    p

ff

    

       

       

sfz

mf

dim.

 

              sfz sfz                   



p

cresc.

p

   

mf

      

     

           

cresc.

p

f

    

         f

         

      

 

 w/ discretion

sfz

           

      

      

sfz

poco

                           

       



p

sfz

    

      

p


                                 f

35

Vln.

Pno.

 Vln.

Pno.

 Vln.

Pno.

 Vln.

Pno.

40

             ff

9                                              cresc.

                               mf cresc.                             

      

                   

sfz

sfz

                          

sfz

             

         sf

sfz

                  sf sfz sfz                   

sfz

           

 46                                 ff sf

sfz

       

    

sfz sfz                                            sf        sfz                              sfz

52

                                      

                     

   

      

                 sf

fp

          fp sf           

                                 molto

sfz

       

sfz

    

           sfz f          

                                                                  sfz sfz sfz

           sf           

     

             

                                 

ff

ff

sfz

sfz

sfz

                                    


10

                               ff più

57

Vln.

 Vln.

7

Vln.

Pno.

sfz

       sfz      

sfz

sfz

f

p



     p

         

sfz

sfz

        sfz      

sfz

         

                             sfz sfz

      sfz          

sfz

      sfz      

    





f

 

f

sfz



   p

         

        sfz     



 

      f

 

 

 



        sfz        sfz

            sfz               

       

        p

    

        

 

 pizz.            p    

sfz

sfz

poco, marcato                                   

Frigid, q=120

sfz

 

 

     

      

Frigid, q=120

Pno.

 

1

Vln.

           

                  

62

 

Pno.

                sfz ff più               

sfz

Pno.

                                                           

  

    

arco

  p

sf

     

sfz

     


     

12

Vln.

sf

   

Pno.



   

f

 

 p

         p

 

       f

    

f

sul pont.

Vln.

  

8

sul pont.

ord.

                       sf

ord.

          ff sub.

ord.

 

 

ff





sul pont.

 

p sub.

sul pont.

 

p sub.

ord.

         ff sub.

s.p.

 

pp



ord.

        p

pp

ord.

 

 

ff sub.

ord.

 

fp

ff sub.

 

 

sfp

              sf

      pp

 

sul pont.  

sf

 

 

  

pp

sul pont.

ord. sul pont.

   p sub.

 

ff sub.

w/ fast wide vib. sul A ord.

sff

  

 

                            pp

ord.

sff

 

 



sul pont.

  s.p.                         

20

Vln.

gradually with increased intensity!

pp

15

Vln.

f

sff

sff

12

Vln.

sff

10

Vln.

sul pont.

ord.  ord.    sul pont. sul pont.                             sfp  sfp

11

sfz

ord.

5

Vln.

     

                                                          pp  pp  sff sff

1

Vln.

 

p

           sfz

Flirtatious, q=152 (Rubato at performers discretion)



  

  

f

    p

  

 



s.p. ord.

    p

  sfz

           

sff



s.p. ord.

           p

sfz

     

p

ord.

 

p sub.

(q=q.) 6 6                                                               p  f f


12

(x=x)                                        cresc. molto  f

24

Vln.

Vln.

Vln.

                                                          sf sf sf f 

28

32

41

Vln.

Vln.

Vln.

Vln.

Vln.

          

   

fp



   

 

fp

  

    

 

  

fp

rit.

     

         

      

      

         



sf

                      ff fp fp  

p

ff brilliante

cresc. poco a poco

 



  

fp

ff

    

 

fp

           p sub.



fp

 

ff

A tempo, q=152

 

   



                                        pp ord.

sul pont.

sul pont.

sff

 ord.  sul pont. ord.  sul pont.  sul pont.                                                              sfp pp   pp  sfp sff

55

Vln.

                                              

fp

48

Vln.

fp

36

Vln.

fp

ord.

ord.

sff

sff

sff

Supersonic! q=162

sul pont.  accel.   ord.            p cresc.

59

0

0

0

0

0

0

0

0

0

0

0

0

sf

sfp

                                fp f 0

                

63

sfz

sf

67

                    fp

 

                                  sfp fp

                                        

70

0

sf

fp

0

0

0

0

0

sf

sf

fp

0

0

0

0

0


13

73

Vln.

Vln.

                            p sub. sf sf sf sf sf 0

Vln.

 

Vln.

Vln.

0

                                                             p cresc.  p sub. ff

76

ff più

A tempo, q=162

 

                                  

f

84

0

0

0

0

0

0

                                                   0

0

0

0

0

0

0

0

0

0

0

0

0

0

(mp)

                                                    (mf) 0

0

0

0

0

0

0

0

0

                  

90

accel.

0

0

0

0

0

0

                

92

              

       

(q=230)

 

fff poss.

Sparkle, q=144

  

   

    f

6

*

pp

Sparkle, q=144

 

           

sul G (gliss)

    

*Gently gliss up and down string.

6

poco

11

0

ff molto

1

Pno.

0

cresc. poco a poco

sffp

 Vln.

sfz

            

87

Vln.

0

sfz

80

Vln.

0

            11

poco

             11

  pp

    


            

14 Vln.

  

   

 

Pno.

   

 

6

f

   

   

11

poco

11

    6

                11

mf

pp

poco

pp

 

   pp

6

poco

7

 

 

11

pp

 

 



senza misura

 

    



   

p cresc. molto

 

  

 

     

     

6

poco

senza misura

  

Pno.

             

Pno.

   

sul D

pp

poco

                 

pp

6

   p

sul G and D

pp

poco

6

p

6

Vln.

pp

11

poco

 

 

            

  

  

6



           

11

11

pp

sul G

 

Pno.

 

 

3

Vln.

           

sul D

2

             fff

        

  

 

 


15                                                                      sul D sul tasto

8 A tempo, q=144

 

Vln.

 

Vln.

Pno.

14

 

pp

  



p più

  

ord.

p

 





11

11

11

11

pp

  

 



          

sul G

pp

11

  

            sul pont.

11

poco

  

   

    



p

pp

      



poco

rit.

poco

 

 

pp

pp

 

3      

      pp

11

poco

ord.

Religiously, q=60

 

11

pp

poco

sul pont.                                                                                                             sul G and D sul tasto

            



Religiously, q=60

  

 



11

pp

 

Pno.

      

  

11

                       



           

 

rit.



 

pp

  

sul pont.

9

11

poco



  

 

Pno.

p



Vln.

 



 

11

11

 

A tempo, q=144 pp

 

Pno.



Vln.

 sul D             

  pp

11

   

    

 

pp

 

  

 

poco

11

 

pp

   

     

  

     

  

  

   

   p

   

cresc.

  

      

   

    


16

          

          

sul D 18

Vln.

 

*

mf maestoso

        

  

             sul G and D sul tasto

Vln.

pp

11

          sf

          

           

sul D

  

11

pp

pp

       

 

*Play at approximate designation.

           pp

poco

dim.

      

pp

 

poco

sf

          

  

    

Pno.

11

poco

 

  

              

        

22

11

poco

              

  

 

11

sf

sf             

pp

sf                          

pp

Pno.

pp

         

20

Vln.

11

poco

sf

    

Pno.

11

pp

                                         sul G sul pont.

      

11

poco

          

   pp

     

 

 

  

  

 

sul G



         3                               3 ppp poco         p

poco

ppp

attacca


17

Sonorous, h=56

1

Vln.

 

   

Pno.

 

 

 

 

 

 

Sonorous, h=56

3

pppp

 3          sempre 

 

 

 

Pno.

 Vln.

Pno.

 Vln.

9

  

13

Pno.

   3

  

3

 

 

    

pppp

3

 

 

   

  

 

 

 

 

 

 

 

 

 

 

 

  3

3

3

3

3

3

3

3

3

 

 

 

 

   3 3

 

    

    

   3 3

 

 

  

  

 

 

  

  

   

 

 

 

 

 

 

 

 

 

   3 3

 

    

    

   3 3

 

 

 

 

 

 

 

 

 

 

 

 

 

3

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

3

3

3

3

3

3

3

3

3

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

   3 3

 

    

    

   3 3

 

    

    

   3 3

 

    

    

 

 

 

 

pp

 

 

   3 3

 

    

 

3

 

 

  

 

 

  

3 3

 

   

 

 

   

 

3 3

  

 

 

 

 

 

3

3

3

3

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

3

3

3

3

3

3

3

3

3

3

3

3

 

 

 

 

 

 

 

 



  

 

 

           

 

 

 

 

 

  

  

  



3

3

3

3

           3

3

3

3

3

3

3

3

   

   

   

   

 

 

 

 

  

   

 

 

 

 

3

mf

       3 

 

 



3

  

ppp



       3   

 

3

ppp

 

 

3

   

pp

3

 

 

3

 

 

  

  

 



poco

3

 

 

3

3

 

  3

3

 



3

p

pp

 

3

mf

  

 

3

  

 



        3 

 

3

  

     

 

       3 mf dolce molto

3

5

Vln.





 

 

 

 

 


18

17

Vln.



   

 Vln.

Pno.

 

  

 

 

 

 

 

3

3

3

3

3

3

 

 

 

 

 

 

 

 Vln.

 p

 

  

         3 

     

 

 

 

3

 

29

 

3

3

 

 

 

3

 

 

poco

3

3

 

 

 

 

 

 

3

3

3

3

3

3

 

 

 

 

 

 

 

 

 

 pp

 

  

 

  

 

 

3 3

 

 

   

3

3

3

3

3

3

 

 

 

 

 

 

   

   

   



   

     

 

3 3

 

 

   

 

 

 

 

 

 

 

 

 

   

  3 3

 

 

  

 

 

 

 

 

 

 

 

 

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

 

 

 

 

 

 

f espress.

 



                  3

3

 

  

 

 

 

 

 





 

 





                 

3

3

3

3

 

 

poco

 

 

3

 

3

 

   

mf

 



mf



  

 

 

 

 

 

 

 

  



 

                    3

3

3

f

mf cresc.

                                                                    3

3

   

 

3

3

 

3

3





3

3

poco

3

3

3



                                  

Pno.

mp



  

 

p

poco

3

 

   

              

Pno.

 

  

25

Vln.

 

21

p

 

Pno.

3



                                    3

3

3

                                       cresc. poco

 3 3             ff

3

3

3

           


Vln.

K q = q, (q=153)



33

     

 

p

19

(h=h), (h=81)

 

        q = q, (q=153)                (h=h), (h=81)                                                         

Pno.

 Vln.

K

3

 

38

  

Pno.

 Vln.

poco

 Vln.

  

 

 

ff

                                         

 



 

mf espress.

 

     

 

poco

 

     

 

 

 

  

 

 

 

    

 

 

  

 

mf

 

 

  

   

 

 

 

  

 

 

     

52

        

 

       

 

  

 

 

      

 

           

 

 

 

     

 

     

 

      

 

      

 

 

 

f più

       

 

 

 

 

                  

 



 

 

 

 

 

 

 

 



 

   

      

 

      

 

    

 

 

 

poco



  

pp cresc.

                 

   

 

f

p

p

     

 

 

pp sub.

(p)

 

Pno.

 

 

Pno.

 

3

                          

45

3

 

 

 

 

 



 

   

 

 

 

      

 

      

 

          

  

(mp)

 

 

 

 

        

 


20

 

57

Vln.

Pno.

 ) 

(

   

  

Pno.

 

 

 

 

    

 

 

 

 

 

  

  

  

   

  

  

  

 

 

 

  

 

     

  

 

 

 

  

 

 

 

   

 

 

 

(mf)

(f)

dim.

accel.

                  

 

   

 

 

 

  

  

  

  

   

  

  

  

   

  

  

  

   

  

  

  

   

  

  

  

   

  

  

  

   

  

  

  

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

(ff)

  

70

Vln.

62

Pno.

ff

accel.

Vln.

ca: 30-45 sec.

pppp

       

ca: 30-45 sec.

*

       

    * Gradually phase two hands apart to form tremolo.

  

 

ffff possible

 

 

      letuntilringall sound

 

has disipated.

 

August 2009, Honolulu, HI.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.