STRING QUARTET NO. 2

Page 1

String Quartet No. 2

Michael-Thomas Foumai


Michael-Thomas Foumai

String Quartet No. 2

I. Ink and Wash – (4:30) II. Song and Dance – (5:00) III. Chinatown Rumble – (8:00)

Duration: 16-17 minutes


String Quartet No. 2 1. Ink and Wash  1        Violin 1      Flirtatious, q.=58

p

Violin 2

Viola

 

 

p

     p

    Violoncello   p

 Vln. 1   6

  

   f  sf  

sf

    f



mf

sf

ord.

sf

 pizz.                             sf fp arco f sf   sf  pizz.                      

Vla.

Vc.

 

 

fp

 Vln. 1   

      

p

sf

 

Vln. 2

Vla.

  f

Vc.

sf

molto

p

      sul pont.

p

   

     sul pont.

f

   

pizz.

3 f

  

     

p

 

ord.

   

3



 

pizz.

f

  

     p

f

  3

sf



f

  

 

p

 

f

       

sf



 

f



arco

mp

f



f

ord.

    

p





f

         sf arco

      

f

sf

      sf

      sul  pont.                   p f 

fp

f

pont.    sul                       p f fp  

f

       sf

sf

    ord.      p f  sf

sf

ord.

sf

5

f

f

  

arco

p f sul pont.

   

 

 sul D               p sf sf

  

arco

f

p

mf

pizz.

sf

  

f

  

f

    

sf

  

ord.

sf

11

pizz.   sul pont.           

f

 pizz.   pizz.                 

p

3 f

fp

sf

 

3

sf arco

sul A

p

sf

f

     

sf

f

 

pizz.

pizz.

arco

Vln. 2

 5:4x       p



fp arco

pizz.

arco            3

 sul D                pp f

     

sf

sf

p

sf

f

MICHAEL-THOMAS FOUMAI

  

                 p sf  sf                 p sf sf                 

   



p

sf

sf

 





f

  

sf

 

pizz.

 arco               (q=82)

© 2011. Michael-Thomas Foumai (ASCAP) All Rights Reserved. www.michaelfoumai.com

sf

         sf sf

arco sul pont.

     

f fp arco sul pont.

     

fp

f


 Vln. 1  2

16

    

 

ord.

   

Vln. 2

      sf

    

fp

fp

sf

 Vln. 1    22

        sf

         sf  

  

fp

Vla.

  

f

      Vc.     ord.

f

   Vln. 1       28

sff

Vln. 2

Vla.

 

 f

  Vc.      sff

     

sul pont.

arco

f

    

p

mf arco

f

    pizz.



    

sfz

      sf

f

             

sf

          sf

sf

f

  

  

sf

      

sf

       

    p

3

sul pont.        

   p

sfz

fp

            sf  sf          sf  sf      

           

sf

   

sf

   

    sf

sf

                sf f p

          fp sul pont.

sf

fp

sf

f

f

sfz

            p fp

pizz.   arco                   p

 pont.    sul 

sul pont.

f

sfz

sf

sf

pizz.              

p sul pont.

sf

     

mf

  

sf

sf

   

 

sf

      

       fp

        sf 

       

mf

arco

f

  

p



p

    sf

sf

 arco              

pizz.             

      

  

p

  

sfz

p

sf

A             

ord. pizz.

pizz.

sf

arco

sf

sf

           f sf 

        pizz.

ord. pizz.

f

sf

 

sfz

   

f

 

    

sul D            

p

            

arco

p

        arco

f

sfz

sf

sul pont.

            p

ord.

pizz.

p

sf

   



    p

sfz



   

  

    

p

sf

f

sf

fp

ord.

Vln. 2

  

f



sf

   

     Vc.   

 

f

pizz.

 

f

ord.

sf

f

 

ord.

Vla.

    

fp

sf

   

 

 arco     

pizz.

sf

f

 

ord.

    

fp

sf

   

     p

f

ord. pizz.

    p

ord. pizz.

   

p

   

pizz. p


 Vln. 1     35

fp

 

Vln. 2

  

p

 

  



           

 

f

40

   

 

sf

ord.



    

   

     f

 

Vln. 2

 

 

 

 

Vla.

Vc.

col legno



 

sf

   

 

sf

              f

     sul tasto

sf

f



pizz. ord.

3

sul pont.            p  f

sf

   

sul pont.

p





Vc.

     sf

 

pizz.     p

f

p



sf

pizz. ord.

 ord.

10

f

ord.

        f p  ord.       

   

sul pont.

   

sul pont.

 

fp

        sf arco

6

     

p

 

fp

f

p

f

pizz.        p

f3

 

pizz. ord.

f

f

p

pizz.

sul pont.

       sf arco

 

    

fp

arco



fp

sf

f

fp

        

f sul pont.

 

fp



     

p

 

               

ord.                 p sf

 B 45           Vln. 1        arco fp f ff    Vln. 2 

Vla.

    

p

sf

sf

 

    

p

f

ord. col legno

   

f



  

p pizz. ord.

s.p. 

 

pizz. ord.

f

p

sul D

p

sf

p

f

f

fp

col legno

f

p

   p

         

ord.        

 

f

3

pizz. ord.

ord. s.p.

sul pont.

    

p

 

p

p

 

f

arco sul pont.

3

 Vln. 1  

f

f

p



  



p

f

p

         

 

ord. s.p.    

sul pont.

f

p



        

      

arco

f

Vc.

 

fp

 

    

Vla.

sul pont.

arco

6

f

ord.

 

   

arco          f  sf arco

        p

f

arco sul pont.

ord.

          p

   

p

                      sf f fp fp

f


C

4

 50                             Vln. 1       f sf sf  f sub.

      

Vla.

f

sf

sf

p

3

sf

sf

  arco                        

f

   

    

sf

sf

       sf

p

sf

f

  

        

    

sf

sf

sf

sf

sf

p

sf

        



sf

f

                                 p   sf p  

  3                 sf f

           sf sf 

arco

pizz.           sul pont. ord.                     

sf

sf

    

sf

               

sf

sf

sf

sf

sf

sf

sf

sf

sf

                                                         p      p  

Vln. 2

sf

sf

p

sf

sf

p

sf

p

p

sf

                                                                    

Vla.

p

sf

sf

     

sf

p

sf

     sf

 

p

sf

sul pont.

sf



sf

sf

sf

sf

sf

            

Vln. 2

sf

sf

sf

sf

sf

sf

sf

sf

sf

sf

 

sf

p



sf

 

sf

sf

f

p

sf

p

sf

      



sf

   

D 61                         Vln. 1 

 

sf



sf

      

fp

sf

sf

sf

             

sf

p

sf

sf

sf

sf

   

sfz

sf

 

                                                       p sub.

sf p

sf

sf p

sf

mf leggiero

                                                                      

Vla.

Vc.

pizz.

f

56      Vln. 1 

Vc.

sf

ff ord.       sul pont.                                          f sf sf p

Vln. 2

Vc.

   

              sf 

 

  sf

            sf

sf

sf

sf

p sub.

 p

  fp

 

mf leggiero

  

fp

f



 


5

  Vln. 1   

sul D

67

Vln. 2

p

                   p

                                 

  

  73

Vc.

sf

3

sf mf

poco

poco

  

  



poco

3

                        p           p         mf

                                                                    3

f

p

                     

poco

                     

Vla.

sf mf

p espress.

    mf

sf

poco p

  

p

f

3

                                     

   Vc.  

Vln. 2

               

sf

Vln. 1

f

sf p

Vla.

ord.        

molto

poco

         sf

  

  

p

f

                 f

    

                            

                                          

f

     

           

       

 

p

molto fp

                                   molto fp 

f

poco



 

f

sf

   80

Vln. 1



   

 

   sf

 



  

poco

     3

cresc.



 

 

                                                              

Vln. 2

mp cresc.

Vla.

Vc.

                                                             mp cresc.                                    3

poco

cresc.


 86    Vln. 1   6

Vln. 2

                       sf fp f

 



f

                    

sf



     p

p

f





Vln. 1

   

Vln. 2

    

 

sf

           

 

   

E

 (e=e)                 p p f f sf                    f f p f p     sf               f sf p

p

    p

          Vla.          p sf p f                          Vc.      sf sf p f  sf

   Vln. 1   97

        

pizz.

 

f3

Vln. 2

Vla.

          fp  

p

sul pont.         Vc.   

    

arco

arco

   

fp

f

 5



   

arco

fp



   p

5

arco

 

p

p

    

f

p

  

f

         f 

       p

sf

sf

f

      fp

  f

 mf

 mf

5

     f fp

 

   

fp

    

sul pont.

fp

f

p

f

p

f

 

  

sf

 

p

   

sf

p

     

sf

sf

p

       5:4x

pizz.      3

 

p



5

   p

5



 

ord.

  

p

poco

 

   

ff

    

 



ord.

f

   

f

ord. 5

sf

f

p

sf

fp

pizz.

      

sul pont.

p

     

arco    sf

mf

      

        

              





 

sf

 

sul pont.

arco



sf

                         sf sf p  sf                         p sf f sf                     

      

sf

f

p

f

f

fp

pizz.

f

f 3 p

   

   

pizz. ord.

fp



p

f

p

poco

pizz.

f

fp

arco sul pont. pizz. ord.

sf

arco

pizz.     

 



    

 

                            

sff

92

f

              p sf

sf

                sf p f                                       Vc.     fp f f

Vla.

   

                       

 

      

   

 

     ff



 

ff

    

 

ff


II. Song and Dance sul D           Vln. 1        

           

Yearning, q=56

  

Vln. 2

  

Vla.

Vc.

f

mf

p

          p

          mf

p

         sul G

f

   

sul G



                     

sul A

Vln. 2

13

Vla.

 

          

        Vc.   poco

p

f

 

              p

ord.

         p 3

F             ord. 3

 

sf ord. 3

     sf

   

sul G

        

f espress.

  

mf

mf

f

                    sul D

            p

 Vln. 1  Vln. 2

mp

sul D

mf

         

Vla.

Vc.

      

f

mp più

p

mf

                     Vln. 1             mf p 7

ord.            mf

p

mp

        

poco

p

  

7

   

 3           p

   

p

    mfp

     mfp

       

3        3                                                       p p poco mp mf poco ff 

mp

mf

ff

sf

sf

poco


20      Vln. 1     8

  

f

mf

Vln. 2

      

        mf

    Vc. 

mfp mfp

mf

Vln. 1

      

    

      

   

pp

3

   



mf cresc.

p

Vln. 1

  

         

   

33



3

3

mf cresc.

p

Vc.

mf

     

 

      

  

pp

Vc.

         pp

 

p

          mf p

        p

               f

       

sf

             f sf               

 

f

sf

                 f

sf

Più mosso, q=63

                  pp

 





 





 

 

 

fp

ord.

mf

p

       

ord.

 

p



f maestoso

              p        

p

p

pp

Vla.

p

mf

H

sf

f

     

      3                         3   fp sf f dolce   sf        3                           3   fp sf  f maestoso   sf 3                           sf f maestoso fp sf pizz.   arco                         sf   sf 

sul G

Vln. 2



       

 3

      

           

  

          p

p

mfp mfp

mfp

mf cresc.

p

Vla.

mfp

 

p

Vln. 2

      

poco rit.

26

p

p

p

      

mfp

Vla.

  

p

             f

G      

mf

  

          p

poco accel.

         

          

f

mf

    

       f

mf

 

       mf

 


    Vln. 1  

f

Vla.

Vc.

      



p

 

          

            ff

f

 

48

J

p

         sfz          sfz



ff

      

 



         

p

Vc.

                         sfz sfz sfz                           sfz

p

  sul pont. 54      Vln. 1               p   Vln. 2       arco   pizz.           Vla.   sf

sf pizz.

     Vc.    sf

ord.

   

sfz

  

sf

mf

           

mf

       

arco

sf

sf

                 p            sfz arco

sf

sf

      p cresc.

 

  

p cresc.



   

  

p cresc.

                 p sf   sf sfz                p legato

            sf mf                sf sf                   

mf

sf



sfz

sfz

                  

        

p

pp

sf

mf

p

6

sf

Vla.

          p

                 p mf mf p 

      



       

mf

     

     

molto

molto

     

9

A tempo, q=63

ff

 Vln. 1     Vln. 2

 

ff

    

   

Vln. 2

   

poco rit.

   

39

I

f

  

f

   (2+3)     

sf

  

fp

fp

 

         f

p

f

p

                   

                 p

f

                  p cresc.

f

p


10

K                                           Vln. 1             60

f teasing

f

                                            

Vln. 2

f

        

Vla.

 Vln. 1  

 

67

fp

 

Vla.

fp

fp

f

       

  Vln. 1   73

  

 

p legato

 

 

   



  sf

        fp

fp

     

f

  

f

 

sf

 



fp



sf

fp

    L          

  sf  sf

    

f

 

        

sf

     

f

p

 

f fp

   

p

Vc.

fp

p

       

Vln. 2



      

 

f

  

      f

         f

sf

f

poco

(x=x)              

                   

         f

     

                           f

                    f       p legato f                                        Vla.                p legato f sf sf            Vc.                               p legato  sf

Vln. 2

fp

      

p legato

sf sub.

  

poco

       

fp

    

   

p sub. legato

         

      

         f teasing

                                  

sf sub.

Vc.

               fp

sf

             

      

sf

     sf


       (3+2)   Vln. 1          p legato  78

sfz

Vln. 2

p legato

       sf      

 

Vla.

 Vc.  

    

Vla.

  

 

fp

fp

 Vln. 1  89

Vln. 2

    

       sfz

         

 





fp

ff sub,

    

p

  

   

f

sf

         

    sf

sfz

            sfz sfz

f

sfz

         sf

sfz

        

sf

sfz

fp

   

    f



 

   

 

f fp

       fp

       f sf

      

   

fp

fp

fp

fp

  

       







 

sf

f fp

      

p

sf

  

fp

fp

      

p

sfz

fp

fp

      

   

   

     

sfz

sfz

           sf

    

sfz

     

  M           

  

 

 

fp



11

      

 

sfz

 

  

 

fp

  

      

      

fp fp

fp

sfz

                sfz

       



 

sf



 

Vla.

Vc.

  

  

fp

sfz

sfz

f

fp

sf

        

            

                              p legato  ff sub,

fp

   



fp

fp

sfz

   

      

         f

                            p sub fp

sf

   

 Vln. 1  Vln. 2

sf

sfz

          p legato



84

Vc.

   

            

    

              sf f

    sf   

fp

sf

  

fp

   sf

      f

      f

     

      

f


N

12

95          Vln. 1   (3+2)

       

Vln. 2

  

Vla.

 

      

   

    Vc.   

 

rit.

         



      

pp

più f

 

          

            

pp

più f

          

                

pp

più f

sul G

f espress. sul G



             

  

 

pp

più f

q = 48

   

 

     

  

f espress.

Vln. 1

    

       

         ff

     

     

3

      

          3   ff                                            

         

Vln. 2

Vla.

   Vc.   

       

ff

     ff

    

più ff

più ff

più ff

 

     

f espress.

f espress.

101

 



                       

                     

                                più ff

                                                106   Vln. 1    

Vln. 2

Vla.

Vc.

3

5

3

5

fff

                                                   

                                         

fff

                                              3

5

fff

3

5

fff


13

rit.

 Vln. 1 

110

Vln. 2

              p

              p

        

Vla.

p

Vc.



3

        p

 Vln. 1     115

3

3

      3

O

A tempo, q=52 3

pp

   

pp

   

    3 pp f      

3

 3

     

3

  

pp



3



  

3





f

f



    

f

    

Vc.



  

  

   

dim.

 





dim.

 

 

 

 

p

   p

     

 

   



  

   

   

pp

 pp



dim.

 

         dim.

p

Vla.

3



p

Vln. 2

 





        

      n

      n


III. Chinatown Rumble

14

                            1                                Vln. 1    

                        

                           

                                                            

            

                

                                                          Vc.    

             

               

Explosive! q=138-152

sffz with force!

Vln. 2

                                                              sffz with force!

Vla.

sffz with force!

sffz with force!

                              5

Vln. 1

fff

Vln. 2

Vla.

3

3

3

                         

3

sffp

            

                              

fff

fp

3

3

                                                                    fff fff sffp 7:4e 5:4e             5:4e                                                     fff

         Vc.             fff

    

               

fff

3 3           sfz 7:4e                   

sfz

                                               fff

sffp

sfz

sffp

9                                      Vln. 1                              Vln. 2

     

sfz

       

sfz

         

              pp 

sfz

ord.

0 4



sul pont.

sfz

sfz

    

sfz

sfz

sfz

   Vla.    sfz    Vc.    

   

ff

sul pont.

p

sfz ord.

       sfz        sfz


           Vln. 1    

  

13

   

  

 

                                   

 

sfz

Vln. 2

     f pizz.

Vla.

      

arco, sul pont.

    Vc.   pizz.



sf

sfz

A

 Vln. 1   17

 

Vln. 2

sf

                          

f 3

3

3

 

3

                          

      

ord.



f

 ff

15

 

      

     f

     sf

ff

ord.

sf sf sf arco, sul pont.

sfz



ff

  ff



    

        

  

     

    

       

  

     

                       Vla.                              mf f                                                            Vc.        f

f 3

  21

Vln. 1

Vln. 2



3

       

   

    

   

     

  

           

ff



    

ff

          

Vla.

        ff

Vc.

                 

  

    

    

  

  

   

          ff

                                                fff

3

3

sffp

3

                                                         sffp fff   5:4e                                   fff

               fff

    

               

sff

sff


 Vln. 1  16

25

Vln. 2

Vla.

Vc.

                      

       

                                  f

sfz/mf

                 sfz

                sfz

               mf

 

mf

pizz. arco                           sf sf      ff   pizz.    arco                                        sf sf sf      ff pizz.  arco                   pizz.

f

sf

f

mf

sfz

             Vln. 1                                                            30

ff sub. arco

Vln. 2

             

ffp

     

ff sub.

 Vc.          

ff

               Vln. 1         37

Vla.

  

sul E/A

ff ord. sul D/A

 

ff

         ord.

  

f marcato

  

     Vc.          f marcato

   

sfz

ff sub.

Vln. 2

   

 

sul C/G

ff

 

sul C/G

ff

   

   

sul pont.

      

      

sfz

       sfz

   

sfz

sfz

          

Vla.

     

  

sul pont.

sfz

sfz

                    ff sub.

                                             sfz

ff

   

   

sfz

sfz

            sf sf sf              sf

sf

sf

                    ff sub.

                     ff sub.


Vln. 1

B

                     44

Vln. 2

sul pont.

sub. p sul pont.

                      

sf

 

     Vln. 1  

Vc.

Vln. 2

sf

ord.

          f sul pont.

   

                           ff

sfz

                                   

       

    

      

     

51

Vln. 1

p

ff

Vla.

     

 

 

sf

47

Vln. 2

17

                                             sub. p   f

sub. p

Vc.

f

                  

ord.

sul pont.

Vla.

           ord.

p

sf

sf

       ord.

ff

               sf sf sf

sf

sul G

          sf

  

pizz.

sf

           

                     ff

arco               mf pizz.

    

arco

 

sfz

                        sf sf  sf sf

sfz ord.

          sf 

pizz.

sf

 

sf

sf

        ff

 

  

3

3

 

      3

3

                ff               

                                    3 sfz 3 ff    arco                                                   Vc.   sul pont.

Vla.

sf

sf

sf

sf

sff


18

  55

Vln. 1

3

3

3

3

                                    3  3 sf f

                                  

f

    f

   



    sf

sf

C      

                            f                                          sul pont.     Vln. 2        sf sf sf  ord. pont.                  sul                 Vla.                  3   3 3 sf sf più f  ord. sul pont.                                             Vc.        3  3 sf sf 3    Vln. 1               59

   



     

                   3 3  sf

3                                          3  3 3 sf 

Vla.

sf

                       

Vln. 2

Vc.

               

più f

 Vln. 1  63

                                                          p                                                             sf      sf

Vln. 2

sf

Vla.

sf

sf

sf

          



     



3

Vc.

3

   

sf

      3

         3

                      sf

                        sf


67    Vln. 1       

   f

sfz sfz

Vln. 2

    

      

   

f

sfz sfz

Vla.



        

    

sfz

sfz

     Vc.   

   

sfz

sfz

                           ff





ff marcato

        

ff marcato

ff marcato

    

3          







        

  

 

 

3

   

            

        

 

 

 

 

 

19

             3

               3  sfz

sfz

sfz

    

            3 

 

 

3

3

   

         sfz

sfz

    

sfz

                                                         Vln. 1    71

Vln. 2

Vla.

0

sfz

    

sfz

sfz

sfz

sfz

sfz

   

        

   Vc.       sfz

        

sfz

   

        

sfz

fp pizz.

0

   

0

arco

   

     

                               

sf pizz.

sf

     

sf arco

fp

pizz.

sf

fp

 

   sf

          

                                          Vln. 1  Vln. 2

ff

arco

fp

                 

sfz

sfz

   

sfz

                                                        ff f cresc.

Vla.

   

     

74

f cresc.

0

sfz

sfz

sfz

                                                                     f cresc.

ff

sfz

sfz

sfz

f cresc.

ff

sfz

sfz

sfz

                                                                 Vc. 


      pizz.  Vln. 1    sfz sf  pizz. Vln. 2         sfz sf  pizz.     Vla.     sfz sf    pizz.       Vc.   sfz 20

78

D

               sul pont.

                              

      

                             

      

f

                sul pont.

 83              Vln. 1  3





ord.

sul pont. arco

   mf

p dolce

ord.

 

Vln. 2

Vla.

p

        

3

3

ord. arco

p dolce

Vln. 1

f

arco

 3                            Vla.           3 3 3 sfz ord.                      Vc.  3

   

sfz

sul pont. arco



  



                                 3 3 3  f

    

87

3

f 3

sf

Vln. 2

3

3

f





 

f



  

mf



mp

          3

f

 

mf

   f

arco pizz. pizz.  3                             arco                             3    sfz

sfz

sfz

sfz

sfz

pizz. pizz.   arco3  arco                                                             3

      Vc.  p

     f

mp



  3

  3

 mp

 

 

sfz

  f


E

  Vln. 1        93

A tempo, q=152

  

non vib.

fp

   

Vln. 2

f

      

non vib. arco

      

non vib. arco

      

fp

    ord. pizz.

Vln. 2

f ord. pizz.

 arco           fp

           fp

fp

 

     ord.

fp

p

p

f

               

p

p

f

     

 

     

sfz

   

sfz

sfz

sfz

sul pont.

 

   

sfz

sfz

                        p   p f 

  p

f

arco            

f

   

f

arco   pizz.          fp pizz.   arco        fp

f

sfz

pizz.

sfz

sfz

sfz

sfz

               

pizz.

fp

  

sfz

         

pizz.

 pizz. arco            fp

fp

                 

sfz

 pizz. arco          fp

arco

p

f

                              f  pp  



pizz.        

p

f

pp

sfz sul pont.

sfz

pizz.

p

21

                   

    

sfz

fp

arco

f

fp

fp

        

sul pont.

 sul  pont.   

  

arco              

Vla.

Vc.

 

ord. 

fp

  

fp

arco                fp f

      Vln. 1 

arco

ord. pizz.

103 ord.

sfz

fp

fp

 Vc.  

sul pont.      

fp

  

         f 

   

 

sfz

  

98 ord.        Vln. 1 

Vla.

sul pont.     

fp

fp

ord. pizz.

sfz sul pont.

sfz



non vib.

Vln. 2

  

     

fp

arco            Vc.  f

fp

fp

            fp f

Vla.

sul pont.



   f

      

  f



  f

    

 

  

 

  

 

p

p


Meno mosso, h=66 Meno mosso, q=72 Farco sul pont.    (sul pont.)                                            

22

  Vln. 1    108

Vln. 2

Vla.

       

           

 

   Vc.  

  

  Vln. 1  115

f espress.

  

    

f

       

   

f

6

p

mf

f

             Vc.     ord.

Vln. 2

sub. p ord.



sub. p Vla.

 

       mf

              

   Vc. 

ord.

sub. p



ff

3:2x

fp non vib. ord.

   

    

f

sul pont. 3

6

       

 

ff

sul pont.

   

non vib.



f

f (p )

ff

fp

G sul pont.           

         

  

p

f

sul pont.

sf sul pont.

  

f

               sf

f

      

  

sf

7:4x

        

ord.                       

     mf



sul pont.

    

sul pont.

     mf senza sord.



stagger bowing

fp

ff



non vib. ord.

ff

p

f

ord.



non vib. ord.

  



fp sul pont.  w/ practice mute                         

p

120

 

p

p

f

ord.             

 Vln. 1 

 stagger bowing

fp

p ff behind bridge

         

sul pont.

non vib. ord.

     

sfz

            

mf

stagger bowing

fp

behind bridge

         p



ff

                

mf

Vla.

p

sfz

ord.

Vln. 2

        p          p

f

p

ff

sul pont.  non vib.          ord.    

sfz

        

senza sord.

p

arco

6

p

p

fp

              sf fp

               f



fp

      f

fp


23

     Vln. 1  126

sf

 

Vla.

Vc.

     

 

f

f

          

      



f

f

fp

    



fp

f





 



 

 

      

(e=e)

      

                                   

fp

f

 

 

 

    sf

Vln. 2

   

       

fp

f

fp

f

      

fp

f

fp

    

f

     

fp

H senza misura, * q= at indicated tempi

  Vln. 1     130

(q=88-92) arco

 

 

p

ff

   

Vln. 2

           

(q=58-62)

 

cresc. poco a poco

ff

                 

 

   Vc.  

 

Vla.

 





   

 

      

  

            

                

          

                   

 

 

       



p cresc. poco a poco

      

   

     



  

(q=80-84)

                   



p cresc. poco a poco

 

         

           

 



 

cresc. poco a poco

(q=76-80)

 



   

  

 







   

  

 

  





          

 

       

             

 



 

                

 

 

 




24

   

    





   



  

   

accel...

f cresc.

  



   

    

            

      

        



 



f cresc.

    

   

 

 



 

    

  

    

 



   

  

3

      



accel.

  

     

     

 



 

    

  

 

  

       

    



 

      

     3

    

           

         

    

     

 

f cresc.

   





  

  





     

     

3

  

 

accel...

    



  

       

   

ff marcato

    3

   

  

 



  

  

       

      





    

q=136

   

   

sfz sempre

   

          sfz sempre          sfz sempre

     

 

 

 

  

ff marcato

  

    

ff marcato

 



       

                   

  

                    

     

 

      



  

f cresc.



      

 

   

  

    

ff marcato





accel...

   

accel...

           

     

  

         

   

sfz sempre

   

    

      

 

     


rit.

    Vln. 1    

   

133

       

Vln. 2

    

Vla.

Vc.

   

   

         

       

I

3 3

Vln. 2

sul G/D

Vc.

  

fff

sul C/G

  

ord.

fff

3

           

                               

ord.

                                                  

sul C/G

     

                                     

ord.

fff

      

       

Vla.

fff

      

  140          Vln. 1   

  

   

     

   

                           f sfffz 5:4x                         3

Vln. 2

3

3

             sfffz

    

3

3

sfffz

3

                     f 5:4x

sfffz

sfffz

         f

                sfffz

3

3

3

               

  

   

 

   

   

 

   

f

                   f

                

 145                  Vln. 1              f  sfffz

25

 ord.        G/D          sul                             

         3    



q = 120

   

 

    

                ff

                

ff

   

  5:4x                Vla.               f ff sfffz sfffz                                                       Vc.                         f ff sfffz

sfffz

sfffz


  Vln. 1  

 

26

150

Vln. 2

accel.

                          Vc.                 

Vla.

 Vln. 1         157

        

Vla.

           

Vc.

     

164        Vln. 1 

     

Vln. 2

Vla.

Vc.

                   

            

Vln. 2

                                                                                                       

       

       

         

               

       

                             

     

 

                           

                   

                  

[q=e] q=152

                          

 

         

 

     

                              

                        

    

    

       

     

            

 

 

   

             

                   

       

             

     

     

 

     

 

     

                  

              

             

     

         

   

   


             Vln. 1  

Vla.

Vc.

      

 

 Vln. 1 

179

Vln. 2

Vla.

 

f

           

Vln. 2

                                                

27

173

          

                      

        

                                       

                      



                   

          

 

     

 

 

 

 

     

 Vc.  

f

ff

 



  

p

                                   ff p cresc.                                    ff f                                        ff

p cresc.

                       Vln. 1                                        f  f   f sfz cresc.   sfz                             Vln. 2             f cresc.  f f sfz sfz                                   Vla.     f 182

sfz f

sfz

f

                 

sfz

f

sfz

f

 

  

            

cresc.

                                                  Vc.   f

cresc.

 

  


                               Vln. 1  28

186

ff

                              ff                                 

Vln. 2

Vla.

ff

Vc.

 

                             

ff

                               sfz sfz sfz                                  sfz sfz sfz                           sfz

sfz

sfz

sfz

sfz

sfz

                       

J

      190                Vln. 1                              ffp

                                                                         Vla.           p    sfz sfz sfz sfz                         Vc.       p    sfz

Vln. 2

sfz

sfz

  Vln. 1           198

fp

Vln. 2

Vla.

  

Vc.

  

fp

                                   fp

                      fp

      fp

       

fp

       

fp

sfz

fp

      fp

                             

                                fp

fp

                                                           fp

fp

fp


K   Vln. 1   203

 

  ff  

     

Vla.

6

6

ff

6

  

 Vc.  





   

   

    



29

3

                  ff                    

Vln. 2





 

6

6

6

                        

                

6

6

     

6



6                           6 6                           6

6

  

          5

6

6

  

       

ff

  Vln. 1  211 

 

 6

                       

Vln. 2

Vla.



6

            

6

Vc.

 

 

6



 







  

 

                             6



6



                  

219 

Vln. 1

 





 



                        

  

 

  sfz      

  

    

    

                 

 

              

     

    

                     sub. p

                         

 sub. p  sfz                                                                    

Vln. 2

Vla.

sub. p

Vc.

sfz                                                                sfz

sub. p


         227          Vln. 1     ff             Vln. 2     30

ff

                                               sfz         f                                                                    sfz

f

                   Vla.          ff                        Vc.         ff

 Vln. 1 

                sfz sfz                          sfz

233

Vln. 2

sfz

              

 

Vla.

sfz

Vc.

    

 

sfz

238           Vln. 1  3

sfz

sfz

           

sfz

sfz

Vc.

sfz

             ff

sfz

             ff

   

                 ff 3 sfz

3

   3

      3

  

  

sfz

    sf

   sf

     

sfz

sfz

           3

sfz

sfz

 3                                           ff 3 sfz sfz sfz                             ff 3  3 sfz sfz                          3   ff 3  sfz

    

sfz

                 3

 3 3

3

       

  

      3



      3

sfz

L  pizz.                       arco

sff

       3

          arco

sfz

3

fff

                   3   sfz sf sf fff sf                                                  3              3 sff

   pizz.                                                           sff 

    

Vla.

sfz

pizz.             sf

Vln. 2

sfz

  

sf

sf

sf

arco 3

3

fff

    3                                                  sff sf sf sf  fff

              3

3




 Vln. 1 

244

Vln. 2

        3

  Vln. 1   250

 

Vla.

         

Vln. 2

Vla.

 

 

    

3



f cresc.

                

     

                

      

sff

         

sff

         

 

            sul pont.

p

                  

            

               

arco

       

sff

      



f cresc.

                       3

3

3

 

 

sul pont. 0

0

0

0

0

0

fp

      

sul pont.

   

p

f cresc.

 

256

Vln. 1

 

3

f cresc.

Vc.

 

                  

Vln. 2

      

31

sff

3

       

             

3

            

3

     Vc.  

 

3

         

      

Vla.

           

loco pizz.

                     cresc.

   

ord.

grad. to

grad. to

ord.

                              0

0

0

cresc. grad. to

0

0

0

0

ord.

0

                                cresc.

                     f cresc.

             f cresc.

                f cresc.                 f cresc.

                                                     Vc.   sul pont.

p

grad. to

cresc.

ord.


32

                 

261   Vln. 1 

sfz

    

          

M Slower, q=136              ff

    

 

accel.

    

 

  

     

                                         Vln. 2                       sf sf sf sf sf   sff                                               Vla.             3  ff 3 3 sfz 3                                                         Vc.         3    3 sfz

   267     Vln. 1    Vln. 2

Vla.

    

ff

 

                         pizz.  arco                        

      Vc.         272    Vln. 1   fff      Vln. 2   fff     Vla.   fff       Vc.     fff

                  

sfz pizz.



sfz

3

arco

3

          

3

               pizz. arco                

 

 

3

       3

 

 

sfz pizz.



sfz

            

         

   

3

3

3

                                                    

   

   

     

     

   

              

            

arco

  





3

    3

   3

 

  

             

 

    

        

fff molto

 

       

sfz

(q=176)

 

fff molto



    

               

fff molto

     3

sfz

 

   

   

fff molto

       sfffz        sfffz      

sfffz

    

sfffz


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.