Expression of Interest [Design Approach] Submission

Page 1

design

approach expression

of interest stage Part TWO

MIchelle Ho 516315 Tutors: Finn Warnock & Tom Morgan


SECTION B.1.

design focus OUR SELECTED AREA OF INTEREST:

MATERIAL PERFORMANCE

working with Meg Varley & Bonnie Williams

Why material performance is valid and interesting for a project like the Wyndham City Gateway project? (as opposed to other parametric approaches) - Interesting to us because it allowed for physical experimentation and this would provide us with real limitations. - Interested in the properties of timber/wood and creating something that challenges the expected form of timber (e.g. sturdy, solid, rigid). Hence we wanted to create something with timber that is fluid, flexible and movable.

- Also with timber as our selected material to focus on, it allows for physical experimentation with the material to test out its performance and properties in the real world and feeding our observations of timber limitations back into the parametric experimentations to improve our design. This gives timber and material performance a competitive advantage over other parametric approaches as physical experimentation is vital to our area of focus, whereas with tessellation or sectioning for example, the physical experimentation may not be as vital or as needed – using computation to generate experimentation outcomes may be sufficient on their own.


VOUSSOIR CLOUD

IWAMOTO + SCOTT

This project is relevant to our design focus because it uses materials in an unusual manner. Voussoirs are normally heavy masonry blocks that are stacked upon each other acting in compression to create its arch profile. This project challenges this preconception by using wood laminate less than 1mm thick to create these voussoir units. By using a lightweight material that is naturally more inclined in tensile strength and torsion, to produce wedge-shaped units that act in compression, it indicates that there is more than one way of creating something and that materials have the ability to be manipulated in ways that they are not normally expected to, even to the extent that achieve “potentially conflicting constructional logics�[1] by using lightweight materials to create an usually heavy compression structure. It is relevant to the theme of computation as the forms that make up the pure catenaries profiles were generated by computational hanging chain models, similar to the previous work of Frei Otto and Antonio Gaudi (although they made their hanging chain models by hand). The structural logics were calculated through computation; it allowed for the arrangement of the Delaunay tessellation to have greater cell density at the column bases while spreading out and gaining porosity as the arches are formed at the top[2]. Figure 1: Voussoir Cloud in action. Source <http://www.pleatfarm.com/2009/10/14/voussoir-cloud-by-iwamotoscott-architecture/>


Figure 2 (left): Precise incisions can transform even a sturdy block of timber into a flexible form. Source < http:// gewerbemuseum.ch/ausstellungen/ aktuell/detailansicht/gmwausstellung/ dukta-holz-in-form/> Figure 3 (right): Wood loop.. Source <http://gewerbemuseum.ch/ ausstellungen/aktuell/detailansicht/ gmwausstellung/dukta-holz-in-form/>

WOOD LOOP /DUKTA CHRISTIAN KUHN & SERGE LUNIN Timber is given newfound flexibility characteristics when precise incisions are cut into its form. These notching and incision systems vary in length, depth and distance between each staggered cut, and it allows otherwise rigid wood panels to be easily twisted and flexed into new forms. It has also been observed that these incisions allow the timber to absorb sound more efficiently, making it an ideal material in acoustic-controlled setting. Zurich University of the Arts has made use of this technology by installing Dukta panels in its large concert hall for its acoustic benefits[3]. In this way it can be said that Dukta has contributed successfully to the materials discourse on timber by indicating what other properties timber can possess through the use of precise incisions.


wooden textiles fabric Elisa Strozyk

This project combines wood veneer offcuts (from other projects) with fabric and latex to transform the hard physical properties of wood into a fluid skin. This precedent is definitely relevant to our area of interest as it alters the manner in which timber behaves. However, we argue that our resulting prototypes (in section B.5) are an improvement of this idea as no additional materials were added to prototypes to alter their properties – instead we just cut the plywood in specific angles to impart flexibility and fluidity. Nevertheless, Wooden Textiles Fabric can be seen as using the timber material quite optimally, as it recycles “waste” wood veneers from other projects, ensuring efficient materials usage as no “new” wood veneers were used. One thing we took away from our analysis of this precedent was the fact that “common presumptions we make about materials often prohibit the exploration of their potential”[4]. This means that it is important for us to continually experiment with timber in the effort to uncover the various abilities it can be capable of achieving. It makes us aware to not look at materials at their “face value”, for example: “timber is rigid and is only good for linear structures”. If we thought this and did not bother to explore the potential of the material, a lot of opportunities to contribute to the materials discourse on timber would be lost.

Figure 4 (left): Wooden textiles fabric made up of triangular offcuts. Source < http://www.yatzer.com/Wooden-textiles-add-anew-dimension-Elisa-Strozyk> Figure 5 (right): Same source as above.


ICD/ITKE Research Pavilion 2010 Achim Menges

Figure 6: Interior of pavilion. Source < http://www.digitalcrafting.dk/?cat=23>

Similar to the Voussoir Cloud, these research pavilions designed by Achim Menges in recent years have been the result of experiments in material-orientated computational design to produce structures that stretch the potential of how timber can be used. In this particular 2010 research pavilion, computational processes have been useful in creating a responsive bending structure comprised out of extremely thin plywood strips. We found this project interesting as it is an example of how the form of the structure was directly driven by the physical behaviour and material characteristics – not the other way around (e.g. manipulating the material

to make a predefined form) as normally done. As Achim Menges noted, “the structure is entirely based on the elastic bending behaviour of the birch plywood strips�[5]. The material behavioural properties of the plywood were used as inputs in the parametric design process, which in turn produced the relevant forms that could be made from these limitations. Similarly, we also plan on following a similar process in our design for the Wyndham Gateway project: after discovering the limitations of timber from our physical prototypes, we will then embed these as inputs in Grasshopper and produce relevant iterations from it for our final proposal.


case study matrix SECTION B.2.

Species 4 Changing Z-value (height) positive values create narrow bases that expand at the top negative values create narrow tops that expand to wide bases (basically is an inverse form of the forms generated by positive Z-values)

Species 1 Changing height of points along z-axis Species 5 Adding Kangaroo plugin

Species 2 Changing position of input points on one plane

Species 3 Changing size of the base openings using the number slider - The smaller the value, the more 'solid' the structure appears - The bigger the value, the more 'web-like' and 'skeleton' the structure appears

- Left: mesh created when slider = 8 plus affects of kangaroo plugin - MIddle: mesh created when slider = 8 - Right: mesh created when slider = -2 however Kangaroo doesn’t work when Z-value is negative so this iteration was abadoned


Figure 7 (above): Attempt at cutting out an entire skin out of plywood (instead of connecting individual strips together). The fabricated model was not successful as the skin remained rigid and was hard to bend. Figure 8 (below): Changing the base shape from the normal strip to circles. This offered more looping possibilities.

technique development SECTION B.4.

The materialisation process for our prototypes was relatively straightforward as the main premise for our area of focus was to experiment with how we could alter the typical rigid properties of timber and make it a fluid and flexible form. We were heavily inspired by the Dukta/Wood Loop project by Christian Kuhn and Serge Lunin (mentioned in section B.1.), in particularly, how simple but precise incisions dramatically transformed the wood into something that was able to be flexed into different forms. Hence, our technique development mainly focuses on strips and platonic shapes, and how varying the amount we cut out of these base forms had an affect on the flexibility of the plywood. For our technique development, we felt that we needed to experiment first with the plywood material in the form of physical prototypes, and from these prototypes

we would encounter its limitations, which we can then input as parameters into our Grasshopper algorithms at a later stage. We opted to computate our physical prototypes in Autocad, as it was a program that we were very comfortable in using (in comparison to Grasshopper) and it was quicker for us to directly draw the shapes we wanted cut on Autocad rather than attempting to make it in Grasshopper first, as at the beginning stages, we did not know what would’ve been important to have as variables for later alterations in the Grasshopper definitions. We realise that this manner of development by choosing not to engage fully with Grasshopper from the beginning is quite different to the way other groups have approached the design, but we feel that this manner of development has worked well for us and what we wanted to focus on with timber: that is, how to increase its flexibility.


Variables we experimented with: • angles of the cuts, • length of cut • width of cut • distance between the cuts • curve/straight cuts • shape of the strips • length/width of strip • with or against the grain • applying different amounts of tension to form We discovered each prototype encouraged a different type of movement eg. Rolling, twisting, bending, stretching etc. Our final form will be a combination of the effects created by each trial.

Figure 9: Different cuts/patterns on a sheet of plywood. Far left: The cuts slowly change into another, starting with short cuts at the top, growing wider in the middle, while forming angles at the bottom. Top right: Another attempt at creating an entire skin out of one sheet. Bottom right: Experimenting with curved cuts.


technique prototypes

SECTION B.5.

We felt that since our area of focus is “material performance”, we felt that it is important for us have prototypes readily available for us to physically play with, as this would inform us on the characteristics of timber in reality, rather than just relying on computation to show us. We ended up producing three sets of prototypes, and with each iteration of fabrication, we discovered new limitations that we wanted to address in the next set of models we produced. Our fabrication process resulted in several zig-zag strips, some of which were very long and therefore able to be twisted and knotted, and some considerably shorter, offering less bend when we handled it. Fabrication and having physical models to play with was a integral part of our development process, as we discovered many limitations in this manner that might not have been obvious to us otherwise from just creating 3D visualizations on the computer. For example, the direction of the grain in the plywood was a factor that affected the flexibility of the plywood strips. The strips were considerably more flexible where the grain ran in the same direction as the notching as opposed to running perpendicular to the notching. This might have been overlooked had we just relied on computer visualizations.

Figure 10: Weaving as a method of connecting the individual strips together. It is important to note that the strips do not have to be exactly identical to achieve this, as seen here.

One of the ideas that emerged during this period was creating a skin structure that draped itself along the highway. We experimented by modeling and fabricating whole block panels. However, the prototype for this was not successful as we hoped as the plywood remained quite inflexible and had limited bending ability. Also, designing a skin structure out of plywood poses the problem that in reality, it would be hard to find a piece of timber that was big enough to create a singular skin suitable for the scale for the highway installation.

Hence, we had to view our fabricated plywood strips as individual modules that somehow connected together to create the giant skin we desired. One method we used to connect our individual strip elements together was through weaving. This opened a whole range of possibilities: we could weave identical elements together or weave numerous elements that were each slightly different to one another (e.g. they had a different base shape or the length of cuts varied). This latter method allowed us to combine various elements of different characteristics together to create one meshlike skin that leveraged all the individual characteristics of each strip into one unit. Weaving appealed to us because it doesn’t require additional material to make the individual elements join together – the connection is inherent in each module’s structure. Throughout our process we have been considering the characteristics of timber such as size and how it would influence the real construction process. We were worried that weaving to create such intense combination of elements would reduce the flexing ability of the plywood strip, however through our physical prototypes we discovered that the resulting mesh has the same properties as one individual strip. Therefore this overcame the limitation of the available size of timbers as we are now able to create the skin from smaller modules/individual strips. Without knowing the real parameters of a material we were unable to begin experimenting with forms in grasshopper. However now that we better understand the material and its limitations we can better use grasshopper in a more accurate/realistic way knowing how the material will react.


Figure 11. Weaving as a method of connecting the individual strips together. Here the strips are identical modules.

Figure 12: Another example of weaving.


In traditional construction we have found, timber has been used in a very rigid still way something which we wanted to challenge. Therefore we were prompted to draw on ideas established through these precedents but to extend the investigation and manipulation even further. We focused our explorations on pushing the traditional boundaries of timbers flexibility and discovered we were able to create something which is quite fluid and organic. Similarly, we were able to achieve an interesting ornamental quality as a result of the explorations we undertook, combined with the natural aesthetics of the timber itself. We envisage our technique to act as a mesh-like skin on the site, perhaps following the curve of the highway or draping across it. We believe that the competitive advantage our approach has is that it challenges the way people view timber – we want people to notice the fluid form from a distance and let them assume that it is made out of some naturally fluid material such as plastic. However, when they travel through it, they realise that it is actually timber creating such fluid and flowing forms, and we hope that this element of surprise encourages them to revisit. By challenging the common

SECTION B.6.

Figure 13 The woven skin mesh propped up -- when light pressure (e.g. a hand tap) is applied, the surface deflects but springs back readily. Could be interesting having some element of movement in the gateway final project that mirrors the actions of the vehicles fast motion.

preconception of timber, we are adding to its material discourse. Another competitive advantage our approach has it that it interacts with its surroundings. When propped up (as in figure 13), the skin we have designed has flexible properties that deflect and bounce back when pressure in the form of a light tap or movement in the wind is applied to its surface. This creates movement in the structure, and this would be interesting to explore in the next stage of the design process, as given the project’s close proximity to a busy highway with fast-moving vehicles, this wind movement can affect the structure of our skin by flexing up and down. This hence engages with the site and audience, as opposed to having it as a static structure. Having the skin structure change slightly dependent on weather conditions (wind) or how many vehicles are traveling there creates a installation that is versatile and interactive, and having these characteristics would encourage people to revisit as the structure can be experienced in numerous ways. We hope this design questions the expectations of a material and contributes new ideas about materiality to the architectural discourse.

technique proposal


Figure 14.

algorithmic sketches SECTION B.7.

These were done using Grasshopper. Parametric design helped us to vary the width of the strips and cuts (figure 14) and the use of attractor points in a mesh was possible with Grasshopper (figures 16 & 17).

Figure 15.

Figure 16.

Figure 17.


learning objectives and outcomes SECTION B.8.

Particular learning outcomes addressed: Developing “an understanding of relation¬ships between architecture and air” through interrogation of design proposal as physical models in atmosphere. The prototypes we have produced during this Expression of Interest period have encouraged us to form a mesh-like skin with them that interacts with atmospheric air conditions on site, such as weather (wind) and the fast-movement of the vehicles travelling along the highway. Section B.6 discusses how our proposed skin structure engages with its surroundings. Developing “an ability to generate a variety of design possibilities for a given situation” by introduc¬ing visual programming, algorithmic

design and paramet¬ric modelling with their intrinsic capacities for extensive design-space exploration. This has been addressed in Section B.4 and B.5 where we designed and fabricated numerous prototypes to explore different ways of changing the properties of plywood. Although we have not quite engaged with Grasshopper to its fullest potential at this stage, we plan on using the limitations we have found through our physical prototypes as inputs in future Grasshopper algorithms that act as virtual parameters in our computational geometries. The limitations of timber could only be discovered by playing with physical prototypes, and hence we felt that making the decision to develop our design more in the “real world” as opposed to algorithms in Grasshopper was the most appropriate way for us at this current stage.

Developing “the ability to make a case for proposals” by developing critical thinking and encourag¬ing construction of rigorous and persuasive arguments informed by the contemporary architectural discourse. Section B.6 addresses this, as it discusses the competitive advantages of our approach to the site and brief, and why challenging the normal perceptions of timber as a rigid and inflexible element could be important to the material properties discourse. Develop capabilities for conceptual, technical and design analyses of contemporary architectural projects. Section B.1 addresses this through the analysis and comparison of precedents that relate to our area

of interest, material performance. Not all these precedents are architectural-based, a few focus on how materials have been used in interesting ways (such as Dukta and the Wooden Textiles examples) and this has inspired us to develop our own ways to alter the properties of plywood.


references for Part TWO: Design Approach

IN-TEXT REFERENCES [1] “Voussoir Cloud,” Buro Happold, last modified 2013, http://www.burohappold.com/projects/project/ voussoir-cloud-142/. [2] “Voussoir Cloud,” ISAR, last modifed 2013, http://www. iwamotoscott.com/. [3] “Wood Loop,” Gewerbe Museum, last modified 2012, http://gewerbemuseum.ch/ausstellungen/aktuell/ detailansicht/gmwausstellung/dukta-holz-in-form/. [4] “Wooden textiles add a new dimension,” Yatzer, last modified 30 December 2009, http://www.yatzer. com/Wooden-textiles-add-a-new-dimension-ElisaStrozyk. [5] “ICD/ITKE Research Pavilion 2010,” Achim Menges Material Properties, last modified 2010, http://www. achimmenges.net/?p=4443.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.