Geo-Science Education Journal

Page 1

Geo-Science Education Journal Jul-Dec 2017 Volume 5 (3)

mahuber.com

ISSN: 2450-7229

email@geoledujour@gmail.com

-Huber Publisher-


Geo-Science Education Journal Editor-in-Chief Miłosz Andrzej Huber Maria Curie –Sklodowska University, Lublin, Poland Redaction residence: Milosz Andrzej Huber, 22 Bartla st, 30-389 Kraków, Poland. Co-Editors (Thematic Editors) Tomasz M. Karpiński –biological sciences University of Medical Sciences, Poznań, Poland Galina Zhigunova – earth sciences Murmansk State Humanitary University, Russia

List of Peer-Reviewers http://www.journals.mahuber.com/index.php/gsej/pages /view/reviewers

Author Guidelines http://www.journals.mahuber.com/index.php/gsej/about /submissions

More information http://www.journals.mahuber.com/index.php/gsej

Photo on the cover: PGE-sulphide rich harzburgite exposure on the Traviannaya Mt in Monchepluton area, Kola Peninsula, N Russia.

Statistic Editor Olga Jakovleva, Lublin, Poland Language Editor Davor Kredic, Chicago, USA

Scientific Editorial Board Artem Mokrushin, Apatity, Russia Victoria Pantyley, Atlanta, USA/Lublin, Poland Alex Rocholl, GFZ Potsdam, Germany Nikolai Kozlov, Murmansk State Technical Uniwersity, Apatity Russia. Sándor Kele, Hungarian Academy of Sciences, Budapest, Hungary. Khageshwar Singh Patel, Ravishankar Shukla University India

DISCLAIMER The Publisher and Editors cannot be held responsible for errors and any consequences arising from the use of information contained in this journal; the views and opinions expressed do not necessarily reflect those of the Publisher and Editors, neither does the publication of advertisements constitute any endorsement by the Publisher and Editors of the products advertised.

Cover:

http://openwalls.com/image?id=20115, Licence Creative

Commons Attribution 3.0 Unported (CC BY 3.0)

Copyright:

© The Author(s) 2017. Geo-Science Education Journal

© 2017 M.A.Huber. All articles and abstracts are openaccess, distributed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License, which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited.


1 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia)

The first discovery of platinum, palladium, silver and gold in titanomagnetite ores of the „Zhelezny” massif (Kola Peninsula, Russia) Neradovsky* Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., Borozdina S.V., Savchenko Ye.E. Geological Institute of the Kola Science Centre RAS, 184209, Apatity, 14 Fersman Str.; , *corresponding author: nerad@geoksc.apatity.ru

1. INTRODUCTION ABSTRACT

The article reports new data on noble metal minerals first discovered in titanomagnetite ores in the „Zhelezny” massif of the Kolvitsa deposits on the Kola Peninsula (NW Russia). Seventeen phases of PGE minerals were found: atokite Pd3Sn, zvyagintsevite Pd3Pb, insizwaite PtBi2, kotulskite Pd(Te,Bi), michnerite PdBiTe, merenskyite (Pd,Pt)(Te,Bi)2, moncheite (Pt,Pd)(Te,Bi)2, native platinum Pt, plumbopalladinite Pd3Pb2, paolovite Pd2Sn, polarite Pd(Bi,Pb), sobolevskite PdBi, stannopalladinite Pd2Sn2Cu, tetraferroplatinum PtFe, froodite PdBi2; 5 gold and silver mineral phases: acanthite Ag2S, cuproauride Cu3Au, hessite Ag2Te, native silver Ag, empressite AgTe; and 2 mineral phases with admixed Pt, Pd and Ag: altaite PbTe, lead iodide PbI2. Such a wide association of noble metal minerals with titanomagnetite-rich ores confirms a high potential of the (Fe-Ti-V) and (Cu-Ni-Co) deposits in respect of accompanying elements (Pt, Pd, Ag, Au). KEYWORDS: mineralogy, platinum, palladium,

silver, gold, titanomagnetite ore, Kolvitsa deposit.

Intrusions of ultrabasic rocks breaching granulites of the Lapland-Kolvitsa Belt occur in the southern part of the Kola Peninsula. It is about 50 km east of Kandalaksha, near the Kandalaksha-Umba road. Titanomagnetite ores were first discovered in 1966 during the magnetic-gravitational analysis of anomalies (Chalykh et al., 1967). It was used for further exploration as well (Limberis et al., 1970). The Kolvitsa deposit of titanomagnetite ores is associated with the intrusion of ultrabasic rocks among crystalline schists (mainly granulites) in the NE part of the Kolvitsa gabbro-anorthosite massif (Fig. 1). The age of the massif is 2.452.46 Ga (Mitrofanov et al., 1993), while the age of its metamorphism in the granulite facies is 1.91-1.94 Ga (Tugarinov, Bibikova, 1980), respectively. These intrusions are composed of medium-sized pyroxenites, peridotites and olivinites belonging to the clinopyroxenite– wehrlite formation (Yudin, 1980). The largest clinopyroxenite massifs span NW and are as big as 4 × 1 km (Fig. 1). This massif is crossed by an extensive system of tectonic faults breaching peridotites and olivine with titanomagnetite ore, cutting gabbronorite bodies and crystalline schists. The quarry zones are cut into numerous cross sections within 50 m. They form a chain of

Geo-Science Education Journal 2017; 2 (5): 1-15


2 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

massifs spanning in the NW direction for more than 20 km. The most promising of them have numerous horizons of titanomagnetite ore, which was studied using 3 km long and 300 m wide drilling (Fig. 1). These ores are bodies with a high slope of thickness from 5 to 50 m in the range of 40-1500 m below the depth of 350 m. Geological and prospecting works revealed the Kolvitsa titanomagnetite deposit in the largest

“Zhelezny” intrusion (Belyaev, Karpov, 1973). Its major ore minerals are characterized in many previously published works (Neradovsky, 2014; Neradovsky et al., 2014; Voytekhovsky et al., 2016). They are rich in such sulphide minerals, as pyrrhotite, pentlandite, bornite, cubanite, valleriite and mackinawite (Fig. 2a-c, Voytekhovsky et al., 2016).

Fig. 1. The schematic geological map of the Kolvitsa deposit (after Borisov, 2008; Voytekhovsky et al., 2016; changed by authors). a

b

c

Fig 2. Examples of typical titanomagnetite ores with sulphide inclusions: a. without inclusions, b. with an average number of inclusions, c. many inclusions (reflected light, 1N, abbreviations: TiMt – titanomagnetite, Ilm – ilmenite, Spl – spinel, Slf – sulphide). Among the accessory minerals, precious metal minerals occur sporadically (Voytekhovsky et al., 2015; Borozdina et al., 2015). In result of the detailed research, 24 mineral phases of this group were discovered. It makes the deposit the world-leader in the diversity of precious metal

minerals in a titanomagnetite deposit. The article highlights the composition and form of all mineral phases of platinum, palladium, silver, gold in titanium-bearing ores and rocks containing them.

Geo-Science Education Journal 2017; 2 (5): 1-15


3 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

2. METHODS

In 2014-2017 field research and sampling was carried out in the discussed areas. Due to the small size of the grains, all precious metal minerals were identified solely by a scanning electron microscope. The estimation phase analysis was performed using the X-ray spectrometer of the Bruker XFlash-5010 mounted on the SEM Leo 1450 non-standard method with the QUANTAX-200 software.

3. RESULTS

3.1. Platinium and Palladium minerals. Atokite Pd3Sn occurs as inclusions in ilmenite, chalcopyrite and pyroxene. The crystal size is up to 6 μm. Forms of occurrence – irregular and partially cut grains and veinlets. Ptbearing atokite occurs in intergrowths with platinum phases (Fig. 3a, b), i.e. insizwaite and tetraferroplatinum, as well as with stoichiometric atokite. The chemical composition of the atokite is not constant, admixtures of Pt, Au, Fe, Pb, Cu are observed (Table 1). Zvyagintsevite Pd3Pb occurs as inclusions in copper sulphides – chalcopyrite and cubanite (Fig. 2), less often in pyroxene veinlets (Fig. 5). The crystal size is up to 15 μm. Forms of grains are irregular, sometimes cut. Zvyagintsevite coexists with polarite in veins and with sobolevskite, tetraferroplatinum in sulphide phenocrysts (Fig. 6). The vein morphology conforms to metasomatic formations. The intergrowths have a complex structure typical of sequentially crystallized phases. The chemical composition of zvyagintsevite is not constant, admixtures of Au, Bi, Sn, Hg are observed (Table 1). Insizwaite PtBi2 occurs as inclusions in chalcopyrite (Fig. 3a) and in adhesions with

atokite. Forms are irregular, up to 6 μm in size. The chemical composition of insizwaite [wt. %]: Pt 28,0-29,91; Bi 62,96-65,10; admixtures Pd 2.16-4.80; Te 4.97; Sn 2.1. Kotulskite Pd(Te,Bi) was detected as inclusions in chalcopyrite and bornite (Fig. 7). The crystal size is 1-2 μm. The form is irregular. Kotuliskite concentrates near the boundary of chalcopyrite to bornite replacement. It might have formed in result of this event. The chemical composition of the kotulskite contains admixtures of Pt, Ag, Ni and Sb (Table 1). Michnerite PdBiTe occurs as inclusions in chalcopyrite, in intergrowths with Au-silver and galenite (Fig. 8). The form of crystals is irregular; the grain size is less than 2 μm. The chemical composition [wt. %]: Pd 21,47; Bi 43,83; Te 29.43; admixtures Pt 2.15; Rh 0,72; As 1,11; Sb 1,29. Merenskyite (Pd, Pt)(Te, Bi)2 occurs solely outside sulphide phenocrysts in fractures, where it associates with chalcopyrite and pentlandite (Fig. 9, 10). The form of crystals is irregular, scaly, angular, oval, sometimes with rectangular contours, probably cut. The grain size is usually 1-2 μm, individual crystals reach 3 μm, veinlets are as long as 10 μm. The chemical composition is characterized with a Ni admixture (Table 1). Moncheite (Pt, Pd)(Te, Bi)2 occurs mainly in veinlets penetrating rocks with a sulphide dissemination. It rarely produces inclusions on the border of chalcopyrite phenocrysts. It associates with chalcopyrite, altaite, hessite (Fig. 11) and the mineral phase 1 (MF-1) (Fig. 12) in veinlets. The crystal forms are lenticular, scaly, lamellar. Crystals are up to 4 μm in diameter, veinlets are up to 10 μm. The chemical composition is unstable. There are admixtures of Pd, Rh, Ir, Ag, Pb and Bi (Table 1). Native platinium Pt occurs as inclusions in chalcopyrite. The grain forms are irregular (Fig. 13), their size is less than 2 μm. The chemical

Geo-Science Education Journal 2017; 2 (5): 1-15


4 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

composition [wt. %]: Pt 92,68; Ni 0,52; Sn 6.8 (Table 1). Plumbopalladinite Pd3Pb2 occurs as inclusions in cubanite (Fig. 14). It has been observed nowhere, but within phenocrysts. The size of the secretion is less than 2 μm. The grain form is round, droplet, on the one side it is flat, adjacent to a chalcopyrite plate. It might have occurred in the period of decomposition of the chalcopyritecubanite solid solution. The chemical composition [wt. %]: Pd 44,69, Pb 51,31 (Table 1). Paolovite Pd2Sn was found as an inclusion in cubanite, which is a product of decomposition of the chalcopyrite-cubanite solid solution. The size of a paolovite grain is 1-3 μm, its form is lenticular (Fig. 15). The chemical composition [wt. %]: Pd 64,92; Sn 35.08 (Table 1). Polarite Pd (Bi, Pb) occurs in veinlets along fractions cutting the titanomagnetite ore and the disseminated sulphide mineralization, as well as in chalcopyrite (Fig. 5, 16). Polarite associates with later chalcopyrite in veinlets and with stannopalladinite in inclusions. The polarite size does not exceed 2 μm and 8 μm in the vein. The chemical composition is provided in Table 1. It is characterized by admixtures of Pb, Au and Hg. Sobolevskite PdBi commonly occurs in different associations in chalcopyrite, clinopyroxene and spinel (Fig. 18), coexists with cuproauride, zvyagintsevite, tetraferroplatinum and froodite (Fig. 6). The form of grains is lenticular in veins and isometric-irregular in phenocrysts. Sometimes flat surfaces, probably facets, are observed. The grain size is commonly less than 1-2 μm, individual grains are up to 15-20 μm, veinlets are up to 7 μm. The chemical composition is provided in Table 1. Note a large number of admixtures Pt, Rh, Pb, Te, Sb, Sn and Hg.

complex intergrowths with zvyagintsevite, tetraferroplatinum, sobolevskite (Fig. 6) and polarite (Fig. 17). There are intergrowths with zvyagintsevite and polarite. The crystalline forms are isometric, complex, partially cut. The segregations are as big as 2-5 μm. There are admixtures of Au and In (Table 1). Tetraferroplatinum PtFe occurs in veins along cracks and in sulphide phenocrysts, in particular, in chalcopyrite. In the latter tetraferroplatinum is present in monomineral grains and in intergrowths with zvyagintsevite, sobolevskite and stannopalladinite (Fig. 6, 19). It forms intergrowths with Pt-bearing atokite in veinlets along pyroxene (Fig. 20). Forms of tetraferroplatinum grains are irregular. Their size is from 0.5 to 10 μm. The chemical composition is provided in Table 1. Froodite PdBi2 creates small particles in cracks, silicates and titanomagnetite (Fig. 21). The grain size is less than 2 μm, forms are irregular, polygonal, lenticular, lamellar, partially reflects forms of cracks, but also have their own forms of growth in cracks, replacing the surrounding mineral. Chains of grains along open and closed cracks are typical. It associates with native bismuth, galenite and acanthite. The entire association deposited after the decomposition of the titanomagnetite solid solution. The chemical composition of froodite is stable, sometimes there is an admixture of Rh and Sn (Table 1).

3.2. Silver and Gold minerals Acanthite Ag2S was discovered as an inclusion in a sulphide phenocryst in association with pyrrhotite, pentlandite and chalcopyrite (Fig. 22). The inclusion is as big as 5 μm, it has an irregular form with signs of substitution of pyrrhotite and pentlandite. The chemical composition is close to stoichiometric [wt. %]: Ag 88,39; S 11,61 (Table 2).

Stannopalladinite Pd2Sn2Cu is usually developed in inclusions in chalcopyrite, where it forms

Geo-Science Education Journal 2017; 2 (5): 1-15


5 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

Cuproauride Cu3Au occurs in veinlets cutting pyroxene (Fig. 23), where it associates with sobolevskite. Compositionally it refers to Pt-bearing cuproauride. Grain forms are lenticular, the lens thickness is about 1 μm, and the lens length is up to 3 μm. The chemical composition [wt. %]: Pd 13,01; Au 57,96; Cu 29,0 (Table 2). Hessite Ag2Te is one of the most common silver minerals in titanomagnetite ores. It is observed in veins (Fig. 24) and inclusions in sulphide phenocrysts (Fig. 25). It often occurs intergrown with moncheite, less often with Au-silver and molybdenite. Segregations of hessite are associated with the late generation of sulfides. Forms of hessite phenocrysts are irregular, rounded, lenticular, typically covered by grains along cracks. The segregations are not bigger than 6 μm. The chemical composition of hessite is shown in Table 2. Silver Ag3Au with 26 to 42.5% gold admixture (Table 2) is widespread. It was one of the last to crystallize. It is often found isolated (Fig. 26), less often in adhesions with platinoids, in particular, with the mineral phase 2, which it overgrows (Fig. 27). Sizes of silver are the largest among those of precious metal minerals and reach 20 μm. The grains are oval, elliptical, sometimes look like cut. Silver occurs in veinlets along chalcopyrite and in phenocrysts in cubanite, titanomagnetite and other minerals. Empressite AgTe was discovered in pyroxene (Fig. 28), in the zone of hydrothermal changes with chlorine. Empressite grains are as big as 1-2 μm, their form s lamellar or tabular. The chemical composition [wt. %]: Ag 37.86; Te 62.14 (Table 2). 3.3. Minerals with admixtures of noble metals.

The precious metal admixture was detected in two rare accompanying minerals, i.e. PtTe altaite (Pd 0.81-0.94, Pt 2.91, wt. %) and PbI2 lead iodide (Table 3) (Ag 2.52 wt. %).

are various combinations of elements, types of mineral phases, high contents of admixtures in phases, development of paragenetic series with sequential changes in the chemical composition of minerals, presence of Hg and I in minerals. These geochemical features, combined with the morphological characteristics of mineral precipitates, are likely to indicate a hydrothermal process in the formation of the observed mineral association and require further research. 2. Minerals of platinum group metals in titanomagnetite ore, according to (Naldrett, 1984, 2003), are not typical. However, in the recent years there were data on a tighter combination of such mineralization (Trofimov, Golubev, 2008; Karyakovski et al., 2016) and on the separation of new-type complex deposits. It allows referring the Kolvitsa deposit to those, where the main type of raw material is Fe-Ti-V ores accompanied by Cu-Ni-Co sulphide mineralization and Pt-Pd-Au mineralization. 3. Thus, the obtained data confirm the high potential of titanomagnetite deposits as a complex raw material not only for production of Fe, Ti and V (Shabalin, 2010), but also for Cu, Ni, Co, rare metals Sc, Ga and noble metals Pt, Pd, Rh, Ir, Au, Ag (Bykhovsky et al., 2007).

ACKNOWLEDGMENTS.

The study was conducted after the NIR No. 0231-2015-0001 with financial support from RFBR Grant No. 1535-20501. The authors thank the colleagues of the Geological Institute KSC RAS for their help in fieldwork: Cand. Sci. A.V. Mokrushin, Cand. Sci. P.A. Serov, Cand. Sci. M.G. Timofeeva, as well as the Geo-Science Education Journal editor M. Huber. TRANSPARENCY DECLARATION

The author declares no conflict of interest.

4. DISSCUSSION AND CONCLISION 1. A wide range of precious metal minerals, mostly Pd, Pt, Au and Ag, occur in the titanomagnetite ores of the Kolvitsa deposit. There

5. REFERENCES

1. 1. Belyaev K.D. Geological background for the prospecting on the Kola

Geo-Science Education Journal 2017; 2 (5): 1-15


6 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

Peninsula and new ways for its development. In: Status and prospects of expanding the mineral resource base of the RSFSR North-West. Leningrad: Nedra, 1973. P. 15–29 (in Russian). 2. Borozdina S.V., Groshev N.Yu., Neradovsky Yu.N., Savchenko Ye.E., Mokrushin A.V. Platinum group minerals and silver in the Por’yerechensky Igneous Complex with titanomagnetite ores (Kola Peninsula). In: Proc. of the 7th All-Russian Youth Sci. Conf. «Minerals: structure, properties and methods of investigation». Yekaterinburg: Fort Dialog-Iset’, 2015. P. 14–15 (in Russian). 3. Byhovsky L.Z., Pahomov F.P., Turlova M.A. Complex titanomagnetite deposits of Russia – major mineral resources for a ferrous metallurgy. Prospect and protection of mineral resources. 2007. № 6. P. 20–23 (in Russian). 4. Minerals of precious metals: Directory. Ed. O.Ye. Yushko-Zaharova et al. Moscow: Nedra, 1986. 272 p. (in Russian). 5. Naldrett A.J. The nature of the distribution and concentration of platinum group elements in various geological environments. Reports of the 27th IGC, Vol. 10, Mineralogy. M .: Publ. House «Science», 1984. P. 10–27.

Gavrishev S.Ye. Magnitogorsk: MSTU, 2014. P. 158–167 (in Russian). 9. Shabalin L.I. Titanomagnetite deposits (geology, genesis, prospects for industrial use). Novosibirsk: Siberian Research Institute of Geology, Geophysics and Mineral Resources, 2010. 174 p. (in Russian). 10. Sulfide Cu-Ni ores of Norilsk deposits. Ed. by Genkin A.D. et al. Moscow: Nauka, 1981. 234 c. 11. Trofimov N.N., Golubev A.I. The Pudozhgorsky precious metal titanomagnetite deposit. Petrozavodsk: Karelia Sci. Center of RAS, 2008. 123 p. (in Russian). 12. Voytehovsky Yu.L., Neradovsky Yu.N., Borozdina S.V., Groshev N.Yu, Mokrushin A.V. Geology and composition of complex titaniumvanadium ores of the Kolvitsa deposit (Kola Peninsula). In: Deposits of strategic metals: placement patterns, sources of the substance, the conditions and mechanisms of formation. AllRussian Conf. dedicated to the 85th anniversary of IGEM. Moscow, 25-27 Nov., 2015. Proc. of M.: IGEM of RAS, 2015. P.180–181 (in Russian).

7. Neradovsky Yu.N., Voytehovsky Yu.L., Grishin N.N., Kasikov A.G., Rakitina Ye.Yu. Sulfide mineralization in titanomagnetite ores of the Kolvitsa deposit (Kola Peninsula). In: Science and education 2014. Murmansk, 2014. P. 858-863 http://www.mstu.edu.ru/science/actions/confere nces/files/nio-9.pdf (in Russian).

13. Voytehovsky Yu.L., Neradovsky Yu.N., Borozdina S.V., Groshev N.Yu, Mokrushin A.V., Savchenko Ye.E., Malygina A.V. Complex titanomagnetite ores of the Kolvitsa deposit (Kola Peninsula). Regional geology, mineralogy and mineral resources of the Kola Peninsula. Proc. of the XIII All-Russian (with Int. participation) Fersman scientific session dedicated to the 50th anniversary of the Geologist’s Day. Apatity, 4-5 April, 2016. Apatity: Publ. house K & M, 2016. P.67–69 (in Russian).

8. Neradovsky Yu.N. The study of the phase composition of titanomagnetite (in the case of the Kolvitsa deposit, Kola Peninsula). In: Rational use of mineral resources, ed. by

14. Yudin B.A. Gabbro-labradorite formation of the Kola Peninsula and its metallogeny. Leningrad: Nauka, 1980. 169 p. (in Russian).

6. Naldrett A.J. Magmatic sulfide deposits of Cu-Ni and PGE ores. Saint-Petersburg: SPbSU, 2003. 483 p. (in Russian).

Geo-Science Education Journal 2017; 2 (5): 1-15


7 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

6. GRAPHIC ATTACHEMENT

Fig.3. Grain forms of atokite (Atk) and insizwaite (Ins). Numerous grains are well-observed on atokite, a – intergrowth of Pt-atokite with insizwaite; b – intergrowth of atokite with Pt-atokite. Hereinafter the picture is made in back scattered electrons using Sem Leo-1450.

Fig. 4. An inclusion of zvyagintsevite (Zvg) in Fig. 5. A segregation of zvyagintsevite (Zvg), chalcopyrite (Ccp). polarite (Plr) and chalcopyrite (Ccp) in cracks along pyroxene (Px).

Fig. 6. An intergrowth of zvyagintsevite (Zvg) Fig. 7. A kotulskite grain (Kot) in chalcopyrite with sobolevskite (Sob), tetraferroplatinum (Fpt) (Ccp) with bornite (Bn). and stannopalladinite (Snp): a heterogenity of the vyagintsevite composition is visible.

Geo-Science Education Journal 2017; 2 (5): 1-15


8 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi� massif (Kola Pen., N Russia).

Fig.8. An intergrowth of michnerite (Mch) with Au-silver (Ag) and galenite (Gn) in chalcopyrite (Ccp).

Fig. 9. A segregation of merenskyite (Mer) with chalcopyrite (Ccp) and pentlandite (Pn) in olivine (Ol).

Fig. 10. A chain of merenskyite grains (Mer) in a Fig. 11. A segregation of moncheite (Mon) in a veinlet of later silicate along olivine (Ol). veinlet with chalcopyrite (Ccp) and hessite (Hes) along olivine (Ol).

Fig. 12. A segregation of moncheite (Mon) in a Fig. 13. A form of segregation of platinium (Pt) veinlet with the mineral phase 1 (MF-1) in ilmenite with chalcopyrite (Ccp) in pyroxene (Px). (Ilm).

Geo-Science Education Journal 2017; 2 (5): 1-15


9 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

Fig. 14. A form of segregation plumbopalladinite (Ppd) in cubanite (Cbn).

of Fig. 15. An inclusion of paolovite (Plv) in cubanite (Cbn).

Fig. 16. Veinlets of polarite (Plr) and chalcopyrite Fig. 17. An intergrowth of stannopalladinite (Ccp) in cracks cutting pyroxene (Px) and (Snp) with polarite (Plr) in chalcopyrite (Ccp). amphibole (Amf).

а

b

Geo-Science Education Journal 2017; 2 (5): 1-15


10 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

c d Fig. 18. Segregation forms of sobolevskite (Sob) in veins on titanomagnetite (TiMt) (a) and in phenocrysts: b – in chalcopyrite (Ccp), c – with chalcopyrite in pyroxene (Px), d – with spinel (Spl) and froodite (Fro) in titanomagnetite.

Fig. 19. An intergrowth of tetraferroplatinum Fig. 20. An intergrowth of tetraferroplatinum (Fpt) with zvyagintsevite (Zvg) and sobolevskite (Fpt) with Pt-bearing atokite (Pt-Atk) in (Sob) in chalcopyrite (Ccp). pyroxene (Px).

Fig.21. Chain of froodite grains (Fro) in veinlets along olivine (Ol) (a) and titanomagnetite (TiMt) (b).

Geo-Science Education Journal 2017; 2 (5): 1-15


11 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi� massif (Kola Pen., N Russia).

Fig. 22. A segregation of acanthite (Akn) in a Fig. 23. A segregation of cuproauride (Cuau) and sulphide phenocryst in association with sobolevskite (Sob) in a crack on pyroxene (Px). pyrrhotite (Po), pentlandite (Pn) and chalcopyrite (Ccp).

Fig. 24. A segregation of hessite (Hes) in a veinlet Fig. 25. A segregation of hessite (Hes) in cubanite with chalcopyrite (Ccp) and pentlandite (Pn) on (Cbn). olivine (Ol).

Fig. 26. A segregation of silver (Ag) in Fig. 27. An intergrowth of silver (Ag) with the chalcopyrite (Ccp). mineral phase 2 (MF-2).

Geo-Science Education Journal 2017; 2 (5): 1-15


12 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

Fig. 28. A segregation of empressite (Emp) with chlorite (Chl) in pyroxene (Px).

Received: 4 September 2017; Revised submission: 30 September 2017; Accepted: 5 Octouber 2017 Copyright: © The Author(s) 2017. This is an open access article licensed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License, which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited. http://journals.mahuber.com/index.php/gsej

Geo-Science Education Journal 2017; 2 (5): 1-15


13 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

7. TABLE ATACHEMENT Table 1. Data on the chemical composition of Pt and Pd minerals obtained using the scanning electron microscope LEO-1450 with the energy dispersive spectrometer Bruker XFlash-5010. Mineral Atokite Pt-atokite Pt-atokite Pt-atokite Pt-atokite Zvyagintsevite Zvyagintsevite Zvyagintsevite Zvyagintsevite Zvyagintsevite Zvyagintsevite Zvyagintsevite Zvyagintsevite Zvyagintsevite Insizwaite Insizwaite Kotulskite Kotulskite Kotulskite Michnerite Merenskyite Merenskyite Moncheite Moncheite

Pt 36.06 25.58 14.00 4.84

29.91 28.00 13.12 4.56 2.15 12.19 12.21 35.93 33.59

Pd 68.67 41.51 30.82 50.09 60.46 59.57 59.89 59.29 59.44 60.14 59.82 59.86 58.58 62.59 2.16 4.80 38.12 21.27 20.15 21.47 15.30 17.07

Rh

Ir

In

Ag

Au 3.56 7.17

Pb 3.44 2.05 1.87

0.84 0.42 1.44 0.69

2.43

Fe

Cu

Ni

2.73

13.2 7.93

0.28

As

Sb

40.43 40.11 40.71 40.56 36.78 34.42 34.87 35.49 25.48

0.28

0.72

1.11 0.42 0.33

0.86 1.29

Bi

4.38 2.66 5.26 62.96 65.10 37.11 36.81 41.83 48.83 9.96 9.86 17.80 17.31

Te

Sn 24.54 13.21 25.37 26.12 34.70

5.64 4.97 2.10 24.77 26.09 32.51 29.43 61.13 60.53 46.27 49.10

Hg

3.09 4.92 0.47 1.83 0.35

Σ 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Geo-Science Education Journal 2017; 2 (5): 1-15


14 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

Table 1. Continuation Mineral Moncheite Moncheite Moncheite Moncheite Platinum Plumbopalladinite Paolovite Polarite Polarite Polarite Polarite Sobolevskite Sobolevskite Sobolevskite Sobolevskite Sobolevskite Sobolevskite Stannopalladinite Stannopalladinite Stannopalladinite Stannopalladinite Tetraferroplatinum Tetraferroplatinum Tetraferroplatinum Froodite Froodite Froodite Froodite Froodite

Pt 30.89 31.35 35.50 31.21 92.68

2.18

78.34 71.56 70.14

Pd 2.82 2.87 1.10 2.10

Rh 0.91 1.56 0.94 2.64

Ir

In

Ag

Au

0.18 2.45

Pb

Fe

Cu

Ni

As

Sb

2.66 1.18 1.17

0.02

Bi 11.72 2.13 1.42 0.98

Te 53.65 59.25 59.87 59.42

0.52 44.69 64.92 42.23 33.71 59.10 53.31 34.30 35.30 32.87 21.32 44.72 36.42 56.86 54.83 57.24 59.08

Hg

6.8

51.31 35.08 0.26 2.02

11.02 18.51 13.03 18.00

1.22 1.26 1.51 1.27 1.29

5.48 1.58 1.92 3.31 1.34

0.93 1.90 4.99

1.47

11.40 15.50 14.07

3.76 17.82 20.72 23.43

3.95 23,65 19,61 20,60 20,84 20,13

Sn

0,77

9.49 8.93 8.04 11.70 1.69 3.80 6.43

46.76 47.37 18.68 22.67 60.14 63.86 69.93 71.12 52.09 62.30 2.83 7.40 6.96

0.15 9.20 3.20 0.46 0.84

1.71 0.46

12.66 6.73 7.35 25.44

2.15

75,01 79,61 79,40 79,16 79,87

1,34

2.50 2.31 1.35

Σ 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Geo-Science Education Journal 2017; 2 (5): 1-15


15 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| Firsth discovery of the platinium, palladium, silver and gold minerals in tytanomagnetite ore of „Zheleznyi” massif (Kola Pen., N Russia).

Table 2. Data on the chemical composition of Au and Ag obtained using the electron microscope (SEM) LEO1450 fitted with energy dispersion spectrometer Bruker XFlash-5010. Mineral Acanthite Tetraauricupride Hessite Hessite Hessite Hessite Hessite Hessite Hessite Hessite Hessite Hessite Au-silver Au-silver Au-silver Au-silver Au-silver Au-silver Au-silver Empressite

Pd

Ag 88.39

13.01

0,40

Au

Fe

57.96 57.47 62.64 61.90 61.12 60.89 59.57 60.41 60.22 59.33 61.31 62.50 73.58 71.00 73.55 61.26 69.97 57.45 37.86

Cu

S 11.61

Te

29.00 42.53 37.36 38.10 38.88 39.11 40.43 39.59 39.78 40.67 38.69

34.96 26.42 28.44 26.05 38.74 30.03 42.55

2,54 0.56

62.14

Σ 100 99.97 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 3. Chemical composition of rare minerals obtained using the scanning electron microscope LEO1450 with the energy dispersive spectrometer Bruker XFlash-5010. Mineral Altaite Altaite Altaite Lead iodide Lead iodide

Pt

2.91

Pd

Ag

0,94 0,81 2.52

Pb 61.46 62.54 53.70 44.49 57.75

Se 1.67

Te 38.54 34.85 42.57 1.93

I

51.06 42.25

Σ 100 100 99.99 100 100

Geo-Science Education Journal 2017; 2 (5): 1-15


16 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E .| New two (Pd,Ag,Bi)3+xTe, (Pd,Ag,Pb)3+xTe phase, in tytanomagnetite rich ores of the „Zhelezny” massif (Kola Peninsula, N Russia).

New two (Pd,Ag,Bi)3+xTe i (Pd,Ag,Pb)3+xTe phase, in tytanomagnetite rich ores of the „Zhelezny” massif (Kola Peninsula, N Russia) Neradovsky J.N., Groshev H.J., Voytekhovsky J.L., Borozdina C.V., Savchenko E.E. Geological Institute of the Kola Science Center RAS, 184209, Apatity, 14 Fersmana St.; corresponding author: nerad@geoksc.apatity.ru

ABSTRACT

The article presents data on the discovery of new noble metals found in the composition of titanium-magnesium ore in the "Zhelezny" massif in the Kolvitsa deposit on the Kola Peninsula. These are the phases of the mineral phase (Pd,Ag,Bi)3+xTe and (Pd,Ag,Pb)3+xTe which are accompanied another PGE, Ag, Ay, Se, I minerals. KEYWORDS: new PGE phases, titanomagnetite

ore, Kolvitsa deposit.

(Neradovsky et al., 2017) and two brand new phases termed as MF-1 and MF-2 were discovered. Their characteristics are provided below. This text is a brief scientific report. 2. METHODS

In 2014-2017 field research and sampling was carried out in the discussed areas. Due to the small size of the grains, all precious metal minerals were identified solely by a scanning electron microscope. Estimation phase analysis was performed using the X-ray spectrometer of the Bruker XFlash-5010 mounted on the SEM Leo 1450 non-standard method with the QUANTAX-200 software.

1. INTRODUCTION 3. RESULTS

Intrusions of ultrabasic rocks breaching granulites of the Lapland-Kolvitsa Belt occur in the southern part of the Kola Peninsula. They form a chain of massifs spanning in the northwest direction for more than 20 km. These intrusions are composed of medium-sized pyroxenites, peridotites and olivitinites belonging to the clinopyroxenite - wehrlite formation (Yudin, 1980). Among the accessory minerals, precious metal minerals occur sporadically (Voytekhovsky et al., 2015; Borozdina et al., 2015). In result of the detailed research, 24 mineral phases of this group

In the palladium mineral phases compositionally unusual phases were discovered. They showed the permanent content of palladium, tellurium and lead with admixed bismuth (Pd,Ag,Bi)3+xTe (MF-1) or silver (Pd,Ag,Pb)3+xTe (MF-2) (Table 1). Both phases occur frequently, usually as intergrowths with the earlier originated bismuth phase. The approximate estimation of their chemical composition best satisfies the formulae (Pd,Pb,Bi)3+xTe or (Pd,Pb,Ag)3+xTe. The

Geo-Science Education Journal 2017; 2 (5): 16-19


17 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| New two (Pd,Ag,Bi)3+xTe, (Pd,Ag,Pb)3+xTe phase, in tytanomagnetite rich ores of the „Zhelezny” massif (Kola Peninsula, N Russia).

separation of the phases is usually constrained by fractures cutting silicate minerals (Fig. 1), but they were also observed in sulphide inclusions. These phases are often euhedral, especially those crystallized in sulphides - chalcopyrite, cubanite

and troilite. There are also isometric (Fig. 2) and tabular crystals as big as 2-3 μm. Dominant are the intergrowths of phases occurring as irregular aggregates subjected to the structure of a surrounding cavity (Fig. 3).

Fig. 1. Separation of the mineral phase 1 (MF-1) with Fig. 2. Intergrowth of the mineral phases 1 and 2 (MFchalcopyrite veins (Ccp) cutting pyroxene (Px) 1 and MF-2) in chalcopyrite (Csr) with visible euhedral crystals of MF-1.

Fig. 3. Intergrowth of the mineral phases 1 and 2 (MF- Fig. 4. Intergrowth of the mineral phases 1 and 2 (MF1 and MF-2) in a veinlet along pyroxene (Px). 1 and MF-2) in pyroxene (Px).

The silver phase (MF-1) overgrowths and frames the bismuth one (MF-2) (Fig. 4). Subsequently, Au overgrowths the silver phase. These phases are subject to further research. 4. DISSCUSSION AND CONCLISION

In the discussed deposits there are more than twenty phases of PGE, Au and Ag accompanied by titanomagnetite ores. It seems to be an unusual phenomenon, discussed in detail in the previous article (Neradovsky et al., 2017).

Along with remaining mineral phases, tellurides formed at the stage of the hydrothermal phase separation from solid solutions and microglucoses in sulphides. Their later character is backboned by the fact that cut the remaining mineral phases, including pyroxene replaced by amphibole. Determining their crystallographic properties requires further research. It is uneasy due to the very small size of these phases in the discussed rocks.

Geo-Science Education Journal 2017; 2 (5): 16-19


18 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| New two (Pd,Ag,Bi)3+xTe, (Pd,Ag,Pb)3+xTe phase, in tytanomagnetite rich ores of the „Zhelezny” massif (Kola Peninsula, N Russia).

ACKNOWLEDGMENTS.

The study was conducted after the NIR No. 0231-2015-0001 finacially supported by RFBR Grant No. 15-3520501. The authors thank the colleagues of the Geological Institute KSC RAS for their help in fieldwork: Cand.Sci. A.V. Mokrushin, Cand.Sci. P.A. Serov, Cand.Sci. M.G. Timofeeva, as well as the Geo-Science Education Journal editor M. Huber. TRANSPARENCY DECLARATION

The author declares no conflict of interest.

5. REFERENCES

1. Belyaev K.D. Geological background for the prospecting on the Kola Peninsula and new ways for its development. In: Status and prospects of expanding the mineral resource base of the RSFSR North-West. Leningrad: Nedra, 1973. P. 15–29 (in Russian). 2. Borozdina S.V., Groshev N.Yu., Neradovsky Yu.N., Savchenko Ye.E., Mokrushin A.V. Platinum group minerals and silver in the Por’yerechensky Igneous Complex with titanomagnetite ores (Kola Peninsula). In: Proc. of the 7th All-Russian Youth Sci. Conf. «Minerals: structure, properties and methods of investigation». Yekaterinburg: Fort Dialog Iset, 2015. P. 14–15 (in Russian). 3. Byhovsky L.Z., Pahomov F.P., Turlova M.A. Complex titanomagnetite deposits of Russia – major mineral resources for a ferrous metallurgy. Prospect and protection of mineral resources. 2007. № 6. P. 20–23 (in Russian). 4. Minerals of precious metals: Directory. Ed. O.Ye. Yushko-Zaharova et al. Moscow: Nedra, 1986. 272 p. (in Russian). 5. Naldrett A.J. The nature of the distribution and concentration of platinum group elements in various geological environments. Reports of the 27th International Geological Congress, Vol.10, Mineralogy. M .: Publ. House «Science», 1984. P.10–27.

6. Naldrett A.J. Magmatic sulfide deposits of Cu-Ni and PGE ores. Saint-Petersburg: SPbSU, 2003. 483 p. (in Russian). 7. Neradovsky Yu.N., Voytehovsky Yu.L., Grishin N.N., Kasikov A.G., Rakitina Ye.Yu. Sulfide mineralization in titanomagnetite ores of the Kolvitsa deposit (Kola Peninsula). In: Science and education 2014. Murmansk, 2014. P. 858-863 http://www.mstu.edu.ru/science/actions/confere nces/files/nio-9.pdf (in Russian). 8. Neradovsky Yu.N. The study of the phase composition of titanomagnetite (in the case of the Kolvitsa deposit, Kola Peninsula). In: Rational use of mineral resources, ed. by Gavrishev S.Ye. Magnitogorsk: MSTU, 2014. P. 158–167 (in Russian). 9. Shabalin L.I. Titanomagnetite deposits (geology, genesis, the prospects for industrial use). Novosibirsk: Siberian Research Institute of Geology, Geophysics and Mineral Resources, 2010. 174 p. (in Russian). 10. Sulfide Cu-Ni ores of Norilsk deposits. Ed. by Genkin A.D. et al. Moscow: Nauka, 1981. 234 c. 11. Trofimov N.N., Golubev A.I. The Pudozhgorsky precious metal titanomagnetite deposit. Petrozavodsk: Karelia Science Center of RAS, 2008. 123 p. (in Russian). 12. Voytehovsky Yu.L., Neradovsky Yu.N., Borozdina S.V., Groshev N.Yu, Mokrushin A.V. Geology and composition of complex titaniumvanadium ores of the Kolvitsa deposit (Kola Peninsula). In: Deposits of strategic metals: placement patterns, sources of the substance, the conditions and mechanisms of formation. AllRussian Conference dedicated to the 85th anniversary of IGEM. Moscow, 25-27 November, 2015. Proc. of M.: IGEM of RAS, 2015. P.180–181 (in Russian). 13. Voytehovsky Yu.L., Neradovsky Yu.N., Borozdina S.V., Groshev N.Yu, Mokrushin A.V., Savchenko Ye.E., Malygina A.V. Complex titanomagnetite ores of the Kolvitsa deposit (Kola Peninsula). Regional geology,

Geo-Science Education Journal 2017; 2 (5): 16-19


19 | Neradovsky Yu.N., Groshev H.Yu., Voytekhovsky Yu.L., BorozdinaS.V., Savchenko Ye.E.| New two (Pd,Ag,Bi)3+xTe, (Pd,Ag,Pb)3+xTe phase, in tytanomagnetite rich ores of the „Zhelezny” massif (Kola Peninsula, N Russia).

mineralogy and mineral resources of the Kola Peninsula. Proc. of the XIII All-Russian (with international participation) Fersman scientific session dedicated to the 50th anniversary of the Geologist’s Day. Apatity, 4-5 April, 2016. Apatity: Publ. house K & M, 2016. P.67–69 (in Russian).

14. Yudin B.A. Gabbro-labradorite formation of the Kola Peninsula and its metallogeny. Leningrad: Nauka, 1980. 169 p. (in Russian).

Received: 4 September 2017; Revised submission: 30 September 2017; Accepted: 5 Octouber 2017 Copyright: © The Author(s) 2017. This is an open access article licensed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License, which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited. http://journals.mahuber.com/index.php/gsej

Geo-Science Education Journal 2017; 2 (5): 16-19


20 | Huber M., Wypych B, Serov.P. | Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalysis aspects.

Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalyzis aspects Huber M.A1*, Wypych B.1, Serov P.2 1

Maria Curie- Skłodowska University , Al. Kraśnicka 2d, 20-718 Lublin, Geological Institute of the Kola Science Center RAS, 184209, Apatity, 14 Fersmana St, Russia mhuber@poczta.umcs.lublin.pl, *Corresponding author 2

ABSTRACT

In this paper was make a new study of mineral veins from the eastern slopes Ornak mountain when was made a mining works since XV to XVII cc. In these region are located a mineral veins with quartz-barite-tetraedrite mineralization with addition of sulfides. These minerals was identyfited by SEM-EDS at UMCS in Lublin, Poland. KEYWORDS: Ore minerals, tetraedrite, Ornak,

Tatra National Park, geotourism, geopark. 1. INTRODUCTION

The Western Tatra are built with, inter alia, crystalline metamorphic rocks, forming a cover of the Tatran granitoids. In these rocks there are present numerous cracks and tectonic faults. In some of them, the hydrothermal vein is associated with rigid granitoid intrusion. These veins were the subject of exploitation in the 15th century (as part of the search for silver and copper) and definitively search and mining works were stopped in this area in the 1860s after the end of financing of mining by the funds of King Stanisław August Poniatowski. Since then, in this area has been over time undergoes and natural erosion processed performing. At the beginning of the 20th century, some of the tunnels were visible, today they are overgrown

with tall forests and destroyed by slope processes. They are difficult to access (no trails) and poorly legible in the area. However, these traces are still visible in the western part of the Ornak massif, in the Pod Banie couloir, where the old crusts are still visible. A. Paulo on the map during his fieldwork. The authors searched the couloir (after obtaining the consent of the Ministry of the Environment and the authorities of the Tatra National Park) and after the photographic documentation was taken, samples of rocks were collected, which was subsequently investigated at the Department of Geosciences and Litosphere Protection at the Faculty of Earth Sciences and Spatial Management at Maria Curie-Skłodowska University in Lublin with cooperation of Russian Academy of Sciences in Apatity. 2. METHODS

After a reconnaissance in the field, samples of rocks were brought and then made from them, which were subjected to observation by optical Leica DM2500P polarized microscope in reflected light. Subsequently, these samples were examined in a micro area using the Hitachi SU6600 Scanning Electron Microscope with EDS. The results of these analyzes are presented below..

Geo-Science Education Journal 2017; 2 (5): 20-30


21 | Huber M., Wypych B, Serov.P. | Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalysis aspects.

Fig 1. Documentation of the exposure in the heap and heaps (collapsed glass at the top) and flattening in the slope with a heap (bottom).

Geo-Science Education Journal 2017; 2 (5): 20-30


22 | Huber M., Wypych B, Serov.P. | Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalysis aspects.

3. RESULTS

Several samples were taken from a tunnel located on the southern slope of the Spod Bani couloir, slightly below the rock threshold on the Spod Banie stream, about 20-30 meters above the local bottom of the valley. In this place, there is a certain slope in the slope probably connected with the mining activity, already heavily covered with forest and with visible slope processes. At some point you can see some hollows in the slope showing the fallen tunnel, and on the opposite side of the slope, below the flattening is

a heap of visible sharp-edged crusts of the exploited rocks (Fig. 1). Precise analysis of these rocks shows that they have a heterogeneous layered structure, their main component being quartz, making up the veins and ore minerals rarely reaching up to 1 cm. However, their original concentration could be much larger, since the observed rocks form a heap and were therefore rejected by the miners. Macroscopic studies reveal the interesting nature of these rocks (Fig. 2).

Fig 2. Macrophotography of veins with visible mineral associations (samples on millimeter paper, as part of their size scale, sample numbering).

Studies of these samples show their layering (indicated above). The boundary zone, highlighted by iron oxides (mainly hematite) and the mineral content of the vein, which dominates the quartz background with the occurring baryte and the ore minerals of various sizes, is visible (Fig 2). In the microscope image is visible quartz, which creates large crystals arranged in the rock in a random and compact manner. Between these crystals there are minor plagioclase, orthoclase, and single zircone and fluoroapatite crystals (Fig 3). The content of

these minerals are visible in numerous cracks systems and microcracks that break down these crystals along the migration of ore mineralization. Leucocratic crystals are accompanied by barite, sometimes forming significant dopants that fill up to 30% of the volume of the rock specimen. This is generally a light-colored, opaque, barred variety of barite (Fig. 3). In the interstices of these minerals are located ore phase. The main ore is tetraedrite, which forms fillings between crystals of quartz, palisade-drum crystals, and larger aggregates in

Geo-Science Education Journal 2017; 2 (5): 20-30


23 | Huber M., Wypych B, Serov.P. | Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalysis aspects.

the hematite-rich zone (Fig. 3). In the microscope image these crystals are visible in the

form of multiple aggregates, sometimes with some automorphic features (Fig. 3).

Geo-Science Education Journal 2017; 2 (5): 20-30


24 | Huber M., Wypych B, Serov.P. | Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalysis aspects.

Fig 3. Microphotographs of the exits with marked areas of microanalysis. (magnifier and microscope).

Microanalysis study of the barite shows that there are also small admixtures of arsenic, silver, lanthanum and neodymium (fig 6). Usually, however, they do not exceed 3% by weight. In the intersticia of these minerals and in the zones between the hematite and in the vicinity of the silicate there are sulphides represented mainly by chalcopyrite, sometimes with admixture of bile and galena. Galena usually produces small patches in chalcopyrite or sometimes isolated small crystals in the vicinity of sulphides (Fig 3). In the oxidized zone, malachite and siderite appear (Fig 3). Microexcavation studies have allowed us to determine the chemical composition of the above mentioned ore minerals. The tetraedite test shows that in addition to Sb, there are other minor dopants associated with the solid solution of this phase: arsenic, silver (iron), iron (julianite). The proportion of these admixtures is variable but usually prevails over tetraedrite, reaching a minimum of 50 and a maximum of 100% (Fig. 6), on average 82% of volume. For tennantite respectively: 0% minimum, 12% maximum and 4.8% on average, for freibergite respectively 0%, 11.51% and 0.36%, for julianite 0%, 46.8%, 12.3% fig 5c).

Fig 4. Exemplary microanalysis spectra showing tetraedrite, chalcopyrite and galenite, occurring in the discussed rocks.

Geo-Science Education Journal 2017; 2 (5): 20-30


25 | Huber M., Wypych B, Serov.P. | Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalysis aspects.

In addition to tetraedrite, its secondary products such as oxides and copper and antimony sulphates are sometimes found with a small iron admixture (Table 1).

Fig 5. Microanalysis spectra of the Bismuthynite

Geo-Science Education Journal 2017; 2 (5): 20-30


26 | Huber M., Wypych B, Serov.P. | Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalysis aspects.

Fig. 6. Diagrams of the identified phases and dependencies of the examined minerals: circular showing ore minerals, columns showing tetraedrite composition (statistically), measured values: tetraedrite, chalcopyrite, other minerals.

Geo-Science Education Journal 2017; 2 (5): 20-30


27 | Huber M., Wypych B, Serov.P. | Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalysis aspects.

4. DISSCUSSION

By investigating the Spod Bani couloir, one can conclude that their analysis shows four mineral associations: the first one is mainly represented by iron oxides and is the cortical nature of the veins, probably related to primary microlights in metamorphic rocks surrounding intruders. The processes of migration of rock components subjected to metamorphic processes have evolved. In these works, a second mineral association represented by silicates, mainly quartz, has developed, filling the entire rocky area with small admixtures. Quartz is associated with barite, sometimes forming large clusters next to quartz. The third mineral association is the phase of arsenic and antimony found mainly as tetraedrite with a mixture of tennantite, freibergite and julianite. These minerals are quite well visible in the rock, sometimes forming large clusters, but most often occur in microscopic zones. The fourth generation is the sulphide minerals represented by chalcopyrite and galena which is accompanied by bismuthynide. These minerals are found only in microbial zones, and in tetraedrite interstitium, developing in the neighborhood of antimony, but also in the quartz interstitial in interstices of these crystals. 5. CONCLUSION

The studied slopes of the Spod Banie couloir in the eastern slopes of Ornak show the presence of old mining areas, but today it is difficult to read due to the difficult access (following the trails), active slope processes that contribute to the collapse of the tunnel overgrown with vegetation. Adequate observations, however, allow to locate some of these places (in the trees where the ores are excavated from the heap), and from the slopes where single crusts of rock and ore mineralization contrast with the surrounding rocks. Analysis of these veins shows that they

have a multi-stage character, are made up of several mineral associations, and are also generally weathered. Their nature is closely related to the tectogenesis of the metamorphic rocks and the various of after-magmatic and hydrothermal processes accompanying the rigid granitoid intrusion, as well as the movements which caused the rocks to be cut off from the indigenous zones and displaced them into a separate place during the movements of the Tatras. At present, the nature of these veins does not represent an economic resource, but their thorough analysis is the key to understanding the processes accompanying the occurence of magmatic intrusion in the Tatra Mountains and processes related to their movement. TRANSPARENCY DECLARATION

The author declares no conflict of interest. ACNOWLOGEMENT The text was created as a

result of receiving the Student Government Grant of the Maria Curie-Skłodowska University for the 2017 summer semester. 6. REFERENCES

1. 1. Bac-Moszaszwili M. (1996). Tertiary-Quaternaty uplift of the Tatra massif. The Tatra National Park. Nature and Man, Ist Polish Conf. Proc. Zakopane, October 6-9. 1995, 1, 68-71. 2. Bolewski A., Manecki A. (1992). Mineralogia szczegółowa. Wydawnictwo PAE, Warszawa. 3. Burda J. and Gawęda A. (2009). Shearinfluenced partial melting in the Western Tatra metamorphic complex: geochemistry and geochronology. Lithos 110(1–4): 373–385. DOI 10.1016. 4. Burda J., Gawęda A. and Klötzli U. (2013). U-Pb zircon age of the youngest magmatic activity in The High Tatra granites (Central Western Carpathians). Geochronometria 40(2) 2013: 134-144 DOI 10.2478/s13386-013-0106-9.

Geo-Science Education Journal 2017; 2 (5): 20-30


28 | Huber M., Wypych B, Serov.P. | Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalysis aspects.

5. Gawęda A., Paulo A. (1998). Postmagmatic mineralization in the shear-zones in the western Tatra Mts. PTMin, Special Papers, 11, 84-86 [in Polish]. 6. Gawęda A., Goławska B., Jędrysek M. O., Leichman J., Paulo A., Włodyka R. (2001). Carbonate mineralization in the Tatra Mts. crystalline basement. PTMin – Special papers, 18, 39-42. 7. Gawęda A., Burda J. (2004). Metamorphic evolution and deformation in the crystalline complex of the Western Tatra Mountains. Geologia, Univ. Silesia Publishing House, 16, 153-185. 8. Gawęda A., Jędrysek M. O. and Zieliński G. (2007).Polystage mineralization in tectonic zones in Tatra Mountains, Western Carpathians. Granitoids in Poland, AM Monograph No. 1, 341-353. 9. Gawęda A., Szopa K. and Chew D. (2014). LA-ICP-MS U-Pb dating and ree patterns of apatite from the Tatra Mountains, Poland as a monitor of the regional tectonomagmatic activity. Geochronometria 41(4) : 306–314. DOI 10.2478/s13386-013-0171-0. 10. Gaweł A.: Itinerarium po śladach robót górniczych w „Srebrnych górach” w Tatrach Zachodnich, „Prace z zakresu nauk geologicznych”, Wydawnictwo Geologiczne, Warszawa 1966, s.7-26 11. Jost H.:”O górnictwie i hutnictwie w Tatrach Polskich”, Wydawnictwo Naukowo-Techniczne, Warszawa 1962 12. Jost H.: „Górnictwo i hutnictwo w Tatrach”, Zakład Geografii Miast i Turyzmu Uniwersytetu Łódzkiego, Łódź 1986

13. Liberak M.: Górnictwo i hutnictwo w Tatrach polskich”, „Wierchy” Rok 5., Kraków 1927, s.13-30 14. Huber M.A., Wypych B. (2017) Mineralizacja rudna żył wschodnich stoków Ornaku (Tatry Zachodnie) w świetle badań w mikroobszarze, GeoScience Education Journal, vol 5, 12-22 (in print). 15. Passendorfer E. (1978). Jak powstały Tatry. Wydawnictwo geologiczne, Warszawa. 16. Paulo A. (1970). The barite-quartzsulphide mineralisation in the Tatra Mountains in the light of new data. Prace PIG, 59, 255-270 17. Piestrzyński A. (1992). Wybrane materiały do ćwiczeń z petrografii rud. Wydawnictwo AGH, Kraków. 18. Pilniewicz M. 1995, Geodezyjna inwentaryzacja ekspolatacji górniczych w Tatrach Zachodnich. http://galaxy.uci.agh.edu.pl/~7dni/hist.ht m 19. Szaflarski J. (1972). Poznanie Tatr. Szkice z rozwoju wiedzy o Tatrach do połowy XIX wieku. Wydawnictwo Sport i Turystyka, 618 pp. [in Polish] 20. Wątocki W. (1950). Ore veins in the Ornak zone in the Western Tatra Mts. Rocznik PTG, 20 (1-2), 11-60. [in Polish].

Received: 24 Juni 2017; Revised submission: 30 Juni 2017; Accepted: 5 Julay 2017 Copyright: © The Author(s) 2017. This is an open access article licensed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License, which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited. http://journals.mahuber.com/index.php/gsej

Geo-Science Education Journal 2017; 2 (5): 20-30


29 | Huber M., Wypych B, Serov.P. | Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalysis aspects.

7. TABLE ATTACHEMENT point

C

O

F

Mg

04TT17(13)_pt1

2.32

10.58

0.48

04TT17(13)_pt2

2.11

10.68

04TT17(13)_pt3

2.13

9.45

04TT17(13)_pt4

2.22

04TT17(13)_pt5 04TT17(13)_pt6 04TT17(13)_pt7

2.24

7.45

04TT17(13)_pt8

2.40

8.14

04TT17(13)_pt9

2.10

13.73

04TT17(13)_pt10

1.44

04TT17(13)_pt11 04TT17(13)_pt12

Al

Si

S

K 0.47

0.19

1.02

2.31

10.24

0.17

0.72

2.22

11.46

0.19

0.85

2.61

11.73

9.57

0.79

2.60

11.83

3.07

17.09

1.07

4.16

7.31

2.21

5.84

0.58

2.56

24.46

0.78

2.89

23.92

0.90

4.33

1.54

9.34

2.28

5.33

5.73

44.18

0.26

0.22

0.15

4.84

Ca

Cr

Fe

Cu

As

Sb

Pb

phase

71.96

Ga

0.44 3.68

68.95 Ga

0.47

72.30 Ga 72.99 Ga 5.07

62.22 Ga

27.46

36.89

Chpy

0.51

26.41

35.58

Chpy

22.97

0.62

26.81

33.84

Chpy

6.84

18.74

1.50

25.91

28.64

Chpy

1.02

5.26

22.34

0.32

27.11

33.18

0.86

2.39

18.14

5.03

39.97

1.16

4.42

1.39

38.28

0.85

Chpy 2.27

23.73

Td Hem

Dff point

C

O

Mg

Al

Si

P

S

K

Ca

04TT17(21)_pt1

1.62

12.88

0.32

0.87

2.72

9.47

4.36

04TT17(21)_pt2

1.92

13.80

0.20

0.71

2.20

8.94

4.66

04TT17(21)_pt3

1.57

13.39

0.43

1.02

2.78

9.37

5.28

04TT17(21)_pt4

1.79

15.70

0.41

0.88

2.64

12.88

4.92

5.25

04TT17(21)_pt5

3.70

24.02

0.25

0.99

3.72

0.00

8.70

8.15

04TT17(21)_pt6

1.40

12.97

0.37

1.09

2.63

9.71

0.56

3.68

67.58

Ga

04TT17(21)_pt7

1.65

13.21

0.31

0.93

2.77

10.38

0.49

4.90

65.36

Ga

04TT17(21)_pt8

1.84

16.42

0.39

0.97

2.86

6.54

0.40

4.80

60.29

Ga

04TT17(21)_pt9

4.49

44.80

4.72

1.46

4.41

04TT17(21)_pt10

1.46

10.44

0.53

1.04

3.21

20.07

04TT17(21)_pt11

2.36

10.04

0.40

1.07

2.87

21.30

04TT17(21)_pt12

1.63

10.94

0.42

1.24

3.46

04TT17(21)_pt13

2.00

9.97

0.33

1.12

3.92

04TT17(21)_pt14

4.55

41.06

4.71

1.01

4.00

04TT17(21)_pt15

5.42

43.50

4.94

1.29

4.72

04TT17(21)_pt16

4.04

39.09

2.61

1.29

3.89

04TT17(22)_pt1

1.41

12.94

0.29

1.00

2.90

9.84

04TT17(22)_pt2

1.54

12.98

0.31

0.88

2.65

10.25

04TT17(22)_pt3

2.08

21.51

1.02

0.86

2.72

8.10

04TT17(22)_pt4

1.35

14.53

0.32

0.59

2.27

7.13

4.16

4.11

04TT17(22)_pt5

1.50

15.37

0.29

0.63

2.38

7.61

4.68

04TT17(22)_pt6

1.61

16.17

0.36

0.66

2.48

6.95

04TT17(22)_pt7

1.50

15.24

0.34

0.65

2.35

8.57

04TT17(22)_pt8

2.00

23.68

0.74

0.68

2.69

6.30

0.64

0.18

Cr

Mn

Fe

0.59

Cu

Rh

Pb

Bi

66.99 3.88

Ga 47.49

66.16 1.79

Bi Ga

50.15

Bi Chpy

5.48

36.57

0.57

phase

Hem

30.03

32.66

Chpy

29.03

32.93

Chpy

18.38

0.46

29.80

33.49

Chpy

21.78

0.49

27.70

32.68

Chpy

0.28

0.48

0.96

0.35

1.10

0.64

0.38

1.60

1.09

2.15

0.36

0.57

0.55

0.49

40.67

Hem

37.72

0.67

Hem

43.06

0.79

Hem

4.77

66.48

Ga

5.12

66.28

Ga

9.01

54.13 2.99

Ga 45.24

Bi

3.30

46.95

Bi

4.55

5.67

39.76

Bi

4.82

3.56

48.33

Bi

8.65

3.53

37.66

Bi

Fhgn point

C

O

01TT17(9)_pt1

1.59

6.95

01TT17(9)_pt2

1.61

8.84

01TT17(9)_pt3

6.04

40.00

F

Mg

Al

0.17 4.14

Si

S

3.03

37.62

3.03

35.67

5.18

3.05

Cr

1.58

Fe

Cu

47.29

3.51

44.64

4.44

37.09

4.49

As

Sb

Pr

Nd

phase Py Py Py

Geo-Science Education Journal 2017; 2 (5): 20-30


30 | Huber M., Wypych B, Serov.P. | Ore mineralization of the eastern slopes of Ornak (Western Tatra) in a microanalysis aspects. 01TT17(9)_pt4

4.57

37.81

01TT17(9)_pt5

1.09

7.59

01TT17(9)_pt6

1.43

7.54

01TT17(9)_pt7

2.60

13.78

01TT17(9)_pt8

1.35

6.76

01TT17(9)_pt9

0.90

55.50

point

C

O

02TT17(7)_pt1

13.58

35.86

02TT17(7)_pt2

0.89

10.30

02TT17(7)_pt3

1.22

6.86

02TT17(7)_pt4

5.89

39.31

02TT17(7)_pt5

1.36

29.66

3.31

7.18

3.31

31.58

9.05

5.14

23.35

27.55

35.28

4.71

23.97

26.79

35.43

7.27

22.67

24.18

27.75

4.18

19.21

0.00

41.32

41.54

2.06

Si

S

0.62

11.98

1.65

0.02

7.35

18.03

0.34

4.61

17.82

0.95

6.17

1.04

0.51

1.43

6.04

10.57

0.66

0.13

1.24

1.75

3.18

Py Chpy Chpy

2.39

Chpy 0.96 Td

22.59 0.00

Qtz

Fdng F

Mg 1.79

1.93

4.69

Al

K

Ca

Cr

0.71

3.29

Fe

Co

26.18

As

Ag

Sb

Ba

phase

4.34 0.00

4.81 0.94

Cu

39.07 39.63

0.83 2.27

21.58

Chpy Td

22.43

Td

40.52

Hem 1.88

48.40

Ba

Dff point

C

O

04TT17(5)_pt1

2.69

2.60

Si 0.97

S

Fe

Cu

24.88

25.60

38.13

As 0.65

Sb 4.48

Chalkozyn?

Geo-Science Education Journal 2017; 2 (5): 20-30


31 | Wypych B. Aspekt geologiczny w turystyce pieszej na terenie Tatrzańskiego Parku Narodowego

Aspekt geologiczny w turystyce pieszej na terenie Tatrzańskiego Parku Narodowego Wypych Beata1 1Maria

Curie-Skłodowska University, Department of Geology and Lithosphere Protection, 2 cd Kraśnicka St., 20-718 Lublin, Poland; e-mail: beata.wypych97@wp.pl, corresponding author.

ABSTRACT

In this paper was make a study of geological knowledge by tourists, visitors of the Tatra National Park. It was prepared a questionnaire in the Internet form. The analysis of the responses showed low information about geology of the Tatra Mountains in the responsed persones. The next point of work is the idea of creating a Geopark Tatra in the area of TPN. This will be the main place to familiarize people with geological construction and to create geotourism paths that will address the issues related to the construction of this area. KEYWORDS: Tatra Mts., Tatra National Park,

geotourism, geopark. 1. WSTĘP

Tatry w porównaniu do innych pasm górskich są tworem stosunkowo młodym. Wypiętrzyły się w orogenezie alpejskiej w trzeciorzędzie [1]. Trzon krystaliczny Tatr składa się ze skał plutonicznych karbońskiej intruzji granitowej oraz skał metamorficznych pochodzących ze starszego paleozoiku [2]. W Tatrach skały magmowe i metamorficzne kontaktują się ze sobą w sposób dysjunktywny. Osadowe skały powstały głównie w środowisku morskim i reprezentowane są przez różnego rodzaju wapienie, dolomity oraz łupki [3]. Towarzyszą im piaskowce i zlepieńce. Skały osadowe utworzyły się głównie

w mezozoiku i związane są z formacjami alpejskimi powstałymi w oceanie Tetydy [4]. Nasunięcie się płaszczowin w górnej kredzie w trakcie ruchów laramijskich oraz w paleogenie podczas trwania fazy sawskiej [5] spowodowało wydźwignięcie się Tatr. Przyczyniło się to do dynamicznej ich erozji, która spowodowała powstanie alpejskiej rzeźby gór podkreślonej przez intensywne procesy glacjalne w plejstocenie. Na skutek ochłodzenia granica wiecznego śniegu w Tatrach Wysokich przebiegała na wysokości 1600 m, a w Tatrach Zachodnich na ok. 1500 m n.p.m. [4]. W tym okresie miało miejsce przekształcenie się krajobrazu Tatr spowodowane przez tworzenie się pól firnowych. Przeobraziły się one w kotły, a następnie transportowały materiał skalny, który tworzył różnego rodzaju moreny [6]. Doliny były ścierane przez lodowiec, prowadziło to do nich przekształcenia w żłoby lodowcowe [7]. Około 12 000- 11 000 lat temu granica wiecznego śniegu podniosła się, co spowodowało roztopienie się lodu i utworzenie jezior polodowcowych [4]. Około 10 000 lat temu rzeźba Tatr uległa w znacznej mierze ostatecznemu ukształtowaniu jednak ruchy dźwigania Alpidów nie zakończyły się. Dlatego można mówić o ruchach neotektonicznych [1]. Pierwszymi ludźmi, którzy przybyli na teren Tatr byli myśliwi, zbieracze ziół [8], poszukiwacze skarbów, zbójnicy, pasterze oraz górnicy [9]. Górnictwo w Tarach datuje się na początek XV w.

Geo-Science Education Journal 2017; 2 (5): 31-39


32 | Wypych B. Aspekt geologiczny w turystyce pieszej na terenie Tatrzańskiego Parku Narodowego

W miarę rozwoju turystyki pieszej pojawili się w Tatrach pierwsi turyści, początkowo prowadzeni przez górali po dolinach i wzniesieniach gór. Ich relacje z podróży rozpalały wyobraźnię następnych pokoleń. Spowodowało to, że z każdym rokiem Tatry stawały się coraz bardziej popularne. Dnia 19 marca 1874 r. zostało zarejestrowane Towarzystwo Tatrzańskie z siedzibą w Krakowie. Założycielami byli najsłynniejsi zakopiańczycy tj. Tytus Chałubiński, ks. Józef Stolarczyk, Walery Eljasz-Radzikowski i inni [10]. Towarzystwo Tatrzańskie przyczyniło się również do ochrony przyrody na tym terenie. W 1947 roku minister leśnictwa wydał rozporządzenie, że ten obszar ma zostać uznany za Tatrzański Park Narodowy [11]. 1 stycznie 1955 roku powstał Tatrzański Park Narodowy z rozporządzenia Rady ministrów z dnia 30 października 1954 roku. Obecnie na teren TPN każdego roku przyjeżdżają tysiące turystów, zazwyczaj nie świadomi genezy powstania oraz walorów geoturystycznych tego obszaru. Celem niniejszego artykułu jest określenie stopnia zapoznania się ze znajomością geologii

Tatr przez turystów odwiedzających Tatrzański Park Narodowy oraz zaproponowanie rozwiązań znanych w innych podobnych placówkach, mających na celu przybliżenie turystom wiedzy o geologii tego regionu. 2. METODYKA

Wielokrotne wyjazdy w Tatry pozwoliły na zapoznanie się z obecnie istniejącymi szlakami, ścieżkami przyrodniczymi/dydaktycznymi oraz obiektami edukacyjnymi na terenie Tatrzańskiego Parku Narodowego (później TPN). Odbyły się także wyjazdy terenowe do Karkonoskiego Parku Narodowego (maj 2017) i w Góry Świętokrzyskie (maj 2017), które pozwoliły porównać te obszary ze sobą pod kątem infrastruktury turystycznej oraz dostępności informacji w Internecie. Przeprowadzona również została ankieta na temat aktualnej znajomości geologii Tatr przez turystów. Następnie wyniki taj ankiety zostały przeanalizowane oraz wysunięto z nich wnioski, które będą decydowały o sposobach poszerzenia geoturystyki na terenie TPN.

Fig 1. Tatrzańskie lapidarium. 3. REZULTATY

Geo-Science Education Journal 2017; 2 (5): 31-39


33 | Wypych B. Aspekt geologiczny w turystyce pieszej na terenie Tatrzańskiego Parku Narodowego

3.1. Obecne zapoznanie turystów z geologią na obszarze TPN na podstawie własnych obserwacji. W 2016 roku TPN odwiedziło ponad 3 mln turystów [12]. Dla tych osób przygotowano obecnie wiele szlaków o łącznej długości 275 km. Prowadzą one przez różne odsłonięcia i jednostki stratygraficzno-strukturalne Tatr. Wiele z nich ma malowniczy charakter i wzbudza szczególne zainteresowanie wśród turystów. W chwili obecnej na terenie Tatrzańskiego Parku Narodowego przy każdym wejściu na szlak jest możliwość zapoznania się z ogólnymi informacjami o okolicy. Największy nacisk położony jest jednak na faunę i florę. W Dolinie Białki i w Dolinie Rybiego Potoku od Palenicy Białczańskiej do Morskiego Oka oraz w Dolinie Białego poprowadzone są dwie ścieżki przyrodnicze. Najwięcej zagadnień związanych głównie z geomorfologią znajdują się w Dolinie Rybiego Potoku, a jedyne miejsce gdzie umieszczone są fragmentaryczne informacje geologiczne to Ścieżka przyrodnicza im. prof. Stanisława Sokołowskiego w Dolinie Białego (do obu tras można dokupić książkę). Nie rozwiązuje to problemu niedosytu wiedzy dotyczącej budowy i genezy Tatr. Turyści chcieliby raczej na miejscu dowiedzieć się co widzą w danym momencie niż szukać tych informacji w książce. Na terenie Zakopanego przy ul. Karłowicza znajduje się lapidarium (ryc.1), które nie jest umiejscowione w granicach Parku i nie ma o nim zbyt wiele informacji. Jest to doskonałe miejsce do zapoznania się w "pigułce" z budową geologiczną Tatr. TPN prowadzi również Centrum Edukacji Przyrodniczej (CEP). Stanowi to dobre miejsce, aby poznać te góry, jednak jak już wcześniej było wspomniane głównym celem TPN jest zapoznanie turystów ze zwierzętami żyjącymi na terenie parku oraz roślinnością. Dopełnieniem wiedzy na temat

budowy geologicznej jest mapa geologiczne tego terenu na stronie TPN [13], jednak nie jest ona rozbudowana tak dokładnie jak mapa geologiczna Karkonoskiego Parku Narodowego (później KPN) [14]. Owszem, są wyodrębnione rodzaje skał oraz okres ich powstania, jednak w legendzie brakuje wyjaśnienia co to jest za skała. Znajdują się tam tylko oznaczenia literowe, które nie są czytelne.

Fig.2 Tablica informacyjna na terenie KPN o skałach występujących na zboczach Śnieżki

Fig. 3 Tablica informacyjna na terenie KPN o formach geomorfologicznych

Wiosną 2017 r. odbyły się wyjazdy terenowe w Karkonosze oraz w Góry Świętokrzyskie, które były zorganizowane pod względem zapoznania się z infrastrukturą geoturystyczną na tych obszarach. Geopark Karkonosze na chwilę obecną posiada 10 tras geoturystycznych wraz z geostanowiskami. Przy tych punktach znajdują się tablice informacyjne z najważniejszymi zagadnieniami geologicznogeomorfologicznymi (fig. 2 i 3). W wielu miejscach można dostrzec, że Park stara się zapoznać turystów z geologią tego obszaru

Geo-Science Education Journal 2017; 2 (5): 31-39


34 | Wypych B. Aspekt geologiczny w turystyce pieszej na terenie Tatrzańskiego Parku Narodowego

przez: wizytę w Centrum Informacyjnym w Karpaczu gdzie znajduje się sala dotycząca walorów turystycznych Karkonoszy (geologia, geomorfologia) , przez mapę geologiczną KPN na stronie internetowej Parku oraz tablice informacyjne. Jak już wcześniej było wspominane mapa geologiczna KPN jest bardzo dobrze przygotowana dla użytkowników. Przy każdym miejscu, w którym znajduje się dana skała jest możliwość zidentyfikowania poprzez dokładne informacje dotyczące ery oraz okresu powstania jej. Mapa również działa na urządzeniu mobilnym. Góry Świętokrzyskie stanowią centrum geoturystyki w Polsce. Na tym terenie znajduje się wiele nieczynnych kamieniołomów, które w przeszłości po zakończeniu eksploatacji nie miały żadnego przeznaczenia. Doskonałym przykładem jest Kamieniołom Wietrznia (fig. 4), w którym znajdują się wapienie górnego dewonu. Pomysłowość i dobre zagospodarowanie nieużywanego terenu sprawiło, że w tym miejscu powstał Geopark Kielce wraz z Centrum Geoedukacji (fig. 5).

Fig. 4 Tablica przy scieżce geoturystycznej (fot. M. Huber). Centrum Geoedukacji cieszy się dużym zainteresowaniem i może stanowić jeden z ważniejszych punktów pobytu w Górach Świętokrzyskich. W tym miejscu jest możliwość zapoznania się z historią tego terenu od strony teoretycznej za pomocą różnych wystaw oraz seansu 5D (fig. 5).

Fig. 5 Centrum Geoedukacji w Geoparku Kielce (od góry: bryła budynku, wkomponowana w środowisko, sala do zajęć warsztatowych, ekspozycja, kino 5D (fot. M Huber). Geopark Kielce obejmuje jeszcze dwa rezerwaty przyrody- Kamieniołom Kadzielnia, oraz Kamieniołom w Ślichowicach. Ze ścieżki dydaktycznej, usytuowanej w rezerwacie można obserwować fałd obalony, przy którym znajdują się tablice informacyjne. Kamieniołom

Geo-Science Education Journal 2017; 2 (5): 31-39


35 | Wypych B. Aspekt geologiczny w turystyce pieszej na terenie Tatrzańskiego Parku Narodowego

Kadzielnia jest kolejnym miejscem, w którym w przeszłości trwały prace górnicze. Obecnie stanowi jedno z ważniejszych miejsc w Kielcach ze względu na liczne trasy i punkty widokowe wraz z tablicami informacyjnymi umieszczonymi w punktach widokowych. Wyjaśnione są tam między innymi różne aspekty litofacjalne w skałach węglanowych oraz inne zjawiska wraz z zamieszczonym obok platformy widokowej szkicu. W rejonie Kadzielni działa także amfiteatr. Poprowadzona jest również trasa turystyczna, która wiedzie przez jaskinię umieszczoną w wapieniach górno dewońskich. Pracownicy Geoparku Kielce starają się w jak najlepszy sposób zapoznać turystów z budową geologiczną Gór Świętokrzyskich. Na obecną chwilę to właśnie on ma najwięcej propozycji dla odwiedzających na spędzenie wolnego czasu w ciekawy, a zarazem pożyteczny sposób poprzez wytyczenie tras oraz ukazanie najważniejszych punktów związanych z geologią. 3.2. Wyniki badań ankietowych

W dniach 1-14 maja 2017 r. została przeprowadzona internetowa ankieta, mająca na celu zweryfikowanie stanu wiedzy turystów na temat znajomości geologicznej Tatr (załącznik 1). Przeankietowanych zostało 260 osób, które przyjeżdżają w Tatry w zróżnicowanym periodzie (co wykazano w metryczce ankiety). Większość, jest to 52,2% respondentów odwiedza ten teren raz lub dwa razy w roku. Następnie 16,8% stanowią osoby, które są tam 35 razy w roku. 15,7% przeankietowanych Taty odwiedza częściej niż 5 razy w roku, zaś 12,3% nie jeździ wcale. Z ankiety wynika, że 50% respondentów orientuje się, w jakiej epoce wykształciły się Tatry. Znajomość skał, budujące ten masyw górski przedstawia się w następujący sposób: 66,8% osób nie posiada wiedzy na temat wieku najstarszych skał budujących Tatry, zaś 33,2% jest w stanie odpowiedzieć na to pytanie.

Fig. 6 Diagram ilustrujący odpowiedzi turystów z zakresu znajomości podstawowych typów skał w Tarach

Fig. 7 Charakter stylu tektonicznego w Tatrach Największy procent ankietowanych 49,6% nie jest w stanie wymienić skał budujących Tatrzański masyw górski (fig. 6), z tego 27,7% osób jest w stanie wymienić od jednej do trzech skał. W odpowiedziach największą część stanowiły podstawowe skały tj. granity i wapienie. Mały procent 9,6% stanowiły odpowiedzi z wymianą większej ilości niż trzy skały. Zdarzały się również odpowiedzi, że były wymieniane tylko główne typy skał tj. skały magmowe, osadowe, czy metamorficzne. Tą część stanowiło 11,3% przeankietowanych. Najmniejszy odsetek 1,5% stanowiły osoby, które podały nazwy skał, które nie znajdują się w budowie Tatr. Z odpowiedzi na pytanie dotyczące rozpoznania jakiego rodzaju styl tektoniczny dominuje w Tatrach wynika, że 48,1% ankietowanych osób potrafi poprawnie powiedzieć jakiego rodzaju są to góry. 16,5% respondentów nie znało poprawnej odpowiedzi, zaś 25,4% osób odpowiedziało błędnie na to pytanie (fig 7). Odpowiedzi dotyczące pytania związanego z górnictwem na terenie TPN były na podobnym poziomie jak te, które dotyczyły

Geo-Science Education Journal 2017; 2 (5): 31-39


36 | Wypych B. Aspekt geologiczny w turystyce pieszej na terenie Tatrzańskiego Parku Narodowego

skał. 51,9% ankietowanych osób odpowiedziało, że słyszało kiedyś o kopalniach i sztolniach, zaś 48,1% osób odpowiedziało, że nie słyszały nigdy o takich miejscach.

Fig. 8 Znajomość typu rud wydobywanych na terenie obecnego TPN Wymienienie typów rud, które były wydobywane w przeszłości na terenie obecnego Tatrzańskiego Parku Narodowego przysporzyło ankietowanym dużą trudność (fig. 8). Z badań wynika, iż ludzie nie posiadają wiedzy na temat górnictwa w Tatrach prowadzonego od XV w. W szczególności znajomość rud na tym terenie jest niska. Liczna grupa- 62,5% nie znała żadnych rud . Kolejną grupą- 34,6% są osoby, które potrafią wymienić od jednego do trzech rodzajów rud. Najczęstszą odpowiedzią były rudy żelaza oraz złoża uranu. 2,7% osób było w stanie wymienić więcej niż trzy rudy, które wydobywano.

obecną nie jest duża. Inicjatywa tworzenia geoparku jest kosztowana i długotrwała, lecz nawet przy ograniczonym budżecie można zaproponować turyście wiele udogodnień które mogłyby pomóc mu w zrozumieniu budowy geologicznej Tatr. Tatrzański Park Narodowy stara się jak najlepiej zapoznać turystów z przyrodą parku, jednak zagadnienia związane z geologią tego obszaru nie są często poruszane. Respondenci wykazują, dużą chęć poszerzania wiedzy w tym zakresie. Czytając odpowiedzi w ankiecie 1,5% osób napisała, że Tatry zbudowane są z osadów fliszowych, co jest nieprawdą. Wiedza społeczeństwa bardzo ogranicza się do znajomości skał górotwórczych. Podobna sytuacja jest z rudami wydobywanymi w przeszłości na tym terenie. Zdarzało się kilka odpowiedzi, w których ankietowani pisali, że w Tatrach były wydobywane agaty. Jest to kolejny argument świadczący o braku wiedzy w tym zakresie. Z ankiety również wynika, że 71,3% osób wyraża chęć zapoznania się z budową geologiczną Tatr oraz 81,7% przeankietowanych chciałoby, aby na terenie TPN powstały ścieżki geoturystyczne.

4.1. Propozycje usprawnienia informacji dla turystów w terenie TPN 4. DYSKUSJA

Polska część Tatr zajmuje 175 km , która jest 1/4 powierzchni całego masywu. Tatry mają bardzo ciekawą budowę i historię geologiczną. Porównując te trzy miejsca (TPN, GŚ, KPN) pod względem geologicznym możemy zaobserwować, iż TPN nie angażuje się aż tak bardzo w geoedukację w porównaniu do dwóch opisanych powyżej geoparków. TPN jest idealnym miejscem, aby utworzyć kolejny geopark. Jest to doskonały pomył na poszerzanie wiedzy społeczeństwa pod tym względem, w sposób nowoczesny i przyjazny. Jak wynika z ankiety, ta wiedza na chwilę 2

Na terenie TPN znajduje się wiele szlaków turystycznych poprowadzonych przez miejsca związane z ważniejszymi wydarzeniami geologicznymi, ich formami skalnymi i tektonicznymi oraz górnictwem. Warto pomyśleć, aby na tych terenach były prowadzone cykliczne wycieczki z przewodnikiem, które będą dotyczyły tematyki geologicznej jak i geomorfologicznej. Doskonałym pomysłem będzie dodanie w wielu ciekawych miejscach informacji geoturystycznych, przekształcając je w trasy tematyczne, które można stworzyć w sposób podobny do tej w Dolinie Białego. Punkty

Geo-Science Education Journal 2017; 2 (5): 31-39


37 | Wypych B. Aspekt geologiczny w turystyce pieszej na terenie Tatrzańskiego Parku Narodowego

zatrzymań są zaprojektowane bardzo dyskretnie i nie wpływają negatywnie na krajobraz. Dodatkowym atutem będzie zamieszczenie na niewielkich słupkach kodów QR, przekierowujących turystę do wyznaczonego na stronie internetowej opisu miejsca. To udogodnienie na pewno spodoba się młodym ludziom. Dla osób które będą posiadały niedosyt informacji warto wydać książkę, która będzie zawierała więcej wiadomości związanych z tematyką geologiczną. Dodatkowo przy ważniejszych miejscach powinny znajdować się tablice informacyjne, pokazujące szczegóły trudno zauważalne niewprawnym okiem takie jak np.: zmiana litofacjalna skał, przejścia różnych form, luki stratygraficzne, uskoki, fałdy itp. Spowoduje to, że turyści będą mogli poszerzać wiedzę na miejscu, gdzie się znajdują, wraz z wyjaśnieniami, które zostaną umieszczone na tablicach informacyjnych i w Internecie. Powinny być także przeprowadzone oznaczenia ważnych granic jednostek tatrzańskich, jak również i granica między Tatrami Zachodnimi, a Tatrami Wysokimi oraz ukazane podstawowe różnice tych terenów. Zwieńczeniem całokształtu starań może być utworzenie Geoparku Tatry oraz zbudowanie geocentrum dla turystów z kinem 5D. W ten sposób można będzie zobaczyć w jaki sposób ukształtowały się Tatry na przestrzeni tysięcy lat oraz znajdowałyby się tam inne współczesne atrakcje przybliżając tematykę Tatr młodzieży i pozostałych osobom. Spowoduje to, że osoba, która jest słabo zainteresowana tematyką geologiczną tego obszaru będzie mogła go poznać w ciekawy, a zarazem przyjemny sposób. Warto również pomyśleć o poprowadzeniu warsztatów dla dzieci jak i dorosłych, na których będzie możliwość np.: obserwacji skał pod mikroskopem. 5. WNIOSKI

Znajomość geologii Tatr w społeczeństwie jest stosunkowo mała. Ludzi nie są zapoznani z

tym zagadnieniem. Problemem stają się podstawowe tematy dotyczące geologii tego obszaru. Lepsze zapoznanie się z powstaniem gór na pewno będzie stanowiło urozmaicenie wycieczek pieszych po Tatrzańskich szlakach. Turyści będą mogli dzięki temu odkrywać tajemnice Tatr oraz w przyjemny sposób pogłębiać wiedzę geologiczną. Ścieżki geologiczne pomogą turystom rozwinąć swoje zainteresowania, tym bardziej, że dużo informacji nie jest jasnych dla przeciętnych odwiedzających. Ludzie zapewne nie są świadomi np.: tego, że w miejscu obecnej skoczni narciarskiej w przeszłości znajdował się kamieniołom. Dlatego warto zwrócić uwagę na każdą informację związaną z geologią, czy górnictwem tego obszaru, zważywszy na duże zainteresowanie tym zagadnieniem oraz terenem. DEKLARACJA TRANSPARENTNOŚCI

Autor deklaruje brak konfliktu interesów. PODZIĘKOWANIA

Tekst powstał w wyniku otrzymania Grantu Samorządu Studenckiego Uniwersytetu Marii Curie- Skłodowskiej na semestr letni 2017.

LITERATURA

1. Passendorfer E., 1934, Jak powstały Tatry. Wydawnictwo geologiczne, Warszawa. 2. Mizerski W., 2009, Geologia Polski. Wydawnictwo Naukowe PWN, Warszawa. 3. Gawęda A., 2010, Po graniach Tatr. Przewodnik geologiczny dla turystów. Infomax, Katowice. 4. Bac-Moszaszwili M., Gąsienica-Szostak M., 1992, Tatry Polskie. Przewodnik geologiczny dla turystów. Wydawnictwo geologiczne, Warszawa. 5. Andrusov D., 1959, Geologia Ceskoslovenskych Karpat. SAV, Bratislava.

Geo-Science Education Journal 2017; 2 (5): 31-39


38 | Wypych B. Aspekt geologiczny w turystyce pieszej na terenie Tatrzańskiego Parku Narodowego

6. Klimaszewski M., 1988, Rzeźba Tatr Polskich. Państwowe Wydawnictw Naukowe, Warszawa.

10. Krygowski W. 1988, Dzieje Polskiego Towarzystwa Tatrzańskiego. Wydawnictwo PTTK, Warszawa.

7. Klimaszewski M., 2002, Geomorfologia. Wydawnictwo Naukowe PWN, Warszawa.

11. Skawiński P., Zawijacz-Kozica T. 2005, Tatrzański Park Narodowy. Multico Oficyna Wydawnicza, Warszawa.

8. Paryski H. W., 1991, Powstanie zakopiańskiego ośrodka turystycznego (od 1914r.). [w:] Zakopane czterysta lat dziejów. (red. R. Dutkowa), Krajowa Agencja Wydawnicza, Kraków. 9. Ząbkowska-Para J., 2013, Tropem autentyczności kulturowej Zakopanego. Turystyka Kulturowa. KulTour, Poznań

12. (http://tpn.pl/upload/filemanager/Beata/ Bilety_2016_1.pdf 13.

http://geoportal.tpn.pl/walory/

14. http://geoportal.kpnmab.pl/imap/?%20locale=pl &gui=new&sessionID=93209Wydawnicza, Warszawa.

Geo-Science Education Journal 2017; 2 (5): 31-39


39 | Wypych B. Aspekt geologiczny w turystyce pieszej na terenie Tatrzańskiego Parku Narodowego Załącznik 1.. Pytania występujące w ankiecie: 1. Jak często bywa Pani/ Pan w Tatrach Polskich Nie jeżdżę tam wcale 1-2 razy w roku 3-5 razy w roku Częściej niż 5 razy w roku 2. Jak długi okres czasu poświęca Pani/ Pan na wyjazd w Tatry Polskie 1-3 dni 4-7 dni 8-14 dni Nie jeżdżę tam wcale 3. Czy wie Pani/ Pan w jakiej epoce wykształciły się Tatry? tak nie 4. Czy wie Pani/ Pan z jakiej epoki pochodzą najstarsze skały występujące na terenie Tatr Polskich? tak nie 5. Czy wie Pani/ Pan jakie skały występują na terenie Tatr? tak nie 6. Jeśli tak, to proszę wymienić (pytanie nie obowiązkowe) 7. Czy wie Pani/ Pan coś na temat zlodowaceń, które występowały w Tatrach? tak nie 8. Proszę zaznaczyć jakimi górami są Tatry gór fałdowe góry zrębowe nie wiem 9. Czy słyszała Pani/ Pan kiedyś o sztolniach, które znajdowały się na terenie obecnego Tatrzańskiego Parku Narodowego? tak nie 10. Czy wie Pani/ Pan jakie minerały były wydobywane w Tatrach po polskiej stronie? 11. Czy chciałaby Pani/ Pan zapoznać się dokładniej z budową geologiczną Tatr? tak nie 12. Czy chciałaby Pani/ Pan, aby na terenie Tatrzańskiego Parku Narodowego powstała ścieżka geoturystyczna? tak nie

Received: 24 Juni 2017; Revised submission: 30 Juni 2017; Accepted: 5 Julay 2017 Copyright: © The Author(s) 2017. This is an open access article licensed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License, which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited. http://journals.mahuber.com/index.php/gsej

Geo-Science Education Journal 2017; 2 (5): 31-39


40 | Huber M.| Petrology of the Africanda ultrabasic ingenious rocks (Kola Peninsula, N Russia)

Petrology of the Africanda ultrabasic ingenious rocks (Kola Peninsula, N Russia) Huber Miłosz1 1Maria

Curie-Skłodowska University, Department of Geology and Lithosphere Protection, 2 cd Kraśnicka St., 20-718 Lublin, Poland; e-mail: mhuber@umcs.lublin.pl, corresponding author.

ABSTRACT

Examined rocks from Africanda mainly composed by pyroxenites and peridotite containing rare minerals such as perovskite, knopite, schorlomite like. There where also present a small amount of carbonatite. Whole complex of rocks is associated with primitive spots hot magmas, which contributed to a numerous of alkaline intrusions on the Kola Peninsula in Devonian period. These rocks are developed in the form of cumulates base with additions of residual crystallization, often rich in trace elements. Analysed petrological characteristics of the rocks suggest their origin from the deep zones of the earth. KEYWORDS: ultrabasic rocks, perovskite ore,

petrology, Africanda, Kola Peninsula. 1. INTRODUCTION

Located on the Kola Peninsula alkaline ultrabasic Afrikanda massif, it is situated a short distance (about 40km) north of the White Sea, southern shore of Lake Imandra, has the form of a single hill with a few vertices. It is placed 35 km south from Khibina and about 100 east of Kovdor. Afrikanda massif has a small area of 6.4 km2 [5,15]. This is the Paleozoic intrusion (dated age 364mln years, [3]) about the same age as the other intrusions in the area of Kola Peninsula [1,2,4,7,12,13,14,15]. It is constructed of various types of alkaline rocks, basic and ultrabasic,

accompanied by numerous secondary processes. In this intrusion are rich carbonatite mineralization including rare minerals with phases rich in REE elements. 1.1. Geology and structure of Africanda massif. Central Africanda intrusion of ultrabasicalkaline rocks is located among the archaic age biotite gneisses and amphibolites of Kola series. This intrusion is an isometric shape with numerous dykes of pyroxenites in gneisses and has a clear zonal-ring structure. It creates a small hill with an uneven surface morphology, which shows selective resistance to weathering of rocks belonging to the massif. Most often on the surface are relatively the most resistant to weathering grainy pyroxenites with magnetite ore, accompanied by calcite-amphibolepyroxene rocks with magnetite and perovskite [1,6,12,13,15]. Analyzing the geological composition of the Africanda massif it is possible to identified the two zones, internal and external. The outer ring is made up of melteigites, which can best be seen in the peripheral part of the massif on the eastern side. They are dark green-gray rock band educated. They consist of aegirine-diopside and nepheline. Secondary minerals are garnets, common hornblende, biotite, apatite and titanite. Next are fine-grained massive pyroxenites of color black-green, sometimes with apatite. These rocks are almost exclusively made up of diopside and hedenbergite with an admixture of

Geo-Science Education Journal 2017; 2 (5): 40-48


41 | Huber M.| Petrology of the Africanda ultrabasic ingenious rocks (Kola Peninsula, N Russia)

magnetite, perovskite apatite, and fluorite. Towards the center of the massif are visible fine pyroxenites. They are gradually replaced by a variety of coarse. From the look of these are

green-gray rocks, consisting of the diopsidehedenbergite, perovskite and magnetite with phlogopite, common hornblende, titanite, clinochlore, pennine and calcite [6].

Fig 1. View on the abandoned quarry in ore zone.

Fig 2. Legible in the forest simple mining work.

Fig 3. Pyroxenite pegmatites.

Fig 4 magnetite-perovskite ore in the flogophite peridotites.

In the central part of these massif are present a coarse pyroxenites, olivinites and calciteamphibole-pyroxene rocks, cut by numerous alkaline pegmatites. Olivinite are in the form of rounded xenoliths among big-crystalline

pyroxenites. They are fine-grained, solid or striped, colored black with olivine, magnetite and perovskite. Sometimes in olivinites there are small lenses or layers of magnetite apatite and perovskite. Next to them are calcite-amphibole-

Geo-Science Education Journal 2017; 2 (5): 40-48


42 | Huber M.| Petrology of the Africanda ultrabasic ingenious rocks (Kola Peninsula, N Russia)

and Spatial Management in the Maria curie – Skłodowska University in Lublin (Poland).

pyroxene rocks that have color mottled, graygreen, dark gray to black. They are accompanied by pyroxenites, peridotite, and various types of pegmatites, magnetite -perovskite ore and carbonatite inserts. These rocks are exposed in a small, disused quarry and now are the subject of this study. In addition to the abandoned quarry (fig. 1), and in other parts of the massif are visible numerous diggings and shafts now able to breakdown -not protected (fig 2).

3. REZULTS

The abandoned quarry located approximately 1.5 km to the south-west of the Africanda railway station, there are two small levels of exploitation, forming low altitude and several meters slope. The lowest level is currently hydrated and heavily contaminated waste. In the slopes while revealing numerous pyroxenites together with peridotites and inserts of carbonatite with massive ore form the rock outcrops of intrusive. The collected rock types presented in the following table (table. 1) along with some samples coming from outside the quarry, located in rock formations exposed in diggings and shafts located within the Africanda intrusion. Typical rock found in the quarry are: olivinites, clinopyroxenites and mica pyroxenites, hornblendites and carbonatite. In the vicinity are exposed also melteigity and various pegmatites. Among pyroxenites and carbonatite are present magnetite-perovskite ore (tab. 1).

2. METHODS

Rock samples have been collected, documented and cataloged in the field of research (fig. 1.2). With some rocks species were made a thin section, polished specimens. These preparations were further examined using an optical polarizing microscope Leica DM2500P using transmitted and reflected light and then were performed using a Scanning Electron Microscope Hitachi SU6600 with an EDS attachment. These studies were conducted in the Department of Geology and Lithosphere Protection at the Department of Earth Sciences

Table 1 Results of the planimetric analysis of selected rocks from Africanda Sample 02AF152part 02AF151part 05AF15 12AF15 24AF15 07AF15 18AF15 10Af16 01AF15 09AF15 13AF15 26AF15

Name Amphibolized pyroxenites clinopyroxenites clinopyroxenites clinopyroxenites clinopyroxenites pyroxenite pyroxenite olivinite mt-per ore mt-per ore mt-per ore melteigite

ore leucocratic olivine pyroxene amphibole micas minerals minerals carbonates 0

64,19

14,15

0

14,20

0

7,55

0 0 0 0 0 0 60,82 0 0 0 7,34

80,30 88,50 94,30 8337 50,00 48,70 3,09 36,20 15,50 8,05 58,2

0 7,41 0 0 0 0 0 0 5,66 0 7,96 0 0 2,06 0 0 22,73 0,91 0,67 0 0 13,00

12,30 7,96 3,74 18,60 44,30 28,30 29,90 59,50 57,30 61,70 9,04

0 3,54 1,87 0 0 0,88 3,61 4,31 0,91 5,37 12,40

0 0 0 0 0 14,20 0,52 0 2,73 24,20 0

Olivinites there are steel and black color rocks, on the surface weathered passing a rusty-

yellow colors. They have a structure of coarsely crystalline, compact texture, sprawl and consist

Geo-Science Education Journal 2017; 2 (5): 40-48


43 | Huber M.| Petrology of the Africanda ultrabasic ingenious rocks (Kola Peninsula, N Russia)

mainly of olivine, pyroxene and accompanied accessory minerals. A microscopic observation shows rock background constructed by cumulus forming the olivine crystals, docile partial serpentinization process (mainly around the edges and cracks grains). Olivine accompanied by minor amounts (up to 5 vol.%, fig. 5), pyroxenes, and individual plaques phlogopite (about 2 vol.%, tab. 1). Phlogopite most common is against olivine and between the grains together with serpentine (mainly chrysotile) creating a zone of corrosion of these minerals. Single crystals of pyroxene found in the spaces between olivine and are represented by orthopyroxenes (hypersthene) and clinopyroxenes (diopside). Optical Research shows that probably outweighs the diopside. Intercumulus constitute the ore minerals investing between olivine aggregates mainly represented by magnetite and perovskites. Perovskites and magnetite crystals formed xenomorphic with rounded borders making mostly a pseudo-layered, often overlapping clusters. The perovskite crystals have a polysynthetic twinning showing the arrangement of each domain in a manner perpendicular to each other, crossing each other and located in parallel. The scales are also small amounts of carbonates (very small rock volume percent). The presence of carbonate may be

associated with a number of carbonatites located in the vicinity of olivinites, or as a secondary product degradation femic minerals. Clinopyroxenites it rocks the black or blackgreenish color, having the holocrystal structure, thick and very coarsely crystalline, compact, disorderly, less linear texture. Macroscopically in these rocks are visible pyroxene crystals reaching sometimes up to several cm in size. Between these crystals appear phlogopite and numerous Accessory minerals such as magnetite, perovskite (fig. 3, 6). In thin section can be seen in large numbers clinopyroxenes, often forming polycrystalline aggregates usually showing twinning along the axis [001], mainly represented by the diopside with admixture of augite. Some of these minerals also shows the zonal construction, distinguished by the change of pleochroism these phases showing depletion of iron in the border zone. In the diopside intersticia there are small amounts of hypersthene. Between the pyroxene crystals are visible a single lamina phlogopite-containing zirconia and the rutile crystals, content be rare elements, thereby contributing to the creation of the effect pleochroism halo. As a rule, phlogopite a small admixture.

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

olivine

pyroxene

amphibole

micas

ore minerals

leucocratic minerals

carbonates

Fig. 5. Results of planimetric analysis of the rocks samples

Geo-Science Education Journal 2017; 2 (5): 40-48


44 | Huber M.| Petrology of the Africanda ultrabasic ingenious rocks (Kola Peninsula, N Russia)

In the transition clinopyroxenites to hornblendite zone, are visible pyroxene degradation amphibolizing processes. In this part of the plate (sample 02Af15) shows the pyroxene represented by augite often symplektite adhesions forming in the rock. These crystals are

also egirynized, have a zonal passage form. Between them there is common hornblende, accompanied by riebeckite and calcite. These minerals make a diablastic form growths which disintegrates of pyroxenes (fig. 5, table 1).

Fig 6. Microphotographs in transmitted light of a typical Africanda rocks: a: olivinite with magnetite and perovskite (sample 10AF16), b: magnetite-perovskite-carbonate ore (sample 13Af15), c: clinopyroxenite (sample 05AF15), d: transition zone between pyroxenites and hornblendite (sample 02AF15) e: melteigite (sample 26Af15), f: alkaline pegmatite with schorlomite crystals (sample 27Af15).

Geo-Science Education Journal 2017; 2 (5): 40-48


45 | Huber M.| Petrology of the Africanda ultrabasic ingenious rocks (Kola Peninsula, N Russia)

Clinopyroxenites and phlogopite clinopyroxenites there are green black color rocks, having pyroxene crystals of up to several cm size accompanied by aggregates of phlogopite and amphibole, carbonates, apatite and numerous ore minerals such as magnetite and perovskite. The phlogopite rocks in the lamellar form aggregates of up to a few cm in size. These rocks have a coarsely crystalline structure, texture dense, random. In a thin section of a plurality of crystals are visible clinopyroxene represented by diopside and augite, accompanied by a smaller amount of orthopyroxenes such as hypersthene. The crystals are usually clinopyroxene elongated along the walls [100, 110, and 010]. They form the image of a microscopic structure of pseudo druse, filling rock background. Between them there are crystals of common hornblende creating diablastic adhesions. Near the pyroxene crystals are also seen phlogopite. In these rocks are also visible aggregates of chlorite and single crystals strongly sericitized orthoclase. Between pyroxenes are also visible zircone, contribute to the formation of the pleochroism halo in pyroxenes. The voids appear in numerous calcite crystals. In addition to femic minerals appear phase ore mainly represented by magnetite and titanite, rutile and perovskite. Mineral perovskite are twinned as discussed above in the rocks. In some rocks, perovskite accompanied knopite dopant and sulfides. In interstycia of these minerals appear nepheline, calcite, and rutile. Hornblendites are a black rocks of coarsely crystalline structure, compact texture, often of linear. They often accompanied by pyroxenites such as a transmitted type of rocks. In the weathering zone scatter covering a reddish coating oxides and hydroxides of iron. The thin plate the background of rocks forming by dominated hornblende together with the pyroxene crystals, which in this case are relict and disintegrate. In the rocks are also visible

accessory minerals such as magnetite, perovskite and calcite and rutile. Melteigite rocks are black and green color, with a fine-crystalline structure, compact, sprawl texture. Are normally made of olivine and pyroxene accompanied apatite, nepheline and numerous accessory and ore minerals (Fig. 6). A microscopic rock background formed orthopyroxene crystals (bronzite), clinopyroxene (diopside) and olivine which are heavily corroded (replacing chrysotile and biotite). Orthopyroxene have a euhedral normally form phase outstanding against klinopiroksenรณw and olivine, usually having xenomorphic form. Pyroxene forming aggregates filling most of the rocks. Often in the border areas, reveals a certain zonal associated with secondary processes occurring in these minerals (processes of the egiriniztion of the clinopyroxene and uralitization of orthopyroxenes). Between femic minerals constituting the association degradable appear titanium crystals of biotite with strong pleochroism. Minerals including companion single plagioclase, strongly sericitized orthoclase and crystals of nepheline. Perovskite-magnetite ore are black color rocks, sometimes with a metallic sheen on the structure of coarsely crystalline, granular, compact, chaotic texture. Sometimes the rock that appear small natural cavern with frequent minerals associated with ore in the nature crystallizing in the euhedral form adhesions and druse (Fig. 4,6). Magnetite formed polysynthetic adhesions crystals of up to several cm in size. Sometimes accompanied by numerous perovskites also forming crystals to several cm in size, forming the construction zonal having numerous twinning. Along with magnetite and perovskite are also tytanomagnetyty, rutile, and very small amounts of sulphide present in the form of inclusions in perovskite-magnetite background (Fig 7). Sulfide are represented mainly by pyrite, pentlandite and small addition of galenite. In

Geo-Science Education Journal 2017; 2 (5): 40-48


46 | Huber M.| Petrology of the Africanda ultrabasic ingenious rocks (Kola Peninsula, N Russia)

interstycia these minerals are shown pyroxenes, amphiboles, phlogopite and carbonates.

Fig 7. Microphotographs (in reflected light) of the perovskite and magnetite ore (in left) and sulfide minerals (pyrite and pentlandite) near magnetite grain (in right). The mineral veins are represented by various rocks like prehnite, carbonatite and feldspar veins. Carbonatite rocks are light gray color, occurring mainly in the form of strands, druse and small accumulations of magnetiteassociated perovskite ores and other rocks (eg. pyroxenites). They consist mainly of calcite and other carbonates, accompanied minerals found in rocks adjacent (pyroxene, amphibole, mica, mineral ore). Prehnite veins occur mainly in pyroxenites, reaching a thickness of 2cm. They consist of a fan-educated prehnite crystals that make up the druse accumulation. Rocks that are also accompanied by pegmatites distinguished above all big-crystal structure of rocks. In the studied area you are present distinguished several types of pegmatites. There are pyroxenites pegmatite, which are composed mainly of diopside, sometimes phlogopite accompanied by ore minerals such as magnetite, perovskite. Diopside creates giant crystals (up to 15 cm. long), between which usually is filled with calcite, with beautiful euhedral perovskite crystals, magnetite and honey-yellow titanite. These rocks do not differ much from their counterparts described above. Deserve attention, however, alkaline pegmatites composed mainly of minerals such as plagioclase, orthoclase, schorlomite. In these rocks they dominate the

structure of coarse and very coarsely crystalline, compact, random texture. In thin section are visible sericitized orthoclase crystals accompanied by plagioclase, forming rock background. Between these phases are visible, schorlomite large crystals up to few cm in size dark which exhibit the characteristics of garnets (high relief, no cleavage, isotropy). Minerals are accompanied by biotite forming single units often accompanied by garnets and titanite. In the rock there are also small amounts of quartz and chlorite (pennine).

4. DISSCUSSION

These rocks are a complex of primary basic-alkaline magmas, which are strongly linked interacts in the region stain hot, which contributed to the end of the Early Palaeozoic to the creation of numerous alkaline intrusions in these region. Especially interesting is the fact that the rocks related to the incorporation of these intrusion formed several concentric strips [9] in which the chemical composition of rocks undergoing ever-increasing contamination from the more original peridotites in Africanda the alkaline syenite in Khibina, representing the central and largest intrusion of these rocks

Geo-Science Education Journal 2017; 2 (5): 40-48


47 | Huber M.| Petrology of the Africanda ultrabasic ingenious rocks (Kola Peninsula, N Russia)

[8,10]. In this unveiling is dominated by peridotites pyroxenites and olivinites. Most often it meets pyroxenites which are probably the cumulative part of the intrusion with olivinite admixtures (probably of magmatic derivatives). These rocks often, however, exhibit a number of process contamination and processes silicic manifested by the appearance of the carbonatite components and hydrated minerals such as amphibole and mica. Very interesting pegmatites piroksenitowe showing the presence of crystals of up to several cm in size. The pegmatites alkaline meets schorlomite interesting variety of garnets. In the coastal zones meets gabbroides, syenite and melteigites and in a whole intrusion is crisscrossed by various pegmatite veins on the pyroxene, gabbroide, alkaline and carbonate composition. In these rocks are numerous different accessory and rare minerals, such as the aforementioned schorlomite, perovskite and its variant shorting REE-Knopite, with minerals such as titanite, rutile often also containing additives of cerium, thorium and uranium. In the feces of those numbers is also magnetite and tytanomagnetite, which was the subject of exploitation in the past, creating many places large ore accumulation (probably in the ferrolite form), often coexisting with perovskite and carbonates. Examined associations minerals and chemical elements found clearly indicate that these rocks come in deep zones, probably in the vicinity of the Earth's mantle. Mineral associations identified in this intrusion also occur in small amounts in other mountain ranges of alkali present on the Kola Peninsula [11]. The whole complex outcrop of the intrusion occupies a small area and uncovered a few small quarries and numerous diggings and shafts exploration. There are currently no mining activity contributes to weathering of rocks and destroying and burying outcrops by layers of a postglacial sand.

5. CONCLUSION

Examined Africanda intrusion are a complex of ultrabasic rocks and alkaline with a large accessory and rare mineralization, and increased content of trace elements. Occurring in the pyroxenites, olivinites and peridotite magma show that output could come from deep in the Earth, possibly with areas of mantle. Due to the nature of the chemical composition of rocks and minerals intrusion is fundamental in the conduct of alkaline rocks of the province which occurs on the Kola peninsula. TRANSPARENCY DECLARATION

The author declares no conflict of interest. REFERENCES

1. 1. Arzamastsev A.A. 1994 - Unique Paleozoic Intrusions of the Kola Peninsula.,pp. 79. Apatity, Russian Academy of Science Publ. 2. Arzamastsev A, Yakovenchuk V, Pakhomovsky Y, Ivanyuk G. 2008 - The Khibina and Lovozero alkaline massifs: Geology and unique mineralization. 33 IGC excursion materials. 3. Bayanova T.B., Pozhylienko V.I., Smolkin V.F., Kudryshov N.M., Kaulina T.V., Vetrin V.R., 2002-Catalogue of the geochronological data of the NE part of the Baltic Shield, Apatity, pp. 53 (In Russian). 4. Bayanova T. B., 2004 - Age of Reference Geological Complexes of the Kola Peninsula and Duriation of the Magmatic Processes: St. Petersburg, Nauka. Pp 174. (in Russian). 5. Boruckiy BE. 1989 - Rock-forming minerals of the high-alkaline complexes, Nauka, pp214 (In Russian). 6. B.V. Fanasev, 2011; Mineralnye resursy shchelochno-ultraosnovnych massivov Kolskogo Poluostova, Apatity, pp151. 7. Glebovitsky V.A., 2005 - Early Precambrian of the Baltic Shield, Nauka St Petersburg, pp 710.

Geo-Science Education Journal 2017; 2 (5): 40-48


48 | Huber M.| Petrology of the Africanda ultrabasic ingenious rocks (Kola Peninsula, N Russia)

8. Huber M. 2013 -Preliminary characterization of the mineral veins occurring in the Malaya Belaya Valley in the Khibiny. J. Biol. Earth Sci. 2013, 3 (1): E1-E11.

12. Kogarko LN, Kononova VA, Orlova MP, Woolley AR. 1995 -Alkaline Rocks and Carbonatites of the World. Part 2: Former USSR. London: Chapman & Hall; pp. 226.

9. Huber M.A., 2015 -MineralogicalPetrography characteristic of the selected alkaline massifs of the Kola Peninsula, (N Baltic Shield), TMKarpinski publisher pp. 183 (in Polish) .

13. Kukharenko AA, Orlova MP, Bulakh AG, Bagdasarov EA, Rimskaya-Korsakova OM, Nefedov E.I., 1965 -The Caledonian Complex of Ultrabasic Alkaline Rocks and Carbonatites of the Kola Peninsula and North Karelia [In Russian]. Moscow: Nedra; p. 772.

10. Huber M. 2015 -Microanalysis of alcaline rocks from the Khibina Massif using SEM-EDS and mathematical methods. Journal of Biology and Earth Sciences 5(1): 82-99. 11. Huber M. 2015 -First discovery of melteigite rocks with perovskite from the Khibina Massif. Journal of Biology and Earth Sciences 5(1): 74-81.

14. Mitrofanov AF. 2000 - Geological characteristics of Kola peninsula. Russian Academy of Science, Apatity, pp. 166. 15. Pozhylienko WI., 2002 -Geology of the ore regions in Murmańsk District. Apatity , 360 (In Russian)..

Received: 28 Juni 2017; Revised submission: 20 August 2017; Accepted: 5 September 2017 Copyright: Š The Author(s) 2017. This is an open access article licensed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License, which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited. http://journals.mahuber.com/index.php/gsej

Geo-Science Education Journal 2017; 2 (5): 40-48


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.