Spsschap6

Page 1

‫]‪Œ^ŠÖ]<Ø’ËÖ‬‬ ‫]‪°ÃÛj¥<êŞ‰çjÚ<°e<íÞ…^Ϲ‬‬ ‫‪Comparing the Averages of Two Populations‬‬

‫‪ .1 .6‬ﻣﻘﺪﻣﺔ‬ ‫‪ .2 .6‬اﻟﻄﺮق اﻟﻤﻌﻠﻤﻴﺔ ‪ :‬اﺧﺘﺒﺎرات ‪t‬‬ ‫‪ .1 .2 .6‬ﻓﺮوض وﺷﺮوط اﺳﺘﺨﺪام اﺧﺘﺒﺎرات ‪t‬‬ ‫‪ .2 .2 .6‬اﺧﺘﺒﺎرات ‪ t‬ﻓﻲ ﺣﺎﻟﺔ اﻟﻌﻴﻨﺘﻴﻦ اﻟﻤﺮﺗﺒﻄﺘﻴﻦ‬ ‫‪ .3 .2 .6‬اﺧﺘﺒﺎرات ‪ t‬ﻓﻲ ﺣﺎﻟﺔ اﻟﻌﻴﻨﺘﻴﻦ اﻟﻤﺴﺘﻘﻠﺘﻴﻦ‬ ‫‪ .3 .6‬اﻟﻄﺮق اﻟﻼﻣﻌﻠﻤﻴﺔ‬ ‫‪ .1 .3 .6‬ﺣﺎﻟﺔ اﻟﻌﻴﻨﺎت اﻟﻤﺮﺗﺒﻄﺔ‬ ‫اﺧﺘﺒﺎرات وﻳﻠﻜﻮآﺴﻦ واﻹﺷﺎرة وﻣﻜﻨﻤﺎر‬ ‫‪ .2 .3 .6‬ﺣﺎﻟﺔ اﻟﻌﻴﻨﺎت اﻟﻤﺴﺘﻘﻠﺔ ‪ :‬اﺧﺘﺒﺎر ﻣﺎن وﻳﺘﻨﻲ‬ ‫‪ .4 .6‬ﺗﻄﺒﻴﻘﺎت‬ ‫‪ .1 .4 .6‬ﺣﺎﻟﺔ اﻻﺧﺘﺒﺎرات اﻟﻤﺘﻌﻠﻘﺔ ﺑﻌﻴﻨﺔ واﺣﺪة‬ ‫‪ .2 .4 .6‬اﺧﺘﺒﺎر اﻟﻔﺮﺿﻴﺎت اﻟﻤﺘﻌﻠﻘﺔ ﺑﻨﺴﺐ اﻟﺤﺪوث‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪218‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪219‬‬

‫]‪Œ^ŠÖ]<Ø’ËÖ‬‬ ‫]‪°ÃÛj¥<êŞ‰çjÚ<°e<íÞ…^Ϲ‬‬ ‫‪Comparing the averages of two populations‬‬ ‫‪ .1 .6‬ﻣﻘﺪﻣﺔ‪:‬‬ ‫ﻟﻨﻔﺭﺽ ﺃﻨﻪ ﺘﻡ ﺇﺠﺭﺍﺀ ﺃﺤﺩ ﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﺘﻲ ﺘﻡ ﺒﻬﺎ ﻗﻴﺎﺱ ﻤﺴﺘﻭﻯ ﺇﻨﺠﺎﺯ‬

‫ﻤﺠﻤﻭﻋﺘﻴﻥ ﻤﻥ ﺍﻷﻓﺭﺍﺩ ﻟﻤﻬﻤﺔ ﻤﻌﻴﻨﺔ ﺘﺤﺕ ﺘﺄﺜﻴﺭ ﻤﺠﻤﻭﻋﺘﻴﻥ ﻤﺨﺘﻠﻔﺘﻴﻥ ﻤﻥ ﺍﻟﺸﺭﻭﻁ‪،‬‬

‫ﺃﻭ ﺒﺸﻜل ﺃﺩﻕ ﻓﻲ ﻅل ﺸﺭﻁﻴﻥ ﻤﺨﺘﻠﻔﻴﻥ ﻭﺒﺘﺜﺒﻴﺕ ﺍﻟﺸﺭﻭﻁ ﺍﻷﺨﺭﻯ‪ ،‬ﻓﻌﻠﻰ ﺴﺒﻴل‬ ‫ﺍﻟﻤﺜﺎل ﻴﻤﻜﻥ ﺃﻥ ﺘﻜﻭﻥ ﻫﺫﻩ ﺍﻟﻤﻬﻤﺔ ﻫﻲ ﺤﻔﻅ ﺴﻭﺭﺓ ﻤﻥ ﺍﻟﻘﺭﺁﻥ ﺍﻟﻜﺭﻴﻡ ﺃﻭ ﻗﺼﻴﺩﺓ‬

‫ﺸﻌﺭﻴﺔ‪ ،‬ﻭﻴﻜﻭﻥ ﺍﻟﻐﺭﺽ ﻤﻥ ﺍﻟﺘﺠﺭﺒﺔ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻫﻭ ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺠﻤﻭﻋﺘﻲ‬ ‫ﺍﻷﻓﺭﺍﺩ ﻤﻥ ﻨﺎﺤﻴﺔ ﻗﺩﺭﺘﻬﻡ ﻋﻠﻰ ﻗﺭﺍﺀﺓ ﺘﻠﻙ ﺍﻟﻘﻁﻌﺔ ﻋﻥ ﻅﻬﺭ ﻗﻠﺏ ﺒﺩﻗﺔ‪ ،‬ﻋﻠﻤﹰﺎ ﺒﺄﻥ‬

‫ﻫﺎﺘﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺘﻴﻥ ﻤﻥ ﺍﻷﻓﺭﺍﺩ ﻗﺩ ﺘﺩﺭﺒﺘﺎ ﻋﻠﻰ ﺍﻟﺘﺤﻔﻴﻅ ﺒﻁﺭﻴﻘﺘﻴﻥ ﻤﺨﺘﻠﻔﺘﻴﻥ‪ ،‬ﻭﻋﻨﺩ‬

‫ﺍﻟﻨﻅﺭ ﺇﻟﻰ ﺩﺭﺠﺎﺕ ﻜل ﻤﻥ ﺍﻟﻤﺠﻭﻋﺘﻴﻥ ﻓﻲ ﺍﺨﺘﺒﺎﺭ ﺍﻟﺤﻔﻅ ﻓﺈﻨﻨﺎ ﻓﻲ ﺍﻟﻐﺎﻟﺏ ﻭﻤﻥ‬

‫ﺍﻟﻁﺒﻴﻌﻲ ﺃﻥ ﻨﺠﺩ ﺃﻥ ﻫﻨﺎﻙ ﺍﺨﺘﻼﻑ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﺍﻟﺩﺭﺠﺎﺕ ﻓﻲ ﺍﻟﻌﻴﻨﺘﻴﻥ‪ ،‬ﻭﻟﻜﻥ ﻫﺫﺍ‬

‫ﺍﻻﺨﺘﻼﻑ ﻗﺩ ﻴﻌﻭﺩ ﺇﻟﻰ ﺍﻟﻌﺸﻭﺍﺌﻴﺔ ﻷﻥ ﺍﻟﺘﺠﺭﺒﺔ ﺃﺠﺭﻴﺕ ﻋﻠﻰ ﺃﻓﺭﺍﺩ ﻤﺨﺘﻠﻔﻴﻥ ﺍﺨﺘﻴﺭﻭﺍ‬

‫ﺒﻁﺭﻴﻘﺔ ﻋﺸﻭﺍﺌﻴﺔ‪ ،‬ﻭﻟﺫﻟﻙ ﻓﻨﺤﻥ ﺒﺤﺎﺠﺔ ﺇﻟﻰ ﺍﺨﺘﺒﺎﺭ ﺇﺤﺼﺎﺌﻲ ﻟﻠﺠﺯﻡ ﺒﺄﻥ ﻫﺫﺍ ﺍﻻﺨﺘﻼﻑ‬ ‫ﺤﻘﻴﻘﻴﹰﺎ ﻭﻟﻴﺱ ﻅﺎﻫﺭﻴﹰﺎ ﻭﻴﻌﻭﺩ ﺒﺎﻟﺘﺎﻟﻲ ﺇﻟﻰ ﺍﺨﺘﻼﻑ ﺤﻘﻴﻘﻲ ﺒﻴﻥ ﻁﺭﻴﻘﺘﻲ ﺍﻟﺘﻌﻠﻴﻡ‪.‬‬

‫ﻭﻴﺴﺘﺨﺩﻡ ﻓﻲ ﻤﺜل ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻓﻲ ﺍﻟﻌﺎﺩﺓ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻻﺨﺘﺒﺎﺭ ﻤﺩﻯ ﻤﻌﻨﻭﻴﺔ )ﺩﻻﻟﺔ(‬

‫ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﺍﻟﻤﺘﻭﺴﻁﻴﻥ ﻓﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ ﺍﻟﺫﻴﻥ ﺍﺨﺘﻴﺭ ﻤﻨﻬﻤﺎ ﺍﻟﻌﻴﻨﺘﻴﻥ‪ ،‬ﺃﻱ ﻫل ﺘﺩل‬

‫ﺍﻟﻤﻌﻁﻴﺎﺕ ﺍﻟﻤﺘﺎﺤﺔ ﻤﻥ ﻫﺫﻩ ﺍﻟﺘﺠﺭﺒﺔ ﻋﻠﻰ ﺃﻨﻪ ﻓﻲ ﺍﻟﺤﺎﻟﺔ )ﺍﻻﻓﺘﺭﺍﻀﻴﺔ( ﻟﻭ ﺘﻡ ﺘﺩﺭﻴﺏ‬

‫ﺍﻟﻤﺠﺘﻤﻊ ﺒﺄﺴﺭﻩ ﺒﺄﻱ ﻤﻥ ﺍﻟﻁﺭﻴﻘﺘﻴﻥ ﺴﻴﻜﻭﻥ ﻫﻨﺎﻙ ﻓﺭﻕ ﺒﻴﻥ ﺩﺭﺠﺎﺕ ﻤﻥ ﺘﺩﺭﺒﻭﺍ‬ ‫ﺒﺎﻟﻁﺭﻴﻘﺔ ﺍﻷﻭﻟﻰ ﻋﻥ ﺃﻭﻟﺌﻙ ﺍﻟﺫﻴﻥ ﺘﺩﺭﺒﻭﺍ ﺒﺎﻟﻁﺭﻴﻘﺔ ﺍﻟﺜﺎﻨﻴﺔ؟ ﺃﻱ ﺃﻥ ﻓﺭﻀﻴﺔ ﻫﺫﻩ‬

‫ﺍﻟﺘﺠﺭﺒﺔ ﺴﺘﻜﻭﻥ ﺃﺤﺩ ﺍﻟﻁﺭﻴﻘﺘﻴﻥ ﺃﻓﻀل ﻤﻥ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻷﺨﺭﻯ ﻓﻲ ﻗﺩﺭﺘﻬﺎ ﻋﻠﻰ ﺘﺤﻔﻴﻅ‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪220‬‬

‫ﺍﻷﻓﺭﺍﺩ ﺒﺩﻗﺔ‪ ،‬ﻭﺭﻏﻡ ﺫﻟﻙ ﻓﺈﻨﻪ ﻓﻲ ﻓﻠﺴﻔﺔ ﺍﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻔﺭﻭﺽ ﺍﻹﺤﺼﺎﺌﻴﺔ ﻋﺎﺩﺓ ﻤﺎ‬ ‫ﺘﻜﻭﻥ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻤﺭﺍﺩ ﺍﺨﺘﺒﺎﺭﻫﺎ ﻟﻴﺴﺕ ﻓﺭﻀﻴﺔ ﺍﻟﺘﺠﺭﺒﺔ ﺒل ﻋﻜﺴﻬﺎ ﻭﺘﺴﻤﻰ ﻓﻲ ﻫﺫﻩ‬

‫ﺍﻟﺤﺎﻟﺔ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ‪ Null Hypothesis‬ﻭﻴﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ‪ ، H0‬ﻭﻓﻲ ﻫﺫﺍ‬

‫ﺍﻟﻤﺜﺎل ﻴﻤﻜﻥ ﺼﻴﺎﻏﺔ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ‪ H0‬ﻋﻠﻰ ﺃﻨﻬﺎ‪ :‬ﻻ ﻴﻭﺠﺩ ﻓﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ‬

‫ﺍﻟﺩﺭﺠﺎﺕ ﻓﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ ﺍﻟﺫﻴﻥ ﺴﺤﺒﺘﺎ ﻤﻨﻬﻤﺎ ﺍﻟﻌﻴﻨﺘﻴﻥ‪ ،‬ﻭﺇﺫﺍ ﺘﻤﻜﻥ ﺍﻻﺨﺘﺒﺎﺭ ﻤﻥ ﺭﻓﺽ‬

‫ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ‪ H0‬ﻓﺈﻨﻨﺎ ﺴﻭﻑ ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﻓﺭﻀﻴﺔ ﺍﻟﺘﺠﺭﺒﺔ ﺼﺤﻴﺤﺔ‪ ،‬ﺃﻱ ﺒﺘﻌﺒﻴﺭ‬

‫ﺇﺤﺼﺎﺌﻲ ﺘﻜﻭﻥ ﻤﺎ ﺘﻌﺭﻑ ﺒﺎﻟﻔﺭﻀﻴﺔ ﺍﻟﺒﺩﻴﻠﺔ ﺼﺤﻴﺤﺔ‪.‬‬

‫ﺇﻥ ﺇﻨﺠﺎﺯ ﺃﻱ ﺍﺨﺘﺒﺎﺭ ﺇﺤﺼﺎﺌﻲ ﻴﺘﻁﻠﺏ ﻤﻌﺭﻓﺔ ﺍﻟﺘﻭﺯﻴﻊ ﺍﻻﺤﺘﻤﺎﻟﻲ )ﺃﻭ ﻤﺎ ﻴﺴﻤﻰ‬

‫ﻫﻨﺎ ﺒﺘﻭﺯﻴﻊ ﺍﻟﻤﻌﺎﻴﻨﺔ( ﻟﺩﺍﻟﺔ ﺍﻻﺨﺘﺒﺎﺭ ‪ ،‬ﻭﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ ﻫﻲ ﺍﻟﻘﺎﻋﺩﺓ ﺍﻟﺘﻲ ﻴﺘﻡ ﺤﺴﺎﺒﻬﺎ ﻤﻥ‬

‫ﺒﻴﻨﺎﺕ ﺍﻟﻌﻴﻨﺎﺕ ﻭﺘﺭﻓﺽ ﺃﻭ ﺘﻘﺒل ﻋﻠﻰ ﺃﺴﺎﺴﻬﺎ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ‪ ، H0‬ﻭﺘﻌﺭﻑ ﻗﻴﻤﺔ ‪p‬‬

‫ﺍﻟﻤﻌﺭﻭﻓﺔ ﺒﺘﻌﺒﻴﺭ ‪ p-value‬ﻷﻱ ﺩﺍﻟﺔ ﺍﺨﺘﺒﺎﺭ ) ‪ t‬ﺃﻭ ‪ F‬ﺃﻭ ﺃﻱ ﺩﺍﻟﺔ ﺃﺨﺭﻯ( ﻋﻠﻰ ﺃﻨﻬﺎ‬ ‫ﺍﺤﺘﻤﺎل ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻗﻴﻤﺔ ﻜﺒﻴﺭﺓ ﻭﻤﺴﺎﻭﻴﺔ ﻋﻠﻰ ﺍﻷﻗل ﺘﻠﻙ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻲ ﺤﺼﻠﻨﺎ ﻋﻠﻴﻬﺎ‬

‫ﺒﺎﻟﻔﻌل ﻤﻥ ﺒﻴﺎﻨﺎﺕ ﺍﻟﻌﻴﻨﺎﺕ ﻭﺫﻟﻙ ﻓﻲ ﺼﺤﺔ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ‪ ، H0‬ﻓﺈﺫﺍ ﻜﺎﻨﺕ ﻗﻴﻤﺔ‬ ‫‪ p-value‬ﺍﻟﺘﻲ ﺤﺼﻠﻨﺎ ﻋﻠﻴﻬﺎ ﺼﻐﻴﺭﺓ ﻓﺈﻥ ﺫﻟﻙ ﻴﺅﺨﺫ ﻋﻠﻰ ﺃﻨﻪ ﺩﻟﻴل ﻜﺎﻓﻲ ﻟﺭﻓﺽ ﺘﻠﻙ‬ ‫ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ‪ ، H0‬ﻭﺫﻟﻙ ﻷﻨﻪ ﻤﻥ ﺍﻟﻤﺴﺘﺒﻌﺩ ﺃﻥ ﻨﺤﺼل ﻋﻠﻰ ﻗﻴﻤﺔ ﻜﺒﻴﺭﺓ ﺒﻬﺫﺍ‬

‫ﺍﻟﻘﺩﺭ ﻟﺩﺍﻟﺔ ﺍﻻﺨﺘﺒﺎﺭ ﻨﺘﻴﺠﺔ ﻓﻘﻁ ﻟﻠﻌﺸﻭﺍﺌﻴﺔ ﺇﻻ ﺒﺎﺤﺘﻤﺎل ﻀﺌﻴل ﺠﺩﹰﺍ ‪ ،‬ﻭﻟﺫﻟﻙ ﻓﺈﻨﻨﺎ‬

‫ﻨﺭﻓﺽ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ‪ H0‬ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ ‪ p-value‬ﺼﻐﻴﺭﺓ ﻭﺃﺼﻐﺭ ﻤﻥ ﻗﻴﻤﺔ‬

‫ﺍﻓﺘﺭﺍﻀﻴﺔ ﻭﻤﺤﺩﺩﺓ ﺴﻠﻔ ﹰﺎ ﻭﺘﻌﺭﻑ ﺒﻤﺴﺘﻭﻯ ﺍﻟﻤﻌﻨﻭﻴﺔ ﺃﻭ ﻤﺴﺘﻭﻯ ﺍﻟﺩﻻﻟﺔ ‪Significance‬‬

‫‪ ، Level‬ﻭﻓﻲ ﺍﻟﻌﺎﺩﺓ ﺘﺄﺨﺫ ﻗﻴﻤﺔ ﻤﺴﺘﻭﻯ ﺍﻟﻤﻌﻨﻭﻴﺔ ﻋﻠﻰ ﺃﻨﻬﺎ ﻤﺴﺎﻭﻴﺔ ‪ 0.05‬ﺃﻭ ‪0.01‬‬ ‫ﺃﻭ ﻗﻴﻤﺔ ﻤﻘﺎﺭﺒﺔ ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﻤﺩﻯ ﺍﻟﺩﻗﺔ ﺍﻟﻤﻁﻠﻭﺒﺔ‪ ،‬ﻭﻫﺫﺍ ﻴﺨﺘﻠﻑ ﺤﺴﺏ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺸﻜﻠﺔ‬ ‫ﻤﻭﻀﻭﻉ ﺍﻟﺩﺭﺍﺴﺔ‪ ،‬ﻭﺒﻬﺫﺍ ﻓﺈﻨﻪ ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ ‪ p-value‬ﺃﺼﻐﺭ ﻤﻥ ﻤﺴﺘﻭﻯ‬

‫ﺍﻟﻤﻌﻨﻭﻴﺔ ﻓﺈﻨﻪ ﻴﻘﺎل ﺃﻥ ﺩﺍﻟﺔ ﺍﻻﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻴﺔ ﺃﻭ ﺫﺍﺕ ﺩﻻﻟﺔ ‪. Significant‬‬

‫ﺇﺫﺍ ﻜﺎﻨﺕ ﻗﻴﻤﺔ ‪ p-value‬ﺃﻜﺒﺭ ﻤﻥ ﻤﺴﺘﻭﻯ ﺍﻟﻤﻌﻨﻭﻴﺔ ﻓﺈﻨﻨﺎ ﻨﻘﺒل ﺍﻟﻔﺭﻀﻴﺔ‬

‫ﺍﻟﻌﺩﻤﻴﺔ ‪ H0‬ﺃﻭ ﺒﻤﻌﻨﻰ ﺃﺩﻕ ﻻ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﺩﻟﻴل ﻜﺎﻓﻲ ﻤﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻟﺭﻓﺽ ﺘﻠﻙ‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪221‬‬

‫ﺍﻟﻔﺭﻀﻴﺔ‪ ،‬ﺃﻱ ﺍﻟﻤﻌﻨﻰ ﺍﻟﺩﻗﻴﻕ ﻟﺫﻟﻙ ﺃﻨﻪ ﻓﺸل ﺍﻻﺨﺘﺒﺎﺭ ﻓﻲ ﺭﻓﺽ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ﺃﻭ‬ ‫ﻻ ﻴﻭﺠﺩ ﻫﻨﺎﻙ ﺩﻟﻴل ﻜﺎﻓﻲ ﻤﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻟﺭﻓﺽ ﺘﻠﻙ ﺍﻟﻔﺭﻀﻴﺔ‪.‬‬ ‫ﺨﻼﺼﺔ ﻤﺎ ﺴﺒﻕ ﺃﻥ‪:‬‬ ‫‪ .1‬ﺇﺫﺍ ﻜﺎﻨﺕ ﻗﻴﻤﺔ ‪ p-value‬ﺃﻜﺒﺭ ﻤﻥ ‪ 0.05‬ﻓﺈﻨﻨﺎ ﻨﻘﺒل ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ‪H0‬‬

‫ﻭﺘﻜﻭﻥ ﺍﻟﻨﺘﻴﺠﺔ ﺃﻥ ﺍﻻﺨﺘﺒﺎﺭ ﻏﻴﺭ ﻤﻌﻨﻭﻱ ‪. not significant‬‬

‫‪ .2‬ﺇﺫﺍ ﻜﺎﻨﺕ ﻗﻴﻤﺔ ‪ p-value‬ﺃﻗل ﻤﻥ ‪ 0.05‬ﻓﺈﻨﻨﺎ ﻨﺭﻓﺽ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ‬

‫‪ H0‬ﻭﺘﻜﻭﻥ ﺍﻟﻨﺘﻴﺠﺔ ﺃﻥ ﺍﻻﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻱ ‪ significant‬ﻭﺫﻟﻙ ﺒﻤﺴﺘﻭﻯ‬

‫ﻤﻌﻨﻭﻴﺔ ‪.0.05‬‬ ‫‪ .3‬ﺇﺫﺍ ﻜﺎﻨﺕ ﻗﻴﻤﺔ ‪ p-value‬ﺃﻗل ﻤﻥ ‪ 0.01‬ﻓﺈﻨﻨﺎ ﻨﺭﻓﺽ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ‬

‫‪ H0‬ﻭﺘﻜﻭﻥ ﺍﻟﻨﺘﻴﺠﺔ ﺃﻥ ﺍﻻﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻱ ‪ significant‬ﻭﺫﻟﻙ ﺒﻤﺴﺘﻭﻯ‬

‫ﻤﻌﻨﻭﻴﺔ ‪.0.01‬‬

‫ﻭﻓﻲ ﻫﺫﺍ ﺍﻟﻜﺘﺎﺏ ﺴﻨﻔﺘﺭﺽ ﺃﻥ ﺍﻟﻘﺎﺭﺉ ﻟﺩﻴﻪ ﺒﻌﺽ ﺍﻟﻤﻌﻠﻭﻤﺎﺕ ﻋﻥ ﺍﺴﺘﺨﺩﺍﻡ‬

‫ﺍﺨﺘﺒﺎﺭﺍﺕ ‪ ، t‬ﻭﺇﺫﺍ ﻟﻡ ﻴﻜﻥ ﻟﺩﻴﻙ ﺃﻱ ﻤﻌﻠﻭﻤﺎﺕ ﻋﻨﻬﺎ ﺃﻭ ﻟﻤﺯﻴﺩ ﻤﻥ ﺍﻟﻤﻌﻠﻭﻤﺎﺕ ﻨﻨﺼﺤﻙ‬ ‫ﺒﻘﺭﺍﺀﺓ ﺍﻷﺠﺯﺍﺀ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺘﻠﻙ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﻓﻲ ﺃﺤﺩ ﻜﺘﺏ ﺍﻹﺤﺼﺎﺀ ﻭﻤﻨﻬﺎ ﻋﻠﻰ ﺴﺒﻴل‬

‫ﺍﻟﻤﺜﺎل ﻜﺘﺎﺏ "ﺍﻹﺤﺼﺎﺀ ﺍﻟﺘﻁﺒﻴﻘﻲ" ﻟﻠﻤﺅﻟﻑ‪ ،‬ﺍﻟﻁﺒﻌﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻟﻌﺎﻡ ‪ ، 2001‬ﻓﻔﻲ ﺍﻟﻌﻴﻨﺎﺕ‬

‫ﺍﻟﻤﺴﺘﻘﻠﺔ ﺘﺤﺴﺏ ﺩﺍﻟﺔ ﺍﻻﺨﺘﺒﺎﺭ ‪ t‬ﻋﻠﻰ ﺃﻨﻬﺎ ﻨﺎﺘﺞ ﻗﺴﻤﺔ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﺍﻟﻌﻴﻨﺘﻴﻥ‬

‫ﻋﻠﻰ ﺘﻘﺩﻴﺭ ﺍﻟﺨﻁﺄ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻠﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﺍﻟﻌﻴﻨﺘﻴﻥ‪ ،‬ﻭﻓﻲ ﺤﺎﻟﺔ ﻤﺎ ﺇﺫﺍ ﻜﺎﻥ‬

‫ﺘﺒﺎﻴﻨﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ ﻤﺘﺴﺎﻭﻴﻴﻥ ﻓﺈﻨﻪ ﻋﺎﺩﺓ ﻴﻘﺩﺭ ﺍﻟﺘﺒﺎﻴﻥ ﺍﻟﻤﺸﺘﺭﻙ ﻟﻠﻤﺠﺘﻤﻌﻴﻥ ﻤﻥ ﺒﻴﺎﻨﺎﺕ‬

‫ﺍﻟﻌﻴﻨﺘﻴﻥ ﺒﺩﻤﺠﻬﻤﺎ ﻤﻌﹰﺎ ‪ ،‬ﻭﻗﻴﻤﺔ ‪ p-value‬ﺍﻟﻤﺼﺎﺤﺒﺔ ﻻﺨﺘﺒﺎﺭ ‪ t‬ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﻤﺎ ﻴﻌﺭﻑ‬ ‫ﺒﺩﺭﺠﺎﺕ ﺍﻟﺤﺭﻴﺔ ﻟﻠﺘﻭﺯﻴﻊ ﺍﻻﺤﺘﻤﺎﻟﻲ ﻭﺍﻟﺘﻲ ﺒﺩﻭﺭﻫﺎ ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﻋﺩﺩ ﻤﻔﺭﺩﺍﺕ ﺍﻟﻌﻴﻨﺘﻴﻥ‪.‬‬

‫ﻻ ﺒﺎﻟﻘﻭﺍﺌﻡ ﻭﺍﻷﻭﺍﻤﺭ ﺍﻟﻤﺘﺎﺤﺔ ﻓﻲ ﻨﻅﺎﻡ ‪SPSS‬‬ ‫ﻭﺸﻜل ‪ 1-6‬ﺃﺩﻨﺎﻩ ﻴﻭﻀﺢ ﺠﺩﻭ ﹰ‬

‫ﻭﺫﻟﻙ ﻟﻠﺤﺎﻻﺕ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻴﻥ‪ ،‬ﺤﻴﺙ ﻴﻭﻀﺢ ﺍﻟﺼﻔﻴﻥ‬ ‫ﺍﻷﻭل ﻭﺍﻟﺜﺎﻨﻲ ﻓﻲ ﺍﻟﺠﺩﻭل ﺤﺎﻟﺔ ﺍﻟﻔﺭﻭﺽ ﺤﻭل ﺍﻟﺘﻭﺯﻴﻊ ﺍﻻﺤﺘﻤﺎﻟﻲ ﻟﻠﺒﻴﺎﻨﺎﺕ ﻓﻲ‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪222‬‬

‫ﺤﺎﻻﺕ ﺍﻟﻌﻴﻨﺘﻴﻥ ﺍﻟﻤﺴﺘﻘﻠﺘﻴﻥ ﻭﺍﻟﻌﻴﻨﺘﻴﻥ ﺍﻟﻤﺭﺘﺒﻁﺘﻴﻥ ﺒﻴﻨﻤﺎ ﻴﻭﻀﺢ ﺍﻟﺼﻑ ﺍﻟﺜﺎﻟﺙ ﺍﻟﻘﺎﺌﻤﺔ‬ ‫ﺍﻟﻤﻨﺎﺴﺒﺔ ﻟﻠﺤﺎﻟﺔ ﻓﻲ ﻨﻅﺎﻡ ‪ SPSS‬ﺘﺤﺕ ﻗﺎﺌﻤﺔ ﺍﻹﺤﺼﺎﺀﺍﺕ ‪) Statistics‬ﺃﻭ ﺍﻟﺘﺤﻠﻴل‬

‫‪ (Analysis‬ﻭﻴﻭﻀﺢ ﺍﻟﺼﻑ ﺍﻟﺭﺍﺒﻊ ﺍﻷﻤﺭ ﺍﻟﻤﻨﺎﺴﺏ ﻓﻲ ﺘﻠﻙ ﺍﻟﻘﺎﺌﻤﺔ‪.‬‬

‫ﺸﻜل ‪ : -6‬ﻗﻭﺍﺌﻡ ﻭﺃﻭﺍﻤﺭ ﻨﻅﺎﻡ ‪ SPSS‬ﻟﻠﺤﺎﻻﺕ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻴﻥ‬

‫ﻋﻨﺩﻤﺎ ﻻ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﺃﻱ ﺍﻓﺘﺭﺍﺽ ﺤﻭل‬

‫ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻤﻥ ﻤﺠﺘﻤﻌﻴﻥ ﻟﻬﻤﺎ‬

‫ﺍﻟﺘﻭﺯﻴﻊ ﺍﻻﺤﺘﻤﺎﻟﻲ ﻟﻠﺒﻴﺎﻨﺎﺕ‬

‫ﺘﻭﺯﻴﻊ ﻁﺒﻴﻌﻲ ﻭﺘﺒﺎﻴﻨﻬﻤﺎ ﻤﺘﺴﺎﻭﻱ‬

‫ﺤﺎﻟﺔ ﻋﻴﻨﺘﻴﻥ‬ ‫ﻤﺭﺘﺒﻁﺘﻴﻥ‬

‫ﺤﺎﻟﺔ ﻋﻴﻨﺘﻴﻥ‬ ‫ﻤﺴﺘﻘﻠﺘﻴﻥ‬

‫‪Non-Parametric Non-Parametric‬‬ ‫‪Tests‬‬ ‫‪Tests‬‬ ‫‪2 Paired‬‬ ‫‪Samples‬‬

‫‪2 Independent‬‬ ‫‪Samples‬‬

‫ﺤﺎﻟﺔ ﻋﻴﻨﺘﻴﻥ‬

‫ﺤﺎﻟﺔ ﺍﻟﻌﻴﻨﺎﺕ‬

‫‪Compare‬‬ ‫‪Means‬‬

‫‪Compare‬‬ ‫‪Means‬‬

‫‪Paired Samples‬‬ ‫‪t-test‬‬

‫‪Independent‬‬ ‫‪Samples t-test‬‬

‫ﻤﺭﺘﺒﻁﺘﻴﻥ‬

‫ﺍﻟﻤﺴﺘﻘﻠﺔ‬

‫ﻭﻴﺒﻴﻥ ﺍﻟﺸﻜل ﺍﻟﺴﺎﺒﻕ ﺃﻥ ﺍﻟﻨﺼﻑ ﺍﻷﻴﺴﺭ ﻤﻥ ﺍﻟﺠﺩﻭل ﻴﺘﻌﻠﻕ ﺒﺎﻻﺨﺘﺒﺎﺭﺍﺕ‬

‫ﺍﻟﻤﻌﻠﻤﻴﺔ ‪) Parametric Tests‬ﺃﻱ ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﻓﺭﻭﺽ ﺘﺘﻌﻠﻕ ﺒﺎﻟﺘﻭﺯﻴﻊ‬ ‫ﺍﻻﺤﺘﻤﺎﻟﻲ ﻟﻠﻤﺠﺘﻤﻌﺎﺕ ﺍﻟﺘﻲ ﺴﺤﺒﺕ ﻤﻨﻬﺎ ﺍﻟﻌﻴﻨﺎﺕ( ﺒﻴﻨﻤﺎ ﻴﺘﻌﻠﻕ ﻨﺼﻑ ﺍﻟﺠﺩﻭل ﺍﻷﻴﻤﻥ‬

‫ﺒﺎﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ‪) Non-Parametric Tests‬ﺃﻱ ﺤﺎﻟﺔ ﻋﺩﻡ ﻭﺠﻭﺩ ﺘﻠﻙ‬

‫ﺍﻟﻔﺭﻭﺽ ﺤﻭل ﺍﻟﺘﻭﺯﻴﻊ ﺍﻻﺤﺘﻤﺎﻟﻲ ﻟﻠﻤﺠﺘﻤﻌﺎﺕ( ‪ ،‬ﻭﻓﻲ ﻜل ﻤﻥ ﺍﻟﻨﻭﻋﻴﻥ ﻫﻨﺎﻙ ﺤﺎﻻﺕ‬ ‫ﻋﻴﻨﺎﺕ ﻤﺴﺘﻘﻠﺔ ‪ Independent Samples‬ﻭﺤﺎﻻﺕ ﻋﻴﻨﺎﺕ ﻤﺭﺘﺒﻁﺔ‬

‫‪Paired‬‬

‫‪) Samples‬ﺃﻭ ‪ Related Samples‬ﻓﻲ ﺤﺎﻟﺔ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ(‪ ،‬ﻭﺴﻭﻑ‬ ‫ﻨﺘﺤﺩﺙ ﻓﻲ ﺍﻷﻗﺴﺎﻡ ﺍﻟﻼﺤﻘﺔ ﻤﻥ ﻫﺫﺍ ﺍﻟﻔﺼل ﻋﻥ ﻜل ﻤﻥ ﻫﺫﻩ ﺍﻟﺤﺎﻻﺕ ﺒﺎﻟﺘﻔﺼﻴل‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪223‬‬

‫‪ .2 .6‬اﻟﻄﺮق اﻟﻤﻌﻠﻤﻴﺔ ‪ :‬اﺧﺘﺒﺎرات ‪: t‬‬ ‫‪Parametric methods : the t-tests:‬‬ ‫‪ .1 .2 .6‬ﻓﺮوض وﺷﺮوط اﺳﺘﺨﺪام اﺧﺘﺒﺎرات ‪: t‬‬ ‫ﺍﻟﻨﻤﻭﺫﺝ ﺍﻻﺤﺘﻤﺎﻟﻲ ﺍﻟﺫﻱ ﺍﺸﺘﻘﺕ ﻤﻨﻪ ﺍﺨﺘﺒﺎﺭﺍﺕ ‪ t‬ﻴﻔﺘﺭﺽ ﺃﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺘﻤﺜل‬

‫ﻋﻴﻨﺔ ﻋﺸﻭﺍﺌﻴﺔ ﺍﺨﺘﻴﺭﺕ ﻤﻥ ﻤﺠﺘﻤﻊ ﻴﺘﺒﻊ ﺍﻟﺘﻭﺯﻴﻊ ﺍﻟﻁﺒﻴﻌﻲ ﺒﺘﺒﺎﻴﻥ ﺜﺎﺒﺕ‪ ،‬ﻭﻟﻜﻥ ﻋﻠﻰ‬ ‫ﺍﻟﺭﻏﻡ ﻤﻥ ﺫﻟﻙ ﺃﺜﺒﺘﺕ ﻁﺭﻕ ﺍﻟﻤﺤﺎﻜﺎﺓ ﺃﻨﻪ ﺤﺘﻰ ﻓﻲ ﺤﺎﻻﺕ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺘﻲ ﺘﺨﺘﺭﻕ ﻫﺫﺍ‬

‫ﺍﻟﺸﺭﻁ ﺍﺨﺘﺭﺍﻕ ﻁﻔﻴﻑ ﻴﻤﻜﻥ ﺃﻴﻀﹰﺎ ﺍﺴﺘﺨﺩﺍﻡ ﻫﺫﻩ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﻭﻟﻜﻥ ﺒﺸﺭﻁ ﺃﻻ ﺘﻜﻭﻥ‬ ‫ﺍﻟﻌﻴﻨﺎﺕ ﺼﻐﻴﺭﺓ ﺍﻟﺤﺠﻡ ﻭﻻ ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﺒﻴﺎﻨﺎﺕ ﺸﺎﺫﺓ ﺃﻭ ﻤﺘﻁﺭﻓﺔ ﻭﺤﺠﻤﻲ ﺍﻟﻌﻴﻨﺘﻴﻥ‬

‫ﻤﺘﺴﺎﻭﻴﻴﻥ‪ ،‬ﻭﺇﺫﺍ ﺘﺒﻴﻥ ﻤﻥ ﺍﺴﺘﻜﺸﺎﻑ ﺍﻟﺒﻴﺎﻨﺎﺕ )ﺒﺎﻟﻁﺭﻕ ﺍﻟﺘﻲ ﺘﻡ ﺘﻭﻀﻴﺤﻬﺎ ﻓﻲ ﺍﻟﻔﺼﻭل‬

‫ﺍﻟﺴﺎﺒﻘﺔ( ﺃﻥ ﻫﻨﺎﻙ ﺍﺨﺘﺭﺍﻕ ﻜﺒﻴﺭ ﻟﺘﻙ ﺍﻟﺸﺭﻭﻁ ﻓﺈﻥ ﺍﺨﺘﺒﺎﺭﺍﺕ ‪ t‬ﻟﻥ ﺘﻜﻭﻥ ﻗﻭﻴﺔ ﻓﻲ ﻤﺜل‬

‫ﻫﺫﻩ ﺍﻟﺤﺎﻻﺕ‪ ،‬ﻭﻴﻨﺼﺢ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭﺍﺕ ﻻﻤﻌﻠﻤﻴﺔ ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ‬

‫ﺍﻟﺘﻲ ﺴﻴﺘﻡ ﺘﻭﻀﻴﺤﻬﺎ ﻓﻲ ﺍﻟﻘﺴﻡ ﺍﻟﺘﺎﻟﻲ‪ ،‬ﻭﻓﻲ ﺒﻌﺽ ﺍﻟﺤﺎﻻﺕ ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺍﻟﺘﻐﻠﺏ ﻋﻠﻰ‬

‫ﺘﻠﻙ ﺍﻟﻤﺸﻜﻠﺔ ﺒﻤﺠﺭﺩ ﺍﺴﺘﺒﻌﺎﺩ ﺘﻠﻙ ﺍﻟﻘﻴﻡ ﺍﻟﺸﺎﺫﺓ ﻤﻥ ﺍﻟﻘﻴﻡ ﺜﻡ ﺘﻁﺒﻴﻕ ﺍﺨﺘﺒﺎﺭﺍﺕ ‪ t‬ﻋﻠﻰ‬ ‫ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﺒﻘﻴﺔ‪.‬‬

‫‪ .2 .2 .6‬اﺧﺘﺒﺎرات ‪ t‬ﻓﻲ ﺣﺎﻟﺔ اﻟﻌﻴﻨﺘﻴﻦ اﻟﻤﺮﺗﺒﻄﺘﻴﻦ ‪:‬‬ ‫‪The paired samples t-tests :‬‬ ‫ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ ﺘﺠﺭﺒﺔ ﺘﻡ ﺘﻁﺒﻴﻘﻬﺎ ﻋﻠﻰ ﻨﻔﺱ ﺍﻟﻤﻔﺭﺩﺍﺕ ﻤﺭﺘﻴﻥ ﻓﻲ ﻅﺭﻓﻴﻥ‬ ‫ﺃﻭ ﺸﺭﻁﻴﻥ ﻤﺨﺘﻠﻔﻴﻥ ﻓﺈﻥ ﺍﻟﻘﻴﺎﺴﺎﺕ ﺍﻟﻤﺄﺨﻭﺫﺓ ﻓﻲ ﺍﻟﺤﺎﻟﺘﻴﻥ ﺴﺘﻨﺘﺞ ﻋﻴﻨﺘﻴﻥ ﻤﺭﺘﺒﻁﺘﻴﻥ‬

‫‪ Paired samples‬ﻤﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ‪ ،‬ﻭﺤﻴﺙ ﺃﻥ ﺍﻟﺘﺠﺭﺒﺔ ﺘﻜﺭﺭﺕ ﻋﻠﻰ ﻨﻔﺱ ﺍﻟﻤﻔﺭﺩﺍﺕ ﻓﺈﻥ‬ ‫ﺤﺠﻤﻲ ﺍﻟﻌﻴﻨﺘﻴﻥ ﺴﻴﻜﻭﻥ ﺜﺎﺒﺕ ﻭﺴﻴﻘﺎﺒل ﻜل ﻗﻴﻤﺔ ﻓﻲ ﺍﻟﻌﻴﻨﺔ ﺍﻷﻭﻟﻰ ﻗﻴﻤﺔ ﻟﻨﻔﺱ ﺍﻟﻤﻔﺭﺩﺓ‬

‫ﻓﻲ ﺍﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ‪ ،‬ﻜﺫﻟﻙ ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺃﻥ ﺘﻜﻭﻥ ﺍﻟﻌﻴﻨﺘﻴﻥ ﻤﺭﺘﺒﻁﺘﻴﻥ ﺇﺫﺍ ﻁﺒﻘﺕ ﺍﻟﺘﺠﺭﺒﺔ‬

‫ﻋﻠﻰ ﺃﺯﻭﺍﺝ ﻟﻬﺎ ﻨﻔﺱ ﺍﻟﺨﺼﺎﺌﺹ ﻤﻥ ﺍﻟﻤﻔﺭﺩﺍﺕ ﺃﻭ ﺘﺭﺒﻁ ﺒﻴﻨﻬﻤﺎ ﻋﻼﻗﺔ ﻤﺎ ﻜﺄﻥ ﻴﻜﻭﻥ‬ ‫ﺍﻟﻤﻔﺭﺩﺍﺕ ﻋﺒﺎﺭﺓ ﻋﻥ ﺃﺯﻭﺍﺝ ﻤﻥ ﺍﻷﺨﻭﺓ ﺍﻟﺘﻭﺍﺌﻡ ﺃﻭ ﺍﻟﺯﻭﺝ ﻭﺯﻭﺠﺘﻪ ﻭﻤﺎ ﺇﻟﻰ ﺫﻟﻙ‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪224‬‬

‫ﻭﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ ﻋﻴﻨﺘﻴﻥ ﻤﺭﺘﺒﻁﺘﻴﻥ ﺒﻬﺫﺍ ﺍﻟﺸﻜل ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭ ‪t‬‬

‫ﺍﻟﺨﺎﺹ ﺒﺎﻟﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪ Paired samples t-test‬ﻭﺫﻟﻙ ﻻﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻴﺔ ﺍﻟﻔﺭﻕ‬

‫ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ ﺍﻟﺫﻴﻥ ﺴﺤﺒﺘﺎ ﻤﻨﻬﻤﺎ ﺍﻟﻌﻴﻨﺘﻴﻥ‪ ،‬ﻫﺫﺍ ﺍﻻﺨﺘﺒﺎﺭ ﻴﻤﻜﻥ ﺍﻟﻭﺼﻭل‬

‫ﺇﻟﻴﻪ ﻤﻥ ﺨﻼل ﻗﺎﺌﻤﺔ ﺍﻟﺘﺤﻠﻴل ‪) Analysis‬ﺃﻭ ﺍﻹﺤﺼﺎﺀ ‪ Statistics‬ﻓﻲ ﺇﺼﺩﺍﺭ ‪(8.0‬‬ ‫ﻓﻲ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﺭﺌﻴﺴﻴﺔ ﻭﺍﺨﺘﻴﺎﺭ ﺃﻤﺭ ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻴﻥ ‪ Compare means‬ﻤﻥ‬ ‫ﺘﻠﻙ ﺍﻟﻘﺎﺌﻤﺔ‪ ،‬ﻭﻟﻜﻥ ﻫﺫﺍ ﻓﻲ ﺍﻟﺒﺩﺍﻴﺔ ﻴﺴﺘﺩﻋﻲ ﺘﺠﻬﻴﺯ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻟﻜﻲ ﺘﻜﻭﻥ ﻤﺨﺯﻨﺔ‬ ‫ﺒﺎﻟﺼﻭﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬

‫ﻟﻨﻔﺭﺽ ﺃﻨﻪ ﺘﻡ ﺇﺠﺭﺍﺀ ﺘﺠﺭﺒﺔ ﻋﻠﻰ ﻋﻴﻨﺔ ﻤﻜﻭﻨﺔ ﻤﻥ ﻋﺸﺭﺓ ﻤﻥ ﺍﻷﻁﻔﺎل ﺒﻬﺩﻑ‬

‫ﺍﺨﺘﺒﺎﺭ ﻓﺭﻀﻴﺔ ﺃﻥ ﻤﻭﻀﻊ ﺍﻟﻜﻠﻤﺔ ﺴﻭﺍﺀ ﻋﻠﻰ ﻴﻤﻴﻥ ﺃﻭ ﻋﻠﻰ ﻴﺴﺎﺭ ﺸﺎﺸﺔ ﺍﻟﺤﺎﺴﻭﺏ ﻟﻪ‬

‫ﺘﺄﺜﻴﺭ ﻋﻠﻰ ﻗﺩﺭﺓ ﺍﻷﻁﻔﺎل ﻋﻠﻰ ﺘﻤﻴﻴﺯ ﺍﻟﻜﻠﻤﺎﺕ ﻓﻲ ﺍﻟﺸﺎﺸﺔ‪ ،‬ﻭﺃﻋﻁﻲ ﻜل ﻤﻥ ﺍﻷﻁﻔﺎل‬ ‫ﺍﻟﻌﺸﺭﺓ ﻋﺩﺩﹰﺍ ﻤﺘﺴﺎﻭﻴﹰﺎ ﻤﻥ ﺍﻟﻜﻠﻤﺎﺕ ﻋﻠﻰ ﻜل ﻤﻥ ﻴﻤﻴﻥ ﻭﻴﺴﺎﺭ ﺸﺎﺸﺔ ﺍﻟﺤﺎﺴﻭﺏ‪ ،‬ﻭﺘﻡ‬

‫ﻗﻴﺎﺱ ﺍﻟﻭﻗﺕ ﺍﻟﻼﺯﻡ ﻟﻸﻁﻔﺎل ﻟﺘﻤﻴﻴﺯ ﺘﻠﻙ ﺍﻟﻜﻠﻤﺎﺕ ﺒﺄﻋﺸﺎﺭ ﺍﻟﺜﺎﻨﻴﺔ ﻭﺇﻋﻁﺎﺀ ﻜل ﻤﻨﻬﻡ‬

‫ﺩﺭﺠﺔ ﻟﻠﻴﻤﻴﻥ ﻭﺩﺭﺠﺔ ﻟﻠﻴﺴﺎﺭ ﻋﻠﻰ ﺃﺴﺎﺱ ﺃﻨﻬﺎ ﻭﺴﻴﻁ ﺍﻟﻔﺘﺭﺍﺕ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﻤﺴﺘﻐﺭﻗﺔ ﻤﻥ‬

‫ﻜل ﻁﻔل ﻟﺘﻤﻴﻴﺯ ﺍﻟﻜﻠﻤﺎﺕ‪ ،‬ﻓﺘﻜﻭﻥ ﻟﺩﻴﻨﺎ ﻤﺘﻐﻴﺭﻴﻥ ﻜل ﻤﺘﻐﻴﺭ ﻤﻜﻭﻥ ﻤﻥ ‪ 10‬ﻗﻴﻡ‬

‫)ﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﺭﻗﻡ ﺍﻟﻁﻔل(‪ ،‬ﻭﻻﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﺍﻟﺨﺎﺹ ﺒﺎﻟﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪Paired‬‬

‫‪ samples t-test‬ﻭﺫﻟﻙ ﻻﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻴﺔ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﺍﻟﺩﺭﺠﺎﺕ ﻓﻲ ﻤﺠﺘﻤﻌﻲ‬ ‫ﺍﻷﻁﻔﺎل ﺍﻟﺫﻴﻥ ﻴﺘﻌﺭﻀﻭﻥ ﻻﺨﺘﺒﺎﺭ ﺘﻤﻴﻴﺯ ﺍﻟﻜﻠﻤﺎﺕ ﻋﻠﻰ ﻜل ﻤﻥ ﻴﻤﻴﻥ ﻭﻴﺴﺎﺭ ﺸﺎﺸﺔ‬

‫ﺍﻟﺤﺎﺴﻭﺏ ﻻﺒﺩ ﻤﻥ ﺇﺩﺨﺎل ﺍﻟﺒﻴﺎﻨﺎﺕ ﻟﻠﺤﺎﺴﻭﺏ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ‪Data Editor‬‬

‫ﻓﻲ ﻨﻅﺎﻡ ‪ SPSS‬ﻋﻠﻰ ﺸﻜل ﻤﺘﻐﻴﺭﻴﻥ )ﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﻤﺘﻐﻴﺭ ﻟﻠﺭﻗﻡ ﺍﻟﻤﺴﻠﺴل( ﻟﺘﻅﻬﺭ‬ ‫ﺘﻠﻙ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ 2-6‬ﺃﺩﻨﺎﻩ ‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪225‬‬

‫ﺸﻜل ‪ : 2-6‬ﺼﻭﺭﺓ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻜﻤﺎ ﺩﺨﻠﺕ ﻟﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻓﻲ ﻨﻅﺎﻡ ‪. SPSS‬‬ ‫‪Paired data: Median word recognition time in‬‬ ‫‪milliseconds for words in the left and right visual fields.‬‬ ‫‪Subject‬‬

‫‪Right Field‬‬

‫‪Left Field‬‬

‫‪304‬‬

‫‪323‬‬

‫‪1‬‬

‫‪493‬‬

‫‪512‬‬

‫‪2‬‬

‫‪2‬‬

‫‪491‬‬

‫‪502‬‬

‫‪3‬‬

‫‪3‬‬

‫‪365‬‬

‫‪385‬‬

‫‪4‬‬

‫‪4‬‬

‫‪426‬‬

‫‪453‬‬

‫‪3‬‬

‫‪5‬‬

‫‪320‬‬

‫‪343‬‬

‫‪6‬‬

‫‪6‬‬

‫‪523‬‬

‫‪543‬‬

‫‪7‬‬

‫‪7‬‬

‫‪442‬‬

‫‪440‬‬

‫‪8‬‬

‫‪8‬‬

‫‪580‬‬

‫‪682‬‬

‫‪9‬‬

‫‪9‬‬

‫‪564‬‬

‫‪590‬‬

‫‪10‬‬

‫‪10‬‬

‫‪10‬‬

‫‪10‬‬

‫‪10‬‬

‫‪N‬‬

‫‪1‬‬

‫‪Total‬‬

‫ﻭﻟﺘﻔﺤﺹ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻗﺒل ﺇﺠﺭﺍﺀ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﺍﻟﻤﻨﺎﺴﺏ ﻴﺤﺴﻥ ﺘﻤﺜﻴل ﺘﻠﻙ ﺍﻟﺒﻴﺎﻨﺎﺕ‬

‫ﻫﻨﺩﺴﻴﹰﺎ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ‪ ،‬ﻭﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ﻟﻬﺫﻩ ﺍﻟﺒﻴﺎﻨﺎﺕ‬

‫ﻤﻥ ﺨﻼل ﺃﻤﺭ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ‪ Scatter..‬ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ﻜﻤﺎ ﺘﻡ‬

‫ﺘﻭﻀﻴﺤﻪ ﻓﻲ ﺍﻟﻔﺼل ﺍﻟﺴﺎﺒﻕ ﻟﻨﺼل ﺇﻟﻰ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ﻓﻲ ﺸﻜل ‪ 3-6‬ﺃﺩﻨﺎﻩ ‪.‬‬

‫ﻭﻤﻥ ﻫﺫﺍ ﺍﻟﺸﻜل ﻴﺘﻀﺢ ﺃﻨﻪ ﻻ ﻴﻭﺠﺩ ﺃﻱ ﻗﻴﻡ ﻴﻤﻜﻥ ﺃﻥ ﺘﺼﻨﻑ ﻋﻠﻰ ﺃﻨﻬﺎ ﺸﺎﺫﺓ‬

‫‪ ، outlier‬ﻭﻴﺠﺏ ﺍﻟﻤﻼﺤﻅﺔ ﻫﻨﺎ ﺃﻥ ﻭﺠﻭﺩ ﺃﺤﺩ ﺍﻟﻘﻴﻡ ﻤﻥ ﺒﻴﻥ ﻗﻴﻡ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﻌﺸﺭﺓ‬

‫ﺸﺎﺫﺓ ﻴﻤﻜﻥ ﺃﻥ ﻴﻜﻭﻥ ﻟﻪ ﺘﺄﺜﻴﺭ ﺴﻴﺊ ﻋﻠﻰ ﻨﺘﻴﺠﺔ ﺍﻻﺨﺘﺒﺎﺭ‪ ،‬ﻓﻬﺫﻩ ﺍﻟﻘﻴﻤﺔ ﺴﻭﻑ ﺘﺠﻌل‬ ‫ﺍﻟﺘﺒﺎﻴﻥ ﻜﺒﻴﺭ ﻭﺒﺎﻟﺘﺎﻟﻲ ﺴﻭﻑ ﺘﺠﻌل ﻗﻴﻤﺔ ﻤﻘﺎﻡ ﺩﺍﻟﺔ ‪ t‬ﻜﺒﻴﺭﺓ ‪ ،‬ﺃﻱ ﺃﻨﻬﺎ ﺴﻭﻑ ﺘﺠﻌل‬

‫ﺍﻟﺩﺍﻟﺔ ﺼﻐﻴﺭﺓ‪ ،‬ﻭﻫﺫﺍ ﺴﻭﻑ ﻴﻘﻠل ﻤﻥ ﺍﺤﺘﻤﺎل ﺭﻓﺽ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ‪ ،‬ﺃﻱ ﺃﻨﻪ ﺴﻭﻑ‬ ‫ﻴﻘﻠل ﻤﻥ ﻓﺭﺼﺔ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻱ‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪226‬‬

‫ﺸﻜل ‪ : 3-6‬ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ﻟﻤﺘﻐﻴﺭﻱ ﻭﺴﻴﻁ ﺍﻟﻭﻗﺕ ﻟﻼﺯﻡ ﻟﺘﻤﻴﻴﺯ ﺍﻟﻜﻠﻤﺎﺕ ﻋﻠﻰ ﻴﺴﺎﺭ ﻭﻋﻠﻰ‬ ‫ﻴﻤﻴﻥ ﺍﻟﺸﺎﺸﺔ ﻟﻌﺸﺭﺓ ﻤﻥ ﺍﻷﻁﻔﺎل ﺍﻟﺫﻴﻥ ﺘﻌﺭﻀﻭﺍ ﻟﻠﺘﺠﺭﺒﺔ‬

‫‪Median word recognition times in millisecond‬‬ ‫‪for words in the left and rightvisual fields‬‬ ‫‪Left Field‬‬

‫‪700‬‬

‫‪600‬‬

‫‪500‬‬

‫‪400‬‬

‫‪300‬‬ ‫‪600‬‬

‫‪500‬‬

‫‪400‬‬

‫‪300‬‬

‫‪200‬‬

‫‪Right Field‬‬

‫ﻋﻨﺩ ﻭﺠﻭﺩ ﺃﻱ ﻤﻥ ﺍﻟﻘﻴﻡ ﺍﻟﺸﺎﺫﺓ ﻓﻲ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻓﺈﻥ ﺍﻟﻤﺴﺘﺨﺩﻡ ﻴﻤﻜﻨﻪ ﺃﻥ ﻴﺨﺘﺎﺭ ﺇﻤﺎ‬

‫ﺍﺴﺘﺒﻌﺎﺩ ﺘﻠﻙ ﺍﻟﻘﻴﻤﺔ ﻤﻥ ﺒﻴﻥ ﺍﻟﻘﻴﻡ )ﻭﻫﺫﺍ ﺍﻟﺨﻴﺎﺭ ﻏﻴﺭ ﻤﺤﺒﺫ ﺨﺎﺼﺔ ﻓﻲ ﺍﻟﻌﻴﻨﺎﺕ‬

‫ﺍﻟﺼﻐﻴﺭﺓ ﺒﻬﺫﺍ ﺍﻟﺤﺠﻡ( ﺃﻭ ﺍﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭ ﺁﺨﺭ ﻻ ﻤﻌﻠﻤﻲ ﻤﺜل ﺍﺨﺘﺒﺎﺭ ﺍﻹﺸﺎﺭﺓ ‪Sign‬‬

‫‪ test‬ﺃﻭ ﺍﺨﺘﺒﺎﺭ ﻭﻴﻠﻜﻭﻜﺴﻥ ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪، Wilcoxon matched pairs test‬‬

‫ﻓﻬﺫﻴﻥ ﺍﻻﺨﺘﺒﺎﺭﻴﻥ ﺃﻜﺜﺭ ﻗﺩﺭﺓ ﻋﻠﻰ ﺘﺠﻨﺏ ﺁﺜﺎﺭ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻁﺭﻓﺔ ﻋﻠﻰ ﻨﺘﻴﺠﺔ ﺍﻻﺨﺘﺒﺎﺭ‪،‬‬

‫ﻭﻟﻜﻥ ﻓﻲ ﺤﺎﻟﺔ ﻋﺩﻡ ﻭﺠﻭﺩ ﺃﻱ ﻤﻭﺍﻨﻊ ﻤﻥ ﺍﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻓﺈﻨﻪ ﻴﻔﻀل ﺍﺴﺘﺨﺩﺍﻤﻪ‪،‬‬

‫ﺤﻴﺙ ﺃﻥ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻤﻌﻠﻤﻴﺔ ﺩﺍﺌﻤﹰﺎ ﻟﻬﺎ ﻗﻭﺓ ﺍﺨﺘﺒﺎﺭ ﺃﻜﺒﺭ ﻤﻥ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪227‬‬

‫ﻭﻴﻤﻜﻥ ﺘﻨﻔﻴﺫ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ﺒﺈﺠﺭﺍﺀ ﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫• ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﺘﺤﻠﻴل ﺍﻹﺤﺼﺎﺌﻲ ‪) Analyze‬ﺃﻭ ‪ Statistics‬ﻓﻲ ﺇﺼﺩﺍﺭ ‪(8.0‬‬ ‫ﺍﺨﺘﺭ ﺃﻤﺭ ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻐﻴﺭﻴﻥ ‪ Compare Means‬ﻭﻤﻥ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﺠﺎﻨﺒﻴﺔ‬

‫ﺍﺨﺘﺭ ﺃﻤﺭ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪ Paired-Samples T Test‬ﻜﻤﺎ ﻓﻲ‬

‫ﺍﻟﺸﻜل ‪ 4-6‬ﻟﺘﻔﺘﺢ ﻨﺎﻓﺫﺓ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪Paired-Samples T‬‬

‫‪ ، Test‬ﻭﺘﺒﺩﻭ ﻫﺫﻩ ﺍﻟﻨﺎﻓﺫﺓ ﻭﻗﺩ ﺘﻤﺕ ﺘﻌﺒﺌﺔ ﺒﻴﺎﻨﺎﺘﻬﺎ ﻓﻲ ﺸﻜل ‪ 5-6‬ﺃﺩﻨﺎﻩ‪.‬‬

‫ﺸﻜل ‪ : 4-6‬ﻁﺭﻴﻘﺔ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ﻤﻥ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ‬

‫ﺸﻜل ‪ : 5-6‬ﻨﺎﻓﺫﺓ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪.Paired-Samples T Test‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫•‬

‫‪228‬‬

‫ﻤﺒﺩﺌﻴ ﹰﺎ ﺘﻔﺘﺢ ﻨﺎﻓﺫﺓ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪Paired-Samples T Test‬‬

‫ﻭﺘﻜﻭﻥ ﻓﺎﺭﻏﺔ ﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭﺴﻭﻑ ﺘﻅﻬﺭ ﺃﺴﻤﺎﺀ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﻁﻠﻭﺒﺔ ‪Left‬‬

‫‪ field‬ﻭ ‪ Right field‬ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻋﻠﻰ ﻴﺴﺎﺭ ﻫﺫﻩ ﺍﻟﻨﺎﻓﺫﺓ‪ ،‬ﻓﻘﻡ‬ ‫ﺒﺎﺨﺘﻴﺎﺭ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻷﻭل ﻭﺍﻀﻐﻁ ﻋﻠﻰ ﻤﻔﺘﺎﺡ ﺍﻟﺘﺤﻜﻡ ‪ Ctrl‬ﻭﺍﺒﻕ ﻀﺎﻏﻁﹰﺎ ﻋﻠﻴﻪ‬

‫ﺇﻟﻰ ﺃﻥ ﺘﺨﺘﺎﺭ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺜﺎﻨﻲ ﻭﻴﺘﻡ ﺘﺤﺩﻴﺩ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ‪ ،‬ﺴﻴﺘﻡ ﻋﻨﺩﻫﺎ ﺇﻀﺎﺀﺓ ﺍﻟﺴﻬﻡ‬

‫ﻓﻲ ﺍﻟﺠﻬﺔ ﺍﻟﻴﻤﻨﻰ‬

‫ﻹﺯﺍﺤﺔ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﺇﻟﻰ ﺍﻟﻴﻤﻴﻥ ﻟﻴﺴﺘﻘﺭﺍ ﻤﺘﻘﺎﺒﻼﻥ ﻓﻲ‬

‫ﺍﻟﻤﺭﺒﻊ ﺍﻟﺨﺎﺹ ﺒﻬﻤﺎ ﺘﺤﺕ ﻋﻨﻭﺍﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﺍﻟﻤﺭﺘﺒﻁﻴﻥ ‪Paired Variables‬‬

‫ﻜﻤﺎ ﻫﻭ ﻤﻭﻀﺢ ﻓﻲ ﺍﻟﺸﻜل ‪.5-6‬‬

‫• ﺍﻀﻐﻁ ﻋﻠﻰ ﻤﺭﺒﻊ ﺍﻟﺘﻨﻔﻴﺫ ‪ OK‬ﻟﻼﺴﺘﻤﺭﺍﺭ ﻓﻲ ﺘﻨﻔﻴﺫ ﺍﻷﻤﺭ‪ ،‬ﻭﺴﺘﻅﻬﺭ‬ ‫ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﻤﺤﺭﺭ ﺍﻟﻨﺘﺎﺌﺞ ﻜﻤﺎ ﻓﻲ ﺍﻟﺸﻜل ‪ 6-6‬ﺃﺩﻨﺎﻩ‪.‬‬

‫ﻭﺤﻴﺙ ﺃﻨﻪ ﻴﻤﻜﻥ ﺇﺠﺭﺍﺀ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪Paired-Samples T‬‬

‫‪ Test‬ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﻜﺒﻴﺭﺓ ﻤﻥ ﺃﺯﻭﺍﺝ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻓﻲ ﺃﻤﺭ ﻭﺍﺤﺩ ﻭﻤﻥ ﻨﻔﺱ ﺍﻟﻨﺎﻓﺫﺓ‬ ‫ﺍﻟﺴﺎﺒﻘﺔ ﻓﺈﻥ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻻﺒﺩ ﺃﻥ ﺘﻭﻀﺢ ﻨﺘﺎﺌﺞ ﺍﻟﺘﻁﺒﻴﻕ ﻋﻠﻰ ﻜل ﺯﻭﺝ ‪ Pair‬ﻋﻠﻰ‬

‫ﺤﺩﻩ ﻓﻲ ﻜل ﺠﺩﻭل ﻤﻥ ﺠﺩﺍﻭل ﺍﻟﻨﺘﺎﺌﺞ‪ ،‬ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺜﺎل ﻻ ﻴﻭﺠﺩ ﺴﻭﻯ ﺯﻭﺝ ﻭﺍﺤﺩ ﻤﻥ‬

‫ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ‪ ،‬ﻟﺫﻟﻙ ﻓﺈﻥ ﺍﻟﺠﺩﻭل ﺍﻷﻭل ﻓﻲ ﺍﻟﻨﺘﺎﺌﺞ‬

‫‪Paired Sample‬‬

‫‪ Statistics‬ﻴﻭﻀﺢ ﻤﺠﻤﻭﻋﺔ ﺍﻹﺤﺼﺎﺀﺍﺕ ﺍﻟﺘﻲ ﺘﺘﻌﻠﻕ ﺒﻜل ﻤﺘﻐﻴﺭ ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻋﻠﻰ‬ ‫ﺤﺩﻩ‪ ،‬ﺒﻴﻨﻤﺎ ﻴﻭﻀﺢ ﺍﻟﺠﺩﻭل ﺍﻟﺜﺎﻨﻲ ‪ Paired Samples Correlations‬ﻗﻴﻤﺔ ﻤﻌﺎﻤل‬ ‫ﺍﻻﺭﺘﺒﺎﻁ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻭﻜﺫﻟﻙ ﻗﻴﻤﺔ ‪ p-value‬ﺍﻟﻨﺎﺘﺠﺔ ﻋﻥ ﺍﺨﺘﺒﺎﺭ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ‬

‫ﺍﻟﻘﺎﺌﻠﺔ ﺒﻌﺩﻡ ﻭﺠﻭﺩ ﻋﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﺃﻱ ﺇﺫﺍ ﻜﺎﻨﺕ ﻫﺫﻩ ﺍﻟﻘﻴﻤﺔ ﺼﻐﻴﺭﺓ ﻓﺈﻥ ﻫﺫﻩ‬

‫ﺍﻟﻔﺭﻀﻴﺔ ﺴﺘﺭﻓﺽ ﺃﻱ ﺃﻥ ﻫﻨﺎﻙ ﻋﻼﻗﺔ ﻤﺎ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻭﺘﻜﻭﻥ ﻓﻲ ﺍﻟﻌﺎﺩﺓ ﻗﻴﻤﺔ‬

‫ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﻜﺒﻴﺭﺓ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ‪ ،‬ﻭﻴﻭﻀﺢ ﺍﻟﺠﺩﻭل ﺍﻟﺜﺎﻟﺙ ﻭﺍﻷﺨﻴﺭ ﻓﻲ ﻜﺸﻑ‬

‫ﺍﻟﻨﺘﺎﺌﺞ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪ Paired-Samples Test‬ﺍﻟﺨﺼﺎﺌﺹ ﺍﻻﺤﺘﻤﺎﻟﻴﺔ‬

‫ﻟﻠﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﺍﻟﻌﻴﻨﺘﻴﻥ ‪ Paired Differences‬ﻭﻫﻲ ‪ 95%‬ﻓﺘﺭﺓ ﺜﻘﺔ ﻟﻠﻔﺭﻕ ﺒﻴﻥ‬

‫ﺍﻟﻤﺘﻭﺴﻁﻴﻥ ﻭﻜﺫﻟﻙ ﻗﻴﻤﺔ ﺩﺍﻟﺔ ﺍﻻﺨﺘﺒﺎﺭ ‪ t‬ﻭﻋﺩﺩ ﺩﺭﺠﺎﺕ ﺤﺭﻴﺘﻬﺎ ‪ df‬ﻭﻗﻴﻤﺔ ‪p-value‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪229‬‬

‫ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﻬﺎ ﻭﺫﻟﻙ ﻋﻠﻰ ﺍﻓﺘﺭﺍﺽ ﺃﻥ ﺍﻻﺨﺘﺒﺎﺭ ﺜﻨﺎﺌﻲ ﺍﻟﻁﺭﻑ ‪ ، 2-tailed‬ﺒﻤﻌﻨﻰ ﺃﻥ‬ ‫ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﺒﺩﻴﻠﺔ ﺘﺭﻓﺽ ﻓﻲ ﺍﻟﺤﺎﻟﺘﻴﻥ ﺴﻭﺍﺀ ﻜﺎﻥ ﻤﺘﻭﺴﻁ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻷﻭل ﺃﻜﺒﺭ ﻤﻥ‬ ‫ﻤﺘﻭﺴﻁ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺜﺎﻨﻲ ﺃﻭ ﻜﺎﻥ ﺃﺼﻐﺭ ﻤﻨﻪ‪ ،‬ﻭﻴﻠﺯﻡ ﺃﻥ ﻴﻜﻭﻥ ﺍﻻﺨﺘﺒﺎﺭ ﺃﺤﺎﺩﻱ ﺍﻟﻁﺭﻑ‬

‫‪ 1-tailed‬ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﺍﻫﺘﻤﺎﻤﻨﺎ ﻋﻠﻰ ﺃﻥ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻷﻭل ﺃﺼﻐﺭ ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺜﺎﻨﻲ‬ ‫ﺒﺎﻟﺘﺤﺩﻴﺩ ﺃﻭ ﺃﻥ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺜﺎﻨﻲ ﺃﺼﻐﺭ ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻷﻭل ﻭﻟﻴﺱ ﺃﻱ ﻤﻥ ﺍﻟﺤﺎﻟﺘﻴﻥ‪.‬‬

‫ﺸﻜل ‪ : 6-6‬ﻜﺸﻑ ﻨﺘﺎﺌﺞ ﺍﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ﻋﻠﻰ ﺒﻴﺎﻨﺎﺕ ﺘﺠﺭﺒﺔ ﻋﻴﻨﺘﻴﻥ‬ ‫ﻤﺭﺘﺒﻁﺘﻴﻥ ‪Listings of the results of Paired-Samples T Test‬‬ ‫‪Paired Samples Statistics‬‬ ‫‪Std. Error‬‬ ‫‪Mean‬‬

‫‪Std. Deviation‬‬

‫‪Mean‬‬

‫‪N‬‬

‫‪35.45‬‬

‫‪112.09‬‬

‫‪10‬‬

‫‪477.30‬‬

‫‪Left Field‬‬

‫‪30.70‬‬

‫‪97.09‬‬

‫‪10‬‬

‫‪450.80‬‬

‫‪Right Field‬‬

‫‪Pair 1‬‬

‫‪Paired Samples Correlations‬‬ ‫‪Correlation‬‬

‫‪Sig.‬‬

‫‪.975‬‬

‫‪.000‬‬

‫‪N‬‬ ‫‪Left Field & Right Field‬‬

‫‪10‬‬

‫‪Pair 1‬‬

‫‪Paired Samples Test‬‬

‫‪Paired Differences‬‬ ‫‪95%‬‬ ‫‪Confidence‬‬ ‫‪Interval of the‬‬ ‫‪Difference‬‬

‫‪Sig.‬‬ ‫)‪(2-tailed‬‬

‫‪df‬‬

‫‪.015‬‬

‫‪9‬‬

‫‪t‬‬ ‫‪3.013‬‬

‫‪Upper‬‬

‫‪Lower‬‬

‫‪Std.‬‬ ‫‪Error‬‬ ‫‪Mean‬‬

‫‪Std.‬‬ ‫‪Deviatio‬‬ ‫‪n‬‬

‫‪Mean‬‬

‫‪46.40‬‬

‫‪6.60‬‬

‫‪8.80‬‬

‫‪27.81‬‬

‫‪26.50‬‬

‫ ‪Left Field‬‬‫‪Right Field‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪230‬‬

‫ﻴﻭﻀﺢ ﺸﻜل ‪ 6-6‬ﻨﺘﺎﺌﺞ ﺘﻁﺒﻴﻕ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪Paired-‬‬

‫‪ Samples T Test‬ﻋﻠﻰ ﺒﻴﺎﻨﺎﺕ ﻤﺜﺎﻟﻨﺎ ﺍﻟﺫﻱ ﻴﺘﻌﻠﻕ ﺒﺎﺨﺘﺒﺎﺭ ﻓﺭﻀﻴﺔ ﺃﻥ ﻤﻭﻀﻊ ﺍﻟﻜﻠﻤﺔ‬

‫ﺴﻭﺍﺀ ﻋﻠﻰ ﻴﻤﻴﻥ ﺃﻭ ﻋﻠﻰ ﻴﺴﺎﺭ ﺸﺎﺸﺔ ﺍﻟﺤﺎﺴﻭﺏ ﻟﻪ ﺘﺄﺜﻴﺭ ﻋﻠﻰ ﻗﺩﺭﺓ ﺍﻷﻁﻔﺎل ﻋﻠﻰ‬ ‫ﺘﻤﻴﻴﺯ ﺍﻟﻜﻠﻤﺎﺕ ﻓﻲ ﺍﻟﺸﺎﺸﺔ ﺤﻴﺙ ﺘﻅﻬﺭ ﺒﻴﺎﻨﺎﺕ ﻫﺫﺍ ﺍﻟﻤﺜﺎل ﻓﻲ ﺸﻜل ‪ ،2-6‬ﻭﻴﺒﻴﻥ‬ ‫ﺍﻟﺠﺩﻭل ﺍﻟﺜﺎﻨﻲ ﻓﻲ ﺍﻟﺸﻜل ﺃﻥ ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻤﺴﺎﻭﻴﹰﺎ ‪ 0.975‬ﻭﻫﻲ‬

‫ﻗﻴﻤﺔ ﻤﻌﻨﻭﻴﺔ ﺇﻟﻰ ﺩﺭﺠﺔ ﻜﺒﻴﺭﺓ ﺒﺎﻟﻨﻅﺭ ﺇﻟﻰ ﻗﻴﻤﺔ ‪ p-value‬ﺍﻟﺘﻲ ﺘﻘﺘﺭﺏ ﻤﻥ ﺍﻟﺼﻔﺭ ﺃﻱ‬ ‫ﺃﻥ ﻫﻨﺎﻙ ﻋﻼﻗﺔ ﻗﻭﻴﺔ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻤﻭﻀﻊ ﺍﻟﺩﺭﺍﺴﺔ‪ ،‬ﻜﻤﺎ ﻴﺒﻴﻥ ﺍﻟﺠﺩﻭل ﺍﻟﺜﺎﻟﺙ ﻓﻲ‬

‫ﺍﻟﺸﻜل ﺃﻥ ﻗﻴﻤﺔ ﺩﺍﻟﺔ ﺍﻻﺨﺘﺒﺎﺭ ‪ t-value‬ﻫﻲ ‪ 3.013‬ﻭﻟﻬﺎ ‪ 9‬ﺩﺭﺠﺎﺕ ﺤﺭﻴﺔ ﻭﺃﻥ ﻗﻴﻤﺔ‬

‫‪ p-value‬ﻤﺴﺎﻭﻴﺔ ‪ ،0.015‬ﺃﻱ ﺃﻨﻨﺎ ﻨﺴﺘﻁﻴﻊ ﺭﻓﺽ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ﺃﻥ ﻤﺘﻭﺴﻁﻲ‬ ‫ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻤﺘﺴﺎﻭﻴﻴﻥ ﺒﻤﺴﺘﻭﻯ ﻤﻌﻨﻭﻴﺔ ‪) 0.05‬ﻷﻥ ﻗﻴﻤﺔ ‪ p-value‬ﺃﻗل ﻤﻥ ‪،(0.05‬‬ ‫ﻭﺒﺫﻟﻙ ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﻫﻨﺎﻙ ﻓﺭﻕ ﺒﻴﻥ ﺍﻟﻤﺘﻭﺴﻁﻴﻥ‪ ،‬ﺃﻱ ﺃﻥ ﻫﻨﺎﻙ ﺘﺄﺜﻴﺭ ﻟﻤﻭﻗﻊ ﺍﻟﻜﻠﻤﺎﺕ‬

‫ﻋﻠﻰ ﻴﻤﻴﻥ ﺃﻭ ﻋﻠﻰ ﻴﺴﺎﺭ ﺍﻟﺸﺎﺸﺔ ﻋﻠﻰ ﻗﺩﺭﺓ ﺍﻷﻁﻔﺎل ﻋﻠﻰ ﺘﻤﻴﻴﺯ ﺘﻠﻙ ﺍﻟﻜﻠﻤﺎﺕ‪.‬‬

‫ﻭﻴﻭﻀﺢ ﺃﻴﻀﹰﺎ ﺍﻟﺠﺩﻭل ﺍﻟﺜﺎﻟﺙ ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﺸﻜل ‪ 6-6‬ﺘﻘﺩﻴﺭ ﻟﻔﺘﺭﺓ‬ ‫‪ 95%‬ﺜﻘﺔ ﻟﻠﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ‪95% Confidence Interval for the‬‬

‫‪ ، Difference‬ﺤﺙ ﻴﻭﺠﺩ ﻓﻲ ﻤﻔﺎﻫﻴﻡ ﺍﻟﺘﺤﻠﻴل ﺍﻹﺤﺼﺎﺌﻲ ﻁﺭﻴﻘﺘﻴﻥ ﻟﻠﺘﻘﺩﻴﺭ ﻭﻫﻤﺎ‪:‬‬

‫‪ .1‬ﺍﻟﺘﻘﺩﻴﺭ ﺒﻨﻘﻁﺔ ‪ : Point estimates‬ﻭﻫﻭ ﻋﺒﺎﺭﺓ ﻋﻥ ﺘﻘﺩﻴﺭ ﻟﻠﻘﻴﻤﺔ‬ ‫ﺍﻟﻤﺠﻬﻭﻟﺔ ﻓﻲ ﺍﻟﻤﺠﺘﻤﻊ ﻜﻜل ﺒﻘﻴﻤﺔ ﻭﺤﻴﺩﺓ ﻭﺫﻟﻙ ﻤﻥ ﺒﻴﺎﻨﺎﺕ ﺍﻟﻌﻴﻨﺔ‪.‬‬

‫‪ .2‬ﺍﻟﺘﻘﺩﻴﺭ ﺒﻔﺘﺭﺓ ﺜﻘﺔ ‪ : Confidence interval estimates‬ﻭﻫﻲ ﻋﺒﺎﺭﺓ‬ ‫ﻋﻥ ﻓﺘﺭﺓ ﺘﻘﻊ ﺒﻬﺎ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺠﻬﻭﻟﺔ ﻓﻲ ﺍﻟﻤﺠﺘﻤﻊ ﻭﺒﺩﺭﺠﺔ ﺜﻘﺔ ﻤﺤﺩﺩﺓ‪.‬‬

‫ﻭﺘﺒﻴﻥ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﺍﻟﺠﺩﻭل ﺃﻥ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﺍﻟﻤﺘﻭﺴﻁﻴﻥ ﻟﻥ ﻴﻘل ﻋﻥ ‪ 6.60‬ﻭﻟﻥ‬

‫ﻴﺯﻴﺩ ﻋﻥ ‪ 46.40‬ﻭﺫﻟﻙ ﺒﺩﺭﺠﺔ ﺜﻘﺔ ‪ ،95%‬ﻭﺤﻴﺙ ﺃﻥ ﻫﺫﻩ ﺍﻟﻔﺘﺭﺓ ﻻ ﺘﺤﺘﻭﻱ ﻋﻠﻰ‬

‫ﻗﻴﻤﺔ ﺍﻟﻔﺭﻕ ﻓﻲ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ﻭﻫﻲ ﺍﻟﺼﻔﺭ ﻓﺈﻥ ﻫﺫﺍ ﻴﻌﺘﺒﺭ ﻤﺅﺸﺭ ﻋﻠﻰ ﺭﻓﻀﻬﺎ‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪231‬‬

‫‪ .3 .2 .6‬اﺧﺘﺒﺎرات ‪ t‬ﻓﻲ ﺣﺎﻟﺔ اﻟﻌﻴﻨﺘﻴﻦ اﻟﻤﺴﺘﻘﻠﺘﻴﻦ ‪:‬‬ ‫‪The independent samples t-tests :‬‬ ‫ﻤﻥ ﺃﺠل ﺘﻁﺒﻴﻕ ﺍﺨﺘﺒﺎﺭﺍﺕ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﺴﻭﻑ ﻨﺴﺘﺨﺩﻡ ﻨﻔﺱ ﺒﻴﺎﻨﺎﺕ‬

‫ﺍﻟﺘﺠﺭﺒﺔ ﻓﻲ ﺍﻟﻤﺜﺎل ﺍﻟﺴﺎﺒﻕ ﻭﻟﻜﻥ ﺴﻨﻔﺘﺭﺽ ﺃﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻨﺎﺘﺠﺔ ﻋﻥ ﺘﺠﺭﺒﺔ ﺘﻡ ﺘﻁﺒﻴﻘﻬﺎ‬

‫ﻋﻠﻰ ﻋﻴﻨﺘﻴﻥ ﻤﺴﺘﻘﻠﺘﻴﻥ ﻤﻥ ﺍﻷﻁﻔﺎل ﻭﺤﺠﻡ ﻜل ﻤﻨﻬﺎ ‪ 10‬ﺃﻁﻔﺎل ﻭﺘﻡ ﻋﺭﺽ ﺍﻟﻜﻠﻤﺎﺕ‬ ‫ﻟﻸﻁﻔﺎل ﻓﻲ ﺍﻟﻌﻴﻨﺔ ﺍﻷﻭﻟﻰ ﻋﻠﻰ ﺍﻟﺠﻬﺔ ﺍﻟﻴﺴﺭﻯ ﻤﻥ ﺸﺎﺸﺔ ﺍﻟﺤﺎﺴﻭﺏ ﻭﻟﻸﻁﻔﺎل ﻓﻲ‬

‫ﺍﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻋﻠﻰ ﺍﻟﺠﻬﺔ ﺍﻟﻴﻤﻨﻰ ﻤﻨﻬﺎ‪ ،‬ﻭﺤﺼﻠﻨﺎ ﻋﻠﻰ ﻤﻘﺎﻴﻴﺱ ﻟﻭﺴﻴﻁ ﺍﻟﻭﻗﺕ ﺍﻟﻼﺯﻡ‬ ‫ﻟﻜل ﻁﻔل ﻤﻥ ﺒﻴﻥ ﺍﻟﻌﺸﺭﻴﻥ ﻁﻔل ﻟﺘﺤﺩﻴﺩ ﺍﻟﻜﻠﻤﺎﺕ‪ ،‬ﻭﻟﻐﺭﺽ ﺍﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭﺍﺕ ‪t‬‬

‫ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﻻﺒﺩ ﻤﻥ ﺇﻋﺎﺩﺓ ﺘﺭﺘﻴﺏ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﻤﺘﻐﻴﺭ ﻭﺴﻴﻁ ﺍﻟﻭﻗﺕ‬ ‫ﺍﻟﻼﺯﻡ ﻟﻸﻁﻔﺎل ﻟﺘﻤﻴﻴﺯ ﺍﻟﻜﻠﻤﺎﺕ ﻓﻲ ﻋﻤﻭﺩ ﻭﺍﺤﺩ ﻤﻥ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻭﻟﺘﺤﺩﻴﺩ ﺍﻟﻌﻴﻨﺔ‬

‫ﺍﻟﺘﻲ ﻴﻨﺘﻤﻲ ﺇﻟﻴﻬﺎ ﻜل ﻁﻔل ﻻﺒﺩ ﻤﻥ ﺃﻥ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﻤﺘﻐﻴﺭ ﺘﺼﻨﻴﻑ ﻴﻭﻀﺢ ﺭﻗﻡ ﺍﻟﻌﻴﻨﺔ‪،‬‬ ‫ﻭﺒﺫﻟﻙ ﻓﺈﻥ ﻨﻔﺱ ﺍﻟﻘﻴﻡ ﺍﻟﺘﻲ ﻅﻬﺭﺕ ﻓﻲ ﺸﻜل ‪ 2-6‬ﺍﻟﺴﺎﺒﻕ ﺃﻋﻴﺩ ﺘﺭﺘﻴﺒﻬﺎ ﺒﺎﺴﺘﺨﺩﺍﻡ‬

‫ﺃﻭﺍﻤﺭ ﻗﺎﺌﻤﺔ ﺍﻟﺘﻌﺩﻴل ‪ Edit‬ﻓﻲ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ‪ Data Editor‬ﻟﺘﻅﻬﺭ ﺍﻵﻥ ﻜﻤﺎ ﻓﻲ‬

‫ﺸﻜل ‪ 10-6‬ﺃﺩﻨﺎﻩ‪.‬‬

‫ﻭﻋﻨﺩﻤﺎ ﻴﺘﻡ ﺇﺩﺨﺎل ﺍﻟﺒﻴﺎﻨﺎﺕ ﺒﺎﻟﺸﻜل ﺍﻟﻨﺎﺴﺏ ﺍﻟﻤﺫﻜﻭﺭ ﺃﻋﻼﻩ ﻭﺤﻔﻅﻬﺎ ﻓﻲ ﻤﻠﻑ‬

‫ﻴﻤﻜﻥ ﺇﺠﺭﺍﺀ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﻋﻠﻰ ﺍﻟﻌﻤﻭﺩ ﺍﻟﺫﻱ ﻴﺤﺘﻭﻱ ﻋﻠﻰ ﺒﻴﺎﻨﺎﺕ‬ ‫ﺍﻟﻤﺘﻐﻴﺭ ﻟﻠﻌﻴﻨﺘﻴﻥ ﻭﻤﻌﺭﻑ ﺭﻗﻡ ﺍﻟﻌﻴﻨﺔ ﺍﻟﺘﻲ ﺘﻨﺘﻤﻲ ﺇﻟﻴﻬﺎ ﻜل ﻤﺸﺎﻫﺩﺓ ﻓﻲ ﻤﺘﻐﻴﺭ ﺘﺼﻨﻴﻑ‬ ‫ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬

‫• ﻤﻥ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻭﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﺘﺤﻠﻴل ﺍﻹﺤﺼﺎﺌﻲ ‪ Analyze‬ﻜﻤﺎ ﻓﻲ‬

‫ﺸﻜل ‪) 7-6‬ﺃﻭ ‪ Statistics‬ﻓﻲ ﺇﺼﺩﺍﺭ ‪ (8.0‬ﻨﺨﺘﺎﺭ ﻗﺎﺌﻤﺔ ﺃﻤﺭ ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ‬

‫ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ‪ Compare Means‬ﻭﻤﻨﻬﺎ ﻨﺨﺘﺎﺭ ﺃﻤﺭ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ‬

‫‪ Independent Samples T Test‬ﻟﺘﻔﺘﺢ ﻨﺎﻓﺫﺓ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ‬ ‫‪ Independent Samples T Test‬ﻜﻤﺎ ﻓﻲ ﺍﻟﺸﻜل ‪ 8-6‬ﺃﺩﻨﺎﻩ‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪232‬‬

‫ﺸﻜل ‪ : 7-6‬ﺸﺎﺸﺔ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻤﻭﻀﺤ ﹰﺎ ﻋﻠﻴﻬﺎ ﺃﻤﺭ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ‬ ‫‪ Independent-Samples T Test‬ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ‬

‫ﺸﻜل ‪ : 8-6‬ﻨﺎﻓﺫﺓ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ‪.Independent-Samples T Test‬‬

‫•‬

‫ﻓﻲ ﺍﻟﻨﺎﻓﺫﺓ ﺍﻟﺴﺎﺒﻘﺔ ﻴﻤﻜﻥ ﺘﺤﺩﻴﺩ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ )ﺃﻭ ﻤﺘﻐﻴﺭ ﺍﻻﺨﺘﺒﺎﺭ( ‪Test‬‬

‫)‪ Variable(s‬ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻓﻲ ﺍﻟﺠﻬﺔ ﺍﻟﻴﺴﺭﻯ ﻤﻥ ﺍﻟﻨﺎﻓﺫﺓ ﻭﻫﻭ ﻓﻲ‬ ‫ﻤﺜﺎﻟﻨﺎ ﻭﺴﻴﻁ ﺍﻟﻭﻗﺕ ﺍﻟﻼﺯﻡ ﻟﺘﺤﺩﻴﺩ ﺍﻟﻜﻠﻤﺎﺕ ﻟﻠﻁﻔل ‪ Recognition Time‬ﻭﻤﻥ‬

‫ﺜﻡ ﺇﺯﺍﺤﺘﻪ ﺇﻟﻰ ﺍﻟﻤﺭﺒﻊ ﺍﻟﺨﺎﺹ ﺒﺎﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﺎﺒﻌﺔ ﻋﻠﻰ ﺍﻟﻴﻤﻴﻥ ﺒﻭﺍﺴﻁﺔ ﺍﻟﺴﻬﻡ‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪233‬‬

‫• ﺒﺎﻟﻤﺜل ﻴﻤﻜﻥ ﺘﺤﺩﻴﺩ ﻤﺘﻐﻴﺭ ﺍﻟﺘﺼﻨﻴﻑ ‪ Grouping Variable‬ﻓﻲ ﻗﺎﺌﻤﺔ‬ ‫ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻓﻲ ﺍﻟﺠﻬﺔ ﺍﻟﻴﺴﺭﻯ ﻤﻥ ﺍﻟﻨﺎﻓﺫﺓ ﻭﻫﻭ ﻓﻲ ﻤﺜﺎﻟﻨﺎ ﺠﻬﺔ ﺍﻟﺸﺎﺸﺔ ‪Left-‬‬

‫‪ Right Identifier‬ﻭﻤﻥ ﺜﻡ ﺇﺯﺍﺤﺘﻪ ﺇﻟﻰ ﺍﻟﻤﺭﺒﻊ ﺍﻟﺨﺎﺹ ﺒﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﺼﻨﻴﻑ‬

‫ﻋﻠﻰ ﻴﻤﻴﻥ ﻭﺃﺴﻔل ﺍﻟﻨﺎﻓﺫﺓ ﺒﻭﺍﺴﻁﺔ ﺍﻟﺴﻬﻡ‪ ،‬ﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺴﻴﻅﻬﺭ ﺍﺴﻡ ﺍﻟﻤﺘﻐﻴﺭ‬ ‫‪) lftrght‬ﻭﻟﻴﺱ ﺩﻟﻴﻠﻪ( ﻓﻲ ﺍﻟﻤﺭﺒﻊ ﺍﻟﺨﺎﺹ ﻭﺘﻘﺎﺒﻠﻪ ﻋﻼﻤﺎﺕ ﺍﻻﺴﺘﻔﻬﺎﻡ ؟ ؟ ﻜﻤﺎ‬

‫ﻓﻲ ﺍﻟﺸﻜل ‪ 8-6‬ﺃﻋﻼﻩ‪.‬‬

‫• ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻻﺒﺩ ﻤﻥ ﺘﻌﺭﻴﻑ ﻗﻴﻡ ﺍﻟﻤﺠﻤﻭﻋﺎﺕ )ﺍﻟﻌﻴﻨﺎﺕ( ﻓﻲ ﻫﺫﺍ‬ ‫ﺍﻟﻤﺘﻐﻴﺭ ﻭﺫﻟﻙ ﺒﺎﻟﻀﻐﻁ ﻋﻠﻰ ﻤﻔﺘﺎﺡ ﺍﻟﺤﻭﺍﺭ ﺘﻌﺭﻴﻑ ﺍﻟﻤﺠﻤﻭﻋﺎﺕ ‪Define‬‬

‫‪ Groups‬ﺍﻟﻤﻘﺎﺒل ﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺼﻨﻴﻑ ﻭﻓﺘﺢ ﻨﺎﻓﺫﺓ ﺘﻌﺭﻴﻑ ﻤﺠﻤﻭﻋﺎﺕ ﺍﻟﻌﻴﻨﺎﺕ‬

‫‪ Define Groups‬ﻟﻭﻀﺢ ﺩﻟﻴل ﻜل ﻤﻥ ﺍﻟﻌﻴﻨﺘﻴﻥ ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ ،9-6‬ﻭﻓﻲ‬

‫ﻤﺜﺎﻟﻨﺎ ﻓﻘﺩ ﺘﻡ ﺘﻌﺭﻴﻑ ﺩﻟﻴل ﺍﻟﻌﻴﻨﺔ ﺍﻷﻭﻟﻰ ﺒﺎﻟﺭﻗﻡ ‪ 1‬ﻭﺍﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺒﺎﻟﺭﻗﻡ ‪ 2‬ﻓﻲ‬

‫ﻤﺘﻐﻴﺭ ﺍﻟﺘﺼﻨﻴﻑ ﻭﻫﻭ ﺠﻬﺔ ﺍﻟﺸﺎﺸﺔ ‪. Left-Right Identifier‬‬

‫ﺸﻜل ‪ : 9-6‬ﻨﺎﻓﺫﺓ ﺘﻌﺭﻴﻑ ﻤﺠﻤﻭﻋﺎﺕ ﺍﻟﻌﻴﻨﺎﺕ ‪ Define Groups‬ﻓﻲ ﻨﺎﻓﺫﺓ‬ ‫ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ‪.Independent-Samples T Test‬‬

‫• ﻴﺘﻡ ﺇﻋﻁﺎﺀ ﺩﻟﻴل ﺍﻟﻌﻴﻨﺔ ﺍﻷﻭﻟﻰ ﺃﻤﺎﻡ ‪ Group 1‬ﻭﺩﻟﻴل ﺍﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺃﻤﺎﻡ‬

‫‪ Group 2‬ﻓﻲ ﺘﻠﻙ ﺍﻟﻨﺎﻓﺫﺓ ﻭﻤﻥ ﺜﻡ ﻴﻀﻐﻁ ﻋﻠﻰ ﻤﻔﺘﺎﺡ ﺍﻻﺴﺘﻤﺭﺍﺭ ‪Continue‬‬

‫ﻟﻴﻅﻬﺭ ﺍﻟﺭﻗﻤﻴﻥ ‪ 1‬ﻭ ‪ 2‬ﺃﻤﺎﻡ ﺍﺴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﻓﻲ ﻨﺎﻓﺫﺓ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ‬ ‫‪) Independent Samples T Test‬ﺸﻜل ‪. (8-6‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫•‬

‫‪234‬‬

‫ﺍﻵﻥ ﻓﻲ ﻨﺎﻓﺫﺓ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪Independent Samples T‬‬

‫‪ Test‬ﻓﻲ ﺍﻟﺸﻜل ‪ 8-6‬ﻴﻀﻐﻁ ﻋﻠﻰ ﻤﻔﺘﺎﺡ ﺍﻟﺘﻨﻔﻴﺫ ‪ OK‬ﻹﻨﻬﺎﺀ ﺍﻟﻤﻬﻤﺔ ﻭﺘﻨﻔﻴﺫ‬

‫ﺃﻤﺭ ﺇﺠﺭﺍﺀ ﺍﻻﺨﺘﺒﺎﺭ ﺍﻟﻤﻁﻠﻭﺏ‪.‬‬

‫ﻭﻴﻭﻀﺢ ﺸﻜل ‪ 10-6‬ﻗﻴﻡ ﺍﻟﻌﻴﻨﺘﻴﻥ ﻓﻲ ﻤﺜﺎﻟﻨﺎ ﺍﻟﺴﺎﺒﻕ ﺒﺎﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﻲ ﻴﺘﻁﻠﺒﻬﺎ‬

‫ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪ Independent Samples T Test‬ﻓﻲ ﻨﻅﺎﻡ ‪ SPSS‬ﻟﺘﻨﻔﻴﺫ‬

‫ﻫﺫﺍ ﺍﻷﻤﺭ ﻋﻠﻴﻬﺎ ﻭﻴﻭﻀﺢ ﺸﻜل ‪ 11-6‬ﻨﺘﺎﺌﺞ ﺘﻨﻔﻴﺫ ﻫﺫﺍ ﺍﻷﻤﺭ ﻋﻠﻰ ﺘﻠﻙ ﺍﻟﺒﻴﺎﻨﺎﺕ‪.‬‬ ‫ﺸﻜل ‪ : 10-6‬ﺠﺩﻭل ﻴﺒﻴﻥ ﻗﻴﻡ ﺍﻟﻌﻴﻨﺘﻴﻥ ﻟﻠﺘﻤﻜﻥ ﻤﻥ ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ﻓﻲ‬ ‫ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ‪.Independent-Samples T Test‬‬ ‫‪Case Summaries‬‬ ‫‪Left Right‬‬ ‫‪Indicator‬‬

‫‪Recognition‬‬ ‫‪Time‬‬

‫‪1‬‬

‫‪323‬‬

‫‪1‬‬

‫‪1‬‬

‫‪512‬‬

‫‪2‬‬

‫‪1‬‬

‫‪502‬‬

‫‪3‬‬

‫‪1‬‬

‫‪385‬‬

‫‪4‬‬

‫‪1‬‬

‫‪453‬‬

‫‪5‬‬

‫‪1‬‬

‫‪343‬‬

‫‪6‬‬

‫‪1‬‬

‫‪543‬‬

‫‪7‬‬

‫‪1‬‬

‫‪440‬‬

‫‪8‬‬

‫‪1‬‬

‫‪682‬‬

‫‪9‬‬

‫‪1‬‬

‫‪590‬‬

‫‪10‬‬

‫‪2‬‬

‫‪304‬‬

‫‪11‬‬

‫‪2‬‬

‫‪493‬‬

‫‪12‬‬

‫‪2‬‬

‫‪491‬‬

‫‪13‬‬

‫‪2‬‬

‫‪365‬‬

‫‪14‬‬

‫‪2‬‬

‫‪426‬‬

‫‪15‬‬

‫‪2‬‬

‫‪320‬‬

‫‪16‬‬

‫‪2‬‬

‫‪523‬‬

‫‪17‬‬

‫‪2‬‬

‫‪442‬‬

‫‪18‬‬

‫‪2‬‬

‫‪580‬‬

‫‪19‬‬

‫‪2‬‬

‫‪564‬‬

‫‪20‬‬

‫‪20‬‬

‫‪20‬‬

‫‪N‬‬

‫‪Total‬‬


‫( ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬6)

235

‫ ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ‬t ‫ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﻤﺤﺭﺭ ﺍﻟﻨﺘﺎﺌﺞ ﻤﻥ ﺘﻁﺒﻴﻕ ﺃﻤﺭ ﺍﺨﺘﺒﺎﺭ‬: 11-6 ‫ﺸﻜل‬ .9-6 ‫ ﻋﻠﻰ ﺒﻴﺎﻨﺎﺕ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻓﻲ ﺸﻜل‬Independent-Samples T Test T-Test Group Statistics

Left Right Indicator Recognition Time

N

Mean

Std. Deviation

Std. Error Mean

1

10

477.30

112.09

35.45

2

10

450.80

97.09

30.70

Independent Samples Test Levene's Test for Equality of Variances

Recognition Equal variances Time assumed Equal variances not assumed

t-test for Equality of Means

F

Sig.

t

.132

.721

.565

df

Sig. Mean (2-taile Differ d) ence

95% Confidence Interval of the Difference

Std. Error Differ ence Lower Upper

18

.579 26.50 46.89 -72.02 125.0

.565 17.64

.579 26.50 46.89 -72.16 125.2

‫ﻭﺘﺒﺩﺃ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﺠﺩﻭل ﻴﺒﻴﻥ ﺒﻌﺽ ﺍﻟﻤﻘﺎﻴﻴﺱ ﺍﻹﺤﺼﺎﺌﻴﺔ ﻟﻜل ﻋﻴﻨﺔ ﻋﻠﻰ‬ ‫ ﻓﻲ ﻜل ﻋﻴﻨﺔ ﻭﺍﻟﻭﺴﻁ‬N ‫ ﻭﻫﺫﻩ ﺍﻟﻤﻘﺎﻴﻴﺱ ﻫﻲ ﻋﺩﺩ ﺍﻟﻘﻴﻡ‬، Group Statistics ‫ﺤﺩﻩ‬

‫ ﻭﺍﻟﺨﻁﺄ ﺍﻟﻤﻌﻴﺎﺭﻱ‬Standard Deviation ‫ ﻭﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ‬Mean ‫ﺍﻟﺤﺴﺎﺒﻲ‬

‫ ﻭﻴﺘﻀﺢ ﺃﻥ ﺍﻟﻭﺴﻁ‬، Standard Error of the Mean ‫ﻟﻠﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ ﻟﻜل ﻋﻴﻨﺔ‬ ‫ ﺃﻱ ﺃﻥ ﺍﻟﻭﺴﻁﻴﻥ‬، 450.8 ‫ ﻭﻟﻠﻌﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻫﻭ‬477.3 ‫ﺍﻟﺤﺴﺎﺒﻲ ﻟﻠﻌﻴﻨﺔ ﺍﻷﻭﻟﻰ ﻫﻭ‬ ‫ ﻭﻟﻜﻥ ﻫل ﺍﻻﺨﺘﻼﻑ ﻤﻌﻨﻭﻱ؟‬،‫ﻤﺨﺘﻠﻔﺎﻥ‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪236‬‬

‫ﻭﻴﻭﻀﺢ ﺍﻟﺠﺩﻭل ﺍﻟﺜﺎﻨﻲ ﻓﻲ ﺍﻟﺸﻜل ﻨﺘﺎﺌﺞ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ‬ ‫‪ Independent Samples T Test‬ﻋﻠﻰ ﺒﻴﺎﻨﺎﺕ ﺍﻟﻌﻴﻨﺘﻴﻥ‪ ،‬ﻭﻫﺫﺍ ﺍﻟﺠﺩﻭل ﻴﺠﻴﺏ ﻋﻠﻰ‬

‫ﺍﻷﺴﺌﻠﺔ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﻨﺘﻴﺠﺔ ﺍﻻﺨﺘﺒﺎﺭ ﻭﺫﻟﻙ ﻋﻥ ﻁﺭﻴﻕ ﺘﻜﻭﻴﻥ ﺠﺩﻭل ﻟﻭﻀﻊ ﻗﻴﻡ ﺩﺍﻟﺔ‬ ‫ﺍﻻﺨﺘﺒﺎﺭ ‪ t‬ﻭ ﻗﻴﻤﺔ ‪ p-value‬ﺍﻟﻤﺼﺎﺤﺒﺔ ﻟﻬﺎ ﻭﻜﺫﻟﻙ ‪ 95%‬ﻓﺘﺭﺓ ﺜﻘﺔ ﻟﻠﻔﺭﻕ ﺒﻴﻥ‬ ‫ﻤﺘﻭﺴﻁﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ ﺍﻟﺫﻴﻥ ﺴﺤﺒﺘﺎ ﻤﻨﻬﻤﺎ ﺍﻟﻌﻴﻨﺘﻴﻥ ‪95% Confidence Interval for‬‬

‫‪ the Difference‬ﻭﺫﻟﻙ ﻓﻲ ﺤﺎﻟﺘﻲ ﺍﻓﺘﺭﺍﺽ ﺘﺴﺎﻭﻱ ﺘﺒﺎﻴﻨﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ ﻭﺍﻓﺘﺭﺍﺽ ﻋﺩﻡ‬ ‫ﺘﺴﺎﻭﻱ ﺍﻟﺘﺒﺎﻴﻨﻴﻥ ‪.‬‬

‫ﻭﺍﻟﻤﺅﺸﺭ ﻋﻠﻰ ﺃﻱ ﺤﺎﻟﺔ ﻴﺠﺏ ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ﻤﻥ ﺒﻴﻥ ﺍﻟﺤﺎﻟﺘﻴﻥ ﺍﻟﺴﺎﺒﻘﺘﻲ ﺍﻟﺫﻜﺭ‬

‫ﻴﻜﻤﻥ ﻓﻲ ﺍﺨﺘﺒﺎﺭ ﻟﻴﻔﻴﻥ ﻟﻠﺘﺠﺎﻨﺱ ‪، Levene’s Test for Equality of variances‬‬

‫ﻓﺈﺫﺍ ﻜﺎﻥ ﺍﻻﺨﺘﺒﺎﺭ ﻏﻴﺭ ﻤﻌﻨﻭﻱ )‪ (p>0.05‬ﻓﻴﻜﻭﻥ ﺍﻻﻓﺘﺭﺍﺽ ﺃﻥ ﺍﻟﺘﺒﺎﻴﻨﻴﻥ ﻤﺘﺴﺎﻭﻴﻴﻥ‬ ‫ﻻ ﻭﺒﺎﻟﺘﺎﻟﻲ ﻓﺈﻨﻪ ﻴﺅﺨﺫ ﺒﺎﻟﺤﺎﻟﺔ ﺍﻷﻭﻟﻰ ﻭﻴﻨﻅﺭ ﻟﻠﺴﻁﺭ ﺍﻷﻭل ﻤﻥ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ‬ ‫ﻤﻘﺒﻭ ﹰ‬

‫ﺍﻟﺠﺩﻭل‪ ،‬ﻭﺒﺎﻟﺘﺎﻟﻲ ﻓﺒﻨﺎﺀ ﻋﻠﻰ ﺍﺨﺘﺒﺎﺭ ﻟﻴﻔﻴﻥ ﻟﻠﺘﺠﺎﻨﺱ ﻴﻜﻭﻥ ‪:‬‬

‫• ﺇﺫﺍ ﻜﺎﻨﺕ ‪ p>0.05‬ﻓﺈﻨﻪ ﻻ ﻴﻭﺠﺩ ﻤﺎ ﻴﺩل ﻋﻠﻰ ﺃﻥ ﻫﻨﺎﻙ ﺍﻨﺘﻬﺎﻙ ﻻﻓﺘﺭﺍﺽ ﺘﺴﺎﻭﻱ‬ ‫ﺍﻟﺘﺒﺎﻴﻨﻴﻥ ﻓﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ ﻭﺒﺎﻟﺘﺎﻟﻲ ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﺍﻟﻤﺒﻨﻲ ﻋﻠﻰ ﺃﺴﺎﺱ‬

‫ﺍﻓﺘﺭﺍﺽ ﺘﺴﺎﻭﻱ ﺘﺒﺎﻴﻨﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ ‪. Equal variances assumed‬‬

‫• ﺇﺫﺍ ﻜﺎﻨﺕ ‪ p<0.05‬ﻓﺈﻨﻪ ﻴﻭﺠﺩ ﺩﻟﻴل ﻜﺎﻓﻲ ﻋﻠﻰ ﺃﻥ ﻫﻨﺎﻙ ﺍﻨﺘﻬﺎﻙ ﻻﻓﺘﺭﺍﺽ ﺘﺴﺎﻭﻱ‬

‫ﺍﻟﺘﺒﺎﻴﻨﻴﻥ ﻓﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ ﻭﺒﺎﻟﺘﺎﻟﻲ ﻴﺴﺘﺨﺩﻡ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﺍﻟﻤﺒﻨﻲ ﻋﻠﻰ ﺃﺴﺎﺱ ﺍﻓﺘﺭﺍﺽ ﻋﺩﻡ‬

‫ﺘﺴﺎﻭﻱ ﺘﺒﺎﻴﻨﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ ‪ Equal variances not assumed‬ﻭﻴﺘﻡ ﺘﻘﺩﻴﺭ ﺍﻟﺘﺒﺎﻴﻨﻴﻥ ﻜل‬

‫ﻋﻠﻰ ﺤﺩﻩ ‪.‬‬

‫ﻭﻴﻤﻜﻥ ﺍﻵﻥ ﻟﻠﻤﺴﺘﺨﺩﻡ ﺍﻟﻤﻼﺤﻅﺔ ﺒﺎﻟﻨﻅﺭ ﺇﻟﻰ ﻻﺌﺤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﺍﻟﺸﻜل ‪11-6‬‬

‫ﻓﻲ ﻤﺜﺎﻟﻨﺎ ﺍﻟﺴﺎﺒﻕ ﺃﻥ ﻜل ﻤﻥ ﻗﻴﻤﺘﻲ ‪ t‬ﻭﻗﻴﻤﺘﻲ ‪ p-values‬ﻤﺘﻘﺎﺭﺒﺘﻴﻥ ﻓﻲ ﻜل ﻤﻥ ﺤﺎﻟﺘﻲ‬ ‫ﺍﻓﺘﺭﺍﺽ ﺘﺴﺎﻭﻱ ﺍﻟﺘﺒﺎﻴﻨﻴﻥ ‪ Equal variances assumed‬ﻭﺍﻓﺘﺭﺍﺽ ﻋﺩﻡ ﺘﺴﺎﻭﻱ‬ ‫ﻼ ﻤﺘﺴﺎﻭﻴﻴﻥ‪ ،‬ﻭﻟﻜﻥ ﻟﻥ‬ ‫ﺍﻟﺘﺒﺎﻴﻨﻴﻥ ‪ Equal variances not assumed‬ﻭﺫﻟﻙ ﻷﻨﻬﻤﺎ ﻓﻌ ﹰ‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪237‬‬

‫ﺘﻜﻭﻥ ﺍﻟﺤﺎﻟﺔ ﻜﺫﻟﻙ ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﺩﻟﻴل ﻜﺎﻓﻲ ﻋﻠﻰ ﺃﻥ ﻫﻨﺎﻙ ﺍﻨﺘﻬﺎﻙ ﻻﻓﺘﺭﺍﺽ‬ ‫ﺘﺴﺎﻭﻱ ﺍﻟﺘﺒﺎﻴﻨﻴﻥ ﻓﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ‪ ،‬ﻓﺴﻭﻑ ﺘﻜﻭﻥ ﺍﻟﻨﺘﺎﺌﺞ ﻤﺨﺘﻠﻔﺔ ﻓﻲ ﺍﻟﺤﺎﻟﺘﻴﻥ‪ ،‬ﻭﺴﻭﻑ‬

‫ﻴﺅﺨﺫ ﺒﻨﺘﻴﺠﺔ ﺍﻻﺨﺘﺒﺎﺭ ﻓﻲ ﻅل ﺍﻻﻓﺘﺭﺍﺽ ﺒﻌﺩﻡ ﺘﺴﺎﻭﻱ ﺍﻟﺘﺒﺎﻴﻨﻴﻥ‪ ،‬ﺃﻱ ﺒﻨﺘﺎﺌﺞ ﺍﻟﺴﻁﺭ‬ ‫ﺍﻟﺜﺎﻨﻲ ‪. Equal variances not assumed‬‬

‫ﻓﻔﻲ ﻫﺫﺍ ﺍﻟﻤﺜﺎل ﻴﺘﻀﺢ ﺃﻥ ﺍﺨﺘﺒﺎﺭ ﻟﻴﻔﻴﻥ ‪Levene’s Test for Equality of‬‬

‫‪ variances‬ﻏﻴﺭ ﻤﻌﻨﻭﻱ )‪ (p>0.05‬ﻭﺒﺎﻟﺘﺎﻟﻲ ﻓﺈﻥ ﻗﻴﻤﺔ ﺩﺍﻟﺔ ﺍﻻﺨﺘﺒﺎﺭ ﺍﻟﻤﻨﺎﺴﺒﺔ ﻻﺒﺩ‬

‫ﻭﺃﻥ ﺘﺤﺴﺏ ﻓﻲ ﻅل ﺍﻓﺘﺭﺍﺽ ﺘﺴﺎﻭﻱ ﺍﻟﺘﺒﺎﻴﻨﻴﻥ )‪(Equal variances assumed‬‬

‫ﻭﺒﺎﺴﺘﺨﺩﺍﻡ ﺘﻘﺩﻴﺭ ﺍﻟﺘﺒﺎﻴﻥ ﺍﻟﻤﺘﺠﻤﻊ ‪) Pooled Variance‬ﻓﻲ ﺍﻟﻭﺍﻗﻊ ﻓﻲ ﻤﺜل ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ‬

‫ﺘﻜﻭﻥ ﺍﻟﻨﺘﻴﺠﺘﻴﻥ ﻤﺘﺸﺎﺒﻬﺘﻴﻥ(‪ ،‬ﻭﺒﻘﻴﻤﺔ ‪ p-value‬ﻤﺴﺎﻭﻴﺔ ‪ 0.579‬ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻔﺭﻕ ﺒﻴﻥ‬ ‫ﺍﻟﻤﺘﻭﺴﻁﻴﻥ ﻏﻴﺭ ﻤﻌﻨﻭﻱ‪ ،‬ﺃﻱ ﺃﻥ ﺍﻟﻨﺘﻴﺠﺔ ﺘﻜﻭﻥ ‪:‬‬

‫‪ .‬ﻏﻴﺭ ﻤﻌﻨﻭﻱ ‪t = 0.565 ; df = 18 ; Not significant‬‬

‫ﻭﺍﻟﻨﺘﻴﺠﺔ ﺍﻷﺨﻴﺭﺓ ﻤﻥ ﻫﺫﺍ ﺍﻻﺨﺘﺒﺎﺭ ﺘﺅﻜﺩ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺴﺎﺒﻘﺔ‪ ،‬ﺤﻴﺙ ﺃﻥ ‪95%‬‬

‫ﻓﺘﺭﺓ ﺜﻘﺔ ﻟﻠﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ ‪95% Confidence Interval of the‬‬

‫‪ Difference Between Means‬ﻫﻲ )‪ 125.0‬ﻭ ‪ ، (-72.02‬ﻭﻫﻲ ﺘﺤﺘﻭﻱ ﺒﺩﺍﺨﻠﻬﺎ‬ ‫ﻋﻠﻰ ﻗﻴﻤﺔ ﺍﻟﻔﺭﻕ ﻓﻲ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ‪ H0‬ﻭﻫﻭ ﺍﻟﺼﻔﺭ‪ ،‬ﻭﻟﻭ ﻜﺎﻥ ﺤﺩﻱ ﺍﻟﺜﻘﺔ‬ ‫ﺍﻟﺴﺎﺒﻘﻴﻥ ﻤﻭﺠﺒﻴﻥ ﻓﺴﻭﻑ ﺘﻜﻭﻥ ﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﺘﻠﻙ ﺍﻟﺤﺎﻟﺔ ﺍﻻﻓﺘﺭﺍﻀﻴﺔ ﻫﻲ ﺃﻥ ﺍﻻﺨﺘﺒﺎﺭ‬

‫ﻤﻌﻨﻭﻱ ‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪238‬‬

‫‪ .3 .6‬اﻟﻄﺮق اﻟﻼﻣﻌﻠﻤﻴﺔ ‪Nonparametric Methods :‬‬ ‫ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﺍﻨﺘﻬﺎﻜﺎﺕ ﻜﺒﻴﺭﺓ ﻟﻠﻔﺭﻭﺽ ﺍﻟﻭﺍﺠﺏ ﺘﻭﺍﻓﺭﻫﺎ ﻹﻤﻜﺎﻨﻴﺔ‬

‫ﺍﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭﺍﺕ ‪ t‬ﻓﻲ ﻤﺠﻤﻭﻋﺔ ﻤﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻓﺈﻥ ﻫﺫﻩ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﻟﻥ ﺘﻅل ﺼﺎﻟﺤﺔ‬

‫ﺍﻻﺴﺘﺨﺩﺍﻡ ﻟﺘﻠﻙ ﺍﻟﺒﻴﺎﻨﺎﺕ‪ ،‬ﻭﺘﻜﻭﻥ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﻫﻲ ﺃﺤﺩ‬

‫ﺍﻟﺒﺩﺍﺌل ﺍﻟﻤﻁﺭﻭﺤﺔ ﻟﻠﺨﺭﻭﺝ ﻤﻥ ﻫﺫﻩ ﺍﻟﻤﺸﻜﻠﺔ‪ ،‬ﻭﺭﻏﻡ ﺫﻟﻙ ﻓﺈﻨﻪ ﻻ ﻴﺠﺏ ﺍﺴﺘﺨﺩﺍﻡ‬ ‫ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﻓﻲ ﻜل ﺍﻟﺤﺎﻻﺕ ﺘﻠﻘﺎﺌﻴﹰﺎ ‪ ،‬ﻭﺫﻟﻙ ﻷﻨﻪ ﺇﺫﺍ ﺘﻭﺍﻓﺭﺕ ﺍﻟﻅﺭﻭﻑ‬

‫ﺍﻟﻤﻼﺌﻤﺔ ﻻﺴﺘﺨﺩﺍﻡ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻤﻌﻠﻤﻴﺔ ﻤﺜل ﺍﺨﺘﺒﺎﺭﺍﺕ ‪ t‬ﻓﺈﻥ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ‬ ‫ﺍﻟﻤﻨﺎﻅﺭﺓ ﻟﻬﺎ ﺴﻭﻑ ﺘﻜﻭﻥ ﺃﻗل ﻗﻭﺓ ﻤﻨﻬﺎ ﻓﻲ ﺭﻓﺽ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ‬

‫ﺨﺎﻁﺌﺔ ﺒﺎﻟﻔﻌل‪ ،‬ﻭﻟﺫﻟﻙ ﻓﺈﻨﻪ ﻴﺤﺴﻥ ﺩﺍﺌﻤﹰﺎ ﺍﻟﻤﺤﺎﻭﻟﺔ ﻓﻲ ﺍﺴﺘﺨﺩﺍﻡ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻤﻌﻠﻤﻴﺔ‬

‫ﻓﻲ ﺍﻟﺒﺩﺍﻴﺔ ﺜﻡ ﺍﻟﺘﻔﻜﻴﺭ ﻓﻲ ﺍﺴﺘﺨﺩﺍﻡ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﺇﺫﺍ ﺜﺒﺕ ﺃﻥ ﻫﻨﺎﻙ ﺍﻨﺘﻬﺎﻜﺎﺕ‬ ‫ﺨﻁﻴﺭﺓ ﻟﻠﻔﺭﻭﺽ ﺍﻟﻤﺒﻨﻲ ﻋﻠﻰ ﺃﺴﺎﺴﻬﺎ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻤﻌﻠﻤﻴﺔ ﺍﻟﻤﻨﺎﺴﺒﺔ ‪.‬‬

‫ﻭﻴﺤﺘﻭﻱ ﻨﻅﺎﻡ ‪ SPSS‬ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﻜﺒﻴﺭﺓ ﻤﻥ ﺃﻭﺍﻤﺭ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ‬

‫ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ‪ Nonparametric Tests‬ﻭﺫﻟﻙ ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﺘﺤﻠﻴل‬ ‫ﺍﻹﺤﺼﺎﺌﻲ ﻤﻥ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﺭﺌﻴﺴﻴﺔ ‪ ،‬ﻭﺘﻌﺘﺒﺭ ﺍﺨﺘﺒﺎﺭﺍﺕ ﺍﻹﺸﺎﺭﺓ ‪ Sign‬ﻭﻭﻴﻠﻜﻭﻜﺴﻥ‬

‫‪ Wilcoxon‬ﻭﻤﻜﻨﻤﺎﺭ ‪ McNemar‬ﺍﺨﺘﺒﺎﺭﺍﺕ ﻻﻤﻌﻠﻤﻴﺔ ﻤﻨﺎﻅﺭﺓ ﻻﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻔﺭﻕ ﺒﻴﻥ‬ ‫ﻤﺘﻭﺴﻁﻴﻥ ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪ ،Paired Samples T Test‬ﺒﻴﻨﻤﺎ ﻴﻌﺘﺒﺭ ﺍﺨﺘﺒﺎﺭ ﻤﺎﻥ‬

‫ﻭﻴﺘﻨﻲ ‪ Mann-Whitney‬ﺍﺨﺘﺒﺎﺭﹰﺍ ﻤﻨﺎﻅﺭﹰﺍ ﻻﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻴﻥ ﻓﻲ ﺤﺎﻟﺔ‬

‫ﺍﻟﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ‪. Independent Samples T Test‬‬

‫ﻭﺘﺴﺘﺨﺩﻡ ﻤﻌﻅﻡ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﻓﻲ ﺤﺴﺎﺒﻬﺎ ﻤﻘﺎﻴﻴﺱ ﺇﺤﺼﺎﺌﻴﺔ ﻤﺜل‬

‫ﺍﻟﻭﺴﻴﻁ ‪ Median‬ﻭﺍﻟﺘﻲ ﻻ ﺘﺘﺄﺜﺭ ﺒﺎﻟﻘﻴﻡ ﺍﻟﻤﺘﻁﺭﻓﺔ ﻭﺍﻟﺸﺎﺫﺓ ﻭﻜﺫﻟﻙ ﺒﺎﻟﺘﻭﺍﺀ ﺘﻭﺯﻴﻊ‬ ‫ﺍﻟﺒﻴﺎﻨﺎﺕ‪ ،‬ﻭﻓﻲ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺴﺘﻨﺹ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ‪ H0‬ﻋﻠﻰ ﻋﺩﻡ ﻭﺠﻭﺩ ﻓﺭﻕ‬

‫ﻤﻌﻨﻭﻱ ﺒﻴﻥ ﻭﺴﻴﻁﻲ ﺍﻟﻤﺠﺘﻤﻌﻴﻥ )ﻭﻟﻴﺱ ﻤﺘﻭﺴﻁﻴﻬﻤﺎ ﺍﻟﺤﺴﺎﺒﻴﻴﻥ(‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪239‬‬

‫‪ .1 .3 .6‬ﺣﺎﻟﺔ اﻟﻌﻴﻨﺎت اﻟﻤﺮﺗﺒﻄﺔ ‪:‬‬ ‫اﺧﺘﺒﺎرات وﻳﻠﻜﻮآﺴﻦ واﻹﺷﺎرة وﻣﻜﻨﻤﺎر ‪:‬‬ ‫‪Related samples:‬‬ ‫‪Wilcoxon, Sign and McNemar tests :‬‬ ‫ﻭﻟﺘﻭﻀﻴﺢ ﻜﻴﻔﻴﺔ ﺍﺴﺘﺨﺩﺍﻡ ﻫﺫﻩ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺴﻭﻑ ﻨﺴﺘﺨﺩﻡ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺘﻲ ﺘﻡ‬

‫ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ﻓﻲ ﺤﺎﻟﺔ ﺍﺨﺘﺒﺎﺭﺍﺕ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ﻓﻲ ﺸﻜل ‪ ،2-6‬ﻭﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ‬

‫ﻤﻠﻑ ﺘﻠﻙ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻤﻔﺘﻭﺤﹰﺎ ﻓﻲ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ‪ Data Editor‬ﻓﺈﻨﻪ ﻴﻤﻜﻨﻨﺎ ﺇﺠﺭﺍﺀ ﺃﻱ‬

‫ﻤﻥ ﻫﺫﻩ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﻜﻤﺎ ﻴﻠﻲ‪:‬‬

‫• ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﺘﺤﻠﻴل ﺍﻹﺤﺼﺎﺌﻲ ﻓﻲ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﺭﺌﻴﺴﻴﺔ ﺍﺨﺘﺭ ﻗﺎﺌﻤﺔ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ‬ ‫ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ‪ Nonparametric Tests‬ﻭﻤﻨﻬﺎ ﺃﻤﺭ ﺍﻟﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ‬

‫‪Related‬‬

‫‪ Samples‬ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ 12-6‬ﺃﺩﻨﺎﻩ ‪.‬‬

‫ﺸﻜل ‪ : 12-6‬ﻁﺭﻴﻘﺔ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺃﻤﺭ ﺍﻟﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪ Related Samples‬ﻓﻲ‬ ‫ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ‪Nonparametric Tests‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪240‬‬

‫• ﺒﺎﺨﺘﻴﺎﺭﻙ ﺫﻟﻙ ﺍﻷﻤﺭ ﺴﻭﻑ ﺘﺤﺼل ﻋﻠﻰ ﻨﺎﻓﺫﺓ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﻟﻠﻌﻴﻨﺎﺕ‬ ‫ﺍﻟﻤﺭﺘﺒﻁﺔ )ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ ،(13-6‬ﻭﻴﻤﻜﻥ ﻤﻥ ﻫﺫﻩ ﺍﻟﻨﺎﻓﺫﺓ ﺇﺠﺭﺍﺀ ﺃﻱ ﻤﻥ ﺃﻭ ﺠﻤﻴﻊ‬ ‫ﻫﺫﻩ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺒﻨﻔﺱ ﺍﻷﻤﺭ‪.‬‬

‫• ﻗﻡ ﺒﺘﺤﺩﻴﺩ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﺍﻟﻤﺭﺍﺩ ﺍﺨﺘﺒﺎﺭ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﻭﺴﻴﻁﻴﻬﻤﺎ ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ‬

‫ﻓﻲ ﺍﻟﺠﺯﺀ ﺍﻷﻴﺴﺭ ﻤﻥ ﺍﻟﻨﺎﻓﺫﺓ ﺜﻡ ﺘﺤﻭﻴﻠﻬﻤﺎ ﺇﻟﻰ ﻗﺎﺌﻤﺔ ﺃﺯﻭﺍﺝ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ‬

‫‪Test‬‬

‫‪ Pair(s) List‬ﻓﻲ ﺍﻟﺠﻬﺔ ﺍﻟﻴﻤﻨﻰ ﻤﻥ ﺍﻟﻨﺎﻓﺫﺓ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﺴﻬﻡ ﺍﻟﺫﻱ ﻴﺘﻭﺴﻁ ﺍﻟﻤﺭﺒﻌﻴﻥ‪.‬‬

‫• ﺍﺨﺘﺭ ﺃﻱ ﻤﻥ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻤﻁﻠﻭﺏ ﺇﺠﺭﺍﺀﻫﺎ ﻤﻥ ﺒﻴﻥ ﺍﻟﺜﻼﺜﺔ ﺍﺨﺘﺒﺎﺭﺍﺕ‬ ‫ﺍﻟﻤﺫﻜﻭﺭﺓ‪ ،‬ﻭﻴﺠﺩﺭ ﺒﺎﻟﺫﻜﺭ ﻫﻨﺎ ﺃﻥ ﺍﺨﺘﺒﺎﺭ ﻤﻜﻨﻤﺎﺭ ﻤﻨﺎﺴﺏ ﻓﻘﻁ ﻟﻠﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻭﺼﻔﻴﺔ‬

‫ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﻗﻴﻤﺘﻴﻥ ﻓﻘﻁ )‪ 0‬ﻭ ‪ dichotomous qualitative variables (1‬ﻭﺘﻌﺒﺭﺍﻥ‬ ‫ﻋﻥ ﻗﻴﻤﺘﻴﻥ ﻓﻘﻁ ﻴﻤﻜﻥ ﺃﻥ ﻴﺄﺨﺫﻫﻤﺎ ﺍﻟﻤﺘﻐﻴﺭ ﻤﺜل ﻤﻭﺍﻓﻕ ﻭﻏﻴﺭ ﻤﻭﺍﻓﻕ ﺃﻭ ﻨﻌﻡ ﻭﻻ ﺃﻭ‬

‫ﺸﻔﻲ ﻤﻥ ﺍﻟﻤﺭﺽ ﻭﻟﻡ ﻴﺸﻔﻰ ﺃﻭ ﻁﻌﻡ ﻭﻟﻡ ﻴﻁﻌﻡ ﻭﻫﻜﺫﺍ‪ ...‬ﻭﻟﺫﻟﻙ ﻓﺈﻥ ﻫﺫﺍ ﺍﻻﺨﺘﺒﺎﺭ‬ ‫ﻏﻴﺭ ﻤﻨﺎﺴﺏ ﻓﻲ ﻤﺜﺎﻟﻨﺎ ﻭﺴﻨﺨﺘﺎﺭ ﻓﻘﻁ ﺍﻻﺨﺘﺒﺎﺭﻴﻥ ﺍﻵﺨﺭﻴﻥ‪.‬‬

‫• ﺍﺨﺘﺭ ﺍﻵﻥ ﺃﻤﺭ ﺍﻟﺘﻨﻔﻴﺫ ‪ OK‬ﻟﺘﻨﻔﻴﺫ ﺍﻷﻤﺭ ﻭﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻨﺘﺎﺌﺞ )ﺸﻜل ‪.(14-6‬‬ ‫ﺸﻜل ‪ : 13-6‬ﻨﺎﻓﺫﺓ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ‬ ‫‪Two-Related Samples Tests in Nonparametric Tests‬‬


‫( ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬6)

241

‫ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻤﻥ ﺇﺠﺭﺍﺀ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ‬: 14-6 ‫ﺸﻜل‬ Wilcoxon Signed Ranks Test Ranks Mean Rank

N Right Field Left Field

Sum of Ranks

Negative Ranks

9

a

6.00

54.00

Positive Ranks

1

b

1.00

1.00

Ties

0

c

Total

10

a. Right Field < Left Field b. Right Field > Left Field c. Left Field = Right Field

Test Statistics b Right Field - Left Field Z

-2.705

Asymp. Sig. (2-tailed)

a

.007

a. Based on positive ranks. b. Wilcoxon Signed Ranks Test

Sign Test Frequencies N Right Field - Left Field

Negative Differences a

9

Positive Differences b

1

Ties c

0

Total

10

a. Right Field < Left Field b. Right Field > Left Field c. Left Field = Right Field Test Statistics b Right Field - Left Field Exact Sig. (2-tailed)

a. Binomial distribution used. b. Sign Test

a

.021


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪242‬‬

‫ﻼ ﻤﻥ ﺍﻻﺨﺘﺒﺎﺭﻴﻥ ﻓﻲ ﺸﻜل ﺍﻟﻨﺘﺎﺌﺞ )ﺸﻜل ‪ (14-6‬ﻓﻲ ﻗﺴﻤﻴﻥ‬ ‫ﻭﺘﻅﻬﺭ ﻨﺘﺎﺌﺞ ﻜ ﹰ‬ ‫ﻤﺴﺘﻘﻠﻴﻥ‪ ،‬ﻓﺎﻟﻘﺴﻡ ﺍﻷﻭل ﻴﺘﻌﻠﻕ ﺒﺎﺨﺘﺒﺎﺭ ﻭﻴﻠﻜﻭﻜﺴﻥ ﺘﺤﺕ ﺍﺴﻡ ‪Wilcoxon Signed‬‬

‫‪ Ranks Test‬ﻭﺫﻟﻙ ﻷﻨﻪ ﻴﺤﺴﺏ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺇﺸﺎﺭﺍﺕ ﺍﻟﻔﺭﻭﻕ ﺒﻴﻥ ﺭﺘﺏ ﻗﻴﻡ ﺍﻟﻌﻴﻨﺘﻴﻥ‬

‫ﻭﻟﻴﺱ ﻗﻴﻡ ﺍﻟﻌﻴﻨﺘﻴﻥ ﺫﺍﺘﻬﻤﺎ‪ ،‬ﻓﺎﻟﺠﺩﻭل ﺍﻷﻭل ﻴﺒﻴﻥ ﻤﺠﻤﻭﻉ ﻜل ﻤﻥ ﺭﺘﺏ ﺍﻟﻔﺭﻭﻕ ﺫﺍﺕ‬ ‫ﺍﻹﺸﺎﺭﺍﺕ ﺍﻟﻤﻭﺠﺒﺔ ﻭﻜﺫﻟﻙ ﺫﺍﺕ ﺍﻹﺸﺎﺭﺍﺕ ﺍﻟﺴﺎﻟﺒﺔ ﻭﺫﺍﺕ ﺍﻟﻔﺭﻭﻕ ﺍﻟﻤﺴﺎﻭﻴﺔ ﻟﻠﺼﻔﺭ‪،‬‬

‫ﻭﺍﻟﺠﺩﻭل ﺍﻟﺜﺎﻨﻲ ﻴﺒﻴﻥ ﻗﻴﻤﺔ ﺩﺍﻟﺔ ﺍﻻﺨﺘﺒﺎﺭ ﻭﻜﺫﻟﻙ ﻗﻴﻤﺔ ‪ p-value‬ﺍﻟﻤﺼﺎﺤﺒﺔ ﻟﻬﺎ‪ ،‬ﻭﻓﻲ‬ ‫ﻤﺜﺎﻟﻨﺎ ﻫﺫﺍ ﻴﺘﻀﺢ ﺃﻥ ﻗﻴﻤﺔ ﺩﺍﻟﺔ ﺍﻻﺨﺘﺒﺎﺭ ﻤﺴﺎﻭﻴﺔ ‪ -2.705‬ﻭﻗﻴﻤﺔ ‪ p-value‬ﻤﺴﺎﻭﻴﺔ‬

‫‪ 0.007‬ﻤﻤﺎ ﻴﺩل ﻋﻠﻰ ﺃﻥ ﺍﻻﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻱ‪ ،‬ﺍﻷﻤﺭ ﺍﻟﺫﻱ ﻴﺅﻜﺩ ﺍﻟﻨﺘﻴﺠﺔ ﺒﺄﻥ ﻫﻨﺎﻙ ﻓﺭﻕ‬

‫ﻤﻌﻨﻭﻱ ﻓﻲ ﻗﺩﺭﺓ ﺍﻷﻁﻔﺎل ﻋﻠﻰ ﺘﻤﻴﻴﺯ ﺍﻟﻜﻠﻤﺎﺕ ﺒﻴﻥ ﺠﻬﺘﻲ ﺸﺎﺸﺔ ﺍﻟﺤﺎﺴﻭﺏ‪ ،‬ﻭﻴﻤﻜﻥ‬

‫ﺘﻠﺨﻴﺹ ﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﻜﻤﺎ ﻴﻠﻲ‪:‬‬ ‫ﺍﻻﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻱ‬

‫‪p < 0.01 ; Significant‬‬

‫; ‪Z = -2.705‬‬

‫ﻭﻋﻠﻰ ﺍﻟﺭﻏﻡ ﻤﻥ ﺃﻥ ﺍﺨﺘﺒﺎﺭ ﻭﻴﻠﻜﻭﻜﺴﻥ ﻟﻡ ﻴﻔﺘﺭﺽ ﺃﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺘﺘﺒﻊ ﺍﻟﺘﻭﺯﻴﻊ‬

‫ﺍﻻﺤﺘﻤﺎﻟﻲ ﺍﻟﻁﺒﻴﻌﻲ ﻭﻻ ﻴﻔﺘﺭﺽ ﻜﺫﻟﻙ ﺃﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻟﻬﺎ ﺘﺒﺎﻴﻥ ﺜﺎﺒﺕ ﺇﻻ ﺃﻨﻪ ﻴﻔﺘﺭﺽ ﺃﻥ‬ ‫ﺒﻴﺎﻨﺎﺕ ﺍﻟﻌﻴﻨﺘﻴﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﺘﻭﺯﻴﻊ ﺍﻻﺤﺘﻤﺎﻟﻲ ﺃﻱ ﺃﻨﻬﻤﺎ ﺴﺤﺒﺘﺎ ﻤﻥ ﻤﺠﺘﻤﻌﻴﻥ ﻟﻬﻤﺎ ﻨﻔﺱ‬ ‫ﺍﻟﺘﻭﺯﻴﻊ ﺍﻻﺤﺘﻤﺎﻟﻲ‪ ،‬ﻭﺃﻫﻡ ﻤﺎ ﻓﻲ ﺍﻷﻤﺭ ﺃﻥ ﻫﺫﺍ ﺍﻻﺨﺘﺒﺎﺭ ﻻ ﻴﺘﺄﺜﺭ ﻜﺜﻴﺭﹰﺍ ﺒﺎﻟﻘﻴﻡ‬

‫ﺍﻟﻤﺘﻁﺭﻓﺔ ﺃﻭ ﺍﻟﺸﺎﺫﺓ ﻨﻅﺭﹰﺍ ﻷﻨﻪ ﻴﻌﺘﻤﺩ ﻓﻲ ﺤﺴﺎﺒﻪ ﻋﻠﻰ ﺭﺘﺏ ﺍﻟﻘﻴﻡ ﻭﻟﻴﺱ ﺍﻟﻘﻴﻡ ﺫﺍﺘﻬﺎ‪.‬‬

‫ﻭﺭﻏﻡ ﺃﻥ ﺍﺨﺘﺒﺎﺭ ﺍﻹﺸﺎﺭﺓ ﻟﻪ ﻨﻔﺱ ﻤﺯﺍﻴﺎ ﺍﺨﺘﺒﺎﺭ ﻭﻴﻠﻜﻭﻜﺴﻥ ﻓﻬﻭ ﺃﻴﻀﹰﺎ ﻴﻌﺘﺒﺭ‬

‫ﺃﻜﺜﺭ ﻗﻭﺓ ﻤﻨﻪ ﻤﻥ ﻨﺎﺤﻴﺔ ﺘﺄﺜﺭﻩ ﺒﺎﻟﻘﻴﻡ ﺍﻟﻤﺘﻁﺭﻓﺔ ﻭﺍﻟﺸﺎﺫﺓ‪ ،‬ﻭﺍﻟﻘﺴﻡ ﺍﻟﺜﺎﻨﻲ ﻤﻥ ﺍﻟﻨﺘﺎﺌﺞ‬

‫ﻴﻌﻁﻲ ﻨﺘﺎﺌﺞ ﺘﻁﺒﻴﻕ ﻫﺫﺍ ﺍﻻﺨﺘﺒﺎﺭ‪ ،‬ﻓﺎﻟﺠﺩﻭل ﺍﻟﺜﺎﻟﺙ ﻓﻲ ﺍﻟﺸﻜل ﻴﺘﻌﻠﻕ ﺒﻌﺩﺩ ﺇﺸﺎﺭﺍﺕ‬ ‫ﺍﻟﻔﺭﻭﻕ ﺒﻴﻥ ﻗﻴﻡ ﺍﻟﻌﻴﻨﺘﻴﻥ ﺍﻟﻤﻭﺠﺒﺔ ﻭﺍﻟﺴﺎﻟﺒﺔ ﻭﺍﻟﺼﻔﺭﻴﺔ‪ ،‬ﺒﻴﻨﻤﺎ ﻴﻌﻁﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺭﺍﺒﻊ‬

‫ﻗﻴﻤﺔ ‪ p-value‬ﺍﻟﺘﻲ ﺘﺘﻌﻠﻕ ﺒﺩﺍﻟﺔ ﺍﻻﺨﺘﺒﺎﺭ ﻭﻫﻲ ﻋﺩﺩ ﺍﻹﺸﺎﺭﺍﺕ ﺍﻟﻤﻭﺠﺒﺔ ﻟﻠﻔﺭﻭﻕ‬

‫)ﻭﻫﺫﻩ ﺘﺘﺒﻊ ﺘﻭﺯﻴﻊ ﺫﺍﺕ ﺍﻟﺤﺩﻴﻥ( ﻭﺘﺩل ﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﻋﻠﻰ ﺃﻥ ﺍﻻﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻱ ﻋﻨﺩ‬ ‫ﻤﺴﺘﻭﻯ ﻤﻌﻨﻭﻴﺔ ﺃﻗل ﻤﻥ ‪) 0.05‬ﺤﻴﺕ ﺃﻥ ‪.(p=0.021<0.05‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪243‬‬

‫‪ .2 .3 .6‬ﺣﺎﻟﺔ اﻟﻌﻴﻨﺎت اﻟﻤﺴﺘﻘﻠﺔ ‪ :‬اﺧﺘﺒﺎر ﻣﺎن وﻳﺘﻨﻲ ‪:‬‬ ‫‪Independent samples: Mann-Whitney test :‬‬ ‫ﻭﻟﺘﻭﻀﻴﺢ ﻜﻴﻔﻴﺔ ﺍﺴﺘﺨﺩﺍﻡ ﻫﺫﺍ ﺍﻻﺨﺘﺒﺎﺭ ﺴﻭﻑ ﻨﺴﺘﺨﺩﻡ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺘﻲ ﺘﻡ‬

‫ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ﻓﻲ ﺤﺎﻟﺔ ﺍﺨﺘﺒﺎﺭﺍﺕ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﻓﻲ ﺸﻜل ‪ ،10-6‬ﻭﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ‬

‫ﻤﻠﻑ ﺘﻠﻙ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻤﻔﺘﻭﺤﹰﺎ ﻓﻲ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ‪ Data Editor‬ﻓﺈﻨﻪ ﻴﻤﻜﻨﻨﺎ ﺇﺠﺭﺍﺀ ﻫﺫﺍ‬ ‫ﺍﻻﺨﺘﺒﺎﺭ ﻜﻤﺎ ﻴﻠﻲ‪:‬‬

‫• ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﺘﺤﻠﻴل ﺍﻹﺤﺼﺎﺌﻲ ﻓﻲ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﺭﺌﻴﺴﻴﺔ ﺍﺨﺘﺭ ﻗﺎﺌﻤﺔ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ‬

‫ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ‪ Nonparametric Tests‬ﻭﻤﻨﻬﺎ ﺃﻤﺭ ﺍﻟﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ‪Independent‬‬ ‫‪ Samples‬ﻟﺘﻔﺘﺢ ﻨﺎﻓﺫﺓ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﻌﻴﻨﺘﻴﻥ ﻤﺴﺘﻘﻠﺘﻴﻥ‪Two-Independent-‬‬

‫‪ Samples Tests‬ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ 15-6‬ﺃﺩﻨﺎﻩ ‪.‬‬

‫ﺸﻜل ‪ : 15-6‬ﻨﺎﻓﺫﺓ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﻟﻠﻌﻴﻨﺘﻴﻥ ﺍﻟﻤﺴﺘﻘﻠﺘﻴﻥ‬ ‫‪Two-Independent Samples Tests in Nonparametric Tests‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪244‬‬

‫• ﺍﺨﺘﺭ ﺍﺨﺘﺒﺎﺭ ﻤﺎﻥ ﻭﻴﺘﻨﻲ ‪ Mann-Whitney U‬ﻤﻥ ﺒﻴﻥ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻷﺭﺒﻌﺔ‬ ‫ﺍﻟﻤﺫﻜﻭﺭﺓ ﻓﻲ ﺃﺴﻔل ﺍﻟﻨﺎﻓﺫﺓ ﺤﻴﺙ ﺃﻨﻪ ﺍﻻﺨﺘﺒﺎﺭ ﺍﻟﻭﺤﻴﺩ ﺍﻟﻤﻼﺌﻡ ﻟﻠﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻭﺴﻴﻁﻲ‬

‫ﻤﺠﺘﻤﻌﻴﻥ ﻤﻥ ﺒﻴﻥ ﺘﻠﻙ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ‪ ،‬ﻭﻫﺫﻩ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﻤﻨﺎﺴﺒﺔ ﻷﻫﺩﺍﻑ ﺃﺨﺭﻯ ﻭﻟﻴﺱ‬

‫ﻟﻬﺫﺍ ﺍﻟﻬﺩﻑ ﺒﺎﻟﺘﺤﺩﻴﺩ‪.‬‬

‫• ﻓﻲ ﺍﻟﻨﺎﻓﺫﺓ ﺍﻟﺴﺎﺒﻘﺔ ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ )ﺃﻭ ﻤﺘﻐﻴﺭ ﺍﻻﺨﺘﺒﺎﺭ(‬

‫‪Test‬‬

‫‪ Variable List‬ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻓﻲ ﺍﻟﺠﻬﺔ ﺍﻟﻴﺴﺭﻯ ﻤﻥ ﺍﻟﻨﺎﻓﺫﺓ ﻭﻫﻭ ﻓﻲ ﻤﺜﺎﻟﻨﺎ‬ ‫ﻭﺴﻴﻁ ﺍﻟﻭﻗﺕ ﺍﻟﻼﺯﻡ ﻟﺘﺤﺩﻴﺩ ﺍﻟﻜﻠﻤﺎﺕ ﻟﻠﻁﻔل ‪ Recognition Time‬ﻭﻤﻥ ﺜﻡ ﺇﺯﺍﺤﺘﻪ‬

‫ﺇﻟﻰ ﺍﻟﻤﺭﺒﻊ ﺍﻟﺨﺎﺹ ﺒﺎﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﺎﺒﻌﺔ ﻋﻠﻰ ﺍﻟﻴﻤﻴﻥ ﺒﻭﺍﺴﻁﺔ ﺍﻟﺴﻬﻡ‪.‬‬ ‫• ﻜﺫﻟﻙ ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﻤﺘﻐﻴﺭ ﺍﻟﺘﺼﻨﻴﻑ ‪ Grouping Variable‬ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ‬

‫ﻓﻲ ﺍﻟﺠﻬﺔ ﺍﻟﻴﺴﺭﻯ ﻤﻥ ﺍﻟﻨﺎﻓﺫﺓ ﻭﻫﻭ ﻓﻲ ﻤﺜﺎﻟﻨﺎ ﺠﻬﺔ ﺍﻟﺸﺎﺸﺔ ‪Left-Right Identifier‬‬

‫ﻭﻤﻥ ﺜﻡ ﺇﺯﺍﺤﺘﻪ ﺇﻟﻰ ﺍﻟﻤﺭﺒﻊ ﺍﻟﺨﺎﺹ ﺒﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﺼﻨﻴﻑ ﻋﻠﻰ ﻴﻤﻴﻥ ﻭﺃﺴﻔل ﺍﻟﻨﺎﻓﺫﺓ‬

‫ﺒﻭﺍﺴﻁﺔ ﺍﻟﺴﻬﻡ‪ ،‬ﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺴﻴﻅﻬﺭ ﺍﺴﻡ ﺍﻟﻤﺘﻐﻴﺭ ‪) lftrght‬ﻭﻟﻴﺱ ﺩﻟﻴﻠﻪ( ﻓﻲ‬ ‫ﺍﻟﻤﺭﺒﻊ ﺍﻟﺨﺎﺹ ﻭﺘﻘﺎﺒﻠﻪ ﻋﻼﻤﺎﺕ ﺍﻻﺴﺘﻔﻬﺎﻡ ؟ ؟ ‪ ،‬ﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻻﺒﺩ ﻤﻥ ﺘﻌﺭﻴﻑ‬

‫ﻗﻴﻡ ﺍﻟﻤﺠﻤﻭﻋﺎﺕ )ﺍﻟﻌﻴﻨﺎﺕ( ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺘﻐﻴﺭ ﻭﺫﻟﻙ ﺒﺎﻟﻀﻐﻁ ﻋﻠﻰ ﻤﻔﺘﺎﺡ ﺍﻟﺤﻭﺍﺭ‬

‫ﺘﻌﺭﻴﻑ ﺍﻟﻤﺠﻤﻭﻋﺎﺕ ‪ Define Groups‬ﺍﻟﻤﻘﺎﺒل ﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺼﻨﻴﻑ ﻭﻓﺘﺢ ﻨﺎﻓﺫﺓ ﺘﻌﺭﻴﻑ‬ ‫ﻤﺠﻤﻭﻋﺎﺕ ﺍﻟﻌﻴﻨﺎﺕ ‪ Define Groups‬ﻟﻭﻀﺢ ﺩﻟﻴل ﻜل ﻤﻥ ﺍﻟﻌﻴﻨﺘﻴﻥ‪ ،‬ﻭﻓﻲ ﻤﺜﺎﻟﻨﺎ ﻓﻘﺩ‬

‫ﺘﻡ ﺘﻌﺭﻴﻑ ﺩﻟﻴل ﺍﻟﻌﻴﻨﺔ ﺍﻷﻭﻟﻰ ﺒﺎﻟﺭﻗﻡ ‪ 1‬ﻭﺍﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺒﺎﻟﺭﻗﻡ ‪ 2‬ﻓﻲ ﻤﺘﻐﻴﺭ ﺍﻟﺘﺼﻨﻴﻑ‬ ‫ﻭﻫﻭ ﺠﻬﺔ ﺍﻟﺸﺎﺸﺔ ‪. Left-Right Identifier‬‬

‫•‬

‫ﻴﺘﻡ ﺇﻋﻁﺎﺀ ﺩﻟﻴل ﺍﻟﻌﻴﻨﺔ ﺍﻷﻭﻟﻰ ﺃﻤﺎﻡ ‪ Group 1‬ﻭﺩﻟﻴل ﺍﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺃﻤﺎﻡ ‪Group‬‬

‫‪ 2‬ﻓﻲ ﺘﻠﻙ ﺍﻟﻨﺎﻓﺫﺓ ﻭﻤﻥ ﺜﻡ ﻴﻀﻐﻁ ﻋﻠﻰ ﻤﻔﺘﺎﺡ ﺍﻻﺴﺘﻤﺭﺍﺭ ‪ Continue‬ﻓﻴﻅﻬﺭ ﺍﻟﺭﻗﻤﻴﻥ‬ ‫‪ 1‬ﻭ ‪ 2‬ﺃﻤﺎﻡ ﺍﺴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﻓﻲ ﻨﺎﻓﺫﺓ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﻟﻌﻴﻨﺘﻴﻥ ﻤﺴﺘﻘﻠﺘﻴﻥ ‪Two-‬‬

‫‪Independent-Samples Tests‬ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ 15-6‬ﺃﻋﻼﻩ‪.‬‬


‫( ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬6)

245

Two-Independent- ‫ﺍﻵﻥ ﻓﻲ ﻨﺎﻓﺫﺓ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﻌﻴﻨﺘﻴﻥ ﻤﺴﺘﻘﻠﺘﻴﻥ‬

‫ ﻹﻨﻬﺎﺀ‬OK ‫ ﻴﻀﻐﻁ ﻋﻠﻰ ﻤﻔﺘﺎﺡ ﺍﻟﺘﻨﻔﻴﺫ‬15-6 ‫ ﻜﻤﺎ ﻓﻲ ﺸﻜل‬Samples Tests

.‫ﺍﻟﻤﻬﻤﺔ ﻭﺘﻨﻔﻴﺫ ﺃﻤﺭ ﺇﺠﺭﺍﺀ ﺍﻻﺨﺘﺒﺎﺭ ﺍﻟﻤﻁﻠﻭﺏ‬

.(16-6 ‫ ﻟﺘﻨﻔﻴﺫ ﺍﻷﻤﺭ ﻭﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻨﺘﺎﺌﺞ )ﺸﻜل‬OK ‫• ﺍﺨﺘﺭ ﺍﻵﻥ ﺃﻤﺭ ﺍﻟﺘﻨﻔﻴﺫ‬ Mann-Whitney Test ‫ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻤﻥ ﺘﻨﻔﻴﺫ ﺃﻤﺭ ﺍﺨﺘﺒﺎﺭ ﻤﺎﻥ ﻭﻴﺘﻨﻲ‬: 16-6 ‫ﺸﻜل‬ ‫ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﻟﻠﻌﻴﻨﺘﻴﻥ ﺍﻟﻤﺴﺘﻘﻠﺘﻴﻥ‬ NPar Tests Mann-Whitney Test

Ranks Left Right Indicator Recognition Time

Mean Rank

N

Sum of Ranks

1

10

11.30

113.00

2

10

9.70

97.00

Total

20

Test Statisticsb Recognition Time Mann-Whitney U

42.000

Wilcoxon W

97.000

Z

-.605

Asymp. Sig. (2-tailed)

.545

Exact Sig. [2*(1-tailed Sig.)]

.579

a

a. Not corrected for ties. b. Grouping Variable: Left Right Indicator


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪246‬‬

‫ﻭﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﺸﻜل ‪ 16-6‬ﺍﻟﺴﺎﺒﻕ ﻨﺴﺘﻁﻴﻊ ﺃﻥ ﻨﻼﺤﻅ ﺃﻥ ﺍﻟﺠﺩﻭل‬ ‫ﺍﻷﻭل ﻴﺤﺘﻭﻱ ﻋﻠﻰ ﻤﺠﻤﻭﻉ ﺍﻟﺭﺘﺏ ‪ Ranks‬ﻟﻜل ﻤﻥ ﺍﻟﻤﺸﺎﻫﺩﺍﺕ ﻋﻠﻰ ﻴﻤﻴﻥ ﻭﻋﻠﻰ‬ ‫ﻴﺴﺎﺭ ﺍﻟﺸﺎﺸﺔ‪ ،‬ﻭﻴﺤﺘﻭﻱ ﺍﻟﺠﺩﻭل ﺍﻟﺜﺎﻨﻲ ﻋﻠﻰ ﻗﻴﻡ ﺩﻭﺍل ﺍﻹﺤﺼﺎﺀ ﻻﺨﺘﺒﺎﺭﺍﺕ ﻤﺨﺘﻠﻔﺔ‬

‫ﻤﻥ ﺒﻴﻨﻬﺎ ﺍﺨﺘﺒﺎﺭ ﻤﺎﻥ ﻭﻴﺘﻨﻲ ‪ Mann-Whitney U Test‬ﻭﻗﻴﻡ ‪ p-value‬ﺍﻟﺘﻘﺭﻴﺒﻴﺔ‬

‫ﺍﻟﻤﺼﺎﺤﺒﺔ ﻟﻬﺎ ))‪ (Asymp. Sig. (2(tailed‬ﻭﺍﻟﺘﻲ ﺘﺒﺩﻭ ﻓﻲ ﺍﻟﻨﺘﺎﺌﺞ ﺃﻜﺒﺭ ﻤﻥ ‪0.05‬‬

‫ﻤﻤﺎ ﻴﺅﻜﺩ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺴﺎﺒﻘﺔ )ﻓﻲ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ( ﺃﻥ ﺍﻻﺨﺘﺒﺎﺭ ﻏﻴﺭ ﻤﻌﻨﻭﻱ‪،‬‬

‫ﺃﻱ ﻻ ﻴﻭﺠﺩ ﻓﺭﻕ ﻤﻌﻨﻭﻱ ﺒﻴﻥ ﻭﻀﻊ ﺍﻟﻜﻠﻤﺎﺕ ﻋﻠﻰ ﺠﻬﺘﻲ ﺍﻟﺸﺎﺸﺔ‪ ،‬ﻭﺒﺎﻟﺘﺎﻟﻲ ﻴﻤﻜﻥ‬ ‫ﺘﻠﺨﻴﺹ ﺍﻟﻨﺘﻴﺠﺔ ﻜﻤﺎ ﻴﻠﻲ‪:‬‬ ‫ﻏﻴﺭ ﻤﻌﻨﻭﻱ ‪Z = -0.605 ; Asymp. Sig. (2(tailed) = 0.545; NS‬‬

‫ﻴﺠﺩﺭ ﺒﺎﻟﺫﻜﺭ ﻫﻨﺎ ﺇﻟﻰ ﺃﻥ ﻗﻴﻤﺔ ﺩﺍﻟﺔ ﺍﻹﺨﺘﺒﺎﺭ ‪ W‬ﺍﻟﻤﺫﻜﻭﺭﺓ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺜﺎﻨﻲ‬

‫ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﺃﻤﺎ ﺍﺴﻡ ﻭﻴﻠﻜﻭﻜﺴﻥ ‪ Wilcoxon W‬ﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻥ ﻗﻴﻤﺔ ﺩﺍﻟﺔ ﺍﺨﺘﺒﺎﺭ‬ ‫ﻤﺎﻥ ﻭﻴﺘﻨﻲ ﺍﻟﻤﺼﺤﺤﺔ ﺍﻟﺘﻲ ﺍﻗﺘﺭﺤﻬﺎ ﻭﻴﻠﻜﻭﻜﺴﻥ‪ ،‬ﻭﻫﻲ ﺘﺅﺩﻱ ﻏﺎﻟﺒﹰﺎ ﺇﻟﻰ ﻨﻔﺱ ﻨﺘﻴﺠﺔ‬

‫ﺍﺨﺘﺒﺎﺭ ﻤﺎﻥ ﻭﻴﺘﻨﻲ‪ ،‬ﻭﻟﺫﺍ ﻴﺴﻤﻰ ﻫﺫﺍ ﺍﻻﺨﺘﺒﺎﺭ ﻓﻲ ﺒﻌﺽ ﺍﻟﻤﺭﺍﺠﻊ ﺍﺨﺘﺒﺎﺭ ﻭﻴﻠﻜﻭﻜﺴﻥ‬ ‫ﻤﺎﻥ ﻭﻴﺘﻨﻲ ‪ ، Wilcoxon-Mann-Whitney Test‬ﻭﻫﻭ ﻴﺨﺘﻠﻑ ﻋﻥ ﺍﺨﺘﺒﺎﺭ‬

‫ﻭﻴﻠﻜﻭﻜﺴﻥ ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪247‬‬

‫‪ .4 .6‬ﺗﻄﺒﻴﻘﺎت ‪Applications :‬‬

‫‪ .1 .4 .6‬ﺣﺎﻟﺔ اﻻﺧﺘﺒﺎرات اﻟﻤﺘﻌﻠﻘﺔ ﺑﻌﻴﻨﺔ واﺣﺪة ‪:‬‬ ‫‪The case of One-Sample Tests :‬‬ ‫ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﺘﻡ ﺘﻭﻀﻴﺢ ﺠﻤﻴﻊ ﺠﻭﺍﻨﺏ ﺍﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻔﺭﻀﻴﺎﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ‬

‫ﺒﺎﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‪ ،‬ﻭﻟﻜﻥ ﻫﻨﺎﻙ ﺤﺎﻻﺕ ﺘﺘﻌﻠﻕ ﺒﺎﺨﺘﺒﺎﺭ ﻓﺭﻀﻴﺎﺕ ﺤﻭل‬ ‫ﻤﺘﻭﺴﻁ ﻤﺠﺘﻤﻊ ﻭﺍﺤﺩ‪ ،‬ﻓﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ ﻋﻴﻨﺔ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻤﺸﺎﻫﺩﺍﺕ ﻭﻴﻜﻭﻥ ﺍﻟﻬﺩﻑ ﻫﻭ‬

‫ﺍﺨﺘﺒﺎﺭ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ﺍﻟﺘﻲ ﺘﻨﺹ ﻋﻠﻰ ﺃﻥ ﺍﻟﻌﻴﻨﺔ ﺴﺤﺒﺕ ﻤﻥ ﻤﺠﺘﻤﻊ ﺒﻭﺴﻁ ﺫﻭ‬

‫ﻗﻴﻤﺔ ﻤﺤﺩﺩﺓ ﻭﻗﺩ ﻻ ﺘﻜﻭﻥ ﺼﻔﺭﹰﺍ‪.‬‬

‫ﻓﺈﺫﺍ ﺍﻓﺘﺭﻀﻨﺎ ﺃﻨﻪ ﻟﺘﺤﺴﻴﻥ ﻤﺴﺘﻭﻯ ﺘﻼﻤﻴﺫ ﻓﺼل ﻤﻌﻴﻥ ﻓﻲ ﻤﺎﺩﺓ ﺍﻟﺭﻴﺎﻀﺎﺕ‬

‫ﺘﻘﺭﺭ ﺇﺠﺭﺍﺀ ﺘﺠﺭﺒﺔ ﻋﻠﻰ ﺸﻜل ﺩﻭﺭﺓ ﻗﺼﻴﺭﺓ ﻋﻠﻰ ﻋﻴﻨﺔ ﻋﺸﻭﺍﺌﻴﺔ ﻤﻥ ﺍﻟﺘﻼﻤﻴﺫ‪ ،‬ﻓﺈﺫﺍ‬

‫ﻋﻠﻡ ﺃﻥ ﻤﺘﻭﺴﻁ ﺩﺭﺠﺎﺕ ﻤﺠﺘﻤﻊ ﺍﻟﺘﻼﻤﻴﺫ ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﻓﻲ ﺃﺤﺩ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﻓﻲ‬

‫ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﻗﺒل ﺍﻟﺩﻭﺭﺓ ﻤﺒﺎﺸﺭﺓ ﻫﻭ ‪ ،51‬ﻭﺘﻡ ﺇﻋﻁﺎﺀ ﺍﻟﺘﻼﻤﻴﺫ ﻓﻲ ﺍﻟﻌﻴﻨﺔ ﺍﺨﺘﺒﺎﺭ ﺒﻨﻔﺱ‬

‫ﻤﺴﺘﻭﻯ ﺍﻻﺨﺘﺒﺎﺭ ﺍﻟﺴﺎﺒﻕ ﺒﻌﺩ ﺍﻟﺩﻭﺭﺓ ﻤﺒﺎﺸﺭﺓ‪ ،‬ﻭﻜﺎﻥ ﻴﺅﻤل ﺃﻥ ﺘﺅﺩﻱ ﺍﻟﺩﻭﺭﺓ ﺇﻟﻰ‬

‫ﺘﺤﺴﻥ ﻤﻠﺤﻭﻅ ﻓﻲ ﻤﺘﻭﺴﻁ ﺩﺭﺠﺎﺕ ﺠﻤﻴﻊ ﺍﻟﺘﻼﻤﻴﺫ ﺍﻟﺫﻴﻥ ﻴﺤﻀﺭﻭﻨﻬﺎ‪ ،‬ﻭﻟﻜﻥ ﺍﻟﻨﺘﺎﺌﺞ‬ ‫ﺃﺸﺎﺭﺕ ﺇﻟﻰ ﺃﻥ ﻤﺘﻭﺴﻁ ﺩﺭﺠﺎﺕ ﺍﻟﺘﻼﻤﻴﺫ ﻓﻲ ﺍﻟﻌﻴﻨﺔ ﺒﻌﺩ ﺍﻟﺩﻭﺭﺓ ﻗﺩ ﺒﻠﻐﺕ ‪ ،60‬ﻭﻟﻬﺫﺍ‬

‫ﻨﻭﺩ ﺍﺨﺘﺒﺎﺭ ﻤﺎ ﺇﺫﺍ ﻜﺎﻥ ﻫﺫﺍ ﺍﻟﺘﺤﺴﻥ ﻤﻌﻨﻭﻱ )ﺫﻭ ﺩﻻﻟﺔ( ﻭﻴﻌﺯﻯ ﺇﻟﻰ ﺘﻠﻙ ﺍﻟﺩﻭﺭﺓ ﻭﻟﻴﺱ‬ ‫ﺇﻟﻰ ﺍﻟﻌﺸﻭﺍﺌﻴﺔ‪ ،‬ﻭﻟﻬﺫﺍ ﺍﻟﻐﺭﺽ ﻓﺈﻥ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺴﺘﻨﺹ ﻋﻠﻰ ﺃﻥ‬ ‫ﻤﺘﻭﺴﻁ ﺩﺭﺠﺎﺕ ﺠﻤﻴﻊ ﺍﻟﺘﻼﻤﻴﺫ ﺍﻟﺫﻴﻥ ﻴﺤﻀﺭﻭﻥ ﺍﻟﺩﻭﺭﺓ ﻻ ﻴﺨﺘﻠﻑ ﻋﻥ ‪.51‬‬ ‫ﻓﺈﺫﺍ ﻜﺎﻨﺕ ﻟﺩﻴﻨﺎ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻋﻥ ﺩﺭﺠﺎﺕ ﺍﻟﺘﻼﻤﻴﺫ ﻓﻲ ﺍﻟﻌﻴﻨﺔ ﻭﺘﻡ ﺘﺨﺯﻴﻨﻬﺎ ﻓﻲ ﻤﻠﻑ‬

‫ﻓﺈﻨﻪ ﻴﻤﻜﻨﻨﺎ ﺇﺠﺭﺍﺀ ﺍﻻﺨﺘﺒﺎﺭ ﺒﺴﻬﻭﻟﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻨﻅﺎﻡ ‪ SPSS‬ﻜﻤﺎ ﻴﻠﻲ‪:‬‬

‫ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﺘﺤﻠﻴل ﺍﻹﺤﺼﺎﺌﻲ ‪ Analyze‬ﻓﻲ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﺭﺌﻴﺴﺔ ﻟﻨﻅﺎﻡ ‪SPSS‬‬

‫ﺍﺨﺘﺭ ﻗﺎﺌﻤﺔ ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ‪ Compare Means‬ﻭﻤﻨﻬﺎ ﺇﻟﻰ ﺍﻷﻤﺭ ﺍﺨﺘﺒﺎﺭ ‪t‬‬

‫ﻟﻠﻌﻴﻨﺔ ﺍﻟﻭﺍﺤﺩﺓ ‪ ،One-Sample T Test‬ﻭﻫﺫﺍ ﺍﻷﻤﺭ ﺴﻴﻔﺘﺢ ﻨﺎﻓﺫﺓ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺔ‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪248‬‬

‫ﺍﻟﻭﺍﺤﺩﺓ ‪ One-Sample T Test‬ﻜﻤﺎ ﻓﻲ ﺍﻟﺸﻜل ‪ 17-6‬ﺃﺩﻨﺎﻩ ‪ ،‬ﻭﺒﻬﺎ ﻴﺘﻡ ﺇﺩﺨﺎل ﺍﺴﻡ‬ ‫ﺍﻟﻤﺘﻐﻴﺭ ﻭﻫﻭ ﺍﻟﺩﺭﺠﺔ ‪Mark‬‬

‫ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﺎﺒﻌﺔ )‪Test Variable(s‬‬

‫ﻭﺇﺩﺨﺎل ﻗﻴﻤﺔ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ﻟﻠﻤﺘﻭﺴﻁ ‪ ،Test Value‬ﻭﻫﻲ ﻓﻲ ﺤﺎﻟﺘﻨﺎ ‪ 51‬ﻜﻤﺎ‬

‫ﺒﺎﻟﺸﻜل ‪ ، 17-6‬ﺜﻡ ﺍﻟﻀﻐﻁ ﻋﻠﻰ ﺃﻤﺭ ﺍﻟﺘﻨﻔﻴﺫ ‪ OK‬ﻟﺘﻨﻔﻴﺫ ﺍﻷﻤﺭ ﻭﺍﻟﻭﺼﻭل ﺇﻟﻰ ﺍﻟﻨﺘﺎﺌﺞ‬ ‫ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ 18-6‬ﺃﺩﻨﺎﻩ‪.‬‬

‫ﺸﻜل ‪ : 17-6‬ﻨﺎﻓﺫﺓ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺔ ﺍﻟﻭﺍﺤﺩﺓ ‪.One-Sample T Test‬‬

‫ﻭﻴﺒﻴﻥ ﺍﻟﺠﺩﻭل ﺍﻷﻭل ﻓﻲ ﺍﻟﻨﺘﺎﺌﺞ ﺘﻘﺩﻴﺭﺍﺕ ﻟﻠﻤﻘﺎﻴﻴﺱ ﺍﻹﺤﺼﺎﺌﻴﺔ ﻤﻥ ﺍﻟﻌﻴﻨﺔ ﻭﻫﻲ‬ ‫ﻋﺩﺩ ﺍﻟﻘﻴﻡ ‪ 20‬ﻭﺍﻟﻤﺘﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ ‪ 60‬ﻭﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ‪ 15.82‬ﻭﺍﻟﺨﻁﺄ‬

‫ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻠﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ ‪ ، 3.54‬ﻭﻴﺒﻴﻥ ﺍﻟﺠﺩﻭل ﺍﻟﺜﺎﻨﻲ ﻗﻴﻤﺔ ﺩﺍﻟﺔ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻭﻫﻲ‬ ‫‪ 2.545‬ﻭﺩﺭﺠﺎﺕ ﺤﺭﻴﺘﻬﺎ ‪ 19‬ﻭﻗﻴﻤﺔ ‪ p-value‬ﺍﻟﻤﺼﺎﺤﺒﺔ ﻟﻬﺎ ‪ 0.020‬ﺍﻷﻤﺭ ﺍﻟﺫﻱ‬

‫ﻴﺩل ﻋﻠﻰ ﺃﻥ ﻫﻨﺎﻙ ﺍﺨﺘﻼﻑ ﻤﻌﻨﻭﻱ ﺒﻤﺴﺘﻭﻯ ﻤﻌﻨﻭﻴﺔ ﺃﻗل ﻤﻥ ‪ ، 0.05‬ﺃﻱ ﺃﻥ ﺍﻟﺩﻭﺭﺓ‬

‫ﻟﻬﺎ ﺘﺄﺜﻴﺭ ﻤﻌﻨﻭﻱ ﻓﻲ ﺘﺤﺴﻴﻥ ﻤﺴﺘﻭﻯ ﺍﻟﺘﻼﻤﻴﺫ‪ ،‬ﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﺘﺅﻜﺩﻫﺎ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻹﻀﺎﻓﻴﺔ‬ ‫ﺍﻟﺘﻲ ﺘﺘﻌﻠﻕ ﺒﻔﺘﺭﺓ ‪ 95%‬ﺜﻘﺔ ﻟﻠﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁ ﺍﻟﺩﺭﺠﺎﺕ ﻓﻲ ﺍﻟﻤﺠﺘﻤﻊ ﻭﻗﻴﻤﺔ‬ ‫ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ﻟﻠﻤﺘﻭﺴﻁ ‪ Test Value‬ﻭﻫﻲ )‪ 1.6‬ﻭ ‪ ،(16.4‬ﻭﻫﺫﻩ ﺍﻟﻔﺘﺭﺓ ﻻ‬

‫ﺘﺤﺘﻭﻱ ﺍﻟﺼﻔﺭ ﺒﺩﺍﺨﻠﻬﺎ ﻤﻤﺎ ﻴﺩل ﻋﻠﻰ ﺃﻥ ﺍﻻﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻱ‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪249‬‬

‫ﺸﻜل ‪ : 18-6‬ﻜﺸﻑ ﻨﺘﺎﺌﺞ ﺍﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺔ ﺍﻟﻭﺍﺤﺩﺓ‬ ‫‪Listings of the results of One-Samples T Test‬‬ ‫‪T-Test‬‬ ‫‪One-Sample Statistics‬‬ ‫‪Std. Error‬‬ ‫‪Mean‬‬

‫‪Std. Deviation‬‬

‫‪3.54‬‬

‫‪15.82‬‬

‫‪N‬‬

‫‪Mean‬‬ ‫‪60.00‬‬

‫‪Marks‬‬

‫‪20‬‬

‫‪One-Sample Test‬‬ ‫‪Test Value = 51‬‬ ‫‪95% Confidence‬‬ ‫‪nterval of the Difference‬‬ ‫‪Upper‬‬ ‫‪16.40‬‬

‫‪Lower‬‬ ‫‪1.60‬‬

‫‪Sig.‬‬ ‫‪Mean‬‬ ‫‪(2-tailed) Difference‬‬ ‫‪9.00‬‬

‫‪.020‬‬

‫‪df‬‬ ‫‪19‬‬

‫‪t‬‬ ‫‪2.545‬‬

‫‪Marks‬‬

‫‪ .2 .4 .6‬اﺧﺘﺒﺎر اﻟﻔﺮﺿﻴﺎت اﻟﻤﺘﻌﻠﻘﺔ ﺑﻨﺴﺐ اﻟﺤﺪوث ‪:‬‬ ‫‪Tests Concerning Proportions:‬‬ ‫ﻓﻲ ﺍﻷﻗﺴﺎﻡ ﺍﻟﺴﺎﺒﻘﺔ ﻤﻥ ﻫﺫﺍ ﺍﻟﻔﺼل ﺘﻡ ﺍﻟﺘﻌﺎﻤل ﺒﻁﺭﻴﻘﺔ ﻤﻔﺼﻠﺔ ﻤﻊ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ‬

‫ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﻤﺠﺘﻤﻌﺎﺕ ﻭﻓﻲ ﺍﻟﻨﻬﺎﻴﺔ ﺘﻡ ﺍﻟﺘﻌﺭﺽ ﺇﻟﻰ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﻲ ﻴﺘﻡ‬

‫ﺍﻟﺘﻌﺎﻤل ﺒﻬﺎ ﻓﻲ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﻤﺘﻭﺴﻁ ﻤﺠﺘﻤﻊ ﻭﺍﺤﺩ‪ ،‬ﻭﻫﻨﺎ ﻻﺒﺩ ﺃﻥ ﻨﺘﻌﺭﺽ‬

‫ﺇﻟﻰ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﺘﻲ ﺘﺘﻌﻠﻕ ﺒﻨﺴﺏ ﺍﻟﺤﺩﻭﺙ ﻓﻲ ﺍﻟﻤﺠﺘﻤﻊ‪.‬‬

‫ﻓﺈﺫﺍ ﻜﺎﻥ ﻟﺩﻴﻨﺎ ﻋﻴﻨﺔ ﻤﻥ ﺍﻷﺸﺨﺎﺹ ﺘﻡ ﺍﻻﺴﺘﻔﺴﺎﺭ ﻤﻨﻬﻡ ﺤﻭل ﺭﺃﻴﻬﻡ ﻓﻲ‬

‫ﻤﺸﺭﻭﻉ ﻗﺎﻨﻭﻥ ﻤﻌﻴﻥ ﻋﻠﻰ ﺃﻥ ﺘﻜﻭﻥ ﺍﻹﺠﺎﺒﺔ ﻫﻲ ﺃﺤﺩ ﺍﻹﺠﺎﺒﺎﺕ "ﻤﻭﺍﻓﻕ" ﻭ "ﻏﻴﺭ‬

‫ﻤﻭﺍﻓﻕ" ﺃﻭ "ﻨﻌﻡ" ﻭ "ﻻ" ﻓﺈﻨﻪ ﻟﻠﺘﻌﺎﻤل ﻤﻊ ﻨﺴﺒﺔ ﺍﻟﻤﻭﺍﻓﻘﻴﻥ ﺃﻭ ﺍﻟﺫﻴﻥ ﺃﺠﺎﺒﻭﺍ ﺒﻨﻌﻡ ﻻ ﺒﺩ‬

‫ﻤﻥ ﺇﺩﺨﺎل ﺍﻟﺒﻴﺎﻨﺎﺕ ﺇﻟﻰ ﺍﻟﺤﺎﺴﻭﺏ ﺒﺎﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪250‬‬

‫ﻴﻌﻁﻰ ﺍﻟﺫﻴﻥ ﺃﺠﺎﺒﻭﺍ "ﻨﻌﻡ" ﺍﻟﻘﻴﻤﺔ ‪ ،1‬ﻭﻴﻌﻁﻰ ﺍﻟﺫﻴﻥ ﺃﺠﺎﺒﻭﺍ "ﻻ" ﺍﻟﻘﻴﻤﺔ ‪ ، 0‬ﻭﺫﻟﻙ‬ ‫ﻓﻲ ﻤﺘﻐﻴﺭ ﻜﻤﻲ ﺠﺩﻴﺩ ﻴﻤﻜﻥ ﺃﻥ ﻴﻌﺭﻑ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺃﻤﺭ ﺍﻟﺘﺼﻨﻴﻑ ‪ Recode‬ﺃﻭ ﻤﻨﺫ‬ ‫ﺍﻟﺒﺩﺍﻴﺔ ﺒﺈﺩﺨﺎل ﺘﻠﻙ ﺍﻟﻘﻴﻡ ﻜﻘﻴﻡ ﻟﻬﺫﺍ ﺍﻟﻤﺘﻐﻴﺭ ﻤﻊ ﺇﻋﻁﺎﺀ ﺍﻟﺩﻟﻴل "ﻨﻌﻡ" ﻟﻠﻘﻴﻤﺔ ‪ 1‬ﻭﺍﻟﺩﻟﻴل‬

‫"ﻻ" ﻟﻠﻘﻴﻤﺔ ‪ ، 0‬ﻭﺒﻬﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﺴﻭﻑ ﻴﻜﻭﻥ ﻋﺩﺩ ﻤﻥ ﺃﺠﺎﺒﻭﺍ "ﻨﻌﻡ" ﻴﺴﺎﻭﻱ ﻤﺠﻤﻭﻉ ﻗﻴﻡ‬

‫ﻫﺫﺍ ﺍﻟﻤﺘﻐﻴﺭ ﻭﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﻨﺴﺒﺔ ﻓﻲ ﺍﻟﻌﻴﻨﺔ ﻤﻘﺩﺭﺓ ﺒﺎﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ ﻟﻬﺫﻩ ﺍﻟﻌﻴﻨﺔ‪ ،‬ﻭﺴﻭﻑ‬

‫ﺘﺘﺤﻭل ﺒﺎﻟﺘﺎﻟﻲ ﻤﺴﺄﻟﺔ ﺍﺨﺘﺒﺎﺭ ﺍﻟﻔﺭﻀﻴﺎﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻨﺴﺒﺔ ﻭﺒﺎﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻨﺴﺒﺘﻲ‬

‫ﺤﺩﻭﺙ ﺇﻟﻰ ﻤﺴﺄﻟﺔ ﺍﺨﺘﺒﺎﺭ ﻓﺭﻀﻴﺎﺕ ﺘﺘﻌﻠﻕ ﺒﺎﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ ﻭﺍﻟﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻴﻥ‬ ‫ﺤﺴﺎﺒﻴﻴﻥ ﻓﻲ ﺍﻟﻤﺠﺘﻤﻊ‪ ،‬ﻭﻫﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﺘﺠﻌل ﺍﺴﺘﺨﺩﺍﻡ ﺠﻤﻴﻊ ﺍﻟﻁﺭﻕ ﺍﻟﺴﺎﺒﻘﺔ ﺍﻟﻤﺘﻌﻠﻘﺔ‬

‫ﺒﺎﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻭﺴﻁﻴﻥ ﻤﻤﻜﻨﺔ ﻟﻠﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﻲ ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﺍﻟﻘﻴﻡ ‪ 0‬ﻭ ‪ 1‬ﻓﻘﻁ ‪.‬‬

‫ﻭﺭﻏﻡ ﺫﻟﻙ ﻓﻬﻨﺎﻙ ﺘﻁﻭﺭﺍﺕ ﻭﻁﺭﻕ ﺇﺤﺼﺎﺌﻴﺔ ﻤﺘﻁﻭﺭﺓ ﻭﺘﻬﺘﻡ ﻓﻘﻁ ﺒﺎﻟﻁﺭﻕ‬

‫ﺍﻟﺘﻲ ﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ﻋﻠﻰ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻭﺼﻔﻴﺔ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﻗﻴﻤﺘﻴﻥ ﻓﻘﻁ )‪ 0‬ﻭ ‪(1‬‬

‫‪ dichotomous qualitative variables‬ﻭﺘﻌﺒﺭﺍﻥ ﻋﻥ ﻗﻴﻤﺘﻴﻥ ﻓﻘﻁ ﻴﻤﻜﻥ ﺃﻥ ﻴﺄﺨﺫﻫﻤﺎ‬ ‫ﺍﻟﻤﺘﻐﻴﺭ ﻤﺜل ﻤﻭﺍﻓﻕ ﻭﻏﻴﺭ ﻤﻭﺍﻓﻕ ﺃﻭ ﻨﻌﻡ ﻭﻻ ﺃﻭ ﺸﻔﻲ ﻤﻥ ﺍﻟﻤﺭﺽ ﻭﻟﻡ ﻴﺸﻔﻰ ﺃﻭ ﻁﻌﻡ‬ ‫ﻭﻟﻡ ﻴﻁﻌﻡ ﻭﻫﻜﺫﺍ‪ ...‬ﻭﻫﺫﻩ ﺍﻟﻁﺭﻕ ﺍﻹﺤﺼﺎﺌﻴﺔ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﻓﻲ ﺍﻟﻐﺎﻟﺏ ﺘﻨﻔﺭﺩ ﺒﺘﺤﻠﻴل ﻤﺜل‬

‫ﻫﺫﻩ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻭﻤﻥ ﺒﻴﻨﻬﺎ ﺍﺨﺘﺒﺎﺭ ﻤﻜﻨﻤﺎﺭ ‪ McNemar‬ﻭﻫﻭ ﺃﺤﺩ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ‬

‫ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﺍﻟﻤﻨﺎﻅﺭﺓ ﻻﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻴﻥ ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪Paired‬‬

‫‪ Samples T Test‬ﻭﺍﻟﺫﻱ ﺘﻡ ﺍﻟﺘﻌﺭﺽ ﺇﻟﻰ ﻜﻴﻔﻴﻔﺔ ﺘﻨﻔﻴﺫﻩ ﻋﻨﺩ ﺍﻟﺤﺩﻴﺙ ﻋﻥ‬

‫ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻔﺭﻕ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻴﻥ ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﻤﺭﺘﺒﻁﺔ ‪Paired‬‬ ‫‪ ، Samples‬ﻭﻫﻨﺎﻙ ﺃﻴﻀ ﹰﺎ ﺍﺨﺘﺒﺎﺭ ﺁﺨﺭ ﻭﻫﻭ ﺍﺨﺘﺒﺎﺭ ﺘﻭﺯﻴﻊ ﺫﺍﺕ ﺍﻟﺤﺩﻴﻥ ‪Binomial‬‬

‫‪ Test‬ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻤﺠﺘﻤﻊ ﺍﻟﻭﺍﺤﺩ‪ ،‬ﻭﻫﻭ ﺃﻴﻀﹰﺎ ﺍﺨﺘﺒﺎﺭ ﻻﻤﻌﻠﻤﻲ ﻴﺘﻌﻠﻕ ﺒﻨﺴﺒﺔ ﻭﺍﺤﺩﺓ‪،‬‬ ‫ﻭﻴﻤﻜﻥ ﺘﻨﻔﻴﺫﻩ ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﻤﻌﻠﻤﻴﺔ ‪ Nonparametric Tests‬ﻓﻲ ﻗﺎﺌﻤﺔ‬

‫ﺍﻟﺘﺤﻠﻴل ﺍﻹﺤﺼﺎﺌﻲ ‪ Analyze‬ﻭﺍﺨﺘﻴﺎﺭ ﺍﻷﻤﺭ ‪ Binomial‬ﻟﻨﺼل ﺇﻟﻰ ﻨﺎﻓﺫﺓ ﺼﻐﻴﺭﺓ‬

‫ﻴﺘﻡ ﺒﻬﺎ ﺘﻌﺭﻴﻑ ﺍﻟﻤﺘﻐﻴﺭ ﻭﻗﻴﻤﺔ ﺍﻟﻨﺴﺒﺔ ﻓﻲ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ‪.‬‬


‫)‪ (6‬ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬

‫‪251‬‬

‫ﻭﺍﻟﺸﻜﻠﻴﻥ ‪ 19-6‬ﻭ‪ 20-6‬ﺍﻟﺘﺎﻟﻴﻴﻥ ﻴﻭﻀﺤﺎﻥ ﻨﺘﻴﺠﺘﻲ ﺍﺨﺘﺒﺎﺭ ﺘﺴﺎﻭﻱ ﻨﺴﺒﺔ‬ ‫ﺘﻤﺜﻴل ﺍﻷﻗﻠﻴﺎﺕ ﺒﻨﺴﺒﺔ ‪ 0.15‬ﺒﺎﺴﺘﺨﺩﺍﻡ ﻜل ﻤﻥ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻭﺍﺨﺘﺒﺎﺭ ﺘﻭﺯﻴﻊ ﺫﺍﺕ ﺍﻟﺤﺩﻴﻥ‬

‫‪ Binomial Test‬ﻋﻠﻰ ﺒﻴﺎﻨﺎﺕ ﻤﺘﻐﻴﺭ ﺍﻷﻗﻠﻴﺎﺕ ‪ minority‬ﻓﻲ ﻤﻠﻑ ‪employee‬‬

‫‪ ، data‬ﻭﺒﺎﻟﻨﻅﺭ ﺇﻟﻰ ﺘﻠﻙ ﺍﻟﻨﺘﺎﺌﺞ ﻨﺠﺩ ﺃﻨﻨﺎ ﺴﻨﺼل ﺇﻟﻰ ﻨﻔﺱ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﻜل ﻤﻥ‬

‫ﺍﻻﺨﺘﺒﺎﺭﻴﻥ‪ ،‬ﻓﻘﺩ ﺤﺼﻠﻨﺎ ﻋﻠﻰ ﺃﻥ ﻨﺴﺒﺔ ﺍﻟﻌﻴﻨﺔ ﻤﺴﺎﻭﻴﺔ ‪ 0.22‬ﻭﻫﻲ ﺘﺨﺘﻠﻑ ﺍﺨﺘﻼﻓﹰﺎ‬

‫ﻤﻌﻨﻭﻴﹰﺎ ﻋﻥ ‪ ،0.15‬ﺇﺫ ﺘﺒﻴﻥ ﺍﻟﻨﺘﺎﺌﺞ ﺃﻥ ﻗﻴﻤﺔ ‪ p-value‬ﻓﻲ ﺍﻟﺤﺎﻟﺘﻴﻥ ﺘﻘﺘﺭﺏ ﻤﻥ ﺍﻟﺼﻔﺭ‬

‫ﺍﻷﻤﺭ ﺍﻟﺫﻱ ﻴﺩل ﻋﻠﻰ ﺃﻥ ﺍﻻﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻱ ﻓﻲ ﺍﻟﺤﺎﻟﺘﻴﻥ‪.‬‬

‫ﺸﻜل ‪ : 19-6‬ﻜﺸﻑ ﻨﺘﺎﺌﺞ ﺍﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭ ‪ t‬ﻟﻠﻌﻴﻨﺔ ﺍﻟﻭﺍﺤﺩﺓ ‪Listings of the‬‬ ‫‪ Results of One-Samples T Test‬ﻋﻠﻰ ﻤﺘﻐﻴﺭ ﺍﻷﻗﻠﻴﺎﺕ‪.‬‬

‫‪T-Test‬‬

‫‪One-Sample Statistics‬‬ ‫‪Std. Error‬‬ ‫‪Mean‬‬

‫‪Std.‬‬ ‫‪Deviation‬‬

‫‪Mean‬‬

‫‪1.90E-02‬‬

‫‪.41‬‬

‫‪.22‬‬

‫‪N‬‬ ‫‪Minority‬‬ ‫‪Classification‬‬

‫‪474‬‬

‫‪One-Sample Test‬‬ ‫‪Test Value = 0.15‬‬ ‫‪95% Confidence‬‬ ‫‪Interval of the‬‬ ‫‪Difference‬‬ ‫‪Upper‬‬ ‫‪.11‬‬

‫‪Lower‬‬ ‫‪3.2E-02‬‬

‫‪Mean‬‬ ‫‪Difference‬‬

‫‪Sig.‬‬ ‫)‪(2-tailed‬‬

‫‪6.94E-02‬‬

‫‪.000‬‬

‫‪df‬‬ ‫‪473‬‬

‫‪t‬‬ ‫‪3.648‬‬

‫‪Minority‬‬ ‫‪Classification‬‬


‫( ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁﻲ ﻤﺠﺘﻤﻌﻴﻥ‬6)

252

Listings ‫ ﻜﺸﻑ ﻨﺘﺎﺌﺞ ﺍﺴﺘﺨﺩﺍﻡ ﺍﺨﺘﺒﺎﺭ ﺘﻭﺯﻴﻊ ﺫﺍﺕ ﺍﻟﺤﺩﻴﻥ ﻟﻠﻌﻴﻨﺔ ﺍﻟﻭﺍﺤﺩﺓ‬: 20-6 ‫ﺸﻜل‬ .‫ ﻋﻠﻰ ﻤﺘﻐﻴﺭ ﺍﻷﻗﻠﻴﺎﺕ‬of the Results of Binomial Test NPar Tests

Descriptive Statistics

N Minority Classification

Mean

474

Std. Deviation Minimum Maximum

.22

.41

0

1

Binomial Test

Category Minority Group 1 No Classification Group 2 Yes Total a. Based on Z Approximation.

N

Asymp. Sig. Observed Test Prop. Prop. (1-tailed)

370

.78

104

.22

474

1.00

.15

a

.000


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.