Mechanics, Materials Science & Engineering, September 2016
ISSN 2412-5954
The Influence of Cutting Speed on Concordant and Discordant Tangential Milling of MDF Priscila Roel de Deus 1, Manoel Cleber de Sampaio Alves 2, Luciano Rossi Bilesky 1 1 2 DOI 10.13140/RG.2.1.2114.3286
Keywords: roughening, panels, wood, MDF.
ABSTRACT. The tangential milling is consistent when the direction of forward movement is equivalent to the movement of the cutter. But the dissenting milling is when the sense of forward movement is contrary to movement of the cutter. The way the material is removed differentiates and may cause different results in apereza the surface. For Medium Density Fiberboard - MDF material and which is composed of pressed lignocellulosic fibers with resin and presence of heat, concordant and discordant response to milling with diferetntes surfaces presents results. The objective of this study was to analyze the milling results in consistent direction and discordant through the MDF surface analysis with the average roughness parameter (R and discordant direction with six repetitions in each direction. The tests were carried out with four cutting speed in the forward speed of 2 m/min and 1 mm machining depths. The results of surface roughness in the cutting speeds in concordant direction are larger by 50% than in the discordant direction.
Introduction. MDF (Medium Density Fiberboard) is an industrial product manufactured from lignocellulosic fibers and resin through the joint action of heat and pressure. It is a material used in the furniture industry, since it presents homogeneity, dimensional stability and mechanical strength next to medium density solid wood. It also receives various types of coating, maintaining the quality, besides reacting positively to machining processes. The growth in demand for industrial wooden products and their derivatives is clear, due to this fact, the research of technological innovations is necessary. With this technology, the industry is able to offer state-of-art products while increasing the competitiveness in the market. Machining stands out among these innovations, once it evolves notably and there are machines that provide the automation of processes within wood sector, producing higher quality machined workpieces. The MDF machining in Computer Numerical Control (CNC) centers represents technology that combines materials, machines and tools, which results in more accurate and with quality finishes workpieces. The cutting parameters are numerical quantities related to the movement of the tool and workpiece during milling, such activities must be suited to each material both tool and workpiece. From these parameters, it is possible to make use of the milling process as a form of productivity and quality improvement. Understanding the machining forces is primordial for the determination of the cutting conditions, machine and tool lifespan and the workpiece quality [1]. Also cites the importance of machining because it determines the quality of the workpiece and tool wear [2]. The use of a suitable machining technique for the transformation of wood can minimize or even correct problems due to its variability [3]. The literature for the most appropriate cutting parameters in order to optimize processes, reduce costs, and increase utilization of the workpiece, tool and machine. The experiment studied the influence of MMSE Journal. Open Access www.mmse.xyz
65