Mechanics, Materials Science & Engineering, September 2016
ISSN 2412-5954
Nanostructure Formation in Anodic Films Prepared on a Layer Zdenek Tolde1, a
1
1 Department of 35 Prague 2, Czech Republic a
Alloy Ti39Nb PVD
1
-121
zdenek.tolde@fs.cvut.cz DOI 10.13140/RG.2.1.2756.8883
Keywords: TiNb, oxide layer, Ti alloys, nanostructured surface, anodic oxidation.
ABSTRACT. Ti alloys are widely used for construction of bone implants. Some of them can be prepared without any toxic elements containing only Nb, Zr and Ta. At suitable composition they have the beta (BCC) structure with low modulus of elasticity and high corrosion resistance. The oxidation of their surface can increase the biocompatibility and enable the preparation of nanostructured surface morphology. The -alloy Ti39wt.%Nb alloy quenched to water. The substrates of the TiNb layers were prepared from bulk Ti39Nb and commercial cpTi and Ti6Al4V. They were cut using a SiC cutting wheel, ground with abrasive papers and then polished with a suspension of colloidal SiC. The TiNb layers were prepared by cathodic sputtering in a Hauser Flexicoat 850 unit. The thickness of the TiNb layer was measured by Calotest. Surface roughness was measured by a Hommel T1000 Basic roughness tester. The sample surface was observed by a JSM7600F scanning electron microscope. Samples were anodically oxidized in (NH4)2SO4 + 0,5wt%NH4F electrolyte at DC voltages 10, 20 and 30 V using a stabilized voltage source. The morphology of the nanostructured surface of a PVD layer depends particularly on the oxidation voltage and time, but also on the type of substrate. The surface morphology containing nanotubes appeared only on TiNb layer with a TiAlV substrate prepared at certain oxidation voltage and time. The morphology of oxidized layers is heavily influenced by substrate material even though the surface roughness of PVD layer and substrate is identical for all oxidation processes. TiNb alloy have very suitable properties for bioapplications and the study of surface properties contribute to the practical use of this material.
Introduction. Titanium alloys have very suitable properties for bioapplications including high specific strength, high corrosion resistance and due to these properties also excellent biocompatibility. Until now the classical biomedical material stainless steel (e.g. AISI 316L, (E ~ 210 GPa)) and pure Ti and and + Ti alloys (E ~ 110-120 GPa) are usually used for the production of implants [1; 2]. Recently Ti alloys, which have a lower modulus of elasticity, are intensively studied. Since for bone implants is very useful to obtain maximum similarity of the moduli of elasticity of the material f the implant and the bone [3] and, simultaneously, the high corrosion resistance, the aim of these studies is the fabrication of a material with these properties. The moduli of -Ti alloys, especially TiNb alloys ( -TiNb), can be about 60 GPa. Layers of these -alloys with prospective properties can be prepared applying an appropriate method, particularly PVD (Physical Vapour Deposition) [4]. A relatively thin film of oxide(s) of the basic material is present on the surface of titanium and its alloys. In a TiNb alloy these are usually titanium oxide TiO2 and a niobium oxide, usually Nb2O5 [4; 5]. These oxides form a layer, which decreases potential corrosion in a corrosive environment. By anodic oxidation a basic thicker oxide layer is created. The properties of this layer (crystalline MMSE Journal. Open Access www.mmse.xyz
15