Petroleum 23 to net

Page 1

‫‪Vo l u m e 2 3 t h J u n e - A u g u s t 2 0 1 5‬‬

‫‪-‬‬

‫‪Not For Sale - New Vision‬‬

‫‪Petroleum Today‬‬ ‫ننشر‬ ‫أهـم المشـروعات البتروليـة‬ ‫الجـاري تنفيـذها‬ ‫‪w w w. f a c e b o o k . c o m / P e t r o l e u m To d a y M a g a z i n e‬‬

‫الكويت‪:‬‬ ‫اختيار ‪ 12‬شركة لمشروع‬ ‫استيراد الغاز بمنطقة الزور‬

‫بتروبل تسعى لزيادة إنتاج‬ ‫الغاز ‪ %36‬فى ‪2016-2015‬‬

‫‪www.petroleum-today.com‬‬ ‫أول بوابة الكرتونية‬ ‫شاملة لقطاع‬ ‫البرتول‬

‫‪Ó‬‬ ‫‪Ó‬‬ ‫‪Ó‬‬ ‫‪Ó‬‬

‫متابعة اخبارية يومية لقطاع البرتول احمللى والعاملى‬ ‫مقاالت علمية‬ ‫احدث املنتجات وتطبيقتها فى قطاع البرتول‬ ‫حورارت وحتقيقات وتقارير صحفية‬

‫‪Ó‬‬ ‫‪Ó‬‬ ‫‪Ó‬‬ ‫‪Ó‬‬

‫احصائيات ومؤشرات اقتصادية‬ ‫دليل شامل لشركات البرتول‬ ‫تصفح وحتميل اجمللة جمانا‬ ‫معلومات تهمك‬






EGYPT TRADE MARI TI ME S E RV I C E S

CHARTERING

AGENCY

Covering all Egyptian Ports Suez Canal Transit Agent Supervise / Control / Loading / Discharging all sorts of cargo Warehousing / Storage Handling of Project and Heavy Cargoes

www.mydesign.com.eg

Cargo booking Freight Forwarding Ship and Cargo brokering Voyage and Time Chartering

16, Fawzy Fahmy Gendy St.,21131 Raml Station. Alexandria Egypt. Tel: +203 4865320 / 4871895 / 4874667 Fax:+203 4872855 Email: etms@etm-services.net Website: www.etm-services.net


mydesign.com.eg

195 A, 267 St., New Maadi, Cairo, Egypt T: (+202) 2520 2928 F: (+202) 2754 9280 www.advansys.me

An EPC Contractor for oil & gas, Infrastructure and industrial sectors both onshore and offshore multi-disciplinary projects. Projects arm of Intro group that is operational since 1980 in different fields related to the Oil & Gas sector. Advansys Projects as an EPC contractor provide the following services in Egypt and North Africa: Ó Plant construction Ó Pipelines Ó Storage tanks Ó Process equipments Ó Offshore platform rehabilitation Ó Infrastructure Ó Buildings


Petroleum PetroleumToday Today http://www.facebook.com/PetroleumTodayMagazine http://www.facebook.com/PetroleumTodayMagazine

Contents Contents 911 22 18 26 42 30 56 42 58

Mediterranean Sea Gas Dear Readers New Products New Products Vice President of CATEC: We have lots of Well Competitive Advantagesinand plans Rigless Exploration Testing Experience to expand in the Middle East and North Africa! Algeria The Fracture Characterization and Fracture Modeling of Management a Tight Carbonate Reservoir: Environmental Systems The Najmah Sargelu of West Kuwait Part (2) Drilling HPHT Offshore Well Using Managed Pressure Industry At ADrilling Glance Technology throughout a field case study

24 70

Evaluation and Analysis of Oil Shale in QuseirSafaga and Abu-Tartur Western Desert, Egypt Industry At A Glance

2016-2015 ‫ فى‬%36 ‫بتروبل تسعى لزيادة إنتاج الغاز‬ ‫ اتفاقي���ة جدي���دة ف���ى مرحل���ة اإلج���راءات تبل���غ‬20 ‫ مليار دوالر‬10.2 ‫استثماراتها‬ ‫ ملي���ون دوالر‬380 ‫«ب���در الدين للبت���رول تس���تثمر‬ 69 ‫عجي��بة للب�ترول ترف���ع إنت���اجها إل�ى أك��ثر م��ن‬ ‫إلضافة آبار جديدة‬ ‫ألف برمي��ل يومي��ًا‬

22 33

54 ‫ عام���ًا عل���ى اكتش���اف أول حقل غ�����از مص�ري‬45 8 ‫أه�مالمتوسط‬ ‫بالبحر‬ ‫المش�روعات البترولي�ة الج�اري تنفي�ذها‬ 7 ‫لتوفير االحتياجات وتعظيم القيمة المضافة‬ 10 ... ‫البترولية‬ ‫المحلي‬ ‫تعميق‬ ‫للمعداتوتفوز بعقود طاقة‬ ‫رقمًا قياسيًا‬ ‫التصنيعحقق‬ ‫س���يمنس ُت‬ 12 ‫المصري‬ ‫البترول‬ ‫لقطاع‬ ‫شهادة نجاح‬ ‫مصر لتولي���د الطاقة‬ ‫ق���درات‬ ‫تعزيز‬ ‫س���تؤدي إلى‬ ‫ حقول نفطية إلضافة‬3 ‫أرامكو تش���رع في تطوير‬ ‫ ش���ركة لمش���روع استيراد الغاز‬12 ‫ اختيار‬:‫الكويت‬ ‫ ألف برميل يوميًا لطاقتها اإلنتاجية‬500 ‫بمنطقة الزور‬

%50 ‫الكهربائية بنحو‬


‫تقديـر‬ ‫شـكر وو تقديـر‬ ‫شـكر‬ ‫‪ Petroleum Today‬تتقدم بخالص الشكر والتقدير اىل السادة التايل أسمائهم ملا قدموه وما زالو يقدموه‬ ‫من إسهامات قيمة للمجلة منذ خروجها للنور عرب كتابة املقاالت العلمية وطرح الرؤى الفنية اخلاصة بتطوير‬ ‫وحتديث قطاع البرتول املصري كما يسعدنا إستقبال املزيد من املقاالت والرؤى اخلاصة بقطاع البرتول‪.‬‬

‫الرئيس الشرفى للمجلة املهندس‪ /‬أسامة كمال وزير البرتول األسبق‬ ‫املهندس‬

‫الـدكتـــور‬

‫طــاهر عبد الرحـيم‬

‫ماهر مصباح‬

‫رئيس شركة برتوسيلة‬

‫رئيس جامعة قناة السويس‬

‫اجليولوجى‬

‫الـدكتـــور‬

‫مصطفى البحر‬

‫أحمد الصباغ‬

‫الرئيس السابق لشركة عجبية للبرتول‬

‫رئيس معهد بحوث البرتول‬

‫املهندس‬

‫الـدكتـــور‬

‫حممد بيضون‬

‫عطية حممد عطية‬

‫رئيس جملس إدارة السويس للزيت (سوكو)‬

‫رئيس قسم البرتول اجلامعة الربيطانية‬

‫املهندس‬

‫الـدكتـــور‬

‫حممد حامد اجلوهري‬

‫عادل سامل‬

‫الرئيس السابق للشركة العاملية لتصنيع مهمات احلفر‬

‫أستاذ البرتول باجلامعة االمريكية‬

‫املهندس‬

‫الـدكتـــور‬

‫حممد ابراهيم‬

‫جمال القليوبى‬

‫رئيس شركة غازتك‬

‫أستاذ البرتول باجلامعة االمريكية‬

‫املهندس‬

‫الـدكتـــور‬

‫خــالد عبــود‬

‫إسماعيل عياد‬

‫مدير تطوير األعمال العاملية (‪)MCS‬‬

‫معهد بحوث البرتول‬

‫املهندس‬

‫الـدكتـــور‬

‫شريف حسب اهلل‬

‫إسماعيل حمجوب‬

‫مدير العمليات رشيد للبرتول‬

‫الرئيس االسبق لشركة عجيبة للبرتول‬

‫املهندس‬

‫املهندس‬

‫هانــى حــافظ‬

‫أحمد رضوان‬

‫الرئيس السابق ملبيعات شل مصر‬

‫رئيس شركة يوكس للخدمات البرتولية‬

‫اللـــــواء‬

‫املهندس‬

‫مصطفى قدرى‬

‫حممد ندى‬

‫رئيس جملس إدارة شركة مالتى ديلنج‬

‫رئيس جملس إدارة شركة (باسكو)‬

‫املهندس‬

‫الدكتـــور‬

‫أحمـد هاشــم‬

‫عالء الدين القباري‬

‫رئيس جملس إدارة شركة بروسريف‬

‫خبري الطاقة والبيئة‬



Petroleum Today Chairman Mohamed Bendary Vice-Chairman Mohamed Hamdy Executive Editor-in-Chief Magdy Bendary

Dear Readers

P

General Manager Hany Ibrahim Article Scientific Adviser Consultant /Ahmed Shehab

etroleum Today Magazine is happily announcing the starting of its New Electronic Gate, which had been prepared in order to be an effective means of communication

Between us and you and

we have tried to make our new portal comprehensive as much as possible and meet the desire of our readers from all disciplines.

The portal contains News section, News service, Moment by Moment to the

petroleum sector is served in Egypt, Scientific and also group of economic news, and another door to the issues and views includes reports, studies and articles by a group of writers and interviews with many important figures petroleum sector. Our First attention is the scientific side, which was characterized as the first Petroleum Scientific Magazine in Egypt keen to open a large door to the field of scientific contains numerous scientific studies and issues process and also publish the latest products and equipment used in petroleum and specialists areas and economic indicators industry and production of petroleum and exported around the world. Portal publishes many of the ongoing projects and planned inside and outside Egypt as well as containing the gate on the door of information and library of images, video, and our commitment to open the door to communicate with workers in the sector through the door to complaints and jobs available-for-sector workers, In addition it is the First electronic guide collector for Egyptian and Foreign petroleum companies of production and services. The coming period is witnessing very active for Petroleum today Magazine where it is involved in the second half of 2015 in a number of exhibitions and conferences relating to the petroleum and energy sector as a media sponsor and as usual, the magazine involved in the effectiveness of these exhibitions and conferences. Dear Readers wish to God that Petroleum Today Magazine offers an effective and distinctive service contribute to even a small extent in the petroleum sector development. And In the end, we salute you all and wish for Egypt pride and dignity.

Petroleum Today

Scientific Secretary Ali Ibrahim Editing Staff Shaimaa Eid Hany Khaled Mohamed Mousa Marketing Magdy Ahmed Mohamed Moussa Mohamed Attia Financial Management Omnia Alaa Art Director Walid Fathy Distribution Mahmoud Mabrouk Art Direction Mohamed Bendary Production Mohamed Salah Scientific Staff Dr. Attia M. Attia Dr. Adel Salem Dr. Ahmed Z. Nouh Dr. Ismail Aiad Dr. Gamal Gouda Eng. Mahmoud A. Gobran Eng. Mohamed nada Eng. Taher Abd El Rahim Eng. Mohamed Bydoun Eng.Samir Abady Dr. Lubna Abbas Saleh Special thanks to all the Society of Petroleum Engineers (SPE) Mr. Hany Hafez Eng. Mohamed Abdel Sattar Publisher The Egyptian Company For Marketing th 29 Abd El - Aziz Gawesh st. - Lebaono Sq. , Mohandeseen Giza - Egypt Tel: +202 42191195 01006596350 - 01116251134 01000533201 E-mail: petroleum.mag@gmail.com E-mail:info@ petroleum-today.com www.petroleum-today.com Copyright Reserved Design and Print by:

Tel. : +202 33050884 info@mydesign.com.eg www.mydesign.com.eg


Egypt News ENI : Work Program to Pump New Investments in a Number of Concession Areas

In an activation of the memorandum of agreement, which was signed on the sidelines of Sharm ElSheikh Economic Conference in March this year between the Italian company ENI and the Petroleum Authority in order to contribute to the development of oil and gas resources in Egypt and inject new investments and improve some of the contractual terms of the benefit of the parties, Engineer Sherif Ismail, Minister of Petroleum and Mineral Resources witnessed the signing of the agreement

between the parties as a prelude to ending the adjustment of petroleum agreements necessary to activate the work programs of action including modifying the price of gas in some agreements and extending work in some of them. The agreement was signed by Engineer Tarek Al-Mullah Executive Chairman of the Petroleum Authority and Engineer Antonio Villa is head of research and exploration of ENI. The agreement includes the implementation of exploration activities and development areas Belayim in Sinai and Abu Mady in Nile Delta and Ashrafi in Gulf of Suez and North Port Said Mediterranean and Balteem in Nile Delta Marine, Under the deal, ENI and its partners to pump investments of about $2 billion, including 5-year $1 billion in the concession area

in Sinai and Abu Mady for the implementation of the program includes exploration, development and operating over 4 years and $360 million investment for additional activities include drilling of 5 new development in the North Port area and $80 million investments wells in the concession Balteem area to drill development wells and repair wells else, in addition to the $40 million investment in the concession area Ashrafi in Gulf of Suez. The agreement provides for the provision of grants to sign a nonrefundable $10 million in addition to granting refund s to 5 years the signing of about $505 million. The two sides agreed that the use of grants recovered and non-recovered entitlements to deduct ENI’s dues for the Petroleum Authority.

Petroleum: $22.3 Billion Investments are being Implemented in Gas Exploration Sherif Soussa, Undersecretary of the Ministry of Petroleum, said that the projects that are being implemented in the gas and the refining volume of $22.3 billion, spread over $13 billion in gas, and $9.3 billion refining, stressing that Egypt has more sources that contribute to meet the challenges , the ministry is working on the conversion of Suez and Alexandria to global refining centers . He explained during the conference the future of energy investment, the ministry plans to manufacture the necessary materials and equipment for the petroleum project data, and development of mineral wealth under its new law. He pointed to the integrated government plan to arrive at a more balanced energy mix in 10 years, and turn Egypt into a pivotal center for the management and energy production . He stressed that the «Ministry» has signed about 56 research and exploration agreement for the first time in its history up to that number, and expected to show effects within 5 years.

12 Petroleum Today

- June 2015


Signing the final for the first vessel of forCarbonization receiving Complex Contracting forcontract Project Assessment andfloating Rehabilitation in Suez Oil Processing Company Amendment Gas and storing LNG shipments Agreements in Egypt to Engineer Sherif Ismail, Minister of to provide the local market needs Engineer Sherif Ismail, Minister of Petroleum and Mineral Resources, and Tor Petroleum and Mineral Resources of petroleum products, He pointed Wennesland Ambassador of Norway and Consul General in Cairo witnessed the witnessed project for evaluation out thatvessel it is being and signature of contracting the final contract the first floating for theimplemented reception and and rehabilitation of carbonization complex recovery unit gas for the production storage of liquefied natural gas shipments and return it to its gaseous state again of Suez itOiltoProcessing Company. investments 5-year $36 million andinsend the national network of naturalbutane gas, between the Egyptian Natural The minister explained that the project in addition to a new unit for the Gas Holding (EGAS) and Hogg Norwegian suppliers ship for a period of 5 years rehabilitation carbonization of asphalt $50 to provide quantities of of natural gas in excessproduction of 500 million cubicinvestments feet per dayofto complex project is a ongoing projects million this together with a draft of the fill part of the additional requirements for power plants. currently Suez Oil Processing company new oil complex scheme implemented Engineer Khalid Abd Al Badi head of the Egyptian Holding Company for Natural in order to add new Stola modules the production of the essential oilsof and Gasprocessing signed with Mr. Svaenning Primefor Hogg Company in presence and Undersecretary raise the efficiency diesel with of $500 million. Dr.productivity SherifSuse, First of the Ministry forinvestments gas and Tarek Al Mulla, of the existing units, especially as The contract was signed by Engineer Chief Executive of the EGPC the laboratory of the oldest refineries Reda Abd Al-Samad, head of Suez Oil need to pump new investments to take Processing Co. and Engineer Helmy advantage of refining capacity available Andrews Vice President of Worley

$3.8 billion of New Investments in Petrochemical Projects are

encourage foreign partners to develop fields

Parsons US Company and the presence of Tarek Al-Mulla, Executive Chairman of the Petroleum and Mohammad Tahir Executive Vice President of the Commission for Chief Planning Projects Tarek Al-Mulla, Executive and Engineer Imam Al-Saeed Head of EGPC revealed the of ENPPI Company. continuing adjustment purchase

price of the discoverer of some foreign partners gas procedures, Being Implemented especially extracted from deep and non-traditional water in the new geological structures, the actions initiated by the petroleum sector since 2006, and explained that he is currently taking the necessary to modify procedures new gas agreements in most agreements.

Minister of Petroleum received a report from Mohamed Saafan Chairman of the Egyptian Holding Company for Petrochemicals for new projects for the petrochemical industry report pointed out that the petroleum sector go ahead with the implementation of the package of projects with a total investment estimated at $9.4 billion He pointed out that it was finally as opposed to projects that have been modify the new gas prices in completed, Noting there areof gas from Companies in gas some of the conventions of Three Conditions for that the purchase projects underway to speed currently fields operating in the Eastern Mediterranean American Apache Company, implemented to enter into production ENI of Italy, SHELL non HamdyAbd El Aziz, of the Ministry of Petroleum, and operation beforeOfficial the end spokesman of this conventional gas in the new commenting the report$3.8 published year, total on investment billion by andnews agencies around the signing of a geological Company, RIO of memorandum of understanding theand partners in the gas field Tamar and include project production ofbetween ethylene derivatives complex in Alexandria company investments German,ACIDCO and EDISON of Italy. $1.9 Dolfinios Egyptian Company export of natural surplus gas and frombegin production before the end of this year, billion and is the Holding biggest project for for the the petrochemical industry in Egypt Hepolyethylene said that there Israel clients satellites to thetons private sector in Egypt for thousand a period tons of cardtoestimated at aroundbelonging 460 thousand of polyethylene and 400 (PE)are andcurrently 26.000 tons negotiations with British Gas of of 7 years, the memo was merely from being a letter of intent between the two butadiene derivatives. Company in this direction, companies, like the letter of intent were signed by Spanish Union Fenosawith He added that the expansion project MOBCO company for the production of urea and ammonia in Damietta is one of pointing outto produce that about these 1.4 American Nobel company and in its Egypt partners inthe theMiddle Tamar field BG with around the major fertilizer projects and East and andBritish of its investments $1.9 billion procedures to the petroleum partners in tons the field of Levathian. million of urea and 792.000 tons of ammonia per year contribution to the provision by the needs of the domestic sector achieving a Hemarket stressedofthat the position of theand Ministry of Petroleum of operating the companies agricultural fertilizers the project will begin duringtothe third quarteraimed of this at year. balance between production buyThe gasreport from the American Nobel company and its partners working in the gas pointed out that it is currently under preparation to start implementing a range of new projects with total costs and purchase fields in the eastern Mediterranean in the Israeli economic water, which was investment of $5.6 billion, which was put each through the support and development of the Egyptian economyprices in Sharm foreign partners, ethanol in order announced by theinclude consistent is that there from will not anyproduction, agreementsand theofproject El-Sheikhclearly conference project biofuels rice be straw of producing from motivate themof fertilizers to speedand between the parties without the consent of the competent Egyptian authorities, molasses, and project production of propylene and its derivatives, and the project to for the production development ofrawdiscovered including achieve the national interest of Egypt and achieve high value for the aromatics complex, and project production of formaldehyde and added its derivatives production of materials used fields and intensify research the to in thethe Egyptian economy and come up with solutions to outstanding issues of manufacture of adhesives and coatings, and the production of styrene project in Alexandria, which provides and increase domestic commercial arbitration, and so far has not reached the Ministry of Petroleum any raw material for the production of polystyrene project that goes into manufacturing Packing materials, supplies the production rates. formal letters inindustry this regard. automotive and the construction and insulation materials and medical supplies.

Petroleum Today

-

June 2015

13


Arab News Kuwait: Choosing 12 Companies for Gas Import Project in Zour Area

Saudi Arabia exported 1.2 billion barrels of oil worth 247 billion riyals during five months Kingdom exported about 1.2 billion barrels of oil during the first five months of 2015 worth 247 billion riyals, and these price value is a value less than the price during the same period last year by 48 %. The total domestic consumption during the first five months of 2015, nearly 347 million barrels, and 23% of total production in the same period . These figures come at a time when the dollar gains stuck near its highest level in two months against the euro and the yen, and the rising dollar-denominated crude oil makes it less attractive for holders of other currencies in US currency . Al-Riyadh Saudi Newspaper quoted Economic Adviser specialized oil and energy sector, Dr. Fahd bin Goma, the Kingdom exported about 1.2 billion barrels of oil during the first five months of this year 2015 worth 247 billion riyals, indicating that domestic consumption during the same period, a boat 347 million barrels, and 23% of the total Production.

KNPC plans to tender the construction and implementation of free gas to be carried out in Al-Zour refinery worth 800 million dinars import port, the company has opened the door to progress to tender starting from the end of May as of 29 September, an initial bail of 10 million dinars . Sources revealed to «Kuwaiti Policy Newspaper « said that National Petroleum Corporation has chosen 12 companies qualified for the supply and operation and engineering building Import planned for sucking LNG in Zour facilities project, noting that the Declaration select next July 30 to make any inquiries about the tender and there will be a preliminary meeting to eligible Companies in July 27 of this year. The sources said that the National Petroleum 12 Kuwaiti Company as agents for global Companies to be chosen to carry out the project which Companies, the Independent Group, United Energy Services, Venus Engineering, Ajran Contracting, Commercial and Consumer, sandals for General Trading and Contracting, Thuwaini Commercial, Fouad Mohammed Thunayan Al-Ghanim, Al-Omr trade center, Canar General Trading and Contracting, Saipem Inc., and Nouf General Trading and Contracting.

14 Petroleum Today

- June 2015

Libya Expects Oil Production Reaches One Million Barrels per day After August The head of the National Oil Corporation Libya said that the production of Libya›s oil will reach about one million barrels per day within a month of the lifting of the state of force majeure on exports by August. National Oil Corporation declared a state of force majeure on shipments from Ras Lanuf and the nearby port of Sidr in December when clashes broke out in the region between the pro-government Libyan internationally recognized and other forces loyal to the Government of parallel forces. Foundation Head Al-Mabrouk Boussif also said that the current production of Libya between 400 thousand and 500 thousand barrels per day. Abd El-Rahman Al-Tahir, Deputy Prime Minister and head of the delegation to Libya, estimated OPEC›s current production of between 500 and 600 thousand barrels per day. Libya was producing about 1.6 million per day of crude oil before the war supported by NATO and overthrew Muammar Gaddafi regime in 2011 .



International News Russian Energy Minister: Moscow is not Planning to Import Iranian Oil Russian News Agency said that Minister of Energy Alexander Novak saying that Moscow is not planning to import oil from Iran and that Iranian oil will not be used in the implementation of swaps involving Russian companies. However, Novak said that Russian traders may help Iran sell its oil in the world markets and that Iran may spend money returning from oil sales to buy Russian goods. The news agency Interfax news agency quoted Novak as saying to reporters, «We ourselves are a producer. Will not buy their oil». «In the framework of our understanding memorandum concerning the expansion of trade and economic cooperation Iran will sell us oil and the money will be spent on the purchase of goods from Russia. Will help our merchants, if possible, to find a buyer».

Azerbaijan plans to produce 40.7 million tons of oil and 30.2 billion cubic meters of gas in 2015 A senior official in the government energy company SOCAR in Azerbaijan said the country plans to produce 40.7 million tons of oil and 30.2 billion cubic meters of natural gas in 2015 . And it produced in the country last year, 41.9 million tons of oil and 29.6 billion cubic meters of gas. The previous forecast for the current year 40.3 million tons of oil and 29 billion cubic meters of gas . Rahman Gurbanov Vice-President of the production and transportation of oil and gas company in the oil and gas conference in the Caspian Sea for 2015 in the capital Baku SOCAR plans to produce 8.3 million tons of oil in 2015, the same production in 2014 and 6.5 billion cubic meters of gas, down from 7.2 billion meters last year cube . He added that 6.5 million tons of oil production will be refined while SOCAR will export 1.7 million tons and 4.85 billion cubic meters of gas will be consumed locally while being exported 1.2 billion cubic meters .

America Stores 696 million barrels of Oil out of Sight US production of crude rose to its highest level in 43 years despite a decline in the number of drilling rigs more than 50% in the country . And it announced the US Department of Energy high production to 9.566 million barrels per day, the highest since May 1972, to exceed its peak last March at 9.422 million barrels per day . However, analysts say that the drop in oil prices will put pressure on American companies producing oil shale and will cause the lower production, which has not happened yet .

16 Petroleum Today

- June 2015



Corporation News «Dana Gas» Proceeds Drilling The First Horizontal well in the «Nile Delta» Dana Gas announced that it has initiated the process of drilling a well, «Balsam -2» in the framework of the development of «Balm field» in the wilderness area of the Nile Delta concession license . Drilling process «Balsam -2» using the rig No. 48 2000 strongly horse, of the company «Egyptian Drilling», and targeted reservoirs in the «commons» area at a depth of 3,200 meters, where it is the beginning of drilling the initial gap oblique and fully lining , and then horizontal drilling stage for a distance of 700 meters begins. This will be the first horizontal well for Dana Gas, One horizontal wells wild very few have been drilled in the Nile Delta so far. It is expected to take a horizontal well drilled and completed in full, nearly four months . «Balsam- 2», the first well within the plan include the drilling of 30 new wells and activate a large number of existing wells, during the next three years, in accordance with the Convention on the increase was signed by the company with the Egyptian government production, which allows for Dana Gas sale amount of gas resulting from Agreement of the Egyptian government›s share of the production of

condensate world market prices. Such a convention would actively contribute to the payment of arrears of the company with the Egyptian government by the end of 2018, in the event of the failure of the Egyptian government to announce any payments for oil and gas sector.

PETROBEL Seeks to Increase 36% of Gas Production in 2015 - 2016

A senior official in the Belayim petroleum company (PETROBEL), told Reuters that the company, which accounts for 30 percent of gas production in Egypt is working to increase production up to 1.5 billion cubic feet of gas per day in 2015 to 2016 from about 1.1

18 Petroleum Today

- June 2015

billion feet per day offline . It is extracted gas from offshore wells to PETROBEL by pipeline to the treatment plant in the beautiful, where impurities are separated and extracted condensate pumping gas to its own national network company EGAS . Mansour said that the foreign partner, ENI Company returned from inject new investments in the fields development with the return of stability for Egypt and for ENI on the part of financial dues to the government. Mansour said that his company›s investments during the current fiscal year amounted to 1.095 billion dollars, of which about 888 million share PETROBEL and ENI also plans to invest 1.030 billion dollars during the fiscal year 20152016- ENI involving about $864 million. PETROBEL plans to drill six wells during 20152016, including two fields Brian and the rest marine.


Badr Al-Din Petroleum is Investing $380 million to Add New Wells Emad Hamdy Chairman of Badr Al-Din Petroleum Company (BAPTICO) said that his company started working with Royal Dutch Shell will invest $ 380 million during 20152016- to add new wells . Hamdy said in an interview with Reuters at his office in Cairo that the aim of investing in new wells is «to maintain the production of natural attrition in the fields and seek to increase production». The company›s investments amounted during the current fiscal year 20142015- to $510 million . The attrition rate in the production of Badr Al-Din of natural gas, about %15 annually . Hamdy said that his company will work through the new fiscal year on the «drilling exploratory wells and one developmentally and 12 wells and 12 water injection wells (to increase production of oil) and repair about 20 wells». Hamdy, said his company has about 354 wells in the Western Desert that his company was able to increase production of natural gas by about 43 percent in November last year when she and generosity inherent fields that produce about 150 million cubic feet of gas per day .

Badr Al-Din production of natural gas is currently 500 million cubic feet per day of the total 4.5 billion feet per day, the country›s daily production of gas . Hamdy said that his company is currently drilling a horizontal well is the first of its kind in Egypt in the kilometer-long fields and generosity inherent depth of 600 meters to increase production from the fields. He did not say when it will be the completion of the drilling that well .

«SOCO» seeks to increase the production of gas in Desouk to 200 million cubic feet per day. Mohammad Beydoun, Chairman of Suez Oil Company «SOCO» said that his company is working aggressively to expand into the production of natural gas from fields discovered Desouk in 2011 to reach 200 million cubic feet per day in the first quarter of 2015 - 2016 . The company›s production is currently up of gas fields in the wild in Desouk to 130 million cubic feet per day in addition to 40 million cubic feet per day of the company›s fields in Suez . SOCO owns two gas processing in Desouk. Beydoun added «The foreign partner so far spent $270 million will be spent also about $500 million until the end of the entire project development 2030». Beydoun said, who began his production in Desouk before

the end yet to create site-specific administrative buildings that «amending the Convention stipulates that the price of natural gas for the first 100 million cubic feet of gas extracted about $ 2.5 per million BTUs, and that any higher production of 100 million cubic feet a price of $3.5 per million BTUs». RWE Dea German Company spends about $200 million a year to increase the production of SOCO from natural gas and crude oil . Beydoun added that his company drilled so far, 25 wells in Desouk since the beginning of development and dug through the current fiscal year 2014 - 2015 about 9 wells of which 5 exploratory wells and 4 wells development. All the wells and found the gas thankfully .. expect drilling 10 new wells in the past two Arrivals in Desouk .

BP says it has increased its share in a gas project in Egypt to more than 80 percent British BP increased its share in the West Delta project in Egypt of $12 billion to more than 80 percent after buying a stake of DEA Company’s share group of energy-owned Russian billionaire Mikhail Fridman . DEA Germany-based said it had sold almost half its stake in the field, now owns 17.25 percent stake in the concession agreement for the development of five trillion cubic feet of gas resources and 55 million barrels of condensate . It is planned that the West Delta project starts production in 2017 and produces 1.2 billion cubic feet per day, or about a quarter of the current production of gas from Egypt . DEA also owns a minority stake in the privileged North Alexandria deep in the western Mediterranean Sea with BP and water .

Petroleum Today

-

June 2015

19


New Products Friction Reducer

Fig. 1—TAM International’s LongCAP casing-annulus packer.

Fig. 1—Kemira’s new KemFlow A-4375 is designed for use in both fresh- and brine systems.

Building on the KemFlow A-4251 friction reducer for slickwater friction reduction (FR) in brine and the KemFlow A-4370 for FR in fresh water, Kemira has produced the KemFlow A-4375 (Fig. 1). Providing optimal performance across both fresh and brine-water systems, KemFlow A-4375 eliminates the inventory issues associated with storing multiple

20 Petroleum Today

- June 2015

products in the warehouse and on location to cover the wide range of potential water sources that supply a fracturing job. The KemFlow A-4375 has applications across seasons, remaining pumpable at temperatures as low as –30°F and inverting at water temperatures of 40°F. The product remains stable at temperatures to 115°F with continued inversion at the

surface and performance downhole. The product is compatible with biocides such as Kemira’s AMA 324 microbiocide for bacteria control and long-term preservation of well production, as well as a range of KemGuard scale and corrosion inhibitors for effective asset protection. Ó For additional information, visit www.kemira.com.


Volumetric-Measurement System Service Casing- and Cement-Evaluation Halliburton introduced the Core-Vault system, a solution Weatherford SecureView casing and properties to compensate properly for thatcement provides a more-accurate volumetric picture of in the well. The CalView evaluation is a combination of fluid changes the services amountthat of assess oil and gas trapped in unconventional and monitor casing multisensor-caliper tool uses an reservoir rocks. The system to contain and cement condition on aallows singleoperators trip array of 40 or 60 precision-calibrated and(Fig. bring2).to SecureView surface the service reservoirhelps fluids independent within rock mechanical arms to samples, allowing for measurement of the volumethe of casing inner diameter minimize nonproductive time and measure hydrocarbons in place (Fig. 2). Traditional coring tools enhances data quality by delivering a with high accuracy and resolution. The allowed 50 to 70%and of independent the hydrocarbons escape from complementary set of toFluxView ¬magnetic-flux leakage tool the measurements rock as the that samples depressurized on way facilitate log-quality usestheir a powerful magnet to produce to the surface. Building a model of the volume of oil levels of magnetic flux control, confidence in data, efficiency, concentrated andand gasa incomprehensive a reservoir therefore required to wall, thus identifying analysis by the inoperators the casing estimate this fluid rather ultrasonic than measure the fluids interpreter. The loss Ultraview insideand outside-casing anomalies. Fig. 2— The components of Weatherford’s in radial-scanner place, and thetoolestimates were often inaccurate. uses a rotating The BondView cement-bond tool uses SecureView casing- and cement-evaluation By ultrasonic preservingtransmitter/receiver 100% of the fluids within the core system. sensor a shorter sonic transmitter/receiver sample, the the CoreVault system an improved thus allowing better to scan borehole and allows calculatefor arrangement, understanding of potential within the to provide accurate cement and cement-to-formation bond. casing and cement propertiesproduction and an centralization reservoir. The CoreVault system, when combined independent, newly patented, air- variable with density-log data used in the Ó For additional information, visit a rotary sidewall-coring allowsmud up to 10 cores to be and analysis of casing-towww.weatherford.com. backed chamber that tool, measures interpretation sealed at reservoir conditions in a single wireline run, saving time when compared with full-hole coring and allowing more targeted Sucker-Rod Tongsamples to be taken. Fig (2) Halliburton’s CoreVault volumetric-measurement system preserves Ó For additional information, visit www.halliburton.com 100% of the fluids within the core sample. however, has been designed not to spin

Rigless Technology

past the shoulder; once the shoulder

has been reached, the tong seamlessly Offshore platforms require systems that can safely and efficiently conduct critical well abandonment and latetransitions to move a predefined stage intervention operations to revitalize wells and distance (circumferential displacement) extend productivity. Weather¬ford recently introduced that is operator-¬adjustable (Fig. 3). the Rig-Free 351000/ Light-Duty Pulling and Jacking Unit, a cost-effective alternative to rigs and snubbing units This tong will make up single or double (Fig. 3). This unit meets American Petroleum Institute 4F connections and is fully mechanical, specifications and is ideal for conductor removal. The meaning there are no electronics on unit uses a range of technologies and resources to address operational challenges. With its small footprint, light the tong. This leads to quicker and weight, and modular design, the unit is easy to transport easier field maintenance and repairs. and is suited for platforms with space and structural limits, Optional electronic monitoring and data and for downgraded, damaged, or nonexistent derricks. The unit has a hydraulically powered telescoping mast acquisition can be installed but are not that sits directly above the well center and an integrated critical to the operation of the tong. The jacking system and power swivel stand that require no CD tong replaces existing floor suckeradditional rig-up time. With a self-clamping system, the unit can skid from well to well, providing flexibility to rod tongs and works with any serviceFig. 3—The CD Rod Tong from Automated Rig Technologies. accommodate changes in well conditions. A blowout or workover-rig hydraulic system. preventer placed under unit, making it fully They were mechanically Current(BOP) rod is tongs have notthebeen the shoulder. Ó For additional information, visit compliant skidding designedwith to regulatory stop at requirements. the shoulder, When engineered to deliver speed and an between wells,the theshoulder, BOP can or be disconnected and moved torque. The Automated www.automatedrig.com/cd-rodrecognize move to approximate with the unit for mobilization efficiency and cost savings. (3) Weatherford’s Rig-Free Light-Duty Pulling and Jacking Unit pulls any predetermined position beyond Rig Technologies FigCD Rod Tong, tong.html. Ó For additional information, visit www.weatherford.com 35,000 lbm and jacks 1,000,000 lbm.

Petroleum Today

-

June 2015

21


Gap and Weighing System PowerPad is the new ultrathin system from ThinJack for holding open gaps and weighing heavy objects (Fig. 4). PowerPad is based on patented ThinJack technology that converts hydraulic pressure into significant forces that expand millimeterscale thin steel membranes. These are inserted between flange sections requiring separation or in the cutting gap of concrete assets when used for gap holding, lifting, or weighing. The PowerPad variant of the ThinJack system is a safe method of holding open the cut gap that has been made

in concrete structures during the cutting process. This protects the diamond-wire belts from becoming broken or trapped by the weight of the cut concrete pressing down on the wire. With the addition of specialist software, the PowerPad also can be used as an accurate weighing device, particularly useful in weighing structures of thousands of tonnes during decommissioning. ThinJack also offers a specialist consultancy service proactively identifying potential flange problems and providing solutions.

Fig. 4—ThinJack’s PowerPad ultrathin system, designed for holding open gaps and weighing heavy objects.

Ó For additional information, visit www. thinjack.co.uk.

Memory-Mode Logging Tool National Oilwell Varco (NOV) released the BlackBox Eclipse memory-mode logging tool, an extension of the BlackBox memorymode product line. NOV ¬drilling-optimization tools, including the BlackBox Eclipse tool, can be deployed in multiple locations along the bottomhole assembly and string and in the drill bit. Because of its compact and flexible size, the BlackBox Eclipse tool can be deployed in string or near-bit carrier subs ranging from 4.75 to 9.5 in. in outer diameter. This allows for a thorough analysis of downhole behaviors through multiple placement locations to determine stick/slip, torque and drag, or damaging off-bottom practices. These indicators allow NOV’s optimization engineers to provide mitigation techniques to damaging drilling practices while drilling, leading to lower nonproductive time and reduced well-delivery costs. The combination of these factors allows for a cost-effective method of improving drilling efficiency. The BlackBox Eclipse tool is especially effective in batch-drilling applications or pads with multiple adjacent wells. This allows NOV’s optimization services’ “drilling roadmap” to be applied to multiple wells effectively, maximizing value and increasing performance. This tool has seen early successes in the south Texas Eagle Ford formation and the Oklahoma Woodford formation, where it was deployed with a BlackBox slimhole tool. Ó For additional information, visit www.nov.com.

Nanolaminated Coating

Fig.5—Modumetal’s NanoGalv zinc-based nanolaminated coating has broad applications in structural parts, coatings, and thermal barriers.

Modumetal introduced its zinc-based alloy, NanoGalv, part of its new class of nanolaminated materials with broad application in structural parts, coatings and claddings, thermal barriers, and armor. NanoGalv outperforms

22 Petroleum Today

- June 2015

conventional galvanization processes by more than seven times, reducing the need for replacement parts over the life of metal components and associated risk of wear and failure (Fig. 5). “Nanolaminated materials” refers to a class of materials comprising nanometer-scale particles deposited in layers that vary in composition, phase, microstructure, or a combination thereof. To create nanolaminated coatings, zinc-based metallic alloys are applied electrochemically, at room temperature, to steel substrates to enhance corrosion resistance and base-material-mechanical properties. The unique metal attributes achieved by nanolamination not only impart improved performance characteristics but also overcome intrinsic-material-property tradeoffs

(i.e., hardness and toughness, creep and fatigue, corrosion, and wear) that are typically encountered in homogeneous materials. By balancing the tradeoffs in conventional material performance, nanolaminated materials have the potential for broad application as surface coatings, claddings, bulk materials, or as near-net-shape parts. The deposition process can be controlled to produce nanoscale layers with unique interfacial properties resulting in enhanced corrosion-resistance, elastic-modulus, strength, hardness, and fracture¬toughness combinations uniquely different from conventional material processing. Ó For additional information, visit www. modumetal.com.


‫‪International Drilling Material‬‬ ‫‪Manufacturing Co. S.A.E‬‬

‫الشركــــة العامليــة لتصنيــع مهمــــات احلفــــــر‬

‫واصلت الشركة العاملية لتصنيع مهمات احلفر ‪ IDM‬جناحها للعام اخلامس على التوايل منذ بدء التشغيل واإلنتاج فى حتقيق أهداف مباشرة وغري‬ ‫مباشرة أولها قدرتها على تقدمي أسعارمالئمة للمنتجات التى تنتجها الشركة ‪ ،‬وساهمت الشركة منذ تشغيلها فىإنخفاض أسعار التوريدات‬ ‫ملواسري تبطني أبار البرتول مما يعود بالفعل على التكلفة التى تتحملها هيئة البرتول فى حفر أبار البرتول غري توافر املواسري فى التوقيتات‬ ‫املناسبة والتى حتقق خطط احلفر والتنمية واالستكشاف لإلبار وبذلك تكون الشركة قد ساهمت فى قيامها بالدور اخملطط لها‬ ‫ملنظومة التصنيع احمللى لقطاع البرتول والدور االسرتاتيجي لهذه الصناعة ومما ادى اىل توفري املنتجات بشكل دائم ومنتظمفى‬ ‫السوق‪.‬‬ ‫واستمرارنا لنجاح الشركة العاملية لتصنيع مهمات احلفر فقد فازت باملناقصة السنوية لشركة قارون للبرتول لتوريد ال‬ ‫‪ Casing‬عن العام املايل ‪ 2014‬ومناقصة شركة عجيبة وشركة برت وسنانوشركة الوسطاين ليصل حجم تعاقدات الشركة‬ ‫منذ إنشاءها اىل ‪ 143,2‬مليون دوالر وليصل حجم إنتاجها خالل هذا العام اىل ‪ 47,8‬مليون دوالر حيث تستهدف تنفيذ‬ ‫إنتاج ‪ 40‬ألف طن لعام ‪ 2014‬لشركات برتوبل وبدر الدين و عجيبة و قارون وبرج العرب و برتوسنان ‪.‬‬ ‫وإن الشركة متضى قدما يف خططتها للتوسعات بشأن املرحلة الثانية املقرر االنتهاءمنها خالل‬ ‫النصف الثاين من عام ‪ 2015‬بتكلفة استثمارية تقدر‪ 36‬مليون دوالر و إن هذه املرحلة مهمة و متثل‬ ‫استكماال لهدفا اسرتاتيجيا للشركة ولقطاع البرتول حيث سيكون املنتج املصنع النهائى‬ ‫للشركة مصري املنشأ مما يعزز من املنافسة فى السوق‪.‬‬

‫‪g‬‬

‫‪.e‬‬

‫‪om‬‬

‫‪.c‬‬

‫‪m‬‬

‫‪.id‬‬

‫‪w‬‬

‫‪w‬‬

‫‪w‬‬

‫‪Head Office & Plant: Suez, Sokhna‬‬ ‫‪Road, Kilo 41 - Industrial Area‬‬ ‫‪Phone: 062 3710206 Fax: 062 3710207‬‬ ‫‪Cairo Office: 6/10 El-Sefarat District In Front‬‬ ‫‪of Free Zone, Nasr City, Cairo, Egypt‬‬ ‫‪Phone: +202 23524941 Fax: +202 23524934‬‬

‫‪mydesign.com.eg‬‬




Evaluation and Analysis of Oil Shale in Quseir-Safaga and Abu-Tartur Western Desert, Egypt By

Dr. Ahmed Nooh Faculty of Science and Engineering, The American University in Cairo, Egypt. E-mail: ahmednoah@aucegypt.edu

A

bstract

Seeking ways to diminish Egypt’s dependency on foreign oil imports, we

had to look for the obvious resources to exploit. Oil shale is one of Egypt’s resources that are left abandoned and

26 Petroleum Today

- June 2015

not used. This project is aiming at introducing both experimental analysis for oil shale in Egypt and the best production technique for it. This study is about experimentally analyzing different samples of potential oil shale fields in Egypt. Samples that are analyzed in this project are from two locations in Egypt: Quseir-Safaga and

Abu-Tartur Western Desert, and they are compared to one of the best oil shale fields in the world, which is from Green River Formation Colorado. The experiments were done using AUC lab retort to experimentally determine the critical temperature that will lead to the maximum production using sudden and gradual change in temperatures,


which turned outenvironments, to be sudden or change well in fresh water in at 500˚C. Thereafter, the degree mixed salinity environment if the mixed of API gravity was calculated salinity profile is unknown. In-depthfor each run.ofThen the oil samples were knowledge the electrical properties determined for impurities and liquid such as the saturation exponent of chromatography results in the (nEgyptian ) is drainage (ndr) and imbibition imb a key requirement for the swept Part zonetwo Petroleum Research Institute. saturation monitoring resistivity tool of the study’s planifhas been included is used. to determine the ultimate ways of producing ecologically After the wellefficiently, is completed, cased holeand economically. logs are run in a regular time frame. The target well to be monitored can be Keywords completed either cased hole or open Using the Method, “Time-Lapse” Oil hole. Shale, Retort Critical approach, cased hole logs are compared Temperature, Oil Composition to OH logs to monitor the change in 1. formation fluid saturation and the Introduction movement of fluid contacts. The Oil shale is diverse fine-grained selection of the saturation monitoring sedimentary rock, which contains tools, such as the pulsed neutron tools in refractory organic material that can this study, depends on multiple factors, be refined into substantial amounts but will be limited to four main factors of oil and combustible gas. Soluble here: porosity, formation salinity, bitumen fraction constitutes about cement quality, and the near wellbore 20% of this organic material, whereas environment (borehole fluid, washthe remainder exists as an insoluble out, and borehole fluid invasion to near kerogen. Oil shale can be mined and wellbore formation, so that the near processed to generate oil similar to oil wellbore saturation is not representative pumped from conventional oil wells; of the reservoir saturation). however, extracting oil from oil shale is more complex than conventional Description Applications oil recovery and and currently it is more of expensive. PN Logging The oil substances in oil are solidneutron and cannot Theshalepulsed hasbe pumped two directly out of the ground. oil shale measurements: spectrum ofThe gamma must first be andasthen heated to rays (gamma raymined signals a function high temperature (a process called of aenergy) emitted through inelastic retorting); the resultant liquid must interactions and capture of the gamma then be separated andascollected. This rays (gamma ray signals a function heating thebyshale experience of process time) ofproduced adsorption called pyrolysis, shale is of is thermal neutron.where PN oilsource heated at high temperatures till it gets continuously emits a burst of high separated. Upon the vapor, energy neutrons that cooling interact with the the liquid oil is from nuclei in the shale borehole andseparated formation. the combustible oil. An alternative Within the first 10 microseconds of currently process thebut neutron burst, experimental inelastic collisions referredthe to ashigh in situspeed retorting involves between neutrons the oil while it isthestill andheating the nuclei takeshale place where underground, and then neutrons will slow downpumping by thethe resultingAsliquid to the surface. Since collisions. a result of the inelastic 2008, Egypt’s Oil consumption collisions, a spectrum of inelastichas outperformed production. As ofthe gamma rays is emitted consisting

consumption Egypt’s distinctive energies.increased, These energies imports both crude oil and refined are characteristic of the abundance products havefound increased of petroleum the following elements in up the output decrease themaking formation: C, O, Si, Ca, Fe, S,and demand. andincreasing Mg (shown in Fig.Oil1).Imports Carbonare estimated, from the central Bank of and oxygen relative concentrations data of are the calculated fiscal year by 2009 in Egypt’s the formation /2010, to 177,200 bbl/day (2009 est.) determining the contribution of each at a peak 9.8 Billion US dollars element to the total spectrum. This on 2009Neutron and 5 billion dollars on 2010. Pulsed Spectroscopy (PNS) 1 demonstrates the production of Figure inelastic neutron scattering is of oilasvsthe the“C/O consumption known Mode.” of it done by themultiple EIA (Energy Information Analysis) After collisions, the neutrons by Sabagh, S.M.the et al. (2012) [1]. travel further into formation with Egypt is not energy independent, lower energy until they get capturedand has to import oil toAs meet its demands by itformation nuclei. a result of because the of itsthermal limited neutrons, conventional capturing the oil resources. the other hand, nuclei emit On gamma rays thatin Egypt, get Oil Shale is rich and yet it has not detected within 1000 microseconds used. Putting consideration of been the neutron burst.into The rate of the rising prices of oil which gamma ray decay with time is used isto an economic oil cross shale will be the determine theburden, capture section. future for Egypt to pave the way This Pulsed Neutron Capture (PNC) ofinto its energy independency. thermal neutrons is known as “Sigma

Mode.” Chlorine is a major element Objectives of Subject that2.slows the thermal neutron down to be In addition, a capture Thecaptured. main objective of subject is to spectrum can also be produced and make use of the abundant Oil Shale used mainly in for Egypt that reservoir representsmineralogy a promising characterization. Si, Ca,that S, Fe, unconventionalH,oilCl, resource could Gdshift and Tithe are Egyptian the major elements that oil production contribute the capture. upward toand therefore reducing the of Egypt on elements foreign oil. Thedependency standard spectral of these It has been worked on this objective is shown in Fig. 2. thesespectrum steps: is analyzed Thethrough inelastic 1) Characterization of Oil Shale for their elemental concentrations in samples obtained from El-Nakheil the total volume that contributed in phosphate mine in Quseir area from emitting the characteristic gamma theTherefore, point of optimum temperature rays. the inelastic spectrumand time needed for retorting, can be used to determine carbon and 2) Comparing obtained oxygen amount, the i.e., results hydrocarbon from the study of Quseir Oil shale by and water irrespective of formation others obtained from Colorado water salinity. The rate of captureOil shale, however, is mainly used spectrum, Analyzing the oilconcentration, obtained from to 3) determine chlorine retorting in terms of API gravity which describes the saturation of saltand impurities content in order to know oil water and, therefore, can differentiate grade and itshydrocarbon. price, and between salt therefore water and 4) Presenting economic In this paper, we willan neither discuss study the of nor theinterpretation various techniques design methodology of producing fromanoil shale and of the PN tools.oil Rather, assessment

choosing and the presented best one.to evaluate is developed theThe reservoir using chemicalsaturation compositionbyof the dead pulsed neutron methodologies [C/O organisms is a mixture of carbohydrates, andfats, Sigma] throughout the and life lignin, of oils waxes, proteins thewhich subject field that is undergoing is present in the case of higher waterflooding. order plants and is responsible for the mechanical structure and rigidity of these plants. Those chemicals Pulsed Neutron Merits are andthen transformed to a new family of solid Limitations substances called Kerogen which are The pulsed neutron tools can be run in characterized by their brown or black both C/O mode with a roughly 6-inch color and their insolubility in ordinary depth of investigation (DOI), and Sigma organic solvents because of its huge mode with a deeper reading of about molecular weight that is more than 12 inches into the formation. Readings 1000 Daltons by Demirbas (2009) [2]. of pulsed neutron logs are very shallow Kerogen is considered the half way compared to resistivity logs that read in the petroleum production process. about 10 times deeper than pulsed As Kerogen is buried deeper inside neutron. Resistivity readings may be the earth, it becomes exposed to high more descriptive of the virgin zone of temperature and pressure causing the formation. The readings are very “cooking” to occur. The slow cooking much dependent on water salinity, of Kerogen for millions of years causes especially if water salinity is less its molecules to decompose into small than about 100 ppk. Sigma, likewise, chain hydrocarbons called crude oil is sensitive to water salinity and may and natural gas by Darwish (1984) [3]. not work in fresh water environment Petroleum fluids consist mainly of (<50 ppk). Problems also arise in carbon, hydrogen and small amounts sigma when used in low porosity rocks of oxygen, nitrogen and sulfur. The (<10%) where measurements start to fractions of these components vary lose accuracy. greatly from one deposit to another. C/O yieldcharacteristics carbon and oxygen Physical of crudes also concentrations in formation, therefore, vary according to their composition. quantifying for hydrocarbon reserves They range from black, high viscous independent of formation salinity. fluid to light colored, low viscous Problems arise in C/O when used in fluids. low porosity rocks (<15%) where The density of oil is less than that it loses accuracy. The shallower of water so it›s found above the measurement of C/O is also a major underground water in any conventional limitation of the technique where reservoir by Al-Wakeel, and El-Adly borehole and near wellbore conditions (2005) [4]. have larger effects on log quality and shale represents a largeprecision and mostly canOil decrease the statistical Like anduntapped accuracyhydrocarbon of the data.resource. Even for tar sand and coal, oil shale is considered the ideal borehole scenario, the unconventional oil cannot interpretation of thebecause measurement can be directly fromet the stillproduced be difficult (Dodman al., resources 2010). by sinking a well and pumping. Oil has to be produced thermally from the Field Background Information shale. The term “oil shale” does not definite geological definition Thehave studya in this paper was conducted specificdeveloped chemical formula, in nor twoa newly carbonatebut is a general term used finereservoirs (Reservoirs A for andusually B, with

Petroleum Today

-

June 2015

27


grained sedimentary rocks containing organic matter that yield significant amounts of oil upon pyrolysis. This organic material contained in the shale is called “kerogen”, a solid material intimately bound within the mineral matrix by Abdelrahman, and Aly (1994) [5]. Oil shale was deposited in a wide variety of environments, including fresh water to saline ponds and lakes, epicontinental marine basins, and related sub-tidal shelves as well as shallow ponds or lakes associated with coal forming. This gives an explanation to the wide range of organic and mineral compositions by Energy Information Administration (EIA) (2012) [6]. Raw oil shale has high compressive strengths both perpendicular and parallel to the bedding plane. After heating, the inorganic matrices of oil shale retain high compressive strength in both perpendicular and parallel planes. This indicates that a high degree of inorganic cementation exists between the mineral particles comprising each lamina and between adjacent laminae (a thin layer, plate, or scale of sedimentary rock). With an increase of organic matter of oil shale, the compressive strength of the respective organic-free mineral matrices decreases, and it becomes very low in that rich oil shale by Abdelrahman, and Aly (1994) [5]. Measurements of thermal conductivity of oil shale show that blocks of oil shale are anisotropic about the bedding plane and thermal conductivity as a function of temperature, oil shale assay and direction of heat flow, parallel to the bedding plane (parallel to the earth’s surface for a flat oil shale bed), was slightly higher than the thermal conductivity perpendicular to the bedding plane. As layers of sedimentary material were deposited to form the oil shale bed over geological time, the resulting strata have a higher

28 Petroleum Today

- June 2015

resistance to heat flow perpendicular to the strata than parallel to the strata by Demirbas (2009) [2]. The thermal conductivity of oil shale is, in general, only weakly dependent on the temperature. However, extreme caution needs to be exercised in the interpretation of results at temperatures close to the decomposition temperature of the shale organic matter. This is due to the fact that the kerogen decomposition reaction (pyrolysis reaction) is endothermic in nature, and as such the temperature transients can be confound between the true rate of heat conduction and the rate of heat reaction by Abdelrahman, and Khaled (1988) [7]. In the process of the production of shale oil from oil shale, both the chemical and physical properties of oil shale play important roles. The low porosity, low permeability, and high mechanical strength of the oil shale rock matrix make the extraction process less efficient by making the mass transport of reactants and products much harder as well as reduce the process efficiency by Denning (2012) [8]. These properties are strongly affected by temperature as the increase in the temperature results in loss of strength and decrease in Young’s modulus. The permeability of raw oil shale is essentially zero because the pores are filled with a non-displaceable organic material. In general, oil shale constitutes a highly impervious system. Thus, one of the major challenges for any in situ retorting project is in the creation of a suitable degree of permeability in the formation by Sykes, and Snowdon (2002)[9]. Therefore, the oil shale porosity increases as the pyrolysis reaction proceeds. The increase in porosity constitutes essentially the combined spaces represented by the loss of the organic matter and the decomposition of the mineral carbonates. Cracking of particles also occurs, due to the

devolatilization (the removal of volatile material) of organic matter and the decomposition of organic matter that increase the internal vapor pressure of large non-permeable pores to an extent that the mechanical strength of the particle can no longer contain. Liberation of carbon dioxide from mineral carbonate decomposition also contributes to the pressure buildup in the oil shale pores. Table 1 shows both the porosity and the permeability of oil shale before and after the treatment processes by Chillingarian and Yen (1978) [10]. 2.1. Oil Shale Grade The grade of oil shale has been determined by different methods. For example, the heating value is useful for determining the quality of an oil shale that is burned directly in a power plant to produce electricity. The heating value of the oil shale is a useful and a fundamental property of the rock, yet it cannot provide information on the amounts of shale oil or combustible gas that would be yielded by retorting (Altun, et al. (2006) [11]. The grade of the oil shale can be determined by measuring the yield of distillable oil produced from a shale sample in a laboratory retort. This is the most common type used in evaluating the oil shale source. The method used is called “Modified Fischer assay”. 2.1.2. Modified Fischer Assay It consists of heating a 100-g sample crushed to (2.38 mm) screen in a small aluminum retort at 500˚C (930˚F) at a rate of 12˚C (21.6˚F) per minute and held at that temperature for 40 minutes. The distilled vapors of oil, gas and water are passed through a condenser cooled with ice water and then into graduated centrifuge tube. The oil and water are separated by centrifuging. The quantities reported are the weight percentages of shale oil (and its specific gravity), water,



shale residue, and (by difference) gas plus losses. The Fischer assay method doesn’t measure the total energy content of an oil shale sample because the gases, which include methane, ethane, propane, butane, hydrogen, hydrogen sulfide, and carbon dioxide, can have significant energy content, but are not individually specified. Other retorting methods, such as the Tosco II process, are known to yield in excess of 100% of that reported by Fischer assay. In fact, some methods of retorting can increase oil yields of some oil shale by as much three to four times that obtained by the Fischer assay method. 2.1.3. The Rock-Eval Technology Test Behar, et al. (2001) [12], another method for characterizing the organic richness of oil shale is a pyrolysis test developed by the InstitutFrancais du Petrole for analyzing source rocks. The Rock-Eval technology test heats (50 - 100 mg) sample through several temperature stages to determine the amounts of hydrocarbon and carbon dioxide generated by Vandenbroucke, and Largeau (2007) [13]. The results can be interpreted for kerogen type and potential for oil and gas generation. This method is faster than Fischer assay and requires less sample material. During retorting, kerogen decomposes into the three organic fractions: Shale Oil, Gas and Carbonaceous Residue. Oil shale decomposition begins at relatively low retort temperatures (300˚C or 572˚F) but proceeds more rapidly and more completely at higher temperatures. The highest rate of kerogen decomposition occurs at retort temperatures of (480˚C - 520˚C) or (895˚F - 970˚F). In general, the shale oil yield decreases, the gas yield increases, and the aromaticity of the oil increases with increasing decomposition temperature. However,

30 Petroleum Today

- June 2015

there is an upper limit on optimal retorting temperature, as the mineral content of the shale may decompose if the temperature is too high. The processes for producing oil from oil shale involve heating (retorting) the shale to convert the organic kerogen to a raw shale oil. The amount and composition of generated hydrocarbons depend on the heating conditions, the rate of temperature increase, the duration of exposure to heat and the composition of gases present as the kerogen breaks down. In United States of America, It is estimated to have nearly 74% of the world’s potentially recoverable oil shale. Green river formation is the richest most easily recoverable basin in the world. It is estimated to have 301,556 million tons of oil shale reserves which can count for 2085.3 billion barrels. Oil shale in Egypt was discovered during the 1940’s as a result of selfigniting while phosphate mining was taking place. The phosphate beds in question lie adjacent to the Red Sea in the Safaga, Quseir area of the Eastern Desert. Oil shale resources mainly found in Egypt in Quseir-Safaga region(alongred sea coast), the IDFU region (along the Nile valley) and Kharga, Dakhla region in the western desert (Abu Tartur), Abu-zinema in the west Sinai and the area of Al-Maghara coal mine north Sinai. In Quseir-Safaga area (red sea) has a reserve of 5 billion barrel of oil in place, in the area of Abu Tartour 1.2 billion barrel of oil in place, in Gabel Duwi has 4.8 billion barrel of oil in place, Abu Sheyala has 1 billion barrel oil in place, West Youns area has 2 billion barrel oil in place, Zog El Behar has 2.5 billion barrel oil in place therefore total discovered reserve in Egypt is nearly 16.5 billion barrel of shale oil in place (see Figure 2). Oil shale Production Techniques included that two production

techniques of oil shale; either through mining; bringing the rock up at the surface where it is processed or Insitu, where the heat is sent or placed down at the shale layers and the shale is processed with no need for mining. The whole process of mining and retorting consumes large volumes of water, creates large piles of used shale and extracts only the richest portion of oil shale formation as approximately one third of the oil shale is left behindin pillars or unmined areas. Each barrel of oil shale, according to “Dirty Fuel: Oil Shale” article in the Sierra Club, produces by conventional mining consumes between 2.1 and 5.2 barrels of water; which is already scarce in the region. Also, mining contributes to global warming immensely; the United States has conducted a research that says if it is were to produce 3 million barrels per day of oil shale from mining, that will contribute in producing 350 million tons of carbon dioxide annually, which is 5% of the U.S. global warming current pollution (Dirty Fuel: Oil Shale). Impacts on wildlife from oil shale mining projects could occur in a number of ways, including habitat loss, alteration, or fragmentation; disturbance and displacement; mortality; and increase in human access. 2.2. In-Situ Production Techniques In-situ production aims at increasing the recoverability of oil shale and eliminating the use of huge amount of water. A lot of techniques were introduced before and they were developed later to come up with better techniques in terms of recoverability and less environmental impacts. Two of the used in-situ techniques in the past were the true in-situ and modified in-situ that involved igniting the formation; they are as follows: TRUE IN-SITU: This involves mining the shale. The target deposit is fractured, air is injected, the deposit


is ignited to heat the formation, and resulting shale oil is moved through the natural or man-made fractures to production wells that transport it to the surface. In true in-situ processes, difficulties in controlling the flame front and the flow of pyrolysis oil (also known as bio-crude or bio-oil) which can limit the ultimate oil recovery, that is pyrolytic oil (or bio-oil) is a normally contains too high levels of oxygen to be a hydrocarbon and leaving portions of the deposit unheated and portions of the pyrolyze oil unrecovered. MODIFIED IN-SITU: This attempt to improve performance by exposing more of the target deposit to the heat source and by improving the flow of gases and liquid fluids through the rock formation, and increasing the volumes and quality of the oil produced. Modified in-situ involves mining beneath the target oil shale deposit prior to heating. It also requires drilling and fracturing the target deposit above the mined area to create void space. This voidspace is needed to allow heated air, produced gases, and pyrolyze shale oil to flow towards production wells. The shale is heated by igniting the top of the target deposit. Condensed shale oil that is pyrolyze ahead of the flame is recovered from beneath the heated zone and pumped to the surface.

3. Experimental Work of This Study The experimental work in this study was divided into four sections. The first section deals with the thermal decomposition of the organic matter inside the Oil Shale to produce oil. The remaining sections are all about characteristics of the obtained oil in terms of degree API gravity, liquid chromatography and sulfur content. Experimental work was done in the rock and fluid laboratory in the American University in Cairo and

other laboratories in the Egyptian Petroleum Research Institute in Egypt. Random oil shale samples are obtained from El-Nakheil phosphate mine in Qusier area, which is located in the Eastern Desert of Egypt near the red sea. Other oil shale samples are obtained from Abu Tartur area in the Western Desert of Egypt. We also managed to get some oil shale samples from Colorado. Qusier oil shale is characterized by its dark grey to black color and the flaky arrangement of its layers. Abu Tartur oil shale is characterized by its light grey color, smooth surface and its easiness to be crushed. Colorado oil shale is light brown in color and is the hardest rock to be crushed among the others (see Figure 3).

3.1. Procedure 3.1.1 Retorting The oil shale samples were, firstly, reduced in size by manual crushing. Crushing is done because oil shale is impermeable so it needs to be crushed to allow the produced fluids to move out of the bulk (see Figure 4). Oil shale samples were treated thermally by retorting in the laboratory retort. 1. The retort cell was charged by 100 g-ground oil shale sample. 2. 2) The retort cell is closed by a screwed lid and placed in its chamber where heat starts. 3. Water droplets begin first to appear followed by gases and then by oil. 4. Heating continued till there were no liquid or gases coming out of the retort cell. 5. The average amount of oil and water was calculated and recorded. 6. The weight of the sample was recorded after retorting. The density of the produced oil was determined by knowing its mass and volume and then used to calculate its degree API gravity.

3.1.2. Liquid Chromatography Quantitation of Individual organic compounds in shale oil Chromatography may be preparative or analytical. The purpose of preparative chromatography is to separate the components of a mixture for more advanced use (and is thus a form of purification). Analytical chromatography is done normally with smaller amounts of material and is for measuring the relative proportions of analyses in a mixture. 1. Liquid Chromatography-Mass Spectrometry (LC-MS), which is a chemistry technique that combines the physical separation capabilities of LC or HPLC with the mass analysis capabilities of mass spectrometry, is a powerful technique used for many applications, which has very high sensitivity and selectivity. Generally its application is oriented towards the general detection and potential identification of chemicals in the presence of other chemicals (A complex mixture like shale oil) by Tissot, and Welte (1984) [14]. 2. High - Performance Liquid Chromatography is basically a highly improved form of column chromatography. Instead of a solvent being allowed to drip through a column under gravity, it is forced through under high pressures of up to 400 atmospheres. It also allows you to use a very much smaller particle size forthe column packing material (for example: silica particles), which gives a much greater surface area for interactions between the stationary phase and the molecules flowing past it. This allows a much better separation of the components of the mixture which the constituents of the shale oil. 3.1.3. Sulfur Content in Qusier Shale Oil Sample (General Bomb Method) By comparison, a typical 35ËšAPI gravity crude oil may be composed of up to 50% of gasoline and middle-

Petroleum Today

-

June 2015

31


distillate range hydrocarbons. West Texas Intermediate crude (benchmark crude for trade in the commodity future market) has 0.3% sulfur by weight. This means that the sulfur content in the oil must be known in order to compute the degree of API gravity and then the price of the oil depending on it. The experiment is all about oxidizing the liquid sample as the “bomb” in which the experiment is carried out is under high pressure by Darwish (1984) [3]. 3.1.4. Reagents 1. Purity of reagents: the reagents grade, unless otherwise indicated, follows the specifications of the “Committee on Analytical Reagents of the American Chemical Society”. For a reagent to be used, it should be of a high purity so it won’t lessen the accuracy of the determination, 2. Purity of Water: Unless otherwise indicated, mean distilled water or water of equal purity, 3. Barium Chloride Solution (85 g/ liter) → Dissolve 100 g of Barium Chloride Dehydrate (BaCl2∙2H2O) in distilled water and dilute to 1 liter, 4. Bromine Water (saturated), 5. Concentrated of Hydrochloric acid (HCL) ~ γ = 1.19, 6. Oxygen and sulfur compounds (available at pressure 40 atm), 7. Sodium Carbonate Solution (50 g/liter) → Dissolve 135 g of sodium Carbonate Deca-hydrate (Na2CO3∙10H2O) in distilled water and dilute to 1 liter, 8. White Oil, USP, or Liquid Paraffin, BP by Darwish (1984) [3]. 3.1.5. Procedure for Measure of Sulfur Content First of all, the bomb should be cleaned for sulfur determination by periodic polishing that can remove any film that might be formed by the sulfur content of the previous test carried out

32 Petroleum Today

- June 2015

on the same bomb. Introduce into the sample cub a quantity of the sample and white oil, and then stir the sample with quartz rod and allow the rod to remain in the sample cup during the combustion. 3.1.6. Determination of Sulfur Content Evaporate the combined washings to 200 ml on a hot plate or any other source of heat. Adjust the heat so you can maintain slow boiling, and add 10 of BaCl2 to the solution. Stir the solution during the addition and for two more minutes. Cover the beaker and continue boiling slowly until the solution has evaporated to 75 ml. Then remove the beaker and allow it to cool before filtering. Then wash the precipitates until they are free from chloride. Dry both the paper and the precipitates after transferring them into crucible at a low heat. A satisfactory means of drying, charring and igniting the paper and precipitates are to place the crucible containing the wet filter paper in a cold electric muffle furnace and to turn on the current. Such processes occur on a desired rate by Darwish (1984) [3]. 3.2. Results and Discussion There are eight different runs it’s included that calculate of density of product from oil shale and then, calculate the oAPI gravity for oil. In addition to determine the oil volume at different time dependent mainly on temperature with how much oil product from oil shale and versus time. Table 2 show that the results for experimental studies at different runs on Quseir and Colorado Oil shale samples. These results represent weight of sample before and after extracted process and maximum temperature so extracted all volume of oil into sample. In addition to, focus for the droplet formation water and oil at different time. Finally, total oil and formation water volumes determined and

calculated specific gravity and degree of API gravity. Table 3 shows that the volume of oil and formation water from oil shale for eight runs which it’s are from Quseir and Colorado. After conducting the previous experiments and analyzing the obtained results we reached the following recapitulations: 1. The critical temperature that yields the maximum volume of oil is T = 500˚C, 2. The maximum volume of oil is 15.7 milliliters/100 grams, which is equivalent to 157 Liters/Ton, 3. The optimum time needed to reach maximum oil production is approximately 48 minutes for 100 grams of oil shale rock sample, 4. The higher the temperature used for retorting, the heavier the oil obtained because of the vaporization of its light contents, 5. The results of gradual increasing temperature experiment showed that the maximum volume of oil obtained is less than that obtained from the sudden increase of temperature (T = 500˚C), and it took more time to reach it; however, it showed better degree API value, 6. After measuring the weight of the sample before and after the experiment we concluded that there was a weight loss by about 25% which is due to: a. Decomposition of Kerogen, b. Loss of water content in the sample, and shale oil samples. In addition, Figure 6 shows that relationship between volumes of oil extracted versus time for different shale oil samples. 1. The liquid chromatography analysis of the oil obtained from Qusier oil shale showed that the major portion of its composition is heavy alkanes from Nonane to Hexa-n-decanes (53.6 wt%, 62.2 mol%), these alkanes are characterized by their high viscosity. They are used as a


German Oil Free & Oil Lubricated Screw Compressors

German High Pressure Air & Gas Compressors & Purification

Head Office: 3, Dr. Hassan Aflatone st. - Almaza - Cairo Tel/Fax: (+202) 2419 6289 – 2415 6964 E-mail: pressure@tedata.net.eg www.pressuretechegypt.com


major part of diesel and aviation fuel. There is also a considerable amount of Alkanes from Hexadecane upward (35.2 wt %, 21.87 mol %), which are considered the most important components of fuel oil and lubricating oil and they are also used as anti-corrosive agents, 2. The oil obtained can be classified as medium sour or heavy sour crude oil because of its degree API gravity that ranges from 28˚ to 33˚ and sulfur content of 3.36 wt %, 3. The average price of the obtained oil is 94.88 dollars/barrel. This was obtained by correlation between Kuwait blend crude oil and Orient blend crude oil because the characteristics of crude oil fall between these two types of oil shale, 4. Oil obtained from Colorado oil shale showed similar compositions and characteristics to that obtained from Qusier but the amount of oil obtained was considerably small. The reasons of this small production might be the following points: a. a) The sample rock that was obtained may be weathered, b. We don’t know the weather

conditions that it was subjected to, and c. Due to its hardness we could not crush it into small particles as Qusier sample, which affects productivity. Table 4 shows that weight and mole percent for Qusier and Colorado shale oil samples components and included for chemical formula and molar mass.

4. Conclusions After conducting the oil shale experiments on different samples (Qusier, Abu-Tartur and Colorado) we reached different results that show that Qusier is a commercial field for oil shale production. We have also found out that the critical temperature at which the sample produces its maximum oil volume is 500˚C. An aim in paper is finding an economic and ecological in-situ production technique that gives an output of heat content equivalent to the 500˚C. The proposed ideas are: 1. Hydrogen fuel cell design (SOFC) 2. Geothermal fuel cell design 3. Comparison between Shell’s

technique (Underground heaters ICP) and Exon-Mobil technique (Geothermal fuel cells) We will base our comparison regarding these three techniques based on three main purposes: a. Economics b. Efficiency c. Environmental impact

Acknowledgements Authors would like to express our gratitude and appreciation to Students. Ahmed Nehad, Maureen Amir, Mohamed Nasr and RadwaAwad to accomplish this research work. We wish to express our sincere and deep gratitude and appreciation to Eng. Mohamed Shafiq for his helping in this work and Eng. Mahmoud Gomaa for getting us Oil Shale samples from Green river/Colorado. We wish to express our gratitude and appreciation to petroleum engineering staff members at the American University in Cairo and geologist Marawan. We also would like to thank him for helping us carry out and complete our research work.

REFERENCES 1. El-Sabagh, S.M., Basta, J.S., Ahmed, F.S. and Barakat, M.A. (2012) Characterization of Selected Egyptian Oil Shales from the Red Sea. Fact Sheet: Oil Shale and the Environment, DOE Office of Petroleum Reserves, 22 December. 2. Demirbas, A. (2009) Political, Economic and Environmental Impacts of Biofuels: A Review. Applied Energy, 86, 108 - 117. http://dx.doi.org/10.1016/j. apenergy.2009.04.036 3. Darwish, M. (1984) Optimistic Hydrocarbon Potentialities of the Oil Shale in the Quseir-Safaga Land Stretch, Egypt. Faculty of Science Bulletin, 6, 107 - 117. 4. Al-Wakeel, M.I. and El-Adly, R.A. (2005) A Novel Application of Egyptian Oil Shale as Filler in the Production of Lithium Lubricating Grease. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 27, 1511 - 1522. 5. Abdelrahman, A.A. and Aly, I.H. (1994) Thermal Behaviour of Oil Shale. The 4th Mining, Petroleum and Metallurgy Conference, Assiut, 57- February, 201 - 214. 6. Country Analysis Briefs. (2012) Energy Information Administration (EIA). http://www.eia.gov/countries/country-data.cfm?fips=EG 7. Abdelrahman, A.A. and Khaled, K.A. (1988) Preliminary Evaluation of Some Black Shales of the Eastern Desert of Egypt. The 3rd Conference of Chemical Engineering, TESCE, Cairo. 8. Denning, D. (2012) Oil Shale Reserves. The Daily Reckoning, N.D. Egypt Oil Imports. http://www.indexmundi.com/Egypt/oil_imports.html 9. Sykes, R. and Snowdon, L.R. (2002) Guidelines for Assessing the Petroleum Potential of Coaly Source Rocks Using Rock-Eval Pyrolysis. Organic Geochemistry, 33, 1441 - 1455. http://dx.doi.org/10.1016/S0146 - 6380 (02) 00183 - 3 10. Chillingarian, G., Wen, C.S. and Yen, T.F. (1978) Properties and Structure of Bitumens. In: Bitumens, Asphalts and Tar Sands, Elsevier, Armsterdam, 155 - 190. 11. Altun, N.E., Hicyilmaz, C., Hwang, J.Y. and Bagci, A.S. (2006) Evaluation of a Turkish Low Quality Oil Shale by Flotation as a Clean Energy Source: Material Characterization and Determination of Flotation Behavior. Fuel Processing Technology, 87, 783791-. http://dx.doi.org/10.1016/j. fuproc.2006.04.001 12. Behar, F., Beaumont, V. and De Penteado, B.H.L. (2001) Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 56, 111 - 134. http://dx.doi.org/10.2516/ogst:2001013 13. Vandenbroucke, M. and Largeau, C. (2007) Kerogen Origin, Evolution and Structure. Organic Geochemistry, 38, 719 - 833. 14. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence. 2nd Edition, Springer-Verlag, Berlin, 699 p.

34 Petroleum Today

- June 2015


Figure 1. Egypt oil production versus consumption from 1990 to 2011 by El-Sabagh, et al.[1].

Figure 2. Oil Shale at different places in Egypt such as in the Quseir Area-Safaga of the Eastern Desert, AbuZinema of the west Sinai and Abu-Tartur of the western desert.

Figure 3. Oil Shale samples from (a) Quseir, (b) Abu Tartour and (c) Colorado regions.

Petroleum Today

-

June 2015

35


Figure 4. Crushed sample for oil shale and put in the retort at different temperatures.

Figure 5. Relationship between volumes of formation water extracted versus time for different shale oil samples.

Figure 6. Relationship between volumes of Oil extracted versus Time for different shale oil samples.

36 Petroleum Today

- June 2015



Table 1. Porosity and permeability of oil shale before and after treatment processes. Porosity and Permeability of Raw and Treated Oil Shale Porosity Permeability Plane Fischer Assay Raw Heated to 815ËšC Raw Heated to 815ËšC 1.01

6.5

9.02

5.5

11.9

12.5

A3

0.364

B

---

0.56

A

---

0.21

B 13.5

20.0

0.5

<0.03

16.4

25.0

A

0.65 ---

4.53

B

8.02

A

---

B 40.0

<0.03

50.0

A

---

---

B Source: Chillingarian and Yen (1978);[10], 1Fischer assay in gallons per ton, 2Numbers in percentages of the initial bulk volume, porosity was taken as an isotropic property, that is, property that is independent of measurement direction, 3Plane A is perpendicular to the bedding plane; plane B is parallel to the bedding plane, 4Units in millidarcy.

Table 2. Results for experimental studies for different runs on quseir and colorado oil shale samples.

38 Petroleum Today

- June 2015


Table 3. Volume of oil and Formation water extracted from oil shale samples collected from Quseir, Egypt and Colorado, USA.

Table 4. Weight and mole percent for qusier and colorado shale oil samples components.

Petroleum Today

-

June 2015

39


NAME: AHMED ZAKARIA NOAH EDUCATION: Associate.Prof at TheAmerican University in cairo PhD. in Petrophysics.Waseda and Menofia University, 2003. ACADEMIC EXPERIENCE: Faculty of Science and Engineering, The AmericanUniversity in Cairo (12010/9/ – Now, full time Ass.Prof of drilling, completion and workover). -Faculty of Petroleum Engineering, The BritishUniversity in Egypt (212010/9/1 – 2008/12/, full time lecturer and Ass. prof), Undergraduate Level: Oil well drilling, Advanced drilling Engineering, Horizontal drilling, Drilling fluids, Principles of Petroleum Geology, Well logging, core analysis, Development Geology, Completion and workover, Reservoir Rock properties, Reservoir Engineering. -Petroleum Research Institute, Cairo (Full time Researcher : (12008/12/-21 2005/12/) Faculty of Science, Menofia University, Egypt : (20032008-), Graduate Level:Method of Prospecting. And Well Logging

40 Petroleum Today

- June 2015





Rigless Exploration Well Testing Experience in Algeria By

Cherif Hellal, Sonatrach; Yasmine Nassim, Schlumberger; and Ali M. Bakici, SPE, Schlumberger

A

bstract

The need to meet ambitious exploration and production targets has resulted in a rapid increase in drilling activity in Algeria, causing a shortage of drilling rigs in the country. Moreover, drillstem testing of exploration wells was consuming as much rig time as drilling. Consequently, Sonatrach (SH)— Algeria’s national oil company— searched alternative strategies to maximize use of the existing rig fleet. One of them was to do well testing without a rig, hence freeing up rig time to accelerate exploration drilling. A rigless well testing candidate was selected for the pilot project, first for Sonatrach, from a seven-well exploration campaign. The objectives of the pilot project were to assess rigless testing viability for exploration wells and enable SH to gain sufficient knowledge, skill, and experience to implement the same strategy in subsequent wells. The project started with the detailed design phase, including preparation of well completion and testing programs for the operations, identifying and sourcing of equipment and material,

44 Petroleum Today

- June 2015

and applying for permits to operate in a remote location without a rig. The project was implemented and managed by Sonatrach, with Schlumberger providing operations support and well testing services. On completion of the first rigless testing operation, a postmortem was conducted to evaluate project implementation, highlight problem areas, and capture lessons learnt. The results confirmed the rigless well testing option to be technically viable and a practical solution for freeing up rig time, especially in drillstem test (DST) applications involving three or more zones with associated cost savings. The decision was made to continue testing multilayer reservoirs without a drilling rig, taking into consideration the lessons learned from the first operation. A list of recommendations was prepared based on procedures followed during this test, and also serves as a guideline for similar projects.

Introduction Algeria is a major oil and gas supplier with about 25 billion barrels of proven oil reserves and the third largest natural gas exporter in the world. Sonatrach

currently produces 1.5 million bbl oil per day and 16 bcf gas per day, out of which 6 bcf is exported. However, the country is still considered relatively underexplored1, with vast potential for further discoveries. In addition, prevailing high oil and gas prices have provided a significant stimulus to increase exploration and development activities in the country. Accordingly, Sonatrach›s goal is to increase both oil and gas production, and the company has set ambitious targets, especially for gas exploration. The need to meet these targets has resulted in a rapid increase in drilling activity, which in turn has led to rig shortages. Consequently, it has begun implementing drilling optimization projects and evaluating alternative strategies to optimize the utilization of available rigs. One of the key initiatives, with respect to rig utilization, was the pilot implementation of well testing without the drilling rig, as a means of freeing up rig time. Well testing is needed to determine the actual productivity, reservoir pressure, permeability, and/or the extent of the reservoir. In exploration wells, well testing is commonly conducted with drill pipe


be using drilledDST and techniques cased withwith 9 78/’’ the rig on location. Theprimary most productive common test casing through the sequence used in Algeria consists intervals in the middle Miocene at an of a short flowofperiod about 3 hours, average depth 17000 of TVD. by a build-up period ofwell about Thefollowed Atlantis producing an hour which is used5 to½determine completions will utilize ‘’ 13 initial reservoir pressure. The chrome tubing. Production rates ontest continues with be a cleanup period to some wells may tubing limited establish stable flow to surface, at approximately 3545000- BOPD if possible, followed by awellbores multi-rateare flow at first oil. None of the period of 4 to 12 hours to determine, expected to be in excess of 50 degrees mainly, well deliverability. Finally, deviation and will have measured the well is shut in for the final buildup depth ranging from 17000’ to 23000’. test (for 48 hours) which is used to To enhance reliability and minimize determine permeability thickness and the interventions frac pack completions flow potential. are the stimulation and sand control The overall testing may method of choice for operations Atlantis. In be short (a few days) or longer the two frac pack intervals for zonal (severalin weeks)., on the isolation the eventdepending of premature requirements and objectives of the water breakthrough occurs in the test, as well as number of zones to be lower zone. An isolation assembly tested, “Rigless” operations will free will be run across the upper zone if it up significant rig time and so reduce waters out first. The well design will be overall well costs2. Two other operators configured to accommodate down hole have already used this method flow control at a later date, however successfully in their exploration wells at this time only injection wells will in Algeria, using Schlumberger testing utilize this technology. services, whereby up to 12 zones per Thewell Sand willtheberig. haveface beencompletion tested without designed nipple-less to maintain This resulted in considerable time thesavings largestonpossible ID throughout their exploration activities. theNevertheless, completion. rigless This design willstill testing is facilitate future thru tubing work-over relatively new in Algeria, especially for SH, although it has been used in other locations.

In light of the above, SH has launched the pilot project of rigless well testing on a well in block 405a (Fig 1). Schlumberger was requested to provide planning, engineering, and operations support for this pilot project to minimize risks associated with rigless operations, mainly related to continuous pressure operations, as well as limited in-house experience with the technique. The objectives of the pilot project were to Ó enable SH to gain sufficient knowledge, skill, and technical experience to implement this

operations and provide maximum application in subsequent opportunity to recover exploration wells reserves from deeper intervals without Ó demonstrate, to thesidetracking stakeholders, through depleted zones. In event the potential benefits ofthe rigless well of sidetrack is necessary, the (78/’’for testing to optimize rig utilization casingincreased through delivery the mainof producing exploration pays wells. will allow the setting of a 7’’ liner through the depleted intervals. A 5 ½” liner can then be set across the deeper Work Scope intervals and a conventional frac pack The scope of work for Schlumberger preformed. Expandable Sand screens included provision of investigated the following (ESS) will continue to be for rigless well for services use in producing wells latertesting in operations on the first well: the development as their reliability

Theanguiding principles were: advisory role with the Sonatrach supervisor in charge on site. Ó Quality

Integrity Operability Planning and Engineering Schedule The project was initiated for a Health, Safety and Environmental seven-well campaign, and an initial Assurance Performance feasibility study was performed to Geological demonstrateData the & costReserve versus benefit Estimation of performing rigless well testing. The first twoestimates candidateforwells were, Current reserve Atlantis dropped from sequence arehowever, 475800-620-mmboe. Thethe Sanction asreserves they were notMMBOE. suitable. Current (The first case are 560 candidate did not have a estimates suggest the northernsufficient flank of zoneswith to justify moving cannumber be developed 46- wells tiedthe rigtooff beforesubsea testingmanifolds. and the second back existing The needed pressure Atlantis equipment P50one reserves arehigh 70 MMBOE. (15, 000 psi) which was not readily consists of six Miocene reservoirs available short notice). ranging fromat16,000’ to 18,000’ TVD. Reservoir pressures are When the third wellapproximately was confirmed 9,300 with temperatures of 180 F. as apsi definite candidate, Schlumberger Theprovided two primary productive intervals, process support for the thefollowing M55 and M54 found in middlethe activities, to the execute Miocene work: have an average of 9002000mdÓ ofTechnical permeability (perm to oil) 140 and economical evaluation ft net pay thickness and 1.5- 2 cp oil Ó Scheduling and logistics viscosity. Other potential recompletion Ó Detailed well completion and testing intervals are the uphole M57 and down design hole M48 and M40. Ó Welland completion Health Safetyand testing program

Ó Ó Ó Ó

Ó Planning Injection and engineering is confirmed. wells willsupport be whilst SH retained overall cased and Perforated and will utilize responsibility ESS to prevent sand production during shut-ins when crossand flowTesting is possible. Ó Completion program development equipment Operational Goalsand sourcing goals for our project The operational notÓonly reflect the safety anddivisions technicaland Coordination with SH objectives, they also recognize the Schlumberger services goals and commitment of tubing, the members. Ó Provision of coiled wireline, In summary these are: slickline, perforating, as well as Ó Alignment downholewith andAtlantis surfaceHealth, testing Safety and Environmental objectives equipment and services; using existing contracts Ó Zero accidents, spills and high potential incidents Ó Wellsite operations coordination Ó Leverage lessons learned and demonstrate Ó Logistics planning. performance based teamwork Apart from that the keysupport. objective for Ó Testing operations Sonatrach was in charge of arranging thisEach program is to drill an incident free Ó Project execution excellence through of these is discussed below. the civil works, camp and catering, well. To achieve this objective, we quality planning and assurance water and diesel supply, transport and logistics, and operations supervision.

Organization For the rigless testing operations an organizational structure with members from SH exploration, SH drilling SH testing groups and Schlumberger was set up to prepare the plans and coordinate the subsequent execution. The organigram was split into two main parts: office and well site. The office team included a service company engineer who acted as primary support to the wellsite and who managed communication with the Sonatrach representative in town. On the rig site, all the services reported to a coordinator, who in turn played

Technical and Evaluation

Economical

The technical feasibility of the project was evaluated based on two wellbore configuration options, which were monobore with 4.1 /2-in liner and completion string, or dual liner with both 7 in and 4.1/2-in exposed below the 4.1 /2-in completion string. It was confirmed that, in either case, the rigless testing was technically possible, with the selected testing methodology. A time estimate comparing the specific DST scenario with rigless testing was prepared to assess the viability of the rigless testing. It was estimated that it

Petroleum Today

-

June 2015

45


would take 5 days with the drilling rig to run the completion string for testing and temporarily suspend the well, and 6 days per zone for rigless testing, excluding mobilization times. On the other hand, the time is estimated at 9 days per zone for the DST using the drilling rig, including additional time for tripping to deeper zones. From this comparison it was concluded that rigless testing would save time only after offsetting the completion running time. The main benefit was the use of the rig time for drilling another well to increase the number of wells drilled per rig per year. On average, approximately 58 days is required to drill a similar well and 27 days for testing with the rig. This translates to potentially an additional well for every two wells drilled if the well tests are performed rigless. Another factor to consider, and one which affected the viability of rigless testing, which had a significant impact, was the camp rate (USD 5,000 per day average for 40 people). When plotting the total costs versus the number of zones tested (Fig 2) for one well it was noted that the cost difference between DST and the rigless testing increased with increasing number of zones. This translated to cost savings after a certain number of zones. Spread rates (USD 30,000 per day average) on the other hand depended on the auxiliary drilling services and equipment charged during offline activities compared to drilling phase. From this, it was concluded that if three or more zones identified for rigless testing with current rig rates in Algeria, rigless testing would result in cost savings. However, it is necessary to perform the assessment for each case, taking into account the camp rate, completion string cost, and rig rates.

Schedule and Logistics A project schedule was developed outlining specific deliverables (Fig 3).

46 Petroleum Today

- June 2015

This was agreed upon with the client, and served as a means to monitor the progress of the work, establish milestones (such as approvals for design documents), and trigger resource planning events. The schedule was updated regularly as required, in conjunction with the drilling operations progress and deliverable approvals. This process helped overcome one of the key challenges of the project; identifying the right personnel from various divisions in SH, particularly decision makers, at various stages of the work. The continuous updates of the schedule meant that weak links in the project could be identified during the execution and evaluation phases. The project also involved planning for the facilities and additional resources required for the rigless well testing. This included support personnel, camp and catering, supply of basic amenities, etc.

Completion and Testing Design

pressure (SITP): 5,175 psi Ó Reservoir fluid: gas/gas condensate The well status prior to running the completion was (Fig 4): Ó 7-in casing set at x,x80 m Ó 6-in openhole section drilled to x,x75 m Ó A comprehensive formation evaluation program conducted Ó 4.½-in liner run and cemented in place Ó Fluid in the well 0.55 psi/ft oil based mud

Completion Configuration Early into the project, assessments were performed, which led to the selection of an appropriate well completion configuration that Ó allowed successful well testing operations to be performed at a later stage without a rig Ó met the necessary load conditions imposed which would prevail over the wells life cycle

A complete basis of design document was produced for each case to record the considerations and constraints that existed for the well completion and testing. The following criteria were used to verify the design assessments:

Ó permitted the well to be suspended according to Algerian regulations, and Sonatrach policies and standards

Ó Conduct the entire completion and testing operations safely and with no injuries or spills

Ó equipment availability in stock at short notice

Ó Facilitate operations allowing selective testing of zones of interest

Ó is simple to run prior to rig demobilization. Limitations to the design were

Ó casing design that was already implemented and unchangeable

Ó Enable acquisition of full reservoir information

Ó SH production equipment store was the only supplier of the completion string components

Ó Conduct all operations, including well suspension, according to Sonatrach and Algerian regulations.

Ó restricted to using SH standard completions.

The well characteristics used for completion and testing design were

Completion Equipment

Ó Max. reservoir pressure: 6,533 psi @ x,x38 m TVD (10 K BOP stack) Max reservoir temperature: 149 degC @ x,x38 m (from MDT*) Ó Max

expected

shut-in

tubing

The typical completion consisted of anchor latch, permanent production packer, 2x R-nipples and 4.½-in New Vam tubing, which was modified by Schlumberger for the rigless testing operations. This was done by



Ó ensuring a liner top packer was set for well integrity Ó changing nipples sizes to larger internal diameter types so that bridge plugs could be run for lower zone suspensions Ó opting to use larger perforating gun sizes. Each of the well components (including elastomers) selected were checked for compatibility with the expected well conditions.

The following aspects pertinent to well testing performance are discussed below: 1. Perforation 2. Data Acquisition 3. Surface well testing equipment 4. Well Kill 5. Zonal Isolation 6. Well Suspension 7. Design Limitations.

Perforation

Completion Fluid The completion fluid used was composed of NaCl/KCl inhibited and filtered brine (0.511 psi/ft). A thorough clean up (mechanical and chemical) sequence was included in the completions program to make sure the perforating intervals were scraped and that the casing was clean so the production packer could be set.

Pressure Tests

In order to maximize inflow performance, an engineered perforating solution had to be selected. It was expected that this would also overcome the negative effects of formation damage, and would improve well productivity while maximizing hydrocarbon recovery. This solution included selecting the optimum gun size, number of shots per foot (spf), charge type, charge phasing, and conveyance method.

Ó 4.1 / 2-in liner and liner lap

The engineering evaluation resulted in the selection of a 2.7 / 8-in–6 spf 60deg phasing, deep penetration charges as the most suitable solution. These charges expected to provide increased productivity, in addition to leaving less debris in the well, because they can

Ó Completion tubing and components

Ó shoot past formation damage

Ó Christmas tree.

Ó increase effective wellbore radius

Well Testing Design

Ó reduces pressure drop across the formation.

Assessments were performed to ensure the integrity of the well to undergo testing. The test pressures were determined taking into account: Ó 7-in casing

The objectives of the well test were to acquire the following information from each zone without commingling production: - Measure the well deliverability (flow), reservoir parameters (PI, Kh, S), and petrophysical data (porosity, permeability) - Assess initial reservoir pressure and temperatures - Acquire samples.

representative

48 Petroleum Today

PVT

- June 2015

Recent investigations have demonstrated the importance and key role played by underbalanced perforating technology3,4,5, hence it was desirable to create underbalanced conditions in the wellbore without exceeding the gun specifications. This would minimize or remove the formation damage in the well caused by perforation. Determining the required underbalance should also take into account formation type, reservoir fluid, charge selection, shot density

and wellbore fluid. From previous experience in the area with the natural flow capability of the well, 500–1,000 psi underbalance was recommended.

Data Acquisition The data acquisition tools were seen as the most critical part of the operations, since the main objective of the well test was data collection. Even though the testing tools might function properly, if the gauge recorders fail, the objective of the testing procedures would be compromised. Information collected during the well testing operations using downhole sensors included pressure and temperature, as well as the exact time the data is obtained. To guarantee the required data is collected and data comparison for quality control can be conducted, a redundancy was incorporated by running minimum of two gauge recorders. Quartz memory gauges with the highest temperature and pressure ratings were selected, taking into consideration the required storage capacity and quality of data, resolution and stability of the gauge for proper handling and analysis of the collected information. These gauges could operate up to 177 degC and pressures of 16,000 psi. The gauges were run on slickline and, where possible, positioned below the perforations causing less vibrations from the string. For bottomhole sampling, the single phase reservoir sampler was selected as most appropriate for subsequent PVT analysis. Representative surface samples were also taken from the separator.

Surface Well Testing Equipment In order to handle the fluids produced by the well, a temporary production facility was needed to control the well, separate and measure the fluids produced, and collect samples safely and reliably. The required


surface equipment depended on the production characteristics and the volumes expected to be processed. The conventional layout on location included a separator, flow head, choke manifold, gauge tank, and flare lines. All the equipment was 10 K rated, except the flareline and separator. All equipment was pressure tested prior to the start of operations. Because of the tight reservoir characteristics it took longer for flow to stabilize. Therefore, the multiphase flow meter Vx* technology was used to acquire data during transient flow. This is a “simple flow through device without moving parts”6 that provides “complete coverage of flow rate data through out the test”. The main advantage is that the meter can continuously acquire readings in highly transient unsteady flows

Well Kill Coiled tubing services were used to conduct the kill operations through existing production tubulars. The design of the wellkill program focused on performing the kill with a minimum of induced formation damage. In this situation, “concentric tube” (coil inside the completion string) well intervention services were proven to be successful to establish the fluid circulation flow path from the surface to the bottom of the completion. Using this type of service, the kill operation could be performed by circulating out the existing wellbore fluids and replacing the wellbore volume with a kill-weight fluid—brine in this case having the desired rheology and density for the prescribed service.

Suspension The main goals were to leave the well in a safe downhole condition such that there is no possibility of the well leaking or flowing to surface. It was also necessary to isolate hydrocarbon-

bearing zones from other zones and aquifers and to comply with local regulations and standards. Other goals to achieve were to Ó be able to test the reservoirs independently with no commingling of production Ó avoid any communications between reservoirs Ó ensure well integrity for a potentially long suspension period Ó allow safe and easy reentry in the future. Three areas of zonal isolation were identified to fulfil local regulations that apply for permanent abandonment or temporary suspension of any exploratory well. 1. Isolation of the 4.½-in cemented liner by pressure integrity tests and cement bond logs. 2. Sealing of the completion anchor assembly and liner by pressure test. 3. Zonal isolation between each tested zone by setting through tubing mechanical bridge plugs on wireline and cement dump bailed above to increase the pressure differential across the plug.

To increase the pressure differential (to 7,500 psi) across the plug, for longer durability and better zonal isolation, approximately 6 m of cement was placed on top using dump bailers. It was, however, essential to wait on cement adequately, to pressure test (both positive and negative) and to weight test the plug before perforating the next interval with this arrangement. At the end of the testing operations, the barriers for intra-zonal isolation were Ó the inflatable bridge plugs with cement above Ó the completion string that acted as a kill string. It was also possible to perforate the completion string to gain access to the annulus for circulation, if required. This (temporary) suspension was valid for only 3 months according to Algerian regulations. After this time it was necessary to decide whether to conduct further intervention before permanently abandoning the well. Further intervention would include retrieving the completion, squeezing perforations, and setting cement plugs with a small workover rig.

The well needed to be suspended twice during operations. First, after the completion phase—it was temporarily suspended until commencement of rigless testing operations. The successful results of the integrity tests ensured that the testing conduit was well isolated and there was no risk of leakage. The second suspension was upon completion of well testing activities in each interval (perforated and tested) before moving to the subsequent interval, completed by the suspension of the uppermost zone.

Design Limitations

One option for zonal isolation was to use bridge plugs with high differential pressure ratings. However, with long delivery time constraints wireline set inflatable bridge plugs (1,000 psi nominal pressure differential rating).

Ó perforating efficiency

There were also restrictions identified with the rigless testing option for exploration wells. Through an SPE Applied Technology Workshop (ATW) that “provoked sharing of field experiences and opinions, 80% of the participants used DST with a rig as the preferred testing method. However, the remaining 20% suggested rigless testing to be used when uncertainties on expected formation testing response were low. Some of the limitations mentioned were7 Ó inflexible under-balance pressure for perforating Ó quality of data measurement & fluid characterization

Petroleum Today

-

June 2015

49


Ó lack of operational flexibility Ó no reliable down hole shut-in tool. In this case study these limitations were addressed in the design, and mitigation measures were devised to resolve or minimize their influence.

Completion and Testing Programs In order to ensure that the testing phase allowed the sequence of operations planned, a detailed completion program outlining the operational procedure was prepared with a stepby-step activity list to be performed, including the schematic. A testing program was also prepared in advance, again detailing the sequence of operations sequence step-by-step in the order of execution. This included the prejob planning, downhole tools and surface equipment layout, with their complete specifications and operating parameters, roles, and, responsibilities allocation, data acquisition requirements, and operational procedures.

QHSE For the safe execution of the project the following project specific QHSE initiatives were put in place. First and foremost, an emergency response plan (ERP) was prepared and made available on the wellsite. A VSAT communication system was set up for reporting and emergency response, taking into consideration the remoteness of the location. Throughout the operations, SH and Schlumberger QHSE policies and standards were observed in order to ensure personnel safety and environmental protection. A risk assessment (Hazard Analysis and Risk Control— HARC—and Risk Register) of rigless well testing was performed as part of the planning process in order to identify the critical hazards and risk. A number of the control measures identified during the

50 Petroleum Today

- June 2015

assessment process were included in the final work program. The roles and responsibilities were discussed with all parties involved and detailed in a RACI chart, which was made part of the operations program. The following hazard categories were identified for special consideration and recorded in the risk register. Ó Continuous pressure risk (Well Control) Ó Limited experience in country of rigless testing operations Ó Hazardous substances handling on surface. Preventative and mitigative measures were defined to reduce these risks, such as having an experienced supervisor at the wellsite to coordinate operations, perform integrity tests, and to ensure properly rated and pressure tested equipment was used.

Completion Operations After the openhole logging evaluation and confirming the number of zones for testing, the well was completed by running and cementing the 4.½in production liner, and installing the completion string as per approved completion program (Fig 5). Isolation of the 4.½-in cemented liner was verified by pressure testing and running CBL. The rig was released upon installation and pressure testing of the Christmas tree.

Testing Operations The rigless well testing operations started with mobilization of the camp and military protection, as there was no infrastructure in place contrary to DST with drilling rig. The surface testing equipment was subsequently mobilized and rigged up. The program called for testing three zones. Starting from the lowermost zone, the zones to be tested were

Ó Lower Devonian Ó Carboniferous I Ó Carboniferous II. Testing of the first zone was satisfactorily completed and isolation operation was carried out as described above, i.e., through-tubing inflatable packer was set on wireline and specially formulated cement was dumpbailed to strengthen the plug differential pressure holding capability. The dumpbailing operation itself encountered some difficulties due to flash setting of the cement inside the dumpbailer. The flash setting was found to be caused by longer then expected exposure to high temperature, and the operation was completed with an alternate recipe. The new recipe was designed and tested for the expected bottomhole temperature and pressure of the well as per API test procedure. It was, however, discovered subsequently that the second slurry did not set, resulting in insufficient hard cement to withstand the pressure differential while testing the upper zone. The testing of the second zone proceeded as planned with the perforation and cleanup. While flowing at higher rates, certain anomalies were detected in the surface pressure profile (Fig 6), yet the test continued, until loss of weight was observed in the slickline gauge. This was subsequently confirmed to be the movement of the mechanical plug isolating the two zones, and hitting the gauge string. This had not been considered as a potential risk previously. The event resulted in abortion of the test and gauges had to be fished out as the wire was broken by the blow of the dislocated plug from below. The investigation carried out afterwards showed that the plug was dislocated due to high differential pressure while flowing at higher choke setting and, the subsequent flow and final build up tests were also confirmed to be commingled test data.



A few options were considered at this point, including suspension of the entire rigless testing operation or drilling out the plugs with CTU. The decision was made to isolate the lower two zones and proceed with testing of uppermost zone. The two zones were isolated by dual inflatable packers and cement placed by dumpbailer, this time confirmed by higher pressure testing and weight test. The test of uppermost zone then performed as per plan successfully, and the well was suspended for light workover rig reentry, which drilled out all the plugs and suspended the well with permanent cement plugs (Fig 7).

Time Analysis The actual total rigless testing project duration was 90 days versus the planned 27 days, and the reason for this longer duration was accounted for by non productive (10%) and unplanned time (23%). The operational time breakdown is shown below (Fig 8), excluding completion, intervention, and camp sourcing Total Rigless Testing Project

90 days

Duration

which led to the mobilization of a light workover rig to permanently abandon the well after testing of all three zones had been completed, rigless well testing was evaluated as a feasible alternative strategy to DST with a rig. This was confirmed at a post-mortem workshop to analyze the events and capture lessons learnt. Other conclusions were Ó Rigless testing freed up 27 days rig time, that was used for drilling the next well in sequence Ó Rigless testing was also discovered to be financially viable for three or more zones and/or prolonged testing periods, with minimal cost increase (~10%) Ó Experience was gained on rigless well testing technology and developed the competency Ó Lessons learnt captured for future rigless testing operations Ó As in any new project, results from the first experience should not be used for overall evaluation. A minimum of three cases should be considered to properly evaluate real project viability.

Non Productive Time

22 days

Unplanned Time

21 days

Mobilization & Rig Up

21 days

Recommendations

Re-test TWCV

8 days

Testing

18 days

The following set of recommendations is prepared to serve as a checklist for future rigless well testing operations:

Cost Analysis

Management

The longer than planned testing operations resulted in cost overruns (Fig 9), which is mainly time related. Some of the high cost difference between plan and actual was due to the work conducted out of scope, such as extended testing duration and additional waiting on cement, whilst others were because of NPT.

Ó Prepare a RACI chart and discuss with all involved parties each phase of the project (planning and execution)

Conclusion Despite the plug dislocation incident

52 Petroleum Today

- June 2015

Ó Review organization chart with clear roles and responsibilities during planning and operations Ó Assign a WSS to coordinate/manage testing operations on site Ó Assign base operations support role for better coordination, including service company engineer to

coordinate between all parties during planning and operations Ó Ensure continual personnel coverage for operations, especially during festivity periods (e.g., Christmas) Ó Ensure daily operations report preparation and distribution to all parties, including VSAT communication to facilitate report distribution Ó Follow “Management of Change” process for unplanned events Ó Ensure that the camp is 100% operational prior to mobilization and start of testing operations. Technical Ó Consider the following factors when selecting candidate wells for rigless well testing, in addition to time and economics: Ó Reservoir type and reservoir fluid Ó Pressure and temperature Ó Data quality requirements Ó Well completion configuration Ó Well Suspension. Ó Plan to utilize real time data for better monitoring and problem detection via surface read out equipment Ó Design suitable cement slurry for well temperature and place more cement as contingency to account for higher pressure differential and contamination. Ó Use higher pressure differential bridge plug (if available) with 4 m of cement to isolate between zones with limited space Ó If inflatable packers are used ensure suitable slurry is used for elevated temperature

Operations Ó Revise the operational risk assessment (HARC) and prepare a contingency plan based on HAZID/ HAZOP


Ó Reconfirm bottomhole temperature based on logs prior to cementing

Abbreviations

PVT

Pressure Volume Temperature

Ó Consider using coil tubing cementing if space between reservoirs is long enough i.e., > 20 m

BHP

Bottomhole pressure

CTU

Coiled Tubing Unit

bopd

Barrels of oil per day

VSAT

Very Small Aperture Terminal

HP

High Pressure

TWCV

Two Way Check Valve

SITP

Shut in tubing pressure

NPT

Non Productive Time

CBL

Cement Bond Log

API

American Petroleum Industry

QHSE

Quality, Health, Safety, and Environment

RACI

Responsible, Accountable, Consult, Informed

HARC

Hazard Analysis & Risk Control

WSS

Well Site Supervisor

WOC

Wait on Cement

MDT*

Modular Formation Dynamics Tester

DST

Drill Stem Test

BOP

Blow Out Preventer

Ó Weight test the cement placed over the mechanical bridge plug with CTU to 1,000 lbs prior to pressure testing Ó Pressure test the plugs and cement to the maximum expected pressure differential and inflow test after 48 hours WOC period Ó Allow longer period for final build up and multirate flow for tight reservoirs—no rig waiting Ó Enhance data transmission by installing a VSAT and use real-time data acquisition for better response.

Acknowledgments The authors would like to thank Sonatrach for its assistance and permission to publish this paper. The authors would also like to thank management at Schlumberger and Sonatrach, and the Rigless Testing Project team members for their cooperation in the planning, execution, and evaluation of this work.

REFERENCES 1. Townsend, D.: «Oil & Gas Investment in Algeria», 5th Annual Rome World LNG Summit, July 2004. 2. Jorge Boscan, et al.: «Successful Well Testing Operations in High-Pressure/High Temperature Environment: Case Histories,» paper SPE 84096, presented at the SPE Annual Technical Conference and Exhibition, Denver, 58- October 2003 3. Ian C. Walton, et al.: «Laboratory Experiments Provide New Insights into Underbalanced Perforating,» paper SPE 71642, presented at the SPE Annual Technical Conference and Exhibition, New Orleans Louisiana, 30 September - 3 October 2001 4. H. Lloyd Stutz, et al.: «Dynamic Under balanced Perforating Eliminates Near Wellbore Acid Simulation in Low-Pressure Weber Formation,» paper SPE 86543, presented at the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette Louisiana, 1820- February 2004 5. A. J. Martin, et al.: «Dynamic Underbalanced Perforating on a Mature North Sea Field,» paper SPE 93638, presented at the SPE European Formation Damage Conference, Scheveningen Netherlands, 2527- May 2005 6. E. A.Mus et al.: «Added Value of a Multiphase Flow Meter in Exploration Well Testing,» paper OTC 13146, presented at the Offshore Technology Conference, Houston, Texas, 30 April - 3 May 2001 7. Techbits «Evaluating Test Methods for Exploratory Wells», JPT, August 2006, Page 29

atm bbl/D bcm cp deg °F ft gal/s in in lbm/gal tonne

x x x x x

x x x x x

1.013 250* E+05 589873 E-01 35.29 E+00 1.0* E-03 1.745 329 E-02 (F-32)/1.8 3.048* E-01 6.308333 E-02 25.4 E+00 1129848 E-07 1.198264 E-01 1.0* E+00

= Pa = m3/d = bcf = Pa.s = rad = °C =m = L/s = mm = N.m = g/cm3 = Mg

Petroleum Today

-

June 2015

53


Figure 1 — Well Location

Figure 2 — Rigless Testing vs. DST

Figure 3 — Project Plan

Figure 3 — Project Plan

Figure 4—Wells Status Before Completion

54 Petroleum Today

- June 2015

Figure 5 — Well Status After


Figure 6 – Pressure Test Data – middle Zone Figure 8—Plan Versus Actual Time

Figure 10—Plan Versus Actual Cost (3x zones)

Figure 7 — Well Status After Testing

Petroleum Today

-

June 2015

55



Atlas Copco’s GA 15-26 kW oil-injected screw compressors get a boost in efficiency For further information please contact : Emad Fawzy : Regional Business Line ManagerIndustrial Air Division Mobile: +20 (0)122 2408866

June 2015, Cairo-Egypt – Atlas Copco’s updated GA 15 - 26 range is an economical and reliable solution for applications that require a constant flow of compressed air. This “fixed speed” oil-injected screw compressor offers improved Free Air Delivery at reduced power consumption and lower noise levels. With its redesign, the GA 15 - 26 is built to be economical, reliable and efficient all at the same time. Compared to the previous GA 15 22 range, the new GA 15 - 26 offers increased performance (Free Air Delivery up with 5%) and lower power consumption (Specific Energy Requirement down with 2%). “For decades, our GA 15 - 22 has been the perfect solution for workshops, installation companies and OEMs all over the world. This oil-injected screw compressor is renowned for its reliability and low cost of ownership,” says Bert Derom, Vice-President Marketing. “With this update, we did not touch any of these benefits, we just made our GA even better and extended the range to 26 kW.” Improved gear-driven drive train boosts Free Air Delivery Major energy and performance

improvements come from the GA’s drive train, which features an IE3 motor (NEMA Class 1) and a new, inhouse designed compressor element. Compared to belt-driven variants, the gear-driven GA 15 - 26 wins 3% in efficiency. Reduced pressure drops and improved cooling flow account for another 2% performance increase, bringing the total Free Air Delivery gain to 5% on average, over the complete range. Less power consumption, less noise The GA delivers more air at the same power consumption and does so in silence. The new drive train is more energy-efficient and also the

new cooling fan consumes less and is quieter than its predecessor. Overall, the Specific Energy Requirement (SER) is improved with 2% on average. All these new components have reduced the sound level of these units to as low as 65 dB(A), making a major difference when the compressor is operated close to the point of use. Flexibility in options To tailor the GA 15 - 26 to any requirement a workshop may have, a wide range of options is available. They include integrated dryer and filters for high-quality air, a factorymounted receiver and various solutions for extreme climates.

Atlas Copco Equipment Egypt Atlas Copco Equipment Egypt P.O. Box 520 El Obour market Cairo, Egypt

Visitors Adress : Phone: +202 4481 4417 / 4481 4208 El Obour city 1st Ind. zone- part 7 +202 4481 4270 / 4481 4431 block 13024 Cairo, Egypt Fax: +202 4481 4341

Reg. No.: 10411 Reg. Office: Nasr City www.atlascopco.com.eg

Petroleum Today

-

June 2015

57


Environmental Management Systems By

Dr Alaa Eldin Kabbarry Energy and environment expert

A

n Environmental M a n a g e m e n t System (EMS) is a structured system or management tool which, once implemented, helps an organization to identify the environmental impacts resulting from its business activities and to improve its environmental performance. The system aims to provide a methodical approach to planning, implementing and reviewing an organization’s environmental management. They give managers a structure for establishing, improving and maintaining programs for protection of the environment.A number of organizations have produced standards and guidelines for EMS, including the ISO, the European Union, and oil and gas industry bodies. Most organizations will have systems for managing their human resources, business objectives and finances as well as occupational health and safety, and security. An Environmental Management System will work more effectively if it is designed to operate in line with an organization’s existing systems and processes, such as the planning cycle, the setting of targets and improvement programs, corrective and preventive action and management review.

58 Petroleum Today

- June 2015

The relevant ISO standards for Environment Management Systems (EMS) are ISO 14001 EMS– Specification with guidance for use ISO 14004 EMS General guidelines on principles, systems and supporting techniques ISO 14010 Guidelines for environmental auditing – General principles ISO 14011 Guidelines for environmental auditing – Audit procedures - Auditing of environmental management systems. ISO 14012 Guidelines for environmental auditing - Qualification criteria for environmental auditors. ISO 14001 is a useful guide for companies thatwant to establish an environmental management system (EMS) or improve systems currently in place The requirements of ISO 14001 1. Environmental policy. 2. Planning including (environmental aspects - environmental impacts - Legal and other requirements - Objectives and Targets Environmental Management Program) 3. Implementation and Operation through (Structureand Responsibility Training, Awareness, and

Competence – Communications EMS documentations - Document Control - Operational Control - Emergency preparedness and response) 4. Checking and corrective action by (Monitoring and Measurement - Corrective &Preventive Action – Records - Environmental Management System Audit) 5. Management review Purpose of an Environmental Management System (EMS) Ó Serves as a tool to improve environmental performance Ó Provides a systematic way of managing an organization’s environmental affairs Ó Is the aspect of the organization’s overall management structure that addresses the immediate and longterm impacts of its products, services and processes on the environment Ó Gives order and consistency to organizations to address environmental concerns through the allocation of resources, the assignment of responsibility, and an ongoing evaluation of practices, procedures and processes Ó Focuses on continual improvement of the system


EMS EMS Goals Goals TheThe goals goals of of EMS EMS areare to to increase increase compliance compliance andand reduce reduce wasteas wasteas following following Compliance Compliance is is thethe actact of of reaching reachingandandmaintaining maintainingminimal minimal legal legal standards. standards. ByBy notnot being being compliant, compliant, companies companies may may face face fines, fines, government government intervention intervention or may or may notnot be be able able to operate. to operate. Waste Waste reduction reduction goes goes beyond beyond compliance compliance to to reduce reduce environmental environmental impact. impact. TheThe EMS EMS helps helps to to develop, develop, implement, implement,manage, manage,coordinate coordinateandand monitor monitor environmental environmental policies. policies. Waste Waste reduction reduction begins begins at at thethe design design phase phasethrough throughpollution pollutionprevention prevention andand waste waste minimization. minimization. At At thethe endend of of thethe lifelife cycle, cycle, waste waste is reduced is reduced by by recycling recycling

formulate formulateenvironmental environmentalpolicy; policy; establish establish environmental environmental objectives, objectives, targets targets & programs. & programs. 5. 5.Implementation Implementation& &operation— operation— develop develop documentation documentation & & processes. processes. 6. 6.Develop Develop processes processes forfor monitoring, monitoring, measurement measurement& &corrective corrective& & preventive preventive action. action. 7. 7.Develop Develop andand deliver deliver EMS EMS training training within within thethe organization. organization. 8. 8.Establish Establish an internal an internal audit audit program, program, including including training; training; conduct conduct initial initialinternal internalaudit auditto toevaluate evaluate conformity conformity to requirements to requirements of ISO of ISO 14001, 14001,including includingevaluation evaluationof of compliance. compliance. 9. 9.Follow Followup upinternal internalaudit auditwith with improvements improvements to system. to system. 10.10. Conduct Conduct initial initial management management review review of EMS. of EMS. Key Key elements elements of an of an EMS EMS Ó Identification Ó Identification of of Significant Significant 11.11. Implement Implementimprovements improvementsfrom from Environmental Environmental Impacts Impacts - environmental - environmental management management review. review. attributes attributes of of products, products, activities activities andand services servicesandandtheir theireffects effectson onthethe A A number numberof ofbenefits benefitsof ofa «wella «wellprepared prepared andand comprehensively comprehensively environment environment implemented EMS» EMS» have have been been Ó Development Ó Developmentof ofObjectives Objectivesandand implemented identified. AnAn EMS: EMS: Targets Targets - environmental - environmental goals goals forfor thethe identified. organization organization 1. 1.provides provides a framework a framework forfor integration integration Ó Implementation Ó Implementation- plans - plansto tomeet meet of of environmental environmental management management intointo objectives objectives andand targets targets thethe company’s company’s operations; operations; Ó Training Ó Training- -instruction instructionto toensure ensure 2. 2.helps helps thethe company company to identify to identify andand employees employees areare aware aware andand capable capable reduce reduce environmental environmental impacts; impacts; of offulfilling fulfillingtheir theirenvironmental environmental 3. 3.helps helps thethe company company comply comply with with responsibilities responsibilities regulatory regulatory requirements; requirements; Ó Management Ó Management Review Review 4. 4.helps helps thethe company company to set to set andand meet meet its its own own environmental environmental targets; targets; Steps Steps to establishing to establishing andand implementing implementing 5. 5.helps helpsthethecompany companyto toincrease increase an an EMS EMS control control of operations of operations andand costs. costs. 1. 1.Obtain Obtaincommitment commitmentfrom fromtoptop management. management. ByByassisting assistingcompanies companiesto toidentify identify managetheir theirimpacts impactson onthethe 2. 2.Define Defineresponsibilities, responsibilities,appoint appoint andandmanage environment, EMS EMS have have thethe potential potential management management representative(s), representative(s), environment, control control andand reduce reduce environmental environmental establish establish EMS EMS steering steering committee, committee, to to degradation. develop develop implementation implementation plan, plan, andand degradation. From thethe company company perspective, perspective, undertake undertake initial initial training training on on EMS. EMS. From EMSalsoalsohelps helpsthethecompany company 3. 3.Undertake Undertake an an initial initial environmental environmental an anEMS to todemonstrate demonstrateits itscommitment commitmentto to review review (optional). (optional). environmentto tothethecompany’s company’s 4. 4.Identify Identifyenvironmental environmentalaspects aspects thetheenvironment shareholders, customers customers andand suppliers, suppliers, & &legal legal& &other otherrequirements; requirements; shareholders, localcommunity communityandand determine determine significant significant aspects; aspects; andandto tothethelocal

regulatory regulatoryauthorities. authorities.This Thisshould should help help to satisfy to satisfy community community pressure pressure forfor improved improved environmental environmental performance performance andandimprove improvethethecompany’s company’spublic public image, image, thereby thereby improving improving access access to to capital capitalandandbusiness businessopportunities, opportunities, facilitating facilitating thethe issue issue of of licenses licenses andand permits, permits,helping helpingthethecompany companygain gain future future access access to new to new operational operational sites, sites, andand providing providing a competitive a competitive tendering tendering advantage. advantage. Despite Despite thethe benefits benefits of of thethe ISOISO series series standards, standards,there therearearea anumber numberof of limitations limitations regarding regarding these these standards, standards, particularly particularly as regards as regards thethe certification certification process.First, process.First,developing developingcountries countries may may findfind it more it more difficult difficult to implement to implement thethe EMS EMS standards, standards, as companies as companies from from developing developing countries countries may may notnot have have thethe resources resources to to achieve achieve certification, certification, and/or and/orthetheinfrastructure infrastructurenecessary necessary forfor certification certification may may be be absent. absent. JustJust as as thethe implementation implementation of of EMS EMS may may provide provide companies companies with with a competitive a competitive advantage, advantage, so so those those companies companies from from emerging emerging economies economies thatthat cannot cannot afford afford to gain to gain certification certification may may be be placed placed at aat a competitive competitive disadvantage disadvantage in tendering in tendering forfor projects. projects. EMS EMS Mode Mode AnAn EMS EMS follows follows a Plan-Do-Checka Plan-Do-CheckAct, Act, or or PDCA, PDCA, Cycle. Cycle. TheThe diagram diagram shows shows thethe process process of of firstfirst developing developing an an environmental environmental policy, policy, planning planning thethe EMS, EMS, andand then then implementing implementing it. it. TheThe process processalsoalsoincludes includeschecking checkingthethe system system andand acting acting on on it. it. TheThe model model is is continuous continuous because because an an EMS EMS is is a a process process of of continual continual improvement improvement in in which which an an organization organization is is constantly constantly reviewing reviewingandandrevising revisingthethesystem. system. This This is aismodel a model thatthat cancan be be used used by by a a wide wide range range of of organizations organizations —— from from manufacturing manufacturingfacilities facilitiesto toservice service industries industries to government to government agencies. agencies.

Petroleum Today

-

June 2015

59


Industry At A Glance by Ali Ibrahim Table (1) World Crude oil Supply.* Supply (million barrels per day)

U.S (50states)

OECD(1)

North sea(2)

OPEC(3)

OPEC (4)

world

12.90 12.99 13.13 13.63 13.59 13.69 14.07 14.16 14.19 14.32 14.57 14.54 14.57 14.54 14.75

24.44 24.62 24.84 25.22 25.05 25.24 25.67 25.73 25.69 25.75 26.2 25.97 25.90 26.22 26.36

2.76 2.85 2.86 2.84 2.78 2.80 2.86 2.71 2.69 2.65 2.68 2.70 2.63 3.00 2.91

35.80 36.35 35.85 35.73 35.80 35.70 35.85 35.93 36.38 36.45 36.57 36.73 36.43 36.59 37.23

34.20 34.70 34.33 34.08 34.15 34.05 34.2 34.3 34.7 34.7 34.82 35.06 34.68 34.79 35.48

90.35 91.10 90.36 91.24 91.52 91.73 92.11 92.61 92.94 93.06 94.08 93.68 92.86 93.80 94.24

Jan.2014 February March April May June July August September October November December Jan.2015 February March Source EIA

* «Oil Supply» is defined as the production of crude oil (including lease condensate) Natural gas plant liquids, and other liquids, and refinery processing gain. NA = no data available (1) OECD = Organization for Economic Cooperation and Development: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia,South Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. (2) North Sea includes offshore supply from Denmark, Germany, the Netherlands, Norway, and the United Kingdom (3) OPEC = Organization of Petroleum Exporting Countries: Algeria, Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela. (4) OPEC = Organization of Petroleum Exporting Countries doesn’t include Angola.

60 Petroleum Today

- June 2015


Table (2)

Table (2) International petroleum consumption Million Barrels Per Day

World Proved Crude Oil Reserves, January 1, 2007 - January 1, 2012 Estimates (Billion Barrels) U.S (50 NonCanada Europe Japan OECD(1) States) OECD Region 2007 2008 2009 2010 Jan.2014 45.77 North America February 46.53 Central & South America March 46.30 Europe April 45.25 Eurasia May 44.95 Middle June East 45.61 Africa July 46.00 Asia & Oceania August 45.95 World Total 46.13 September October 46.33 Source November EIA 46.48 December 46.88 Jan.2015 46.03 February 47.04 45.93 Table (3)March

18.92 18.54 102.80 18.68 15.80 18.78 98.89 18.78 739.20 18.93 114.07 19.16 33.37 19.28 1,316.66 18.83 19.03 19.21 19.30 19.23 19.40 18.86

212.534

2.27 13.05 4.56 211.559 209.910 2.32 13.81 5.07 109.86 122.69 2.30 13.71 4.75 14.27 13.66 2.22 13.46 4.14 98.89 98.89 2.28 13.26 3.98 748.29 13.43 746.00 2.29 3.94 114.84 117.06 2.36 13.7 4.13 34.35 34.01 2.39 13.42 4.14 1,332.04 14.211,342.21 2.36 4.17 2.33 14.12 4.15 2.39 13.55 4.48 2.36 13.19 4.98 2.34 13.06 4.66 2.44 13.54 4.74 2.36 13.50 4.45

44.58 44.53 124.64 44.52 13.31 45.84 98.89 45.92 753.36 46.27 119.11 46.23 40.14 46.09 1355.74 46.46 45.86 46.72 46.12 45.78 46.08 46.19

206.3

China

Other Non

World

2011 -OECD 2012

10.77 17.21 90.34 208.901 210.52833 10.57 17.29 91.06 237.11 238.82 10.60 17.27 90.82 12.08 11.88 11.30 17.53 91.08 98.89 98.89 11.16 17.84 90.88 752.9218.12 799.61 11.27 91.88 123.61 124.21 11.07 18.42 92.23 40.25 45.36 11.00 18.48 92.04 1473.7618.471529.2983 11.28 92.65 11.02 17.96 92.19 10.94 18.32 93.20 10.62 18.02 93.00 10.71 18.01 91.90 10.52 18.24 93.12 10.55 18.34 92.12

Source EIA World crude oil production. ( Million Barrels Per day )

(1) OECD = Organization for Economic Cooperation and Development: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Persian North Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Libya Sudan Egypt OPEC(1) World Norway, Poland, Portugal, Slovakia, South Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom, Gulf(2) Sea(3) and the United States.

Nov.2013 0.22 0.37 0.70 December 0.22 0.36 0.70 Table (3) Jan.2014 0.51 0.26 0.68 World Natural Gas Plant Liquid Production , Thousand Barrels Per Day February 0.38 0.26 0.67 March 0.23 0.27Saudi 0.67 Russia April Algeria Canada 0.21Mexico0.26Arabia 0.67 January.14 356 643 354 1,519 444 May 0.23 0.26 0.67 February 352 620 328 1,601 439 June 0.24 0.26 0.66 March 355 688 329 1,606 452 July 0.44 0.26 0.66 April 355 760 330 1,625 448 August 0.53 0.26 0.66 May 350 712 320 1,620 445 September 0.79 0.26 0.65 June 354 719 318 1,619 444 October 0.98 0.26 0.65 July 369 700 330 1,650 450 November 0.62 0.26 0.65 August 370 691 335 1,661 455 December 0.50 0.26 0.64 September 378 694 334 1,645 458 Jan.2015 0.35 0.25 0.64 October 380 699 333 1,678 459 November 360 630 335 1,601 480 Source EIA December 369 700 330 1,650 450 1 OPEC: Organization of the Petroleum Exporting Countries: Algeria, Angola, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela. January.15 360 750 350 1,640 450

28.98 21.38 2.86 69.2 28.88 21.03 2.98 68.8 29.76 21.84 2.76 68.6 30.04 22.09 2.85 69.1 United Persian 29.53 21.89 2.86 69.1 States1 Gulf 2 OAPEC3 29.44 21.99 2.84 OPEC4 71.8World 2,038 2,544 3,058 3,280 8,326 29.51 22.03 2.78 71.4 2,175 2,670 3,112 3,275 8,519 29.48 21.96 2.80 71.5 2,395 2,695 3,249 3,335 8,386 29.79 21.80 2.86 69.46 2,388 2,696 3,121 3,414 8,395 29.93 21.74 2.71 72.22 2,390 2,690 3,014 3,420 8,390 30.32 21.90 2.69 72.53 2,385 2,692 3,111 3,415 8,395 30.34 21.70 2.65 72.68 2,410 2,700 3,115 3,424 8,402 32.27 21.63 2.68 71.76 2,419 2,703 3,115 3,428 8,404 32.42 21.98 2.70 74.89 2,398 2,705 3,120 3,425 8,407 32.18 21.78 2.63 73.75 2,401 2,701 3,121 3,427 8,408 2,175 2,670 3,112 3,275 8,574 2,410 2,700 3,115 3,424 8,457 Ecuador, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, 2,409 2,712 3,151 3,455 8,526

Source EIA Gulf countries are Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates. Production from the 2 The Persian Kuwait-Saudi Arabia Neutral Zone is included in Persian Gulf production. 1 U.S. geographic coverage is the 50 states and the District of Columbia. Excludes fuel ethanol blended into finished motor gasoline. 3 North Sea includes the United Kingdom Offshore, Norway, Denmark, Netherlands Offshore, and Germany Offshore. 2 The Persian Gulf countries are Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates. 3 OAPEC: Organization of Arab Petroleum Exporting Countries: Algeria, Bahrain, Egypt, Iraq, Kuwait, Libya, Qatar, Saudi Arabi Arabia Syria, Tunisia, and the United Arab Emerates Emirates 4 OPEC: Organization of the Petroleum Exporting Countries: Algeria, Angola, Ecuador, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela.

Petroleum Today

-

June 2015

61


‫�سيمن�س حُتقق رقم ًا قيا�سي ًا وتف�ز بعق�د طاقة �ست�ؤدي �إىل‬ ‫تعزيز قدر�ت م�سر لت�ليد �لطاقة �لكهربائية بنح� ‪%50‬‬ ‫�أعلنت �س ��ركة �س ��يمن�س عن توقيعها لعق ��ود بقيمة ‪8‬‬ ‫ملي ��ار يورو م ��ن �أجل بن ��اء حمطات طاق ��ة كهربائية‬ ‫‪Source EIA‬‬ ‫‪Fig. ( 1 ) World Crude Oil Prices US $ per BBL‬‬ ‫عالية �لكف ��اءة تعتمد على �لغ ��از �لطبيعي �إىل جانب‬ ‫حمط ��ات تعم ��ل بطاق ��ة �لرياح وه ��و ما �س ��يوؤدي �إىل‬ ‫)‪Table (4‬‬ ‫تعزيز قدر�ت م�سر لتولي ��د �لطاقة �لكهربائية باأكرث ‪Egypt Rig Count per Area‬‬ ‫من ‪ %50‬وذل ��ك مقارنة بقاعدة �لب ��اد من �لقدر�ت‬ ‫‪Nov-14 Dec-14 Jan-15 Feb-15 Mar-15‬‬ ‫�لكهربائية �ملُث ّبتة حالي ًا على �ل�سبكة‪ .‬هذ� و �ست�سيف‬ ‫إ�سافية‬ ‫�مل�سروع ��ات ‪�9‬جلديدة نحو‪ 16,4 9‬جيج �‬ ‫‪10‬‬ ‫‪�10‬ا و�ت � ‪11‬‬ ‫‪Gulf of Suez‬‬ ‫‪Mediterranean‬‬ ‫بهدف دعم ‪�7‬لنمو‬ ‫للكهرباء وذلك‬ ‫�لقومية‬ ‫�إىل �ل�سبكة‬ ‫‪9‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪Sea‬‬ ‫�القت�س ��ادي للباد و�لذي ينمو بوترية �سريعة‪ ,‬ف�س ًا‬ ‫‪Western‬‬ ‫‪77‬يف‬ ‫�لطلب �ملتز�يد‪75‬للمو�طن ��ن‪76‬على �لطاقة‬ ‫‪81‬‬ ‫عن تلبي ��ة ‪71‬‬ ‫‪Desert‬‬ ‫�ل�سكاين‪.‬‬ ‫ظل �لنمو‬ ‫‪Sinai‬‬ ‫‪9‬‬ ‫‪8‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫أملانيا‪,‬‬ ‫‪Eastern Desert‬‬ ‫‪6‬‬ ‫�رت مر��س ��م‪�6‬لتوقيع يف‪6‬برل ��ن‪ ,‬با ‪6‬‬ ‫ه ��ذ� وقد ج �‪6‬‬ ‫�ل�سي�سي‬ ‫بح�سور‬ ‫‪Delta‬‬ ‫‪3‬‬ ‫�مل�سري عبد‪�3‬لفتاح ‪3‬‬ ‫فخامة �لرئي�س ‪3‬‬ ‫‪3‬‬ ‫جابريل‪ .‬و ُي‬ ‫‪107‬زيجم ��ار‬ ‫‪�103‬ارة �الأملانية‪,‬‬ ‫ونائ ��ب �مل�ست�س �‬ ‫‪112‬‬ ‫‪109‬‬ ‫‪Fig.‬كهربائية‬ ‫قدر�ت‬ ‫‪Gas‬غ حج ��م‬ ‫بحيث يب ُل‬ ‫مر�حل‬ ‫‪ MCF‬ع‬ ‫‪� Total‬لر��سخ جتاه م�سر خال هذ�‬ ‫‪�118‬ل هذ� هو �لتز�منا‬ ‫�سار يظ �‬ ‫‪) �Natural‬أول‪( 2‬‬ ‫‪Prices‬‬ ‫‪Per‬ل �‪�$‬ى‪US‬‬ ‫‪Source Petroleum‬‬ ‫يت ��م �إ�سافته ��ا لل�سبك ��ة ‪ 4,4‬جيج ��او�ت وذل ��ك قب ��ل‬ ‫‪� Today‬لتاريخي"‪.‬‬ ‫هن ��ا �أن هذه �لعق ��ود قد ز�دت عن مذك ��ر�ت �لتفاهُ م �لتوقيع‬ ‫�لتي مت �الإعان عنها خال موؤمتر م�سر �القت�سادي وم ��ن خال �لعمل �سوي ًا م ��ع �سركاء حملين م�سرين �سي ��ف ‪ 2017‬على �أن يت ��م �إ�سافة �إجم ��ايل �لقدر�ت‬ ‫�ملُنعقد يف �سرم �ل�سيخ يف مار�س ‪.2015‬‬ ‫وهم ��ا‪� :‬ل�سوي ��دي �إليكرتي ��ك و�سرك ��ة �أور��سك ��وم �لكهربائي ��ة‪ ,‬و�لتي ت�سل �إىل ‪ 14,4‬جيجاو�ت‪ ,‬خال‬ ‫وبه ��ذه �ملنا�سب ��ة‪� ,‬سرح �ل�سي ��د جو كاي�س ��ر‪� ,‬لرئي�س لاإن�س ��اء�ت ف� �اإن �سيمن� ��س �ستق ��وم بت�سلي ��م ث ��اث ‪� 38‬سهر ً� بع ��د �النتهاء من �لتمويل و��ستام �لدفعات‬ ‫�لتنفي ��ذي ورئي� ��س جمل� ��س �إد�رة �سرك ��ة �سيمن� ��س‪ ,‬حمط ��ات كهربائي ��ة تعم ��ل بالغ ��از �لطبيع ��ي بنظام �ملُقدمة �خلا�سة به ��ذه �مل�سروعات‪ .‬وبعد ��ستكمالها‪,‬‬ ‫قائ� � ًا‪" :‬مع هذه �لعقود �لغ ��ري م�سبوقة‪ ,‬فاإن �سيمن�س �ل ��دورة �ملركبة وفق ًا لنظام ت�سليم �ملفتاح حيث �ستب ُلغ ف� �اإن كل و�حدة من ه ��ذه �ملحطات �لثاث ��ة �ست�سبح‬ ‫و�سركائه ��ا يدع َّم ��ان عملي ��ة �لتنمي ��ة �القت�سادية يف ق ��درة كل حمطة من �ملحطات �لثاث نحو ‪ 4,8‬جيجا �الأكرب يف �لعامل‪.‬‬ ‫م�س ��ر عرب متك ��ن �لباد م ��ن �العتماد عل ��ى �أحدث و�ت وبق ��درة �إجمالي ��ة ت�س ��ل �إىل ‪ 14,4‬جيج ��او�ت‪ .‬وباالإ�ساف ��ة �إىل م ��ا �سبق‪ ,‬فاإن �سيمن� ��س �أي�سا �ستقوم‬ ‫�لتقني ��ات يف جم ��ال �لغ ��از �لطبيع ��ي �ل ��ذي يت�س ��م �ملحط ��ات �لثاثة‪ ,‬و�لتي تق ��ع يف بني �سويف و�لربل�س بت�سلي ��م نحو ‪ 12‬من م ��ز�رع �لري ��اح يف مناطق خليج‬ ‫بالكف ��اءة �لعالي ��ة �إىل جان ��ب تكنولوجي ��ا �لطاق ��ة و�لعا�سمة �الإد�رية �جلديدة‪� ,‬ستعتمد يف ت�سغيلها على �ل�سوي� ��س وغرب �لنيل حي ��ث �ستتاألف هذه �ملز�رع من‬ ‫�ملتج ��ددة وذلك بهدف بن ��اء منظومة طاقة يف م�سر ثماين م ��ن توربينات �سيمن�س �لغازية طر�ز ‪ H-Class‬نحو ‪ 600‬توربينة رياح باإجمايل قدرة كهربائية ُمثبتّة‬ ‫تت�سم باجل ��دوى �القت�سادية و�العتمادية و�ال�ستد�مة وه ��ي �لتوربين ��ات �لت ��ي مت �ختيارها نظ ��ر ً� لقدر�تها تبل ��غ ‪ 2‬جيجاو�ت‪ .‬كما �ستقوم �سيمن�س باإن�ساء مركز ً�‬ ‫م ��ن �أجل م�ستقبل �لب ��اد" و�أ�ساف‪ُ :‬‬ ‫"يك ��نّ لل�سعب �الإنتاجي ��ة �لعالي ��ة �إىل جان ��ب �لرق ��م �لقيا�سي �لذي لت�سني ��ع �ل�سفر�ت �لدو�رة يف منطق ��ة �لعن �ل�سخنة‬ ‫�مل�س ��ري �العتم ��اد عل ��ى �سيمن� ��س‪ ,‬كم ��ا �عتمد على حققته هذه �لتوربينات يف �لكفاءة يف �لطاقة‪.‬‬ ‫يف م�س ��ر وهو م ��ا �س ُي�ساهم يف توف ��ري �لتدريب وخلق‬ ‫�ل�سرك ��ة من ��ذ ‪ 150‬عام ًا َّ‬ ‫م�ست‪ ,‬وذل ��ك عندما بد�أت ويف ه ��ذ� �ل�سي ��اق‪ ,‬ف� �اإن �ملحط ��ات �لث ��اث �ستق ��وم فر�س �لعمل لنح ��و ‪� 1000‬سخ�س حيث من �ملخطط‬ ‫�سيمن�س �لعمل يف م�سر الأول مرة يف تاريخها‪.‬‬ ‫للكهرباء‬ ‫‪�per‬لكهربائية‬ ‫�لطاق ��ة‬ ‫‪based‬إ�سافة‬ ‫و�ليوم‪ on‬با‬ ‫�مل�سنع بحلول �لن�سف �لثاين من عام ‪.2017‬‬ ‫ت�سغيل‪Fig.‬‬ ‫‪( 3 ) Egypt‬‬ ‫�لقومية ‪Suez‬‬ ‫لل�سبكة ‪Blend‬‬ ‫‪Price (Dollars‬‬ ‫)‪Barrel‬‬ ‫‪33O API‬‬ ‫‪Source EIA‬‬

‫‪12‬‬

‫‪- June 2015‬‬

‫‪Petroleum Today‬‬

‫‪- June 2015‬‬

‫‪62 Petroleum Today‬‬


‫�سيمن�س حُتقق رقم ًا قيا�سي ًا وتف�ز بعق�د طاقة �ست�ؤدي �إىل‬ ‫تعزيز قدر�ت م�سر لت�ليد �لطاقة �لكهربائية بنح� ‪%50‬‬ ‫�أعلنت �س ��ركة �س ��يمن�س عن توقيعها لعق ��ود بقيمة ‪8‬‬ ‫ملي ��ار يورو م ��ن �أجل بن ��اء حمطات طاق ��ة كهربائية‬ ‫عالية �لكف ��اءة تعتمد على �لغ ��از �لطبيعي �إىل جانب‬ ‫حمط ��ات تعم ��ل بطاق ��ة �لرياح وه ��و ما �س ��يوؤدي �إىل‬ ‫تعزيز قدر�ت م�سر لتولي ��د �لطاقة �لكهربائية باأكرث‬ ‫من ‪ %50‬وذل ��ك مقارنة بقاعدة �لب ��اد من �لقدر�ت‬ ‫�لكهربائية �ملُث ّبتة حالي ًا على �ل�سبكة‪ .‬هذ� و �ست�سيف‬ ‫�مل�سروع ��ات �جلديدة نحو ‪ 16,4‬جيج ��ا و�ت �إ�سافية‬ ‫�إىل �ل�سبكة �لقومية للكهرباء وذلك بهدف دعم �لنمو‬ ‫�القت�س ��ادي للباد و�لذي ينمو بوترية �سريعة‪ ,‬ف�س ًا‬ ‫عن تلبي ��ة �لطلب �ملتز�يد للمو�طن ��ن على �لطاقة يف‬ ‫ظل �لنمو �ل�سكاين‪.‬‬ ‫ه ��ذ� وقد ج ��رت مر��س ��م �لتوقيع يف برل ��ن‪ ,‬باأملانيا‪,‬‬ ‫بح�سور فخامة �لرئي�س �مل�سري عبد �لفتاح �ل�سي�سي‬ ‫ونائ ��ب �مل�ست�س ��ارة �الأملانية‪ ,‬زيجم ��ار جابريل‪ .‬و ُي�سار‬ ‫هن ��ا �أن هذه �لعق ��ود قد ز�دت عن مذك ��ر�ت �لتفاهُ م‬ ‫�لتي مت �الإعان عنها خال موؤمتر م�سر �القت�سادي‬ ‫�ملُنعقد يف �سرم �ل�سيخ يف مار�س ‪.2015‬‬ ‫وبه ��ذه �ملنا�سب ��ة‪� ,‬سرح �ل�سي ��د جو كاي�س ��ر‪� ,‬لرئي�س‬ ‫�لتنفي ��ذي ورئي� ��س جمل� ��س �إد�رة �سرك ��ة �سيمن� ��س‪,‬‬ ‫قائ� � ًا‪" :‬مع هذه �لعقود �لغ ��ري م�سبوقة‪ ,‬فاإن �سيمن�س‬ ‫و�سركائه ��ا يدع َّم ��ان عملي ��ة �لتنمي ��ة �القت�سادية يف‬ ‫م�س ��ر عرب متك ��ن �لباد م ��ن �العتماد عل ��ى �أحدث‬ ‫�لتقني ��ات يف جم ��ال �لغ ��از �لطبيع ��ي �ل ��ذي يت�س ��م‬ ‫بالكف ��اءة �لعالي ��ة �إىل جان ��ب تكنولوجي ��ا �لطاق ��ة‬ ‫�ملتج ��ددة وذلك بهدف بن ��اء منظومة طاقة يف م�سر‬ ‫تت�سم باجل ��دوى �القت�سادية و�العتمادية و�ال�ستد�مة‬ ‫"يك ��نّ لل�سعب‬ ‫م ��ن �أجل م�ستقبل �لب ��اد" و�أ�ساف‪ُ :‬‬ ‫�مل�س ��ري �العتم ��اد عل ��ى �سيمن� ��س‪ ,‬كم ��ا �عتمد على‬ ‫�ل�سرك ��ة من ��ذ ‪ 150‬عام ًا َّ‬ ‫م�ست‪ ,‬وذل ��ك عندما بد�أت‬ ‫�سيمن�س �لعمل يف م�سر الأول مرة يف تاريخها‪ .‬و�ليوم‬ ‫‪12‬‬

‫‪- June 2015‬‬

‫‪Petroleum Today‬‬

‫يظ ��ل هذ� هو �لتز�منا �لر��سخ جتاه م�سر خال هذ�‬ ‫�لتوقيع �لتاريخي"‪.‬‬ ‫وم ��ن خال �لعمل �سوي ًا م ��ع �سركاء حملين م�سرين‬ ‫وهم ��ا‪� :‬ل�سوي ��دي �إليكرتي ��ك و�سرك ��ة �أور��سك ��وم‬ ‫لاإن�س ��اء�ت ف� �اإن �سيمن� ��س �ستق ��وم بت�سلي ��م ث ��اث‬ ‫حمط ��ات كهربائي ��ة تعم ��ل بالغ ��از �لطبيع ��ي بنظام‬ ‫�ل ��دورة �ملركبة وفق ًا لنظام ت�سليم �ملفتاح حيث �ستب ُلغ‬ ‫ق ��درة كل حمطة من �ملحطات �لثاث نحو ‪ 4,8‬جيجا‬ ‫و�ت وبق ��درة �إجمالي ��ة ت�س ��ل �إىل ‪ 14,4‬جيج ��او�ت‪.‬‬ ‫�ملحط ��ات �لثاثة‪ ,‬و�لتي تق ��ع يف بني �سويف و�لربل�س‬ ‫و�لعا�سمة �الإد�رية �جلديدة‪� ,‬ستعتمد يف ت�سغيلها على‬ ‫ثماين م ��ن توربينات �سيمن�س �لغازية طر�ز ‪H-Class‬‬ ‫وه ��ي �لتوربين ��ات �لت ��ي مت �ختيارها نظ ��ر ً� لقدر�تها‬ ‫�الإنتاجي ��ة �لعالي ��ة �إىل جان ��ب �لرق ��م �لقيا�سي �لذي‬ ‫حققته هذه �لتوربينات يف �لكفاءة يف �لطاقة‪.‬‬ ‫ويف ه ��ذ� �ل�سي ��اق‪ ,‬ف� �اإن �ملحط ��ات �لث ��اث �ستق ��وم‬ ‫باإ�سافة �لطاق ��ة �لكهربائية لل�سبكة �لقومية للكهرباء‬

‫عل ��ى مر�حل بحيث يب ُلغ حج ��م �أول قدر�ت كهربائية‬ ‫يت ��م �إ�سافته ��ا لل�سبك ��ة ‪ 4,4‬جيج ��او�ت وذل ��ك قب ��ل‬ ‫�سي ��ف ‪ 2017‬على �أن يت ��م �إ�سافة �إجم ��ايل �لقدر�ت‬ ‫�لكهربائي ��ة‪ ,‬و�لتي ت�سل �إىل ‪ 14,4‬جيجاو�ت‪ ,‬خال‬ ‫‪� 38‬سهر ً� بع ��د �النتهاء من �لتمويل و��ستام �لدفعات‬ ‫�ملُقدمة �خلا�سة به ��ذه �مل�سروعات‪ .‬وبعد ��ستكمالها‪,‬‬ ‫ف� �اإن كل و�حدة من ه ��ذه �ملحطات �لثاث ��ة �ست�سبح‬ ‫�الأكرب يف �لعامل‪.‬‬ ‫وباالإ�ساف ��ة �إىل م ��ا �سبق‪ ,‬فاإن �سيمن� ��س �أي�سا �ستقوم‬ ‫بت�سلي ��م نحو ‪ 12‬من م ��ز�رع �لري ��اح يف مناطق خليج‬ ‫�ل�سوي� ��س وغرب �لنيل حي ��ث �ستتاألف هذه �ملز�رع من‬ ‫نحو ‪ 600‬توربينة رياح باإجمايل قدرة كهربائية ُمثبتّة‬ ‫تبل ��غ ‪ 2‬جيجاو�ت‪ .‬كما �ستقوم �سيمن�س باإن�ساء مركز ً�‬ ‫لت�سني ��ع �ل�سفر�ت �لدو�رة يف منطق ��ة �لعن �ل�سخنة‬ ‫يف م�س ��ر وهو م ��ا �س ُي�ساهم يف توف ��ري �لتدريب وخلق‬ ‫فر�س �لعمل لنح ��و ‪� 1000‬سخ�س حيث من �ملخطط‬ ‫ت�سغيل �مل�سنع بحلول �لن�سف �لثاين من عام ‪.2017‬‬




‫أهم‪Ó‬امل�سروعات‪Ó‬البرتولية‪Ó‬املخطط‪Ó‬تنفيذها‪Ó‬‬ ‫ا ا‬ ‫أهم‪Ó‬امل�سروعات‪Ó‬البرتولية‪Ó‬املخطط‪Ó‬تنفيذها‪Ó‬‬ ‫أ�سا�سية‪:‬‬ ‫م�سروعات‪Ó‬البنية‪Ó‬ال‬ ‫أ�سا�سية‪:‬‬ ‫م�سروعات‪Ó‬البنية‪Ó‬ال‬

‫أبو‪Ó‬قري‪Ó/‬دمنهور‪Ó/Ó‬طنط��ا‪Ó‬بطول‪110Ó‬كم‪Ó‬بنها‪Ó/Ó‬‬ ‫أبو‪Ó‬قري‪Ó/‬دمنهور‪Ó/Ó‬طنط��ا‪Ó‬بطول‪110Ó‬كم‪Ó‬بنها‪Ó/Ó‬‬ ‫إزدواج‪Ó‬خ��ط‪Ó‬ا‬ ‫إزدواج‪Ó‬خ��ط‪Ó‬ا‬ ‫إن�س��اء‪Ó‬ا‬ ‫إن�س��اء‪Ó‬ا‬ ‫‪Ó Ó‬ا‪Ó Ó‬ا‬ ‫م�سطرد‪Ó‬بطول‪Ó35Ó‬كم‬ ‫م�سطرد‪Ó‬بطول‪Ó35Ó‬كم‬ ‫منمن‬ ‫الواردة‬ ‫الواردة‬ ‫البرتولية‬ ‫البرتولية‬ ‫واملنتجات‬ ‫واملنتجات‬ ‫�ازوت‬ ‫�ازوت‬ ‫نقل امل �‬ ‫نقل امل �‬ ‫كفاءة‬ ‫كفاءة‬ ‫رفعرفع‬ ‫امل�سروعإىلاإىل‬ ‫امل�سروع ا‬ ‫�دف�دف‬ ‫ويه �ويه �‬ ‫كهرباء‬ ‫كهرباء‬ ‫حمطات‬ ‫حمطات‬ ‫اىلاىل‬ ‫التكر�ري ��ر‬ ‫التكري �‬ ‫معامل‬ ‫معامل‬ ‫ناجتناجت‬ ‫باال�سكندريا�أو�ة اأو‬ ‫باال�سكندري ��ة‬ ‫اال�ستراد‬ ‫اال�ستراد‬ ‫موان �موا�ىن ��ى‬ ‫القليوبية‬ ‫القليوبية‬ ‫الغربية ‪-‬‬ ‫الغربية ‪-‬‬ ‫�ات��ات‬ ‫ملحافظ‬ ‫ملحافظ �‬ ‫واملنتجات‬ ‫واملنتجات‬ ‫دمنهور ‪/‬‬ ‫دمنهور ‪/‬‬ ‫الدوار ‪/‬‬ ‫الدوار ‪/‬‬ ‫قركف‪� /‬ك�رف ��ر‬ ‫قر ‪/‬‬ ‫اأب ��واأب ��و‬ ‫جنيه‪.‬‬ ‫جنيه‪.‬‬ ‫مليون‬ ‫مليون‬ ‫‪500500‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫الكربى‪.‬‬ ‫الكربى‪.‬‬ ‫والقاهرة‬ ‫والقاهرة‬ ‫والبحرة‬ ‫والبحرة‬

‫ً ً‬

‫‪Ó‬امل�سروعات‪Ó‬البرتوكيماوية‪:‬‬ ‫‪Ó‬امل�سروعات‪Ó‬البرتوكيماوية‪:‬‬ ‫‪Ó‬ثالثا‬ ‫‪Ó‬ثالثا‬ ‫أ�سيوط‬ ‫أ�سيوط‬ ‫رفع‪Ó‬كفاءة‪Ó‬نقل‪Ó‬وت�سليم‪Ó‬البوتاجاز‪Ó‬علي‪Ó‬خط‪�Ó‬سقري‪Ó/Ó‬ا‬ ‫رفع‪Ó‬كفاءة‪Ó‬نقل‪Ó‬وت�سليم‪Ó‬البوتاجاز‪Ó‬علي‪Ó‬خط‪�Ó‬سقري‪Ó/Ó‬ا‬ ‫‪ÓÓÓÓ‬‬ ‫أمونيا‪Ó‬ب�سركة‪Ó‬موبكو‪:‬‬ ‫أمونيا‪Ó‬ب�سركة‪Ó‬موبكو‪:‬‬ ‫إنتاج‪Ó‬اليوريا‪Ó‬وال‬ ‫إنتاج‪Ó‬اليوريا‪Ó‬وال‬ ‫إن�ساء‪Ó‬جممع‪Ó‬ا‬ ‫إن�ساء‪Ó‬جممع‪Ó‬ا‬ ‫‪Ó Ó‬ا‪Ó Ó‬ا‬ ‫اىلاىل‬ ‫لت�سل‬ ‫لت�سل‬ ‫البوتاجاز‬ ‫البوتاجاز‬ ‫تدفي ��ع‬ ‫تدفي ��ع‬ ‫معدالت‬ ‫معدالت‬ ‫وزيادة‬ ‫وزيادة‬ ‫كفاءة‬ ‫كفاءة‬ ‫رفعرفع‬ ‫�روع ا�روعإىلاإىل‬ ‫امل�س �امل�س �‬ ‫�دف�دف‬ ‫ويه �ويه �‬ ‫املحلي‬ ‫املحلي‬ ‫ال�سوق‬ ‫ال�سوق‬ ‫�ات��ات‬ ‫احتياج‬ ‫احتياج �‬ ‫لتغطية‬ ‫لتغطية‬ ‫اليوري ��ا‬ ‫اليوري ��ا‬ ‫�سماد‬ ‫�سماد‬ ‫إنتاجإنتاج‬ ‫�روع ا�روعإىلااإىل ا‬ ‫امل�س �امل�س �‬ ‫�دف�دف‬ ‫ويه �ويه �‬ ‫‪“10“10‬‬ ‫قطرقطر‬ ‫ان�ساء‬ ‫ان�ساء‬ ‫طري �طر�قي ��ق‬ ‫عنعن‬ ‫حالياحاليا‬ ‫طن‪/‬يوم‬ ‫طن‪/‬يوم‬ ‫‪2400‬‬ ‫‪2400‬‬ ‫بدال�نم ��ن‬ ‫بدال م �‬ ‫�وم��وم‬ ‫طن‪/‬ي‬ ‫طن‪/‬ي �‬ ‫‪3500‬‬ ‫‪3500‬‬ ‫املحلي‪.‬‬ ‫املحلي‪.‬‬ ‫ال�سوق‬ ‫ال�سوق‬ ‫و�سيط يف‬ ‫و�سيط يف‬ ‫كمنتج‬ ‫كمنتج‬ ‫أمونياأمونيا‬ ‫بيع اال‬ ‫بيع اال‬ ‫إ�سافةإىلاإىل‬ ‫إ�سافة ا‬ ‫الفائ�سالباال‬ ‫الفائ�س با‬ ‫وت�سد�ري ��ر‬ ‫وت�سدي �‬ ‫جنيه‪.‬‬ ‫جنيه‪.‬‬ ‫مليون‬ ‫مليون‬ ‫‪266266‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫كم‪.‬كم‪.‬‬ ‫‪70 70‬‬ ‫وطول‬ ‫وطول‬ ‫دوالر‪.‬‬ ‫دوالر‪.‬‬ ‫مليون‬ ‫مليون‬ ‫‪1927‬‬ ‫‪1927‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫إ�سكندرية‪Ó‬لنق��ل‪Ó‬وت�سليم‪Ó‬‬ ‫إ�سكندرية‪Ó‬لنق��ل‪Ó‬وت�سليم‪Ó‬‬ ‫رب��ط‪�Ó‬سبك��ة‪Ó‬بوتاجاز‪Ó‬حم��ور‪Ó‬ال�سوي���س‪Ó‬وال‬ ‫رب��ط‪�Ó‬سبك��ة‪Ó‬بوتاجاز‪Ó‬حم��ور‪Ó‬ال�سوي���س‪Ó‬وال‬ ‫‪ÓÓÓÓ‬‬ ‫إنتاج‪Ó‬اليثيلني‪Ó‬وم�ستقاته‪Ó‬ب�سركة‪Ó‬ايثيدكو‪:‬‬ ‫إنتاج‪Ó‬اليثيلني‪Ó‬وم�ستقاته‪Ó‬ب�سركة‪Ó‬ايثيدكو‪:‬‬ ‫إن�ساء‪Ó‬جممع‪Ó‬ا‬ ‫إن�ساء‪Ó‬جممع‪Ó‬ا‬ ‫‪Ó Ó‬ا‪Ó Ó‬ا‬ ‫البوتاجاز‪Ó‬بال�سبكة‪Ó‬املوحدة‬ ‫البوتاجاز‪Ó‬بال�سبكة‪Ó‬املوحدة‬ ‫‪/‬بروبان‬ ‫‪/‬بروبان‬ ‫�ان��ان‬ ‫خليطإياث �الإيث‬ ‫خليط اال‬ ‫كميات‬ ‫كميات‬ ‫اال�ستفادة�نم ��ن‬ ‫اال�ستفادة م �‬ ‫تعظيم‬ ‫تعظيم‬ ‫�روع ا�روعإىلاإىل‬ ‫امل�س �امل�س �‬ ‫�دف�دف‬ ‫ويه �ويه �‬ ‫وحتى‬ ‫وحتى‬ ‫الهايك�ستب‬ ‫الهايك�ستب‬ ‫منمن‬ ‫كم كم‬ ‫وطول ‪3‬‬ ‫وطول ‪3‬‬ ‫‪12ً 12‬‬ ‫خطط �بق�رط �ً�ر‬ ‫خط بق‬ ‫إن�ساءإن�ساء‬ ‫امل�سروعإىلااإىل ا‬ ‫امل�سروع ا‬ ‫�دف�دف‬ ‫ويه �ويه �‬ ‫إقامةإقامة‬ ‫أ�سكندرية ال‬ ‫أ�سكندرية ال‬ ‫الغربي �با�ةالباال‬ ‫الغربي ��ة‬ ‫ال�سحراء‬ ‫ال�سحراء‬ ‫غازات‬ ‫غازات‬ ‫جم�عم ��ع‬ ‫جمم �‬ ‫منمن‬ ‫إنتاجها‬ ‫إنتاجها‬ ‫�ط �ا�ط ا‬ ‫املخط‬ ‫املخط �‬ ‫منتجمنتج‬ ‫فى فى‬ ‫أ�سكندرية‬ ‫أ�سكندرية‬ ‫ال�سوي�سالواال‬ ‫ال�سوي�س وا‬ ‫وموانئ‬ ‫وموانئ‬ ‫منطقة‬ ‫منطقة‬ ‫بنبن‬ ‫التكامل‬ ‫التكامل‬ ‫لتحقيق‬ ‫لتحقيق‬ ‫القطامية‬ ‫القطامية‬ ‫ً‬ ‫ً‬ ‫ً‬ ‫ً‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫املحلى ‪.‬‬ ‫املحلى ‪.‬‬ ‫ال�سوق‬ ‫ال�سوق‬ ‫احتياجات‬ ‫احتياجات‬ ‫لتلبية‬ ‫لتلبية‬ ‫وم�ستقاته‬ ‫وم�ستقاته‬ ‫إيثيلن‬ ‫إيثيلن‬ ‫إنتاج اال‬ ‫إنتاج اال‬ ‫�روع ال‬ ‫�روع ال‬ ‫م�س �م�س �‬ ‫هذاهذا‬ ‫وجنوبا ‪.‬‬ ‫وجنوبا ‪.‬‬ ‫�سماال‬ ‫�سماال‬ ‫باجلمهورية‬ ‫باجلمهورية‬ ‫البوتاجاز‬ ‫البوتاجاز‬ ‫تداول‬ ‫تداول‬ ‫فى فى‬ ‫املرونة‬ ‫املرونة‬ ‫بهدف‬ ‫بهدف‬ ‫البوتاجاز‬ ‫البوتاجاز‬ ‫دوالر‪.‬‬ ‫دوالر‪.‬‬ ‫مليون‬ ‫مليون‬ ‫‪1925‬‬ ‫‪1925‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫جنيه‪.‬‬ ‫جنيه‪.‬‬ ‫مليون‬ ‫مليون‬ ‫‪110110‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫إنتاج‪Ó‬ال�ستريين‪Ó‬بال�سكندرية‪Ó‬ب�سركة‪Ó‬ال�ستريينك�س‪:‬‬ ‫إنتاج‪Ó‬ال�ستريين‪Ó‬بال�سكندرية‪Ó‬ب�سركة‪Ó‬ال�ستريينك�س‪:‬‬ ‫‪Ó Ó‬ا‪Ó Ó‬ا‬ ‫إ�سكندرية‬ ‫إ�سكندرية‬ ‫إن�ساء‪Ó‬عدد‪�Ó)7(Ó‬سهاريج‪Ó‬بوتاجاز‪Ó‬بال‬ ‫إن�ساء‪Ó‬عدد‪�Ó)7(Ó‬سهاريج‪Ó‬بوتاجاز‪Ó‬بال‬ ‫‪Ó Ó‬ا‪Ó Ó‬ا‬ ‫والذي‬ ‫والذي‬ ‫طن‪�/‬سنة‬ ‫طن‪�/‬سنة‬ ‫‪300‬ألفاألف‬ ‫‪ 300‬ا‬ ‫بطاقة‬ ‫بطاقة‬ ‫ال�سترين‬ ‫ال�سترين‬ ‫�ادة�ادة‬ ‫إنتاج م �‬ ‫إنتاج م �‬ ‫امل�سروعإىلااإىل ا‬ ‫امل�سروع ا‬ ‫�دف�دف‬ ‫ويه �ويه �‬ ‫‪8.48.4‬‬ ‫�سعة�سعة‬ ‫�ايل�ايل‬ ‫للبوتاجازإجبما �إجم �‬ ‫للبوتاجاز با‬ ‫�سهاريج‬ ‫�سهاريج‬ ‫�دد� ‪�7‬دد ‪7‬‬ ‫إن�ساء ع‬ ‫إن�ساء ع �‬ ‫�روع ا�روعإىلااإىل ا‬ ‫امل�س �امل�س �‬ ‫�دف�دف‬ ‫ويه �ويه �‬ ‫طن‪�/‬سنة ‪،‬‬ ‫طن‪�/‬سنة ‪،‬‬ ‫�ف ��ف‬ ‫‪ 200‬األ‬ ‫‪ 200‬األ �‬ ‫بطاقة‬ ‫بطاقة‬ ‫�ستر�ني ��ن‬ ‫�ستري �‬ ‫البويل‬ ‫البويل‬ ‫�اج��اج‬ ‫خامت �الإنت‬ ‫خام الإن‬ ‫�ادة�ادة‬ ‫�دم �كم �‬ ‫�دم� كم‬ ‫ي�ستخ‬ ‫ي�ستخ �‬ ‫الكفايةالباأيامالأيام‬ ‫الكفاية با‬ ‫وزيادة‬ ‫وزيادة‬ ‫للبوتاجاز‬ ‫للبوتاجاز‬ ‫إ�سرتاتي�يج ��ي‬ ‫إ�سرتاتيج �‬ ‫خمزون ا‬ ‫خمزون ا‬ ‫لتوفر‬ ‫لتوفر‬ ‫وذلك‬ ‫وذلك‬ ‫طنطن‬ ‫�ف ��ف‬ ‫األ � األ‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫للت�سدير ‪.‬‬ ‫للت�سدير ‪.‬‬ ‫‪�/‬سنة‬ ‫‪�/‬سنة‬ ‫طنطن‬ ‫�ف ��ف‬ ‫‪ 100‬األ‬ ‫‪ 100‬األ �‬ ‫إ�سافةإىلاإىل‬ ‫إ�سافة ا‬ ‫باالباال‬ ‫أوقاتأوقات‬ ‫خا�سةايف ا‬ ‫خا�سة يف‬ ‫إختناقات‬ ‫إختناقات‬ ‫حدوث اأي ا‬ ‫حدوث اأي‬ ‫وجتنب‬ ‫وجتنب‬ ‫املحلي‬ ‫املحلي‬ ‫ال�سوق‬ ‫ال�سوق‬ ‫إحتياجات‬ ‫إحتياجات‬ ‫لتلبيا��ة ا‬ ‫لتلبي ��ة‬ ‫دوالر‪.‬‬ ‫دوالر‪.‬‬ ‫مليون‬ ‫مليون‬ ‫‪580580‬‬ ‫جنيه‪.‬‬ ‫جنيه‪.‬‬ ‫مليون‬ ‫مليون‬ ‫‪150150‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫الذروة‪.‬‬ ‫الذروة‪.‬‬ ‫‪June‬‬ ‫‪2015‬‬ ‫‪2015‬‬ ‫‪-June‬‬

‫‪Petroleum‬‬ ‫‪Today‬‬ ‫‪Today‬‬‫‪9 9 Petroleum‬‬


‫أ�سا�سية‪:‬‬ ‫أ�سا�سية‪:‬‬ ‫‪Ó‬البنية‪Ó‬ال‬ ‫‪Ó‬البنية‪Ó‬ال‬ ‫ثاني ًاثاني ًا‬ ‫إح��الل‪Ó‬و‪Ó‬جتديد‪Ó4Ó‬كم‪Ó‬علي‪Ó‬خط‪Ó‬املنتجات‪Ó‬م�سطرد‪/‬التبني‪Ó‬نتيجة‪Ó‬‬ ‫إح��الل‪Ó‬و‪Ó‬جتديد‪Ó4Ó‬كم‪Ó‬علي‪Ó‬خط‪Ó‬املنتجات‪Ó‬م�سطرد‪/‬التبني‪Ó‬نتيجة‪Ó‬‬ ‫‪Ó Ó‬ا ‪Ó Ó‬ا‬ ‫الفر�سة‪Ó‬الذكية‪:‬‬ ‫الفر�سة‪Ó‬الذكية‪:‬‬ ‫التبنالتبن‬ ‫م�سطرد‪/‬‬ ‫م�سطرد‪/‬‬ ‫الرئي�سى‬ ‫الرئي�سى‬ ‫املنتجات‬ ‫املنتجات‬ ‫خطخط‬ ‫ت�سغيل‬ ‫ت�سغيل‬ ‫أمناأمن‬ ‫امل�سروع اتاإىل ت‬ ‫امل�سروع اإىل‬ ‫ويهدف‬ ‫ويهدف‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫�د‪.‬ي ��د‪.‬‬ ‫ال�سع‬ ‫ال�سعي �‬ ‫�سمال�سمال‬ ‫�ات ��ات‬ ‫حمافظ‬ ‫حمافظ �‬ ‫ومنها اإيل‬ ‫ومنها اإيل‬ ‫�نب ��ن‬ ‫‪"16‬إيل االتإيلب �الت‬ ‫‪ "16‬ا‬ ‫قط �ق�رط ��ر‬ ‫جنيهجنيه‬ ‫مليونمليون‬ ‫اال�ستثمارية ‪13‬‬ ‫اال�ستثمارية ‪13‬‬ ‫تكلفته‬ ‫تكلفته‬ ‫‪. .‬‬ ‫اح��الل‪Ó‬وجتديد‪Ó‬ورف��ع‪Ó‬كفاءة‪Ó‬خط‪Ó‬املازوت‪Ó‬املغ��ذي‪Ó‬ملحطة‪Ó‬كهرباء‪Ó‬‬ ‫اح��الل‪Ó‬وجتديد‪Ó‬ورف��ع‪Ó‬كفاءة‪Ó‬خط‪Ó‬املازوت‪Ó‬املغ��ذي‪Ó‬ملحطة‪Ó‬كهرباء‪Ó‬‬ ‫‪ÓÓ ÓÓ‬‬ ‫أبو‪Ó‬قري‪Ó‬بطول‪Ó26Ó‬كم‪Ó‬وقطر‪“16Ó‬‬ ‫أبو‪Ó‬قري‪Ó‬بطول‪Ó26Ó‬كم‪Ó‬وقطر‪“16Ó‬‬ ‫ا ا‬ ‫كهرباء اأبو‬ ‫كهرباء اأبو‬ ‫ملحطة‬ ‫ملحطة‬ ‫�ازوت�ازوت‬ ‫ت�سليم امل �‬ ‫ت�سليم امل �‬ ‫كفاءةكفاءة‬ ‫ورفعورفع‬ ‫أمناأمن‬ ‫�روع اتاإىل ت‬ ‫�روع اإىل‬ ‫�دفس �امل�س �‬ ‫�دف امل�‬ ‫ويه �ويه �‬ ‫جنيه‪.‬جنيه‪.‬‬ ‫مليونمليون‬ ‫اال�ستثمارية ‪56‬‬ ‫اال�ستثمارية ‪56‬‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫طن‪/‬يوم‪.‬‬ ‫طن‪/‬يوم‪.‬‬ ‫ألفاألف‬ ‫حتيا‪11‬‬ ‫حتي ‪11‬‬ ‫قر قر‬ ‫إحالل‪Ó‬وجتديد‪Ó30Ó‬كم‪Ó‬من‪Ó‬خط‪Ó‬اخلام‪�Ó‬سقري‪Ó/Ó‬م�سطرد‪Ó‬قطر‪“Ó20Ó‬‬ ‫إحالل‪Ó‬وجتديد‪Ó30Ó‬كم‪Ó‬من‪Ó‬خط‪Ó‬اخلام‪�Ó‬سقري‪Ó/Ó‬م�سطرد‪Ó‬قطر‪“Ó20Ó‬‬ ‫‪Ó Ó‬ا ‪Ó Ó‬ا‬ ‫م�سطرد‬ ‫م�سطرد‬ ‫اخلام ��س�رق �‪�/‬ر ‪/‬‬ ‫اخلام �سق‬ ‫خطخط‬ ‫وجتدي ��د‬ ‫وجتدي ��د‬ ‫كفاءةكفاءة‬ ‫إىل�عرف ��ع‬ ‫�روع ارف �‬ ‫�روع اإىل‬ ‫�دفس �امل�س �‬ ‫�دف امل�‬ ‫ويه �ويه �‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫امل�ستقبلية �‪�.‬ذاه ��ذا‬ ‫امل�ستقبلية ‪ .‬ه‬ ‫القاهرة‬ ‫القاهرة‬ ‫معم ��ل‬ ‫احتياجاتم ��ل‬ ‫احتياجات مع‬ ‫يتنا�سب مع‬ ‫يتنا�سب مع‬ ‫مب ��امب ��ا‬ ‫جنيه‪.‬جنيه‪.‬‬ ‫مليونمليون‬ ‫اال�ستثمارية ‪75‬‬ ‫اال�ستثمارية ‪75‬‬ ‫إح��الل‪Ó‬و‪Ó‬جتديد‪Ó‬خط‪Ó‬املنتجات‪Ó‬ال�سوي�س‪Ó/Ó‬م�سطرد‪Ó‬بطول‪Ó70Ó‬كم‪Ó‬‬ ‫إح��الل‪Ó‬و‪Ó‬جتديد‪Ó‬خط‪Ó‬املنتجات‪Ó‬ال�سوي�س‪Ó/Ó‬م�سطرد‪Ó‬بطول‪Ó70Ó‬كم‪Ó‬‬ ‫‪Ó Ó‬ا ‪Ó Ó‬ا‬ ‫وقطر‪“Ó18Ó‬‬ ‫وقطر‪“Ó18Ó‬‬ ‫ال�سوي�س اىل‬ ‫ال�سوي�س اىل‬ ‫البرتولية من‬ ‫البرتولية من‬ ‫�ات ��ات‬ ‫املنتج‬ ‫املنتج �‬ ‫نقل نقل‬ ‫كفاءةكفاءة‬ ‫رفع رفع‬ ‫�روع اإىل‬ ‫�روع اإىل‬ ‫�دفس �امل�س �‬ ‫�دف امل�‬ ‫ويه �ويه �‬ ‫‪250250‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفت ��ه‬ ‫تكلفت ��ه‬ ‫هذال ��غوتبل ��غ‬ ‫هذا وتب‬ ‫القبلى‪.‬‬ ‫القبلى‪.‬‬ ‫والو�ةج ��ة‬ ‫والوج �‬ ‫والقا�رةه ��رة‬ ‫والقاه �‬ ‫م�سط �م�س�ردط ��رد‬ ‫إن�س��اء‪Ó‬خط‪Ó‬م��ازوت‪Ó‬التبني‪/‬حمطة‪Ó‬كهرباء‪Ó‬جن��وب‪Ó‬حلوان‪Ó‬بطول‪Ó‬‬ ‫إن�س��اء‪Ó‬خط‪Ó‬م��ازوت‪Ó‬التبني‪/‬حمطة‪Ó‬كهرباء‪Ó‬جن��وب‪Ó‬حلوان‪Ó‬بطول‪Ó‬‬ ‫‪Ó Ó‬ا ‪Ó Ó‬ا‬ ‫جنيه‪.‬جنيه‪.‬‬ ‫مليونمليون‬ ‫‪Ó83‬كم‪Ó‬وقطر‪:"16Ó‬‬ ‫‪Ó83‬كم‪Ó‬وقطر‪:"16Ó‬‬ ‫إن�ساء"‬ ‫إن�ساء"‬ ‫"حتت اال‬ ‫"حتت اال‬ ‫�وان��وان‬ ‫جنوب حل‬ ‫جنوب حل �‬ ‫كهرباء‬ ‫كهرباء‬ ‫حمطة‬ ‫حمطة‬ ‫تغذيةتغذية‬ ‫إىل اإىل‬ ‫�روع ا�روع‬ ‫ويهدفس �امل�س �‬ ‫ويهدف امل�‬ ‫إزدواج‪Ó‬خط‪Ó‬املنتجات‪Ó‬طنطا‪/‬بنها‪Ó‬بطول‪Ó52Ó‬كم‪Ó‬وقطر‪:"16Ó‬‬ ‫إزدواج‪Ó‬خط‪Ó‬املنتجات‪Ó‬طنطا‪/‬بنها‪Ó‬بطول‪Ó52Ó‬كم‪Ó‬وقطر‪:"16Ó‬‬ ‫‪Ó Ó‬ا ‪Ó Ó‬ا‬ ‫‪215215‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫باملازوت‪.‬‬ ‫امكانية باملازوت‪.‬‬ ‫جنيه‪.‬جنيه‪.‬‬ ‫مليونمليون‬ ‫امكانية‬ ‫مب�سطرد مع‬ ‫مب�سطرد مع‬ ‫�ات ��ات‬ ‫املنتج‬ ‫املنتج �‬ ‫ا�ستالم‬ ‫ا�ستالم‬ ‫معدالت‬ ‫معدالت‬ ‫رفع رفع‬ ‫إىل اإىل‬ ‫�روع ا�روع‬ ‫ويهدفس �امل�س �‬ ‫ويهدف امل�‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫طنطا‪.‬‬ ‫طنطا‪.‬‬ ‫تكريرتكرير‬ ‫ملعململعمل‬ ‫م�سطرد‬ ‫م�سطرد‬ ‫املدفعة من‬ ‫املدفعة من‬ ‫املتكثفات‬ ‫املتكثفات‬ ‫كميات‬ ‫كميات‬ ‫�ادة��ادة‬ ‫زي � زي‬ ‫جنيه‪.‬جنيه‪.‬‬ ‫مليونمليون‬ ‫‪150150‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬

‫إن�ساء‪Ó‬خط‪Ó‬خام‪Ó‬ال�سخنة‪/‬احلفاير‪Ó‬بطول‪Ó41Ó‬كم‪Ó‬وقطر‪:"30Ó‬‬ ‫إن�ساء‪Ó‬خط‪Ó‬خام‪Ó‬ال�سخنة‪/‬احلفاير‪Ó‬بطول‪Ó41Ó‬كم‪Ó‬وقطر‪:"30Ó‬‬ ‫‪Ó Ó‬ا ‪Ó Ó‬ا‬ ‫إن�ساء"‬ ‫إن�ساء"‬ ‫"حتت اال‬ ‫"حتت اال‬ ‫�وان��وان‬ ‫جنوب حل‬ ‫جنوب حل �‬ ‫كهرباء‬ ‫كهرباء‬ ‫حمطة‬ ‫حمطة‬ ‫تغذيةتغذية‬ ‫إىل اإىل‬ ‫�روع ا�روع‬ ‫ويهدفس �امل�س �‬ ‫ويهدف امل�‬ ‫جنيه‪.‬جنيه‪.‬‬ ‫مليونمليون‬ ‫‪224224‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫باملازوت‪.‬‬ ‫باملازوت‪.‬‬

‫إن�ساء‪Ó‬خط‪�Ó‬سولر‪Ó‬ميدور‪/‬الدخيلة‪Ó‬بطول‪Ó14Ó‬كم‪Ó‬وقطر‪:"20Ó‬‬ ‫إن�ساء‪Ó‬خط‪�Ó‬سولر‪Ó‬ميدور‪/‬الدخيلة‪Ó‬بطول‪Ó14Ó‬كم‪Ó‬وقطر‪:"20Ó‬‬ ‫‪Ó Ó‬ا ‪Ó Ó‬ا‬ ‫خط خط‬ ‫بعملبعمل‬ ‫اال�سكندرية‬ ‫اال�سكندرية‬ ‫مبيناءمبيناء‬ ‫املازوت‬ ‫املازوت‬ ‫لناقالت‬ ‫لناقالت‬ ‫فراغات‬ ‫فراغات‬ ‫توفرتوفر‬ ‫امل�سروع اإىل‬ ‫امل�سروع اإىل‬ ‫ويهدف‬ ‫ويهدف‬ ‫زيادة‪�Ó‬سعات‪Ó‬التخزين‪Ó‬لل�سولر‪Ó‬والبوتاجاز‪Ó‬بال�سكندرية‪Ó‬و�سوهاج‪:‬‬ ‫زيادة‪�Ó‬سعات‪Ó‬التخزين‪Ó‬لل�سولر‪Ó‬والبوتاجاز‪Ó‬بال�سكندرية‪Ó‬و�سوهاج‪:‬‬ ‫جنيه‪.‬جنيه‪Ó Ó Ó Ó .‬‬ ‫مليونمليون‬ ‫اال�ستثمارية ‪53‬‬ ‫اال�ستثمارية ‪53‬‬ ‫تكلفتهتكلفته‬ ‫وتبلغوتبلغ‬ ‫هذا هذا‬ ‫احلاىل‪.‬‬ ‫احلاىل‪.‬‬ ‫ال�سوالر‬ ‫ال�سوالر‬ ‫خلطخلط‬ ‫احتياطى‬ ‫احتياطى‬ ‫الكفاية‬ ‫الكفاية‬ ‫وزيادة‬ ‫وزيادة‬ ‫للبوتاجاز‬ ‫للبوتاجاز‬ ‫إ�سرتاتي�يج ��ي‬ ‫إ�سرتاتيج �‬ ‫خمزون ا‬ ‫خمزون ا‬ ‫توفرتوفر‬ ‫امل�سروع اإىل‬ ‫امل�سروع اإىل‬ ‫�دف�دف‬ ‫ويه �ويه �‬ ‫خا�سة‬ ‫خا�سة‬ ‫إختناقات‬ ‫إختناقات‬ ‫حدوثااأي ا‬ ‫حدوث اأي‬ ‫وجتنب‬ ‫وجتنب‬ ‫املحلي‬ ‫املحلي‬ ‫ال�سوق‬ ‫ال�سوق‬ ‫إحتياجات‬ ‫إحتياجات‬ ‫لتلبية ا‬ ‫لتلبية ا‬ ‫أيامالأيام‬ ‫باال با‬ ‫إن�ساء‪Ó‬خط‪Ó‬منتجات‪Ó‬بني‪�Ó‬سويف‪/‬املنيا‪Ó‬بطول‪Ó145Ó‬كم‪Ó‬وقطر‪:"16Ó‬‬ ‫إن�ساء‪Ó‬خط‪Ó‬منتجات‪Ó‬بني‪�Ó‬سويف‪/‬املنيا‪Ó‬بطول‪Ó145Ó‬كم‪Ó‬وقطر‪:"16Ó‬‬ ‫‪Ó Ó‬ا ‪Ó Ó‬ا‬ ‫جنيه‪.‬جنيه‪.‬‬ ‫مليونمليون‬ ‫‪146146‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫الذروة ‪.‬‬ ‫الذروة ‪.‬‬ ‫أوقاتأوقات‬ ‫البرتولية اإىل يف ا يف ا‬ ‫البرتولية اإىل‬ ‫�ات ��ات‬ ‫املنتج‬ ‫املنتج �‬ ‫تو�سيل‬ ‫تو�سيل‬ ‫ا�ستمراري ��ة‬ ‫ا�ستمراري ��ة‬ ‫�سمان‬ ‫�سمان‬ ‫�روع اإىل‬ ‫�روع اإىل‬ ‫�دفس �امل�س �‬ ‫�دف امل�‬ ‫ويه �ويه �‬

‫وتبلغوتبلغ‬ ‫الالزم‪�.‬ذاه ��ذا‬ ‫الالزم‪ .‬ه �‬ ‫بالوقود‬ ‫بالوقود‬ ‫�اءب ��اء‬ ‫الكهر‬ ‫الكهرب �‬ ‫�ات ��ات‬ ‫وتغذيةط �حمط‬ ‫وتغذية حم‬ ‫ال�سعي ��د‬ ‫ال�سعي ��د‬ ‫منطق ��ة‬ ‫منطق ��ة‬ ‫إن�ساء‪Ó‬عدد‪�Ó6Ó‬سهاريج‪�Ó‬سولر‪Ó‬وبوتاجاز‪:‬‬ ‫إن�ساء‪Ó‬عدد‪�Ó6Ó‬سهاريج‪�Ó‬سولر‪Ó‬وبوتاجاز‪:‬‬ ‫‪Ó Ó‬ا ‪Ó Ó‬ا‬ ‫جنيه‪.‬جنيه‪.‬‬ ‫مليونمليون‬ ‫‪405405‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫�وردة�وردة‬ ‫امل�ست �امل�ست �‬ ‫�ات ��ات‬ ‫للمنتج‬ ‫للمنتج �‬ ‫تخزي ��ن‬ ‫تخزي ��ن‬ ‫�سهاري ��ج‬ ‫�سهاري ��ج‬ ‫�اءس �‪�6‬اء ‪6‬‬ ‫�روع اإن�إىلس �اإن�‬ ‫�روع اإىل‬ ‫�دفس �امل�س �‬ ‫�دف امل�‬ ‫ويه �ويه �‬ ‫للمنتجات‬ ‫للمنتجات‬ ‫التخزينية‬ ‫التخزينية‬ ‫ال�سعات‬ ‫ال�سعات‬ ‫�ادة��ادة‬ ‫بهدف زي‬ ‫بهدف زي �‬ ‫مرت‪3‬مرت‪3‬‬ ‫ألفاألف‬ ‫‪ 250‬ا‪250‬‬ ‫�سعة�سعة‬ ‫�اىل��اىل‬ ‫باإج بما�إجم‬ ‫إن�ساء‪Ó‬خط‪Ó‬مازوت‪Ó‬ال�سخنة‪/‬التبني‪Ó‬بطول‪Ó110Ó‬كم‪Ó‬وقطر‪:"24Ó‬‬ ‫إن�ساء‪Ó‬خط‪Ó‬مازوت‪Ó‬ال�سخنة‪/‬التبني‪Ó‬بطول‪Ó110Ó‬كم‪Ó‬وقطر‪:"24Ó‬‬ ‫‪Ó Ó‬ا ‪Ó Ó‬ا‬ ‫املحلي‬ ‫املحلي‬ ‫ال�سوق‬ ‫ال�سوق‬ ‫إحتياجات‬ ‫إحتياجات‬ ‫ل�سد ال�سد ا‬ ‫�سمان ��ا‬ ‫�سمان ��ا‬ ‫بوتاجاز)‬ ‫بوتاجاز)‬ ‫(�سوالر ‪/‬‬ ‫(�سوالر ‪/‬‬ ‫إ�ستراتيجي ��ة‬ ‫إ�ستراتيجي ��ة‬ ‫بكميةبكمية اال اال‬ ‫باملازوت‬ ‫باملازوت‬ ‫�وان��وان‬ ‫جنوب حل‬ ‫جنوب حل �‬ ‫كهرباء‬ ‫كهرباء‬ ‫تغذيةط �حم�ةط ��ة‬ ‫تغذية حم‬ ‫امل�سروع اإىل‬ ‫امل�سروع اإىل‬ ‫�دف�دف‬ ‫ويه �ويه �‬ ‫مليونمليون‬ ‫‪300300‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفت ��ه‬ ‫تكلفت ��ه‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫إختناقات ‪.‬‬ ‫إختناقات ‪.‬‬ ‫�دوثااأي ا‬ ‫�دوث اأي‬ ‫�اليف ح �‬ ‫�اليف ح �‬ ‫بنى بنى وت � وت �‬ ‫ال�سعيد "‬ ‫ال�سعيد "‬ ‫ملحافظات ��س�الم ��ال‬ ‫ملحافظات �سم‬ ‫�سوالر�سوالر‬ ‫وت�سليم‬ ‫وت�سليم‬ ‫يوم ‪،‬يومونق‪�� ،‬لونق ��ل‬ ‫‪�9000‬نط �‪�/‬ن ‪/‬‬ ‫‪ 9000‬ط �‬ ‫جنيه)‪.‬‬ ‫جنيه)‪.‬‬ ‫مليارمليار‬ ‫‪2.12.1‬‬ ‫دوالر (‬ ‫دوالر (‬ ‫جنيه‪.‬جنيه‪.‬‬ ‫مليارمليار‬ ‫‪1.21.2‬‬ ‫اال�ستثمارية‬ ‫اال�ستثمارية‬ ‫تكلفته‬ ‫تكلفته‬ ‫وتبلغوتبلغ‬ ‫هذاهذا‬ ‫واملنيا‪.‬‬ ‫واملنيا‪.‬‬ ‫والفيوم‬ ‫والفيوم‬ ‫�سويف‬ ‫�سويف‬ ‫‪20152015 8 8‬‬ ‫‪Petroleum‬‬ ‫‪Petroleum‬‬ ‫‪Today‬‬ ‫‪Today‬‬ ‫‪- June‬‬ ‫‪- June‬‬


‫اأهـم امل�شـروعات البرتوليـة اجلـاري تنفيـذها‬

‫اأو ًل‪Ó‬م�سروعات‪Ó‬التكرير‪Ó‬والت�سنيع‪:‬‬ ‫‪Ó Ó‬اإن�ساء‪Ó‬جممع‪Ó‬جديد‪Ó‬للتك�سري‪Ó‬الهيدروجيني‪Ó‬للمازوت‪Ó‬مب�سطرد‪:‬‬ ‫ويه ��دف امل�س ��روع اإىل اإن�س ��اء جممع للتك�س ��ر الهيدروجيني للم ��ازوت النتاج‬ ‫منتجات عالية اجلودة يحتاجها ال�سوق املحلي ب�سعر تناف�سي متميز بديال من‬ ‫االإ�ست ��راد ‪ ،‬بطاقة تغذية حوايل ‪ 4.7‬مليون ط ��ن ‪/‬ال�سنه مازوت‪ .‬هذا وتبلغ‬ ‫تكلفته اال�ستثمارية ‪ 3.7‬مليار دوالر‪.‬‬ ‫‪Ó Ó‬اإن�ساء‪Ó‬وحدة‪Ó‬اإ�سالح‪Ó‬النافتا‪Ó‬بالعامل‪Ó‬امل�ساعد‪ÓCCRÓ‬ب�سركة‪Ó‬انربك‪:‬‬ ‫ويه ��دف امل�س ��روع اإىل اإن�س ��اء وح ��دة اإ�سافية لتح�س ��ن النافتا بطاق ��ة تغذية‬ ‫‪ 604‬األ ��ف طن‪�/‬سن ��ة وذلك لتوافر كمية كبرة من النافت ��ا الثقيلة وهى املادة‬ ‫االأ�سا�سي ��ة الإنت ��اج اجلازولن عاىل االأوكت ��ان ‪ ،‬بهدف رفع الطاق ��ة االإنتاجية‬ ‫لوح ��دة االأزمرة اإىل ‪ %100‬بد ًال من ‪ ، %75‬وك ��ذا رفع الطاقة االإنتاجية لوحدة‬ ‫اإ�سرتج ��اع الغ ��ازات اإىل ‪ %100‬بد ًال من ‪ %65‬وبالتاىل زي ��ادة اإنتاج البوتاجاز‪.‬‬ ‫هذا وتبلغ تكلفته اال�ستثمارية ‪ 280‬مليون دوالر‪.‬‬ ‫‪Ó Ó‬اإن�س��اء‪Ó‬وح��دة‪Ó‬اإ�س��الح‪Ó‬النافت��ا‪Ó‬بالعام��ل‪Ó‬امل�ساع��د‪ÓCCRÓ‬والأزم��رة‪Ó‬‬ ‫باأ�سيوط‪:‬‬ ‫ويه ��دف امل�س ��روع اإىل تطوير وحت�س ��ن االداء االقت�سادي ملعم ��ل ا�سيوط من‬ ‫خ ��الل اإن�ساء م�سروع اإ�سالح النافت ��ا بالعامل امل�ساعد ‪ CCR‬واالأزمرة بطاقة‬ ‫تغذي ��ة ‪ 660‬ال ��ف طن‪/‬ال�سنة من النافتا الإنتاج بنزين عايل االوكتن ‪ ،‬لتوفر‬ ‫احتياج ��ات منطقة الوجه القبلي بد ًال من ا�ستراده ونقله ملناطق ال�سعيد من‬ ‫املعام ��ل الواقع ��ة بالقاهرة واال�سكندرية وال�سوي�س مم ��ا يوفر يف تكلفة النقل‪.‬‬ ‫هذا وتبلغ تكلفته اال�ستثمارية ‪ 250‬مليون دوالر‪.‬‬ ‫‪Ó Ó‬اإن�ساء‪Ó‬وحدة‪Ó‬ل�سرتجاع‪Ó‬الغازات‪ÓVRUÓ‬باأ�سيوط‪:‬‬ ‫ويه ��دف امل�س ��روع اإىل اإن�ساء وحدة جدي ��دة الإ�سرتجاع الغ ��ازات بطاقة تغذية‬ ‫‪ 400‬األ ��ف ط ��ن ‪�/‬سنة نافتا خفيف ��ة بهدف اإزالة االإختناق ��ات وت�سغيل وحدتي‬

‫التقطر القائمتن حالي ًا بكامل طاقتهما الت�سميمية حوايل ‪ 4.5‬مليون طن‪/‬‬ ‫�سن ��ة وذل ��ك ل�سد اإحتياج ��ات منطقة جنوب ال ��وادي من املنتج ��ات البرتولية‬ ‫(البوتاجاز ‪ ،‬النافتا)‪ .‬هذا وتبلغ تكلفته اال�ستثمارية ‪ 21‬مليون دوالر‪.‬‬ ‫‪Ó Ó‬اإعادة‪Ó‬تاأهيل‪Ó‬جممع‪Ó‬التفحيم‪Ó‬احلايل‪Ó‬بال�سوي�س‪:‬‬ ‫ويهدف امل�سروع اإىل الو�سول اإىل طاقة التغذية الت�سميمية للمجمع والتى تبلغ‬ ‫ح��واىل ‪ 1.7‬مليون طن ‪� /‬سنة م� ��ازوت الإنتاج ( بوتاجاز ‪ /‬نافتا ‪ /‬كرو�سن ‪/‬‬ ‫�سوالر ) وذلك لتوفر اإحتياجات ال�سوق املحلى من املنتجات البرتولية خا�سة‬ ‫يف منطقتي القناة وال�سعيد‪ .‬هذا وتبلغ تكلفته اال�ستثمارية ‪ 300‬مليون دوالر‪.‬‬ ‫‪Ó Ó‬اإن�ساء‪Ó‬وحدة‪Ó‬ل�سرتجاع‪Ó‬الغازات‪ÓVRUÓ‬بال�سوي�س‪:‬‬ ‫ويه ��دف امل�س ��روع اإىل اإن�ساء وحدة جدي ��دة الإ�سرتجاع الغ ��ازات بطاقة تغذية‬ ‫‪ 200‬األ ��ف ط ��ن ‪�/‬سنة نافتا خفيفة بهدف زيادة ق ��درة املعمل علي التعامل مع‬ ‫الغ ��ازات اخلفيفة املنتجة من وح ��دات التقطر وجممع التفحي ��م‪ .‬هذا وتبلغ‬ ‫تكلفته اال�ستثمارية ‪ 36.5‬مليون دوالر‪.‬‬ ‫‪Ó Ó‬اإن�ساء‪Ó‬وحدة‪Ó‬لإنتاج‪Ó‬الأ�سفلت‪Ó70/60Ó‬بال�سوي�س‪:‬‬ ‫ويه ��دف امل�س ��روع اإىل اإن�ساء وحدة اإنت ��اج االأ�سفل ��ت ‪ 70/60‬لتلبية احتياجات‬ ‫ال�س ��وق املحلي املتزاي ��دة من اال�سفلت بطاقة تغذي ��ة ‪ 660‬األف طن �سنويا من‬ ‫امل ��ازوت لتغطية احتياجات مناطق القناه و�سيناء وال�سعيد‪ .‬هذا وتبلغ تكلفته‬ ‫اال�ستثمارية ‪ 50‬مليون دوالر‪.‬‬ ‫‪Ó Ó‬تو�سعات‪Ó‬معمل‪Ó‬تكرير‪Ó‬ميدور‪:‬‬ ‫ويه ��دف امل�سروع اإىل زيادة طاقة تكرير املعمل من ‪ 100‬األف برميل‪ /‬اليوم‬ ‫اإىل ‪ 160‬األ ��ف برمي ��ل‪ /‬الي ��وم ‪ ،‬تعظيم العائ ��د من املقط ��رات الو�سطي ‪،‬‬ ‫تعظيم اال�ستفادة من املرافق القائمة‪ .‬هذا وتبلغ تكلفته اال�ستثمارية ‪1.37‬‬ ‫مليار دوالر‪.‬‬ ‫‪- June 2015‬‬

‫‪Petroleum Today‬‬

‫‪7‬‬


‫اإنتاج النفط االأمريكي عند اأعلى م�ستوياته فى ‪ً 43‬‬ ‫عاما‬ ‫ارتف ��ع االإنت ��اج االأمريكي من اخل ��ام اإىل اأعلى م�ضتويات ��ه يف ‪ 43‬عام ًا على‬ ‫الرغم من انخفا�ش عدد من�ضات التنقيب باأكرث من ‪ %50‬يف البالد‪.‬‬ ‫واأعلن ��ت وزارة الطاقة االأمريكية ارتفاع االإنت ��اج اإىل ‪ 9.566‬مليون برميل‬ ‫يومي ًا‪ ،‬وه ��و االأعلى منذ مايو عام ‪ ،1972‬ليتخطى ذروته يف مار�ش املا�ضي‬ ‫عند ‪ 9.422‬مليون برميل يومي ًا‪.‬‬ ‫ورغ ��م ذل ��ك‪ ،‬يرى حملل ��ون اأن انخفا�ش اأ�ضعار النفط �ض ��وف ي�ضغط على‬ ‫ال�ض ��ركات املنتج ��ة للنفط ال�ضخ ��ري االأمريك ��ي و�ضيت�ضب ��ب يف انخفا�ش‬ ‫االإنتاج‪ ،‬وهو ما مل يحدث حتى االآن‪.‬‬

‫‪ 3.8‬مليار دوالر ا�ستثمارات م�سروعات برتوكيماوية جديدة جارى تنفيذها‬

‫وزير الطاقة الرو�سي‪ :‬مو�سكو ال‬ ‫تخطط ال�سترياد النفط االإيراين‬ ‫قل ��ت وكاالت اأنب ��اء رو�ضية عن وزير الطاق ��ة األك�ضندر‬ ‫نوف ��اك قول ��ه اإن مو�ضكو ال تخط ��ط ال�ضتراد نفط من‬ ‫اإي ��ران واإن النف ��ط االإي ��راين ل ��ن ي�ضتخ ��دم يف تنفيذ‬ ‫عمليات مقاي�ضة ت�ضارك فيها �ضركات رو�ضية‪.‬‬ ‫غ ��ر اأن نوفاك ق ��ال اإن التجار الرو�ش ق ��د ي�ضاعدون‬ ‫اإيران على بي ��ع نفطها يف االأ�ضواق العاملي ��ة واإن اإيران‬ ‫قد تنفق االأموال العائدة من مبيعات النفط على �ضراء‬ ‫�ضلع رو�ضية‪.‬‬ ‫ونقل ��ت وكال ��ة انرتفاك� ��ش لالأنب ��اء ع ��ن نوف ��اك قوله‬ ‫لل�ضحفي ��ني "نح ��ن اأنف�ضن ��ا بل ��د منتج‪ .‬ول ��ن ن�ضرتي‬ ‫نفطهم‪".‬‬ ‫واأ�ض ��اف "يف اإطار مذكرة تفاهمن ��ا بخ�ضو�ش تو�ضيع‬ ‫التع ��اون التجاري واالقت�ض ��ادي �ضتبيع اإيران نفطا لنا‬ ‫و�ضتنف ��ق االأموال على �ضراء �ضلع من رو�ضيا‪� .‬ضي�ضاعد‬ ‫جتارنا اإن اأمكن على اإيجاد م�ضرت"‪.‬‬ ‫‪6‬‬

‫‪June 2015‬‬

‫‪-‬‬

‫‪Petroleum Today‬‬

‫تلقى وزير البرتول تقريرا من املهند�ش حممد �ضعفان رئي�ش ال�ضركة امل�ضرية القاب�ضة للبرتوكيماويات يتعلق‬ ‫بامل�ضروعات اجلديدة ل�ضناعة البرتوكيماويات اأو�ضح التقرير اأن قطاع البرتول مي�ضى قدم ًا فى تنفيذ حزمة‬ ‫من امل�ضروعات باجماىل ا�ضتثمارات يقدر بحواىل ‪4‬ر‪ 9‬مليار دوالر بخالف امل�ضروعات التى مت االنتهاء منها ‪،‬‬ ‫م�ضرا اأن هناك م�ضروعات جارى اال�ضراع بتنفيذها حاليا لتدخل حيز االإنتاج والت�ضغيل قبل نهاية هذا العام‬ ‫باإجماىل ا�ضتثمارات ‪8‬ر‪ 3‬مليار دوالر وت�ضمل م�ضروع جممع انتاج االإيثيلني وم�ضتقاته باالأ�ضكندرية ل�ضركة ايثيدكو‬ ‫با�ضتثمارات‪9‬ر‪ 1‬مليار دوالر وميثل اأكرب م�ضروع ل�ضناعة البرتوكيماويات فى م�ضر ويبداأ االإنتاج قبل نهاية هذا‬ ‫العام بطاقة تقدر بحواىل‪ 460‬الف طن ايثيلني و ‪ 400‬الف طن بوىل ايثيلني و ‪ 26‬الف طن م�ضتقات بيوتادين‬ ‫‪ ،‬واأ�ضاف اأن م�ضروع تو�ضعات �ضركة موبكو الإنتاج اليوريا واالأمونيا بدمياط يعد واحد ًا من م�ضروعات االأ�ضمدة‬ ‫الكربى فى م�ضر وال�ضرق االأو�ضط والبالغ ا�ضتثماراته حواىل ‪9‬ر‪ 1‬مليار دوالر الإنتاج نحو ‪4‬ر‪ 1‬مليون طن يوريا‬ ‫و ‪ 792‬الف طن امونيا �ضنويا للم�ضاهمة فى توفر جانب من احتياجات ال�ضوق املحلى من االأ�ضمدة الزراعية‬ ‫و�ضيبداأ امل�ضروع الت�ضغيل خالل الربع الثالث من هذا العام ‪.‬‬ ‫وا�ضار التقرير اإىل اأنه جارى حاليا االإعداد للبدء فى تنفيذ جمموعة من امل�ضروعات اجلديدة باجماىل ا�ضتثمارات‬ ‫‪6‬ر‪ 5‬مليار دوالر والتى مت طرح بع�ضها خالل موؤمتر دعم وتنمية االقت�ضاد امل�ضرى ب�ضرم ال�ضيخ وت�ضمل م�ضروع‬ ‫انتاج الوقود احليوى من ق�ش االأرز ‪ ،‬وم�ضروع اإنتاج االإيثانول احليوى من املوال�ش ‪ ،‬وم�ضروع انتاج الربوبيلني‬ ‫وم�ضتقاته ‪ ،‬وم�ضروع جممع اإنتاج العطريات واالأ�ضمدة ‪ ،‬وم�ضروع انتاج الفورمالدهيد وم�ضتقاته الإنتاج اخلامات‬ ‫امل�ضتخدمة فى �ضناعة املواد الال�ضقة ومواد الطالء ‪ ،‬وم�ضروع اإنتاج ال�ضترين باالأ�ضكندرية والذى يوفر املادة‬ ‫اخلام مل�ضروع اإنتاج البوىل �ضترين الذى يدخل فى ت�ضنيع مواد التعبئة والتغليف وم�ضتلزمات �ضناعة ال�ضيارات‬ ‫والبناء والت�ضييد ومواد العزل وامل�ضتلزمات الطبية ‪.‬‬


‫ال�سعودية ت�سدر ‪ 1.2‬مليار برميل نفط بقيمة ‪ 247‬مليار ريال‪ ..‬خالل خم�سة اأ�سهر‬ ‫�ضدرت اململكة نحو ‪ 1.2‬مليار برميل نفط خالل اخلم�ضة اأ�ضهر االأوىل من ‪ 2015‬بقيمة ‪ 247‬مليار‬ ‫ريال‪ ،‬وهذة القيمة ال�ضعرية تعترب اأقل من القيمة ال�ضعرية خالل نف�ش الفرتة من العام املا�ضي‬ ‫بن�ضبة ‪.%48‬‬ ‫وبلغ اال�ضتهالك املحلي خالل اخلم�ضة اأ�ضهر االأوىل من ‪ ،2015‬ما يقارب ‪ 347‬مليون برميل‪ ،‬وبن�ضبة‬ ‫‪ %23‬من اإجمايل االإنتاج يف نف�ش الفرتة‪.‬‬ ‫ونقلت �ضحيفة الريا�ش ال�ضعودية عن امل�ضت�ضار االقت�ضادي املتخ�ض�ش بقطاع النفط والطاقة‬ ‫الدكتور فهد بن جمعة‪ ،‬اإن اململكة �ضدرت نحو ‪ 1.2‬مليار برميل نفط خالل اخلم�ضة �ضهور االأوىل من‬ ‫العام احلايل ‪ 2015‬بقيمة ‪ 247‬مليار ريال‪ ،‬م�ضرا باأن اال�ضتهالك املحلي خالل نف�ش الفرتة‪ ،‬قارب‬ ‫‪ 347‬مليون برميل‪ ،‬وبن�ضبة ‪ %23‬من اإجمايل االإنتاج‪.‬‬

‫ليبيا تتوقع و�سول اإنتاج النفط اإىل مليون برميل يوميا بعد اأغ�سط�س‬ ‫قال رئي�ش املوؤ�ض�ضة الوطنية للنفط الليبية اإن اإنتاج ليبيا من النفط �ضي�ضل اإىل حوايل مليون‬ ‫برميل يوميا يف غ�ضون �ضهر من رفع حالة القوة القاهرة على ال�ضادرات بحلول اأغ�ضط�ش‪.‬‬ ‫واأعلنت املوؤ�ض�ضة الوطنية للنفط حالة القوة القاهرة على �ضحنات من راأ�ش النوف وميناء ال�ضدر‬ ‫املجاور يف دي�ضمرب عندما اندلعت ا�ضتباكات يف املنطقة بني ق��وات موالية للحكومة الليبية‬ ‫املعرتف بها دوليا وقوات موالية حلكومة اأخرى موازية‪ .‬وقال رئي�ش املوؤ�ض�ضة املربوك بو�ضيف‬ ‫اأي�ضا اإن اإنتاج ليبيا احلايل يرتاوح بني ‪ 400‬األف و‪ 500‬األف برميل يوميا‪ .‬ويقدر عبد الرحمن‬ ‫الطاهر نائب رئي�ش الوزراء ورئي�ش وفد ليبيا يف اأوبك االإنتاج احلايل مبا يرتاوح بني ‪ 500‬و‪600‬‬ ‫األف برميل يوميا‪ .‬وكانت ليبيا تنتج نحو ‪ 1.6‬مليون يوميا من النفط اخلام قبل احلرب التي‬ ‫دعمها حلف �ضمال االأطل�ضي واأطاحت بنظام معمر القذايف يف عام ‪.2011‬‬

‫"دانة غاز" تبا�سر حفر اأول بئر اأفقية لها يف "دلتا النيل"‬ ‫اعلن ��ت �ضركة دان ��ة غاز اأنها با�ض ��رت عملية‬ ‫حف ��ر بئر "بل�ضم ‪ "2-‬يف اإطار رخ�ضة تطوير‬ ‫"حقل بل�ضم" يف منطقة االمتياز الربية بدلتا‬ ‫النيل‪.‬‬ ‫وتتم عملية حفر بئ ��ر "بل�ضم ‪ "2-‬با�ضتخدام‬ ‫جهاز احلف ��ر رقم ‪ 48‬بق ��وة ‪ 2،000‬ح�ضان‪،‬‬ ‫التابع ل�ضرك ��ة "احلفر امل�ضرية"‪ ،‬وت�ضتهدف‬ ‫املكام ��ن يف منطق ��ة "القوا�ض ��م" عل ��ى عمق ‪ 3،200‬مرت‪ ،‬حي ��ث يتم بداية حف ��ر الثغ ��رة االأول ّية املائلة‬ ‫واملبط ّن ��ة بالكام ��ل‪ ،‬ومن ثم تبداأ مرحلة احلف ��ر االأفقي مل�ضافة ‪ 700‬مرت‪ .‬و�ضتكون ه ��ذه اأول بئر اأفقية‬ ‫لدانة غاز‪ ،‬واإحدى االآبار االأفقية الرب ّية القليلة جد ًا التي مت حفرها يف دلتا النيل حتى االآن‪ .‬ومن املتوقع‬ ‫اأن ي�ضتغرق حفر البئر االأفقية واإجنازها بالكامل‪ ،‬نحو اأربعة اأ�ضهر‪.‬‬ ‫ويعت ��رب "بل�ض ��م‪ ،"2 -‬اأول بئ ��ر �ضمن خطة ت�ضمل حف ��ر ‪ 30‬بئر ًا جديدة وتن�ضيط ع ��دد كبر من االآبار‬ ‫احلالي ��ة‪ ،‬خالل ال�ضنوات الث ��الث القادمة‪ ،‬وذلك عم ًال باتفاقية زيادة اإنتاج الغاز التي وقعتها ال�ضركة‬ ‫م ��ع احلكومة امل�ضري ��ة‪ ،‬والتي تتيح لدانة غاز بيع كمية الغاز الناجتة عن االتفاقية من ح�ضة احلكومة‬ ‫امل�ضري ��ة من اإنتاج املكثفات باأ�ضعار ال�ض ��وق العاملية‪ .‬ومن �ضاأن هذه االتفاقية اأن ت�ضهم ب�ضكل فاعل يف‬ ‫�ضداد امل�ضتحقات املتاأخرة لل�ضركة لدى احلكومة امل�ضرية بحلول نهاية العام ‪ ،2018‬يف حال عدم قيام‬ ‫احلكومة امل�ضرية باالإعالن عن اأية دفعات لقطاع النفط والغاز‬

‫الكويت‪ :‬اختيار ‪� 12‬سركة مل�سروع‬ ‫ا�سترياد الغاز مبنطقة الزور‬

‫تعتزم �ضركة البرتول الوطنية طرح مناق�ضة م�ضروع‬ ‫اإن�ضاء وتنفيذ مرفاأ ا�ضتراد الغاز احلر املزمع تنفيذه‬ ‫يف م�ضفاة الزور بقيمة ‪ 800‬مليون دينار‪ ،‬فقد فتحت‬ ‫ال�ضركة باب التقدم للمناق�ضة ابتداء من نهاية مايو‬ ‫وحتى ‪� 29‬ضبتمرب املقبل بكفالة اأولية قدرها ‪10‬‬ ‫ماليني دينار‪ .‬ونقال عن م�ضادر " جلريدة ال�ضيا�ضة‬ ‫الكويتية " ان �ضركة البرتول الوطنية اختارت ‪12‬‬ ‫�ضركة موؤهلة لتوريد وت�ضغيل وهند�ضة م�ضروع بناء‬ ‫م��راف��ق ا��ض�ت��راد ال�غ��از امل�ضال امل��زم��ع تنفيذه يف‬ ‫م�ضفاة الزور‪ ،‬م�ضرة اىل ان االإعالن حدد ‪ 30‬يوليو‬ ‫املقبل لتقدمي اأية ا�ضتف�ضارات عن املناق�ضة و�ضيكون‬ ‫ه�ن��اك اجتماع متهيدي للموؤهلني م��ن ال�ضركات‬ ‫يف ‪ 27‬يوليو من العام احل��ايل‪ .‬وقالت امل�ضادر اأن‬ ‫البرتول الوطنية اختارت ‪� 12‬ضركة كويتية كوكالء‬ ‫لل�ضركات العاملية املقرر ان تقوم بتنفيذ للم�ضروع‬ ‫وهي �ضركات‪ ،‬املجموعة امل�ضتقلة‪ ،‬الطاقة املتحدة‬ ‫للخدمات‪ ،‬الزهرة الهند�ضية‪ ،‬العجران للمقاوالت‪،‬‬ ‫امل�ضتهلك التجارية‪ ،‬خف للتجارة العامة واملقاوالت‪،‬‬ ‫الثويني التجارية‪ ،‬فوؤاد حممد ثنيان الغامن‪ ،‬مركز‬ ‫العمر للتجارة‪ ،‬كنار للتجارة العامة وامل�ق��اوالت‪،‬‬ ‫�ضايبم و�ضركة نوف للتجارة العامة واملقاوالت‪.‬‬ ‫‪- June 2015‬‬

‫‪Petroleum Today‬‬

‫‪5‬‬


‫بي‪.‬بي تقول انها زادت ح�ستها يف م�سروع للغاز يف م�سر ايل اكرث من ‪ 80‬باملئة‬ ‫زاد عم ��الق الطاق ��ة الربيطاين بي بي ح�ضته يف م�ضروع غرب الدلت ��ا يف م�ضر البالغ قيمته ‪ 12‬مليار دوالر‬ ‫ايل اأكرث من ‪ 80‬باملئة بعد �ضراء ح�ضة من جمموعة دي اإي اإيه للطاقة اململوكة للملياردير الرو�ضي ميخائيل‬ ‫فريدمان‪.‬‬ ‫وقالت دي اإي اإيه التي مقرها املانيا انها باعت ن�ضف ح�ضتها تقريبا يف احلقل ومتلك االن ح�ضة قدرها ‪17.25‬‬ ‫باملئة يف اتفاق االمتياز لتطوير خم�ضة تريليونات قدم مكعبة من موارد الغاز و‪ 55‬مليون برميل من املكثفات‪.‬‬ ‫وم ��ن املخط ��ط ان يبداأ م�ضروع غرب الدلتا االنتاج يف ‪ 2017‬وان ينتج ‪ 1.2‬مليار قدم مكعبة يوميا اأو حوايل‬ ‫ربع انتاج م�ضر احلايل من الغاز‪.‬‬ ‫ومتل ��ك دي اإي اإي ��ه اي�ضا ح�ضة اقلية يف امتيازي �ضمال اال�ضكندرية واملياه العميقة يف غرب البحر املتو�ضط‬ ‫مع بي بي‪.‬‬

‫هيئة البرتول‪ 3.5 :‬مليار دوالر م�ستحقات ال�سركاء االأجانب‬

‫اأعلن املهند�ش حممد طاهر ‪،‬نائب رئي�ش هيئة البرتول للم�ضروعات‪ ،‬اأن م�ضتحقات ال�ضركاء االأجانب‬ ‫تبلغ ‪ 3.5‬مليار دوالر يف الوقت احلايل مقابل ‪ 6.5‬مليار ًا حتى ‪ 30‬يونيو العام املا�ضي‪.‬‬ ‫واأ�ضاف طاهر خالل م�ضاركته مبوؤمتر الطاقة وم�ضتقبل اال�ضتثمار يف م�ضر الذي تنظمه موؤ�ض�ضة بيزن�ش‬ ‫نيوز‪،‬اأن احلكومة امل�ضرية جتري مفاو�ضات ل�ضداد باقي م�ضتحقات ال�ضركاء االأجانب باجلنيه امل�ضري‬ ‫وتابع ‪ :‬الهيئة تقوم بالتوازي مع �ضداد امل�ضتحقات باالإ�ضراع يف توقيع عقود التنمية والتفاو�ش حول �ضعر‬ ‫الغاز مع بع�ش ال�ضركاء وا�ضتعادة ال�ضركاء مرة اأخرى الأن عمليات البحث واال�ضتك�ضاف للبرتول تكون‬ ‫عالية التكلفة وحتتاج للكثر من التكاليف لالنتهاء منها ‪.‬‬ ‫او�ضح طاهر اأن الهيئة بداأت خطتها لتطوير القطاع من خالل �ضداد م�ضتحقات ال�ضركاء االأجانب مما‬ ‫يوفر عائد اال�ضتثمار للم�ضتثمر مع ا�ضتعادة ما اأنفقه‪.‬‬

‫اأذربيجان تخطط الإنتاج ‪ 40.7‬مليون طن‬ ‫نفط و‪ 30.2‬مليار مرت مكعب غاز يف ‪2015‬‬ ‫قال م�ضوؤول كبر يف �ضركة �ضوكار احلكومية للطاقة يف‬ ‫اأذربيج ��ان اإن البالد تخط ��ط الإنتاج ‪ 40.7‬مليون طن‬ ‫من النفط و‪ 30.2‬مليار مرت مكعب من الغاز الطبيعي‬ ‫يف ‪.2015‬‬ ‫وانتج ��ت الب ��الد يف الع ��ام املا�ض ��ي ‪ 41.9‬مليون طن‬ ‫من النف ��ط و‪ 29.6‬مليار مرت مكعب من الغاز‪ .‬وكانت‬ ‫التوقع ��ات ال�ضابقة للعام احلايل ‪ 40.3‬مليون طن من‬ ‫النفط و‪ 29‬مليار مرت مكعب من الغاز‪.‬‬ ‫وق ��ال رحمن قربانوف نائب رئي� ��ش اإنتاج ونقل النفط‬ ‫والغاز بال�ضركة يف موؤمتر النفط والغاز يف بحر قزوين‬ ‫لع ��ام ‪ 2015‬يف العا�ضم ��ة باكو اإن �ض ��وكار تعتزم اإنتاج‬ ‫‪ 8.3‬ملي ��ون طن من النف ��ط يف ‪ 2015‬وهو نف�ش اإنتاج‬ ‫‪ 2014‬و‪ 6.5‬ملي ��ار مرت مكعب من الغاز انخفا�ضا من‬ ‫‪ 7.2‬مليار مرت مكعب العام املا�ضي‪.‬‬ ‫واأ�ض ��اف اأن ‪ 6.5‬ملي ��ون ط ��ن نفط من اإنت ��اج �ضوكار‬ ‫�ضيجري تكريرها بينما �ضيتم ت�ضدير ‪ 1.7‬مليون طن‬ ‫واأن ‪ 4.85‬مليار مرت مكعب من الغاز �ضت�ضتهلك حمليا‬ ‫بينما يتم ت�ضدير ‪ 1.2‬مليار مرت مكعب‪.‬‬ ‫‪4‬‬

‫‪June 2015‬‬

‫‪-‬‬

‫‪Petroleum Today‬‬

‫" �سوكو " ت�سعى لزيادة اإنتاجها من الغاز يف د�سوق اإىل ‪ 200‬مليون قدم مكعبة يوميا‬ ‫قال حممد بي�ضون رئي�ش جمل�ش اإدارة �ضركة ال�ضوي�ش‬ ‫للزيت "�ضوكو" اإن �ضركته تعمل بقوة للتو�ضع يف اإنتاج‬ ‫الغاز الطبيعي من حقول د�ضوق املكت�ضفة يف ‪2011‬‬ ‫لت�ضل اإىل ‪ 200‬مليون قدم مكعبة يوميا يف الربع االأول‬ ‫من ‪ .2016-2015‬وي�ضل اإنتاج ال�ضركة حاليا من‬ ‫الغاز يف احلقول الربية يف د�ضوق اإىل ‪ 130‬مليون قدم‬ ‫مكعبة يوميا باال�ضافة اإىل ‪ 40‬مليون قدم مكعبة يوميا‬ ‫من حقول ال�ضركة بال�ضوي�ش‪ .‬ومتلك �ضوكو حمطتني‬ ‫ملعاجلة الغاز يف د�ضوق‪ .‬واأ�ضاف بي�ضون "ال�ضريك‬ ‫االأجنبي اأنفق حتى االآن ‪ 270‬مليون دوالر و�ضينفق اأي�ضا حوايل ‪ 500‬مليون دوالر حتى نهاية تنمية امل�ضروع‬ ‫بالكامل عام ‪ ".2030‬وقال بي�ضون الذي بداأت �ضركته االإنتاج يف د�ضوق قبل اأن تنتهي حتى االآن من اإن�ضاء‬ ‫املباين االإدارية اخلا�ضة باملوقع اإن "تعديل االتفاقية ين�ش على اأن يكون �ضعر الغاز الطبيعي الأول ‪ 100‬مليون‬ ‫قدم مكعبة من الغاز امل�ضتخرج بنحو ‪ 2.5‬دوالر لكل مليون وحدة حرارية واأن يكون اأي انتاج اأعلى من ‪100‬‬ ‫مليون قدم مكعبة ب�ضعر ‪ 3.5‬دوالر لكل مليون وحدة حرارية‪".‬‬ ‫وتنفق �ضركة اآر‪.‬دبليو‪.‬اإي ديا االأملانية نحو ‪ 200‬مليون دوالر �ضنويا لزيادة اإنتاج �ضوكو من الغاز الطبيعي‬ ‫والزيت اخلام‪.‬‬ ‫واأ�ضاف بي�ضون اأن �ضركته حفرت حتى االآن "‪ 25‬بئرا يف د�ضوق منذ بداية التنمية وحفرت خالل ال�ضنة املالية‬ ‫احلالية ‪ 2015-2014‬نحو ‪ 9‬اآبار منها ‪ 5‬اآبار ا�ضتك�ضافية و‪ 4‬اآبار تنموية‪ .‬جميع االآبار وجدنا بها غازا احلمد‬ ‫هلل‪ ..‬نتوقع حفر ‪ 10‬اآبار جديدة خالل العامني القادمني يف د�ضوق‪".‬‬


‫"بدر الدين للبرتول ت�ستثمر ‪ 380‬مليون دوالر الإ�سافة اآبار جديدة‬ ‫ق ��ال عم ��اد حمدي رئي�ش جمل�ش اإدارة �ضركة بدر الدي ��ن للبرتول (بابتيكو) اإن‬ ‫�ضركت ��ه التي تعمل مع �ضل الهولندية �ضت�ضتثم ��ر ‪ 380‬مليون دوالر خالل ‪-2015‬‬ ‫‪ 2016‬الإ�ضافة اآبار جديدة‪.‬‬ ‫واأ�ضاف حمدي يف مقابلة مع رويرتز مبكتبه يف القاهرة اإن الهدف من اال�ضتثمار‬ ‫يف اآب ��ار جديدة ه ��و "احلفاظ على االإنت ��اج من التناق� ��ش الطبيعي يف احلقول‬ ‫وال�ضعي لزيادة االإنتاج‪".‬‬ ‫وبلغ ��ت ا�ضتثمارات ال�ضركة خالل ال�ضن ��ة املالية احلالية ‪ 2015-2014‬نحو ‪510‬‬ ‫مالي ��ني دوالر‪ .‬ويبل ��غ مع ��دل التناق�ش الطبيع ��ي يف انتاج بدر الدي ��ن من الغاز‬ ‫الطبيعي نحو ‪ 15‬باملئة �ضنويا‪.‬‬ ‫وق ��ال حمدي اإن �ضركت ��ه �ضتعمل خالل ال�ضن ��ة املالية اجلديدة عل ��ى "حفر بئر‬ ‫ا�ضتك�ض ��ايف واح ��د و‪ 12‬بئرا تنموي ��ا و‪ 12‬بئر حق ��ن للمياه (لزي ��ادة االنتاج من‬ ‫النفط) وا�ضالح نحو ‪ 20‬بئرا‪".‬‬ ‫وقال حمدي الذي متتلك �ضركته نحو ‪ 354‬بئرا يف ال�ضحراء الغربية اإن �ضركته‬ ‫ا�ضتطاع ��ت زيادة االإنت ��اج من الغاز الطبيعي بنح ��و ‪ 43‬باملئة يف نوفمرب املا�ضي‬ ‫عندم ��ا اأ�ضافت حقول كرم واالأ�ضيل التي تنت ��ج نحو ‪ 150‬مليون قدم مكعبة من‬

‫الغاز يوميا‪.‬‬ ‫ويبلغ اإنتاج بدر الدين حاليا من الغاز الطبيعي ‪ 500‬مليون قدم مكعبة يوميا من‬ ‫اإجمايل ‪ 4.5‬مليار قدم يوميا اإنتاج البالد اليومي من الغاز‪.‬‬ ‫واأ�ض ��اف حم ��دي اأن �ضركت ��ه تقوم حاليا بحف ��ر بئر اأفقية ه ��ي االأوىل من نوعه‬ ‫مب�ضر بطول كيلومرت يف حقول كرم واالأ�ضيل وبعمق ‪ 600‬مرت لزيادة االإنتاج من‬ ‫احلقول‪ .‬ومل يذكر متى �ضيتم االنتهاء من حفر تلك البئر‪.‬‬

‫التعاقد على م�سروع تقييم واعادة تاأهيل جممع‬ ‫التفحيم ب�سركة ال�سوي�س لت�سنيع البرتول‬

‫‪ 22.3‬مليار دوالر ا�س��تثمارات ج��اري تنفيذه��ا‬ ‫بالغ��ازوالتنقي��ب‬

‫�ضه ��د املهند� ��ش �ضريف اإ�ضماعي ��ل وزير الب ��رتول وال ��رثوة املعدنية‬ ‫التعاق ��د على م�ضروع تقيي ��م واعادة تاأهيل جمم ��ع التفحيم ب�ضركة‬ ‫ال�ضوي�ش لت�ضنيع البرتول‬ ‫واأو�ضح الوزير اأن م�ضروع تاأهيل جممع التفحيم هو اأحد امل�ضروعات‬ ‫اجل ��ارى تنفيذها حالي� � ًا ب�ضرك ��ة ال�ضوي�ش لت�ضني ��ع البرتول بهدف‬ ‫اإ�ضافة وحدات اإنتاجية جديدة ورفع كفاءة الوحدات القائمة خا�ضة‬ ‫واأن املعمل من اأقدم معامل التكرير ويحتاج ل�ضخ ا�ضتثمارات جديدة‬ ‫لال�ضتف ��ادة من الطاقات التكريرية املتاحة لتوفر احتياجات ال�ضوق‬ ‫املحل ��ى من املنتجات البرتولية ‪ ،‬م�ضر ًا اإىل اأنه جارى تنفيذ م�ضروع‬ ‫وحدة ا�ضرتجاع الغ ��ازات الإنتاج البوتاجاز با�ضتثمارات ‪5‬ر‪ 36‬مليون‬ ‫دوالر باالإ�ضاف ��ة اإىل وحدة جديدة الإنت ��اج االأ�ضفلت با�ضتثمارات ‪50‬‬ ‫ملي ��ون دوالر هذا اإىل جانب م�ضروع جممع الزيوت اجلديد املخطط‬ ‫تنفيذه الإنتاج الزي ��وت االأ�ضا�ضية وال�ض ��والر با�ضتثمارات ‪ 500‬مليون‬ ‫دوالر ‪.‬‬ ‫وق����ع العق����د املهند�����ش ر�ض����ا عبدال�ضمد رئي�����ش �ضرك����ة ال�ضوي�ش‬ ‫لت�ضني����ع الب����رتول و املهند�ش حلم����ى اأندرو�ش نائ����ب رئي�ش �ضركة‬ ‫ورىل بار�ضون����ز االمريكي����ة بح�ض����ور كل م����ن املهند�����ش طارق املال‬ ‫الرئي�����ش التنفي����ذى لهيئة الب����رتول و املهند�ش حمم����د طاهر نائب‬ ‫الرئي�ش التنفي����ذى للهيئة للتخطيط وامل�ضروع����ات واملهند�ش اإمام‬ ‫ال�ضعيد رئي�ش �ضركة اإنبى ‪.‬‬

‫ق ��ال �ضري ��ف �ضو�ضة‪ ،‬وكيل وزارة الب ��رتول‪ ،‬اإن حجم امل�ضروع ��ات التي يجري‬ ‫تنفيذها يف الغاز والتكرير بلغ ‪ 22.3‬مليار دوالر‪ ،‬تتوزع على ‪ 13‬مليار دوالر يف‬ ‫الغاز‪ ،‬و‪ 9.3‬مليار دوالر يف التكرير‪ ،‬موؤكد ًا اأن م�ضر لديها املزيد من امل�ضادر‬ ‫الت ��ي ت�ضاه ��م يف مواجه ��ة التحديات‪ ،‬وتعم ��ل ال ��وزارة على حتوي ��ل ال�ضوي�ش‬ ‫واالإ�ضكندري ��ة اإىل مراكز تكرير عاملية‪ .‬واأو�ضح خالل موؤمتر الطاقة وم�ضتقبل‬ ‫اال�ضتثم ��ار‪ ،‬اأن ال ��وزارة تخطط لت�ضنيع امل ��واد واملعدات الالزم ��ة مل�ضروعات‬ ‫البرتول‪ ،‬وتنمية الرثوة التعدينية يف اإطار القانون اجلديد لها‪.‬‬ ‫واأ�ض ��ار اإىل خطة احلكومة املتكاملة للو�ضول اإىل مزيج طاقة اأكرث توازن ًا خالل‬ ‫‪� 10‬ضنوات‪ ،‬وحتويل م�ضر اإىل مركز حموري الإدارة واإنتاج الطاقة‪.‬‬ ‫واأك ��د اأن "ال ��وزارة" وقع ��ت نح ��و ‪ 56‬اتفاقية بح ��ث وا�ضتك�ض ��اف الأول مرة يف‬ ‫تاريخها ت�ضل لهذا العدد‪ ،‬متوقع ًا اأن تظهر اآثارها خالل ‪� 5‬ضنوات‪.‬‬ ‫‪- June 2015‬‬

‫‪Petroleum Today‬‬

‫‪3‬‬


‫اإيني ‪ :‬برنامج عمل ل�سخ ا�ستثمارات جديدة فى عدد من مناطق االمتياز‬ ‫تفعي ًال ملذكرة االت�ف��اق التى مت توقيعها على هام�ش‬ ‫املوؤمتر االقت�ضادى ب�ضرم ال�ضيخ فى مار�ش املا�ضى بني‬ ‫�ضركة اإينى االإيطالية وهيئة البرتول بهدف امل�ضاهمة‬ ‫ف��ى تنمية م�ضادر ال�ب��رتول وال�غ��از ف��ى م�ضر و�ضخ‬ ‫ا�ضتثمارات جديدة وحت�ضني بع�ش البنود التعاقدية‬ ‫مبا يحقق م�ضلحة الطرفني ‪� ،‬ضهد املهند�ش �ضريف‬ ‫اإ�ضماعيل وزير البرتول والرثوة املعدنية توقيع االتفاق‬ ‫الذى مت بني الطرفني متهيد ًا الإنهاء اإج��راءات تعديل‬ ‫االتفاقيات البرتولية ال��الزم لتفعيل ب��رام��ج العمل‬ ‫وي�ضمل ذلك تعديل �ضعر الغاز فى بع�ش االتفاقيات‬ ‫ومد العمل فى بع�ضها‪.‬‬ ‫وق��ع االتفاق املهند�ش ط��ارق امل��ال الرئي�ش التنفيذى‬ ‫لهيئة البرتول واملهند�ش اأنطونيو ڤيال رئي�ش اأن�ضطة‬

‫البحث واال�ضتك�ضاف ل�ضركة اإينى‪.‬‬ ‫ي�ضمل االت �ف��اق تنفيذ اأن�ضطة ا�ضتك�ضافية وتنمويه‬ ‫مبناطق امتياز بالعيم ب�ضيناء واأبوما�ضى بدلتا النيل‬ ‫واأ�ضرفى بخليج ال�ضوي�ش و�ضمال بور�ضعيد بالبحر‬ ‫املتو�ضط وبلطيم بدلتا النيل البحرية ‪ ،‬ومبوجب االتفاق‬ ‫تقوم اإينى و�ضركائها ب�ضخ ا�ضتثمارات بحواىل ‪ 2‬ملي�ار‬ ‫دوالر ت�ضمل ‪5‬ر‪ 1‬مليار دوالر فى منطقة االمتياز ب�ضيناء‬ ‫واأبو ما�ضى لتنفيذ برنامج عمل ي�ضم ��ل اال�ضتك�ضاف‬ ‫والتنمي ��ة والت�ضغي�ل على مدى ‪� 4‬ضنوات و‪ 360‬مليون‬ ‫دوالر ا�ضتثمارات الأن�ضطة اإ�ضافية ت�ضمل حفر ‪ 5‬اآبار‬ ‫تنمية جديدة فى منطقة �ضمال بور�ضعيد و‪ 80‬مليون‬ ‫دوالر ا�ضتثمارات فى منطقة امتياز بلطيم حلفر بئر‬ ‫تنمية واإ�ضالح بئر اآخر ‪ ،‬باالإ�ضافة اإىل ‪ 40‬مليون دوالر‬

‫ا�ضتثمارات فى منطقة امتياز اأ�ضرفى بخليج ال�ضوي�ش ‪.‬‬ ‫وين�ش االتفاق على تقدمي منح توقيع غر م�ضرتدة تبلغ‬ ‫‪ 10‬مليون دوالر باالإ�ضافة اإىل منح توقيع م�ضرتدة على‬ ‫‪� 5‬ضنوات تبلغ حواىل ‪ 505‬مليون دوالر واتفق الطرفان‬ ‫اأن ت�ضتخدم املنح امل�ضرتدة وغر امل�ضرتدة فى خف�ش‬ ‫م�ضتحقات �ضركة اإينى لدى هيئة البرتول‪.‬‬

‫برتوبل ت�سعى لزيادة اإنتاج الغاز ‪ %36‬فى ‪2016-2015‬‬ ‫ق ��ال م�ض� �وؤول كب ��ر يف �ضرك ��ة ب ��رتول بالعيم‬ ‫(برتوب ��ل) لوكال ��ة روي ��رتز اإن �ضركت ��ه الت ��ي‬ ‫ت�ضتحوذ على ‪ 30‬باملئة من انتاج الغاز يف م�ضر‬ ‫تعم ��ل على زيادة اإنتاجها لي�ضل اإىل ‪ 1.5‬مليار‬ ‫قدم مكعبة من الغاز يوميا يف ‪ 2016-2015‬من‬ ‫نحو ‪ 1.1‬مليار قدم يوميا حاليا‪.‬‬ ‫ويج ��ري نقل الغاز امل�ضتخرج من االآبار البحرية‬ ‫لبرتوب ��ل بوا�ضطة خط ��وط اأنابي ��ب اإىل حمطة‬ ‫املعاجلة يف اجلميل حيث يجري ف�ضل ال�ضوائب‬ ‫وا�ضتخ ��راج املتكثفات و�ضخ الغ ��از اإىل ال�ضبكة‬ ‫القومية اخلا�ضة ب�ضركة اإيجا�ش‪.‬‬ ‫وق ��ال من�ضور اإن ال�ضري ��ك االأجنبي وهو �ضركة‬ ‫اإيني عاد من جدي ��د ل�ضخ ا�ضتثمارات يف تنمية‬ ‫احلقول م ��ع ع ��ودة اال�ضتقرار مل�ض ��ر وح�ضول‬ ‫اإين ��ي على ج ��زء م ��ن م�ضتحقاته ��ا املالية لدى‬ ‫احلكومة‪.‬‬ ‫وذك ��ر من�ض ��ور اإن ا�ضتثم ��ارات �ضركت ��ه خالل‬ ‫ال�ضن ��ة املالية احلالية بلغت ‪ 1.095‬مليار دوالر‬ ‫‪2‬‬

‫‪June 2015‬‬

‫‪-‬‬

‫‪Petroleum Today‬‬

‫منه ��ا نحو ‪ 888‬مليونا ح�ض ��ة ايني كما تخطط‬ ‫برتوب ��ل ال�ضتثم ��ار ‪ 1.030‬ملي ��ار دوالر خ ��الل‬ ‫ال�ضنة املالي ��ة ‪ 2016-2015‬ت�ض ��ارك فيها اإيني‬

‫بنحو ‪ 864‬مليون دوالر‪.‬‬ ‫وتخطط برتوبل حلفر �ض ��ت اآبار خالل ‪-2015‬‬ ‫‪ 2016‬من بينها حقالن بريان والباقي بحرية‪.‬‬


‫‪www.petroleum-today.com‬‬ ‫أول بوابة الكرتونية شاملة لقطاع البرتول‬ ‫احدث املنتجات‬ ‫وتطبيقتها فى‬ ‫قطاع البرتول‬

‫حورارت وحتقيقات‬ ‫وتقارير صحفية‬

‫متابعة اخبارية يومية‬ ‫لقطاع البرتول‬ ‫احمللى والعاملى‬

‫مقاالت‬ ‫علمية‬

‫تصفح وحتميل‬ ‫اجمللة جمانا‬

‫دليل شامل‬ ‫لشركات البرتول‬

‫احصائيات‬ ‫ومؤشرات‬ ‫اقتصادية‬




Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.