Mark Eichler Design Samples

Page 1

MARK EICHLER

Assoc. AIA, M.Arch, B.Arch

www.mark-eichler.com | mark.w.eichler@gmail.com | 303.868.7251

1:250 physical model

Nφ (nOOf)

Harvard GSD, Spring 2015 Professor George L. Legendre

The Nφ (pronounced nOOf) is an important emerging type. As a type, it encompasses buildings of drastically different scales planned around continuous program and circulation loops which inflect the envelope or section of the building in direct ways. This project systematically explores the Nφ typology as it relates to methods of parametric design. Rather than immediately rationalizing the abstract mathematical form into an iconic superficial architecture, the process here follows a tectonic development of the surface’s radial indices in order to reveal the architectural potential of the project. Design collaboration with Akihiro Moriya and Phi Nguyen.

_range

_dimensions

M  1 _range N  320 M  1 m  0 1  M N  320 n  0 1  N m  0 1  M

_dimensions

ΔH1  6.5 ΔH2  6.5

Ka  4.5

secHB  0

R0a  4.25 R1a  .3 secH  20 ΔH1  6.5 ΔH2  6.5  7 n 2π  5  5 n 2π  π  5 Def_N2m  n  2 sin    N  N   7n   5n  Def_N1m  n  1.5 sin  n 2π  5 Def_N2m  n  2 sin  n 2π  π  5     Def_NS2m  n  sin 2 N 2 π  π Def_NS1m  n  0 sin 4 N 2 π π  N   N   n  n   Def_NS1m  n  0 sin 4 2 π  π Def_NS2m  n  sin 2 2 π  π  N   N  volume

Ka  4.5

secHB  0

R00 4.75 n 1  NR1  0.32 Loop  1 R0  4.75

R0a  4.25 R1a  .3

R1  0.32

secH  20

Def_N1 Loop  1 m  n  1.5 sin 

α  1.273 π

β  2

Wa  2

Wa2  1.5

S1  1

EcceX1  0

α  1.273 π EcceY1  0

β  2

Wa  2

Wa2  1.5

S2  1 S1  1

EcceX2  0 EcceX1  0

EcceY2  0 EcceY1  0

S2  1

EcceX2  0

EcceY2  0

slab volume slab

  m  1  π  1 π   Wa  cos Loop n  α π  Ka  1 cos  n  β π  EcceX1         4   N  M    N   n 1 π    m  n     PX1 m  n  S1  R0  Def_N1m  n  R1  cos m  cos Loop n N  απ  Ka  1 cos n  β π  EcceX1     1  π 1 π  Wasin Loop   1 cos  Nβ π EcceY1  PY1 m  n  S1  R0  Def_N1m  n R1 cos   M 1  π  4Wa  α π  Ka   4   N  M    N   m n n 1 π            PY1 m  n  S1  R0  Def_N1m  n R1mcos  11π π   α π  Ka  1 cos   β π  EcceY1 m  Wa sin Loop n    N  M  4  ΔH1 sin    2Nπ Def_NS1      PZ1 m  n  R0  secHB R1  sin   2  π m  n 4   M   M  N  1 π   m  m  n   PZ1 m  n  R0  secHB R1  sin   2  π      ΔH1 sin   2 π  Def_NS1m  n 4   M   M  N  PX1 m  n  S1  R0  Def_N1m  n  R1  cos 

  m  1  π  1 π   Wa  cos Loop n  α π  Ka  1 cos  n  β π  EcceX2         4   N  M    N   n 1 π    m  n     PX2 m  n  S2  R0a  Def_N2m  n  R1a  cos m  1  π 1 π   Wa  cos Loop n N  απ  Ka  1 cos n  β π  EcceX2      sin Loop   1 cos  Nβ π EcceY2  PY2 m  n  S2  R0a  Def_N2m  n R1a cos   M 1  π  4Wa  α π  Ka   4   N  M    N   m n n 1 π            PY2 m  n  S2  R0a  Def_N2m  n R1a  α π  Ka  1 cos   β π  EcceY2  1π1 π   m  Wa sin Loop n    secHB R1  sin  m  cos N   sin  2 πN  Def_NS2       PZ2 m  n  R0a  8   2  π  M   4  ΔH2 m  n 4   M   M  N  1 π   m  m  n   PZ2 m  n  R0a  secHB R1  sin   2  π      ΔH2 sin   2 π  Def_NS2m  n  8 4   M   M  N  PX2 m  n  S2  R0a  Def_N2m  n  R1a  cos 

surface definition 1/3

slab slab


MARK EICHLER

Assoc. AIA, M.Arch, B.Arch

www.mark-eichler.com | mark.w.eichler@gmail.com | 303.868.7251

interior. 3ds Max.

3D printed kinetic chain study.

CATENARY FIELD

exterior. 3ds Max.

Harvard GSD, Fall 2013 Patrik Schumacher Marc Fornes

The catenary, in addition to being structural, has the ability to express connection—and therefore communication—between agents. In this project, sets of catenaries, when arranged in certain ways, begin to signify person-to-person relationships: all to one, some to some, all to all. In this way, the catenaries become programmatically semiological: Who can be here? What happens here? Who communicates with whom? The project explores the potentials of the catenary to not only form roof and ceiling structures but also floors, ground, landscape, and day lighting/skinning systems. Design collaboration with Alessandro Boccacci.

gravity simulation. Grasshopper 2/3


MARK EICHLER

Assoc. AIA, M.Arch, B.Arch

www.mark-eichler.com | mark.w.eichler@gmail.com | 303.868.7251

a

el. 15’

a

a

second floor.

0

40 ft 10 m

INDEBTED ARCHITECTURE

Harvard GSD, Spring 2014 Professor Preston Scott Cohen

Indebted Architecture is based on the thesis that architectural form correlates to the movement of thought. Within this understanding, buildings can be seen as mental constructs rather than static objects. The implicit transformation found in the Palazzo Borghese in Rome—here, a room that has been displaced by a stair—is extracted and utilized to formulate a new building diagram that in turn, responds to urban and social pressures. Here, the building cannot exist without its site, and the site cannot exist without the building. An architectural palindrome. 3/3


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.