Mark Eichler Design Samples

Page 1

MARK EICHLER

Assoc. AIA, M.Arch, B.Arch

www.mark-eichler.com | mark.w.eichler@gmail.com | 303.868.7251

1:250 physical model

Nφ (nOOf)

Harvard GSD, Spring 2015 Professor George L. Legendre

The Nφ (pronounced nOOf) is an important emerging type. As a type, it encompasses buildings of drastically different scales planned around continuous program and circulation loops which inflect the envelope or section of the building in direct ways. This project systematically explores the Nφ typology as it relates to methods of parametric design. Rather than immediately rationalizing the abstract mathematical form into an iconic superficial architecture, the process here follows a tectonic development of the surface’s radial indices in order to reveal the architectural potential of the project. Design collaboration with Akihiro Moriya and Phi Nguyen.

_range

_dimensions

M  1 _range N  320 M  1 m  0 1  M N  320 n  0 1  N m  0 1  M

_dimensions

ΔH1  6.5 ΔH2  6.5

Ka  4.5

secHB  0

R0a  4.25 R1a  .3 secH  20 ΔH1  6.5 ΔH2  6.5  7 n 2π  5  5 n 2π  π  5 Def_N2m  n  2 sin    N  N   7n   5n  Def_N1m  n  1.5 sin  n 2π  5 Def_N2m  n  2 sin  n 2π  π  5     Def_NS2m  n  sin 2 N 2 π  π Def_NS1m  n  0 sin 4 N 2 π π  N   N   n  n   Def_NS1m  n  0 sin 4 2 π  π Def_NS2m  n  sin 2 2 π  π  N   N  volume

Ka  4.5

secHB  0

R00 4.75 n 1  NR1  0.32 Loop  1 R0  4.75

R0a  4.25 R1a  .3

R1  0.32

secH  20

Def_N1 Loop  1 m  n  1.5 sin 

α  1.273 π

β  2

Wa  2

Wa2  1.5

S1  1

EcceX1  0

α  1.273 π EcceY1  0

β  2

Wa  2

Wa2  1.5

S2  1 S1  1

EcceX2  0 EcceX1  0

EcceY2  0 EcceY1  0

S2  1

EcceX2  0

EcceY2  0

slab volume slab

  m  1  π  1 π   Wa  cos Loop n  α π  Ka  1 cos  n  β π  EcceX1         4   N  M    N   n 1 π    m  n     PX1 m  n  S1  R0  Def_N1m  n  R1  cos m  cos Loop n N  απ  Ka  1 cos n  β π  EcceX1     1  π 1 π  Wasin Loop   1 cos  Nβ π EcceY1  PY1 m  n  S1  R0  Def_N1m  n R1 cos   M 1  π  4Wa  α π  Ka   4   N  M    N   m n n 1 π            PY1 m  n  S1  R0  Def_N1m  n R1mcos  11π π   α π  Ka  1 cos   β π  EcceY1 m  Wa sin Loop n    N  M  4  ΔH1 sin    2Nπ Def_NS1      PZ1 m  n  R0  secHB R1  sin   2  π m  n 4   M   M  N  1 π   m  m  n   PZ1 m  n  R0  secHB R1  sin   2  π      ΔH1 sin   2 π  Def_NS1m  n 4   M   M  N  PX1 m  n  S1  R0  Def_N1m  n  R1  cos 

  m  1  π  1 π   Wa  cos Loop n  α π  Ka  1 cos  n  β π  EcceX2         4   N  M    N   n 1 π    m  n     PX2 m  n  S2  R0a  Def_N2m  n  R1a  cos m  1  π 1 π   Wa  cos Loop n N  απ  Ka  1 cos n  β π  EcceX2      sin Loop   1 cos  Nβ π EcceY2  PY2 m  n  S2  R0a  Def_N2m  n R1a cos   M 1  π  4Wa  α π  Ka   4   N  M    N   m n n 1 π            PY2 m  n  S2  R0a  Def_N2m  n R1a  α π  Ka  1 cos   β π  EcceY2  1π1 π   m  Wa sin Loop n    secHB R1  sin  m  cos N   sin  2 πN  Def_NS2       PZ2 m  n  R0a  8   2  π  M   4  ΔH2 m  n 4   M   M  N  1 π   m  m  n   PZ2 m  n  R0a  secHB R1  sin   2  π      ΔH2 sin   2 π  Def_NS2m  n  8 4   M   M  N  PX2 m  n  S2  R0a  Def_N2m  n  R1a  cos 

surface definition 1/3

slab slab


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.