The fungicidal effect of human lactoferrin on candida albicans and candida krusel

Page 1

%-.

Archs oral BioL Vol. 38, No. 12, pp. 1057-1063, 1993 Printed in Great Britain. All rights reserved

copyri gh,

t

o,onon'r

tJit#if

3:*

ti?:

THE FUNGICIDAL EFFECT OF HUMAN LACTOFERRIN ON C,4NDIDA ALBICANS AND CANDIDA KRUSEI H. Nrrlwl,l'2 L- P. S.trr{.qRANAyAKE,r'* J. TnNovuo,3 K. M. Plt'lcr and T. H.q.N4ADA.2 roral Biology Unit, Prince Philip Dental Hospital, university of Hong Kong,-long Kong, 2Department

3Department of Cariology, ol Prosthetic Dentistry, Hiroshima University School of Dentistry, Japan and Finland of Turku, Institute of Dentistry, University (Accepted 27

* l-r

July 1993)

Summary-Five oral isolates each of Candida albicans and Candida krusei were studied for their sensitivity to the fungicidal effect of human lactoferrin. Significant inter- and intraspecies variations were observed and with most isolates the sensitivity ol C. krusei to lactoferrin was greater than that of C. albicans. Fungicidal activity of lactoferrin was dose-dependent and observable only with the iron-free form of the molecule (apo-lactoflerrin). Iron-saturated lactoferrin was ineffective against all isolates. Supernatant protein assJys and scanning electron microscopy indicated cell surface alterations-leakage of proteins ind formation of surface blebs-only in those Candida isolates that were sensitive to apo-lactoferrin. As lactoferrin is a common, non-immune, mucosal defence protein, its varying mode of action against C. albicans and C. krusei may be related to their different oral carriage rates. Key words: lactoferrin, Candida albicans, Candida krusei.

1981 ,, 1982;

INTRODUCTION

Candida albicans and related Candida species are the

most common opportunistic fungal pathogens

en-

countered in the mouth. Oral candidal carrtage and infection increase remarkably in patients with diseases, such as diabetes, immunosuppression and

xerostomia, and it is thought thaf the suppression of both local and systemic defence mechanisms may, at least in part, be responsible for such infestation

(Samaranayake, 1990). Human whole saliva contains a number of specific and non-specific defence factors. Amongst the nonspecific, lactoferrin, which is synthesized by acinar epithelial cells and also found in secondary granules of polymorphonuclear leucocytes, is recognized as an important mucosal defence factor (Reiter, 1983). In mucosal secretions, the lactoferrin molecule is pri-

marily iron-free (apo-lactoferrin), rarely

exceeding

20% iron saturation (Mazurier and Spik, 1980). There are many reports on the bacteriostatic or bactericidal effects of lactoferrin. Its bacteriostatic effects have been attributed to its high affinity for iron and consequent deprivation of this essential metal from pathogenic organisms (Cole et al., I97 6),, whereas the bactericidal effect, mediated only by apo-lactoferrin, is thought to be due both to iron deprivation and direct interaction with microbial cell walls (Arnold et al., 1982). Although the bactericidal effect of apo-lactoferrin has been characterized by many investigators (Arnold, Brewer and Gauthier, 1980; Arnold et al., *To whom all correspondence should be addressed. Abbreuiations: c.f.u., colony-forming units; SDS-PAGE,

sodium dodecyl sulphate-polyacrylamide gel electro-

phoresis.

Kalmar and Arnold, 1988), little is known

about the antifungal activity of apo-lactoferrin against Candida species. Arnold et al. (1980), for instance, have reported that the apo-lactoferrin was fungicidal for C. albicans, although iron-saturated

lactoferrin did not kill the organism. Subsequently others have confirmed the inhibitory effect of apolactoferrin on the growth of C. albicans, but not on C. krusei (Valentr et al., 1986). Recently, Soukka, Tenovuo and Lenander-Lumikari (1992) characterized in some detail the effect of apo-lactoferrin and partly and fully iron-saturated lactoferrin on C. albicans and demonstrated concentration-, time-, temperature- and pH-dependent fungicidal effects of apo-lactoferrin. However, they used only a single isolate of the organisms throughout. It is important to study interactions between lactoferrin and several isolates of Candida species as inter- and intraspecies variations in susceptibility to non-specific defence factors such as lysozyme have been described (Tobgi,

Samaranayake and MacFarlane, 1988). Accordingly we have now investigated the fungicidal effect of both apo-lactoferrin and iron-saturated lactoferrin against five oral isolates each of C. albicans and C. krusei. The relation between the fungicidal effects of apo-lactoferrin and the cell surface changes of these yeasts was also examined by scanning electron microscopy. MATERIALS AND METHODS

Micro -organisms and growth conditions

C. albicans GDH 16, 17, 18, L9 and 20, and C. krusei GDH 6,9, 13,23 and 24 wete used. All were oral isolates obtained from the routine microbiology services of the Glasgow Dental Hospital and School. All isolates were identified by sugar assimilation test using the API 20C system (API Products, Biomeruix, t057


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.