SOME THEOREMS ON QUADRATIC FORMS AND NORMAL VARIABLES

Page 1

SOME THEOREMS ON QUADRATIC FORMS AND NORMAL VARIABLES

1. T HE M ULTIVARIATE N ORMAL D ISTRIBUTION The n×1 vector of random variables, y, is said to be distributed as a multivariate normal with mean vector µ and variance covariance matrix Σ (denoted y ∼ N (µ, Σ) ) if the density of y is given by 1

f (y; µ, Σ) =

0

e− 2 (y−µ) Σ

−1 (y−µ)

n

(1)

1

(2π) 2 |Σ| 2

Consider the special case where n = 1: y = y1 , µ = µ1 , Σ = σ 2 . f (y1 ; µ1 , σ) =

e

− 12 (y1 −µ1 )

1 σ2

1

(y1 −µ1 ) 1

(2π) 2 (σ 2 ) 2 (2) −(y1 −µ1 )2 2σ 2

e = √

2πσ 2

is just the normal density for a single random variable. 2. T HEOREMS ON Q UADRATIC F ORMS IN N ORMAL VARIABLES 2.1. Quadratic Form Theorem 1. Theorem 1. If y ∼ N (µy , Σy ), then z = Ay ∼ N (µz = Aµy ; Σz = AΣy A0 ) where A is a matrix of constants. 2.1.1. Proof. E(z) = E(Ay) = AE(y) = Aµy var(z) = E[(z − E(z)) (z − E(z))0 ] = E[(Ay − Aµy )(Ay − Aµy )0 ] = E[A(y − µy )(y − µy )0 A0 ] = AE(y − µy )(y − µy )0 A0 = AΣy A0 Date: July 12, 2004. 1

(3)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.