%"& #$ "!
(
)0 .
1
-./$
' ( )* +,
:<, = 4 89 :; 6 74 () 4
50 ,
( - 23
) >) ? C / ?-
> DE3 B @ 3 A ? )
)/ ?
/
moein@airic-ir.com
:
4 1$
3
> DE3 B @ 3 A ? )
)/ ?
/
:>)BB A &7
89
% @ $(
) "*
- GH
0 7
$ %: -# W
F
!
B %: F
#
2B %: # %& +
2B E J3 $ $ Z 7X "D
- I+ ;& PQ
+ T % #& & '
$ 2B
# ) " * 87 7 `3. +
7
!"# $
# # )< :# ;& <
&+ =" 23
, $
& '
$.
%: # ;& <
(& :# _ , -.$
2' < (& -.$
"D
%$
& (& .
# 2B "D
L+ %: F
* N %$
B - I+ * N PQ
Intake Manifold Pressure Boundary Condition 3 Filling and Emptying Method 4 Compressible Turbulent Flow 5 SIMPLE: Semi Implicit Method for Pressure Linked Equations 2
# ;&
%$&/ 0,
2B E J3 $
YL & "# B L "$
@, d + (
, -.$
C ?& + # DE
R 3 :# & ' M* N O$
# ;& ;$ '2 # $ #&3 2 # k # :# ;$ '2 # + $ &
)" * +
%$&/ 0 7 .
# ;& "$ E ( A/# ) : + W2
# ;& ] B \ 2' <
2"
$(
, $
& '
$ U , $ ;&
;& ;$ '2 # 7N#$ [# 2,#
@3# e0 cA
1
S
8* .
%$&/ 0, .
& '
8* ) : ) &+ KLC :#
,07
J3 $ O# + . -.$
( A/# + %$
$ .& +
B # DE
%$
+ ?& + #$
%: F
;$ '2 # %$& / 0 , %
1
4566 % 2 3#
$ C :# # DE &+ %$
$
.
# ;&
B #$
,
+ T %$
PV
,$ * N -
$
B
$ M 2' < -# T^ !2B E # ) " * -.$ )
,
%"& #$ "!
.
# 2B E #
+$
& 3# + )#
(
-
f 3 ; E $#& ) " *%
G ! "# $
+ =" 23
2#
&
2g+# &/ ;& <
"
2' < h
iX
# ;&
&+ =" 23
Bh /
G :# ) AQ# %# + .
% 83#& 0
,# Q & ' -
;& <
&+ =" 23
j kF 3 (
)
:<, =
! ?D-./$ 1) ! (
)0 .
" 83 $
) " * % ;&"&
. N#$ %$ 89 50 , – :; 50 , –
# 2B E
& ' %:
8+
:() G ( >H
(Brands) [u] :&3# + 7A* :# 2B "D - G M l Z
+
f"$ %
x# # 2B %:
$ (& !"# $ + C d
:# nss6 (
f 3 nsst(
& ;$ '2 # & '
)$ <
8* \q 2
&+
Y3# LA ,# Q
3 # %$
&7 !+ $
8+
:#
O$&/ 0, d
[|]
83<
2B
8+ $ L7A/
8+
& '
$
8* %& + +
J
+
N
#
8* %$
h ,# Q $
;
# [1~] %& + $
$(
)" *
$#
,#
+ # !"#
+ )< T
%$ iX
h& +
$ L7A/ #
& '
"$ ' p
& +M
&7 !+
:# #
$ .$
E&"&
q"
,# Q % 2 #
$
(& :# nst4 (
;$ '2 # %$
& '
,# Q
2g q "$ (Driels) [5] f7" $
%$
$ .$#$ #
8+ 0 7
7N#$ [# 2,# & '
8* 1f2 8A7
f 3 nstu (
1
#
& ' %:
+$
S
%
+ %$w v6
2
Pressure Fluctuations Rapid Wave Action Simulation 4 Wave-Acoustic
B# 9 .& $
N
% g P": %$ + -&
(& !"# $ + 3
B
$+
A # @ "# $ .$ #$ T )< 2N# L"
f 3<
!"# $ .&3$#$
0A/
* N - & Y"#fB# HC
$ Alster [r] 2g < %$
&3& f 3<
)&3
A@, ) &3#
.$$ E
: !"# $ .& 2B E
f 3<
07
$
$ L7A/ O c
+#
.[n] $$ E
07
+
2g !"# %#f*# !" 2A8 :#
$ C8+ #
:# %& +
7N#$ % ;&"& + )#
$
& X+
B
;$ '2 # M C
2 + )< f 3<
& '
!"#
8+
!"# $ L7A/ + T
%8
& '
&" +
%$&/ 0, + *
[4] P*#
- I+ # %$ @3# )< %:
%:
+ ) ,# Q y
+$
$
8* ! A8+ # #$ N +
# %:
2g
& ' )#
2A %$
#
"f@ $
!2B . + + .$ -.$
$
07
# :. & '
%& + $ % 8 & L "# &
(
+#
N
%$
@3# # %$
&+
7A* :# A8 j" p 0 &+ & '
Y
@3# 7 3 0"
!"# $ L7A/ $ C8+
g+ % 8A2g :# L" .$ E
#$# [t]
# $ +# )& <
& $
) E 3 E - 8* :# 83< $ L7A/
# 2 #$
!"# 7 .
8* .$ E # %:
[}]
$
8* 8
8* & 7
#
8* [z]
#
A@, ) &3# Y"#fB#
$(
,# Q
# 7N#$ [# 2,# %
g+ $ +
A # :#
8+ $ +#
B# 2 + 9
& '
". +
y
& '
F 7X % g P":
)#
.&3 #$ %#;$ 2gE
$ .$
< x# # % { :# ;$ '2 #
- G & '
C
$ # %l 3# 0"&C 0A/ ;:
+
(Benajes) `" + y
# .& 2B E
%8
%
(Pearson) )
(Winterbone) ) + 2 "
)
Helmholtz Resonators
B M+
-3
3 J3 V 3 t6 %
$
%"& #$ "!
+
, -.$
h% 2 3#
# (
)" *
;& <
&+ =" 23 .&3# ;& %$&/ 0, & '
0N#$
Z
1
)" * S
) " * Y"#&* .&3# ;& ;&
# (
B
/
% 83#&
E + 0€
;&"&
;$
iX
•
2g+ : + :#
)&
)0 .
0, % •B %: g & ( $ @"# (&
‚ " 2#
)$
L"f B % •B + 0
?D, (
$%
A 9
5
)#& )< $
(
;& 3 ( 2 _ @,
) " * %$&/ 0 7 % 2L9
.$ #$ 3 LC &
h$
:# ` %& + UC !"# .& $
B "
/
$ %:
;$
3 ‚
# 2B 3 - G 7N#$ %
‚
* N %# @
%
2#
) "$# E
%
( 2 _ @, :# & 2g $ ": ( $
HC
89 %$ #
# !"# .
- I+ ) " * Y"#&*
†
%:
J3 $ % 2 3# .$
Grid Generation 6 Unstructured Grid 7
Boundary Layer Gradients
& '
;&"$ (n) 0L
$ )" * $
$
%& + #$ 0 7
# ;& …wG# B
/
# ;& ;$ '2 # % 2L9 ". $ 82 A -# W Back Flow Pressure Waves Due to IVO and IVC 3 Flow Separation 4 Modelling 2
$
W 0€
3#
7N#$ % •B ) A
A3 (4) 0L .&3#
1 5
%$
( 2 _ % 8A@,
h& '
$ [1S]
- I+ (
7
L+ %& + UC
) 3# & '
;&
83< R
g &3
%& + Y :#
+
)" * % 07
;$ % •B + 0,
- I+ ;$ '2 # $
(& $ ;$ '2 # $
MN/ )B 0
:# 7, ! $
# 6) : ) &+ R 3 :# (& !"# $ 2B ;& „ X23#
(& !"# .
(J K0)
W HC
h% @ h(& j72X PQ 7N#$ % •B (& :(n) 0L
L
() 4
# )< %: g & $ 8 2L3 .& +
"# :# .$$ E & '
B
) " * %$&/ 0, $ E ! #
[11] .& + 2 #$ 7{g "
3%
f 3 )< -# W ) " * M 2' < )#f (
%$
$
% •B $ 0
x# #
- I+ "D
& '
%& +
# & ' ) $ "D
% 2 3#
%$
# ;&
2B E
%"& #$ "!
&/ F ;&
%$
& '
$(
) " * %$&/ 0, $ + 2dfW
2B E J3 $ 7N#$ % ; # "$ 7 O & ' %$
$ ) " * %: F
+# + # & ' %$
PV
$(
!"# :# .( 82B# :# )$
J B G +) .$
# DE
#$
, $
( A/# O# + .
)" *0
!
%8
$ YL 7,
:# YX+ !" 2A8
0, R 3 + & ' + ?&
$
$ %: F
$
+T
# DE 0 7
* N %:
$ YL & "< B L "$ $ .&"< Z
&+ 3 : 89 & 7
C
&7
) $
•
O g O 3 H" k qA
;:#&3# J3 $ %$
-
( 2 _ @, †~}S1 %# #$
3
No Slip Condition
Inlet Valve Drag Coefficient
D %$&/
;$ '2 #
F
#$) ) " *
,
B - I+ * N F
# .$
%:
C y
& ' (& $ 2B
+ `c
CQ
LC :# P
89 7N#$ [# 2,# %:
L+
%$&/ 0, $
C
$ %$
E !
, L"f B y"# .$$ E
( A/# ;&
-.$
0, %# + : 3 $
# ;& O E
(J
%:
O /
y"#
‡ G ! #(
8 (& + J3 $
Boundary Conditions
&+ =" 23
)" *
;&"& " 7{g +
%: y"#
#fg+ Y 3 & + M 7{g +
1
A3 :(4) 0L
/ A@ )< $
.&3 #$ ;& <
2
V+
B
- G #$
B #&2+# L "$
B (n) KV+#
&+ % 2C
$ )" *
%# + + @ - G + $(
$
# %: y"#
% @
;$ + L+ * N PV $& '
.
2g+ (# DE "
, !"# $ $ E
L+ KUC . " <
&+ %
B -# W :(r) 0L
* N %: F
$ ) " * f 3< h& + & '
.& +M
& "<
)# M %: F
* N $ ) " * %:
‚3 9 .$ #$
$ 2B
% ;&"&
B )#
.$
%$
07
#
] B 'gA #
, $
# & ' ) $(
) A y"#
, %# ;
!"#
0 g3# '"$
G %$&/ 0, $
%"& #$ "!
)< ?w # ‰ 3 k M 2' < Ol 3# . :&3 xi
M !
( Uik) =
": ( 23# O µ+
xi
µt
+ T ˆ" c µ
# $
xi
µ+
xi
µt
+G
Pe = PC + C D (
(z)
+ (c 1G c 2 xi k
k
B )A
B !"#
&"< M
)
H
+ %$
-
0L .$ %$
1 V 2) 2 $ YL & "< B $
2B E J3 $ %8
$ YL
&7 7,
$
$ $G&
G +. +K $
- C/
1
:$ M Uj Ui + xj xi
G = µt
$
Š
-.$
$ 3M 2' < (& H
7{g
d % C +
0, h(
Ui xj
, -.$
%:
) A -.$
!"&+
": - I+
$&
N#$ „# * + )&
%# + j72X -. , $ # DE
, $ $
#$
83< :# ;& <
, 07 &+ =" 23
.
# A
# ;&
@3# %$
(5)0L
$
B%
.&3# ;&
23
$(
- I+
# # (e) 0L
& 2g S%l 3#
$
xi
( UiU j ) =
-# C/ h-.$
2B E @3#
89
C/
1
$ 7,
!" N<
, -.$
%$&/
2A h
(j #
qg ": +
-.$ ) +
U P + µ i + ( xi xi xi xj
2g
!2g+ O# + k ,
$
*f (& y
*f d :# (& !"# $ .&3
M ;$ '2 # :& " O 8
ui u j )
M 2' <
M ;$: ! AX
! AX O# + (Bousinesq)
, !"# =" 23 /
%
:$
23
$
y
Uj Ui + xj xi
# M 2' <
2 3
µ t = cµ 1 2
ij
*f µ t $ :$
Turbulent Model
2
(4)
. + O :& " O# + M+#$ E
ui u j = µ t
3
) 3#
(r)
#$ %$&/ 0,
-. , !"#
* N N
C +
%# +
Ui =0 xi
@,
::# & .$ #$ ) " * & '
#(
89
:[v] &3
>) $ 5 )4 R -3 & '
!"# .
W !"#
( )* +,
2ggE :# ` )#
%$&/ 0, + # L d + .[s]
(v)
B
B -# W (r)
' 4 : , 6Q ) " * %$&/ %:
# (n)
.& $ ) + ": -
&+
[n] .
(t) ( Ui ) =
* N
y
k xi
k
& '
k
(5)
!"# $ _
M C
k2
Governing Equations Continuity, Momentum and Energy Equations
": (u)
%"& #$ "!
(\ " 1 -
(
$ ) " *) (
B%
2 , $ ) " * `3. +
23 :(†) 0L
-& %
($ #$ ) " *
N
A $( )
($ #$ ) " *
N
A $( ) /
$
)" *& ' -
$(
$ ) " *) `3. +
-& %
2 , $(
23 :(|)0L
2 g3#$ %
23
‹\
$ ) " *) (
2 , $ ) " * `3. +
2 g3#$ %
23 :(}) 0L
C * %l 3# %
0L + + V $ #$ ) " * r " 4 ; A -
23
-
$(
$(
C/
%
23 :(e)0L
N :# L" $ 8 ( , !"# $ ;&
2 , $(
/
(„
# # =" 23 .$ #$ %
23
‹1
.(Œ) 0L + + V $ #$ ) " * 5 "n ; A
(\ " 1 -
‹e
* N% ::# &
.(}) 0L + + V $ #$ ) " * Z "S ; A
(Z " S -
23 :(\) 0L
23 ‹Z
.(|) 0L + + V $ #$ ) " * \ "1 ; A -
(\ " 1 -
B%
-
$ (
$ ) " *) (
/
2 , $ (
%
23 :(Œ) 0L
B%
23
‹S
.(†) 0L + + V $ #$ ) " * \ " 1 ; A .(1~)
%"& #$ "!
=" 23
G :# ) AQ# ( I, . :
1
0C
# ;&"$ E 0,
# 2B "D - G ": d
UC O ; E $#&
2B E #
M
# DE 0 7
3 qAL+ %$& 2 % UC ;&
8 %& +
% 87 B
g"
# D E 0,
&/ ‹1 @3# :#
J !"&+ .
#$
#
,% 07
@3# +
KUC 83< $
/
(1\) ; A % 87L . + =" 23
$ ) " *) `3. +
# ;& "$ E „ X23#
2g+#
-
$(
2 , $(
) 3
Comparison of V Profiles
C * %l 3# %
23 :(1~) 0L
(Z " S -
&/ #$ A3 (1e) .& $
-# •
, g ‹Œ
.(11) 0L + + V $ #$ ) " * r " 4 ; A 29111
70
37270
60 50
46740
40
60123
20
66897
V (m
30 10
70921
0 -0.17
-0.16
j72X %
-0.15 -0.14 Position(m)
LC
$ /
-0.13
% 87 B
-0.12
g"
79227
:(1\) 0L
Comparison of V Profiles
70921
70
79227
60 50
86746
40
91611
V (m
30
11026 0 13070 7 15022 9
20 10 0 -0.17
-0.16
j72X %
%l 3#
2A h
" ...
/
-0.15 -0.14 Position(m)
LC
$ /
2 h
-0.13
% 87 B
-0.12
g"
% ;&3 A + #& B J3 " 2 #
& ' :# Q 3 $ 1
&+
(& % PATRAN #fB#
8* J3 $
# ; E $#&
+ ;& <
+ =" 23 M 2g+#
+ $
Ak
Grid Independency
/
% 87 B
#&
:(1e) 0L
(Z " S -
$ ) " *) (
\~~~ rpm @3# h
$ $ %$
& ' %# DE
# € #&,
* N
3 T ~,~~~Z†e ($ 0 7 !"# $ (
q" 0 7
B
=" 23 :#
$H
/ /
BO
;& iX
0,
+ )< T#
0cA
8* .$$ E
- I+
2"
# :# 0
# ( C
23 _ - I+
0
0L
# # (1Z) (1S) O ;&
@3# % 87 7
(<;&"# : E (& - I+
, % C* -.$
# ;&
% 83 : $ & '
+ h&3# ;& „ X23#
9 & +M "D
+
2 E $ !"# $
% 83#& =" 23 .& +
.&3# ;&
T# ‹S
,07
, !"# $ 3 : E .
B# PV ) $ (
0L
-# • C/ g :(11) 0L
; 2 $
, -.$
$
CQ )< %$&/
# ;& ;$ '2 #
%"& #$ "!
& '
$ (
) 3(
)" *
B
/
$ * %
)" *
B % 8*
•
B%
23
& 7 %$
r; A
$ # (
%& +
/
+ & ' f 3<
) " * - f* 7 d
%# +
3
& '
$ )" *
0,
)&
+
;& ;$ '2 # %#;&3 A +
(1Œ) % 87L 2
.& +
2 #&3
'
;&3 A + T# % #$ A3 .& $
"# A
!"&+ .
# ;&
+ T H" k !"# #& h$ 3 # A
#$ A3 !"# qAL+ 87 7 0L
‹Z
• $ H" k 2 #
H
#$ A3 .
0
"# A #D
# 2B E #
+$
f3
2 , $ # • $ H" k (1|) .& $
q" $ ( 8* MC
#$ A3 h0 7
7N#$ … V %
A $(
) 3& '
!"# . g3#$ )< %:
‚X"
h& & # X3
2g+
% #$ + (S~)
- I+ # & '
;&
"
3 " A3 (1}) 0L •
$ •2" 83
+
Y" A3 #
: + :#
& '
" 83 $ .& $
$ )< $ L7A/ (
(1†)
2 E + )" *
$ @"#
%# J
) " * %$&/ 0 7 )# # DE
2#
2g+
.& +
0L
d
"# A
%
)&
23#
(# N
T
$ @"# ;&"&
:# 0G , A # x & +
, % 07
7G# =" 23 .& $
$(
, :# %$
##
:# # DE 0 7
C/ +# + $ # 3< 7 $ L7A/ %$
&/ " $ * h& '
$ ;&
"$
h #$
%# J % 83#& 0
% #DE 0 7
( B 9 < -3
) 3 h$ #$ ) " *
N
Effect of Mass Imbalance Residual on Min Pressure (Kpa) 79.4
8+
79.3 79.2
$(
% ;&"&
3L
3 :
#$ + ;# A #
79.1
iX
P (K
79
.$:
78.9 78.8 78.7 78.6 0.000001 0.00001
& ' ) $
0.0001
B A
0.001 0.01 M.I.Residual
+
2
0.1
1
;&3 A + T# :(1Œ)0L
Effect of M.I.Res. on Max V (m/s) 153.4 153.2 153 152.8 152.6 152.4 152.2
V (
& '
3 A # †~}S1 LC
$ 0,‹ "# A ‚X"
:(1|)0L
152 151.8 151.6 151.4 151.2 0.000001 0.00001
0.0001
0.001
0.01
0.1
1
M.I.Residual
& ' ) $
/
A"f
+
2
;&3 A + T# :(1†)0L
%"& #$ "!
4. Driels, M.R., Dynamics of I.C. Engine Induction System, Journal of Sound and Vibration, (1975) 43(3) 5.Brands, M.C., Helmholtz Tuned Induction System for Turbocharged sel, SAE790069. 6. Pearson, R.J., Winterbone, D.E., A Rapid Wave Action Simulation Technique for Intake Manifold Design, SAE900676. 7. Benajes, J., Reyes, E., Galindo, J., Pidero, J., Predesign Model for Intake Manifolds in Internal Combustion Engine, SAE970055. 8. Moeini, M., Numerical Investigation of 3D Steady and Transient Flow trough the Intake Manifold of I.C. Engine, JSAE 20026084 ( ) " * %$&/ 0,“ h$ A h;& h ) + h 3 B .} ! + Y" A ! $ h ”# DE
#$ %& +
1Z|~ !A8+ h:
%$
•
)&
2g+ :#
& '
$(
/
3 A # x# # :(1})0L
, $& ' ) $ ) $%
77A #
10. Chapman, M., Two Dimensional Numerical Solution of Inlet Manifold Flow in a Four Cylinder Internal Combustion Engine, SAE 790244 11. Versteeg, H.K., Malasekera, W., An Introduction to Computaional Fluid Dynamics: the finite volume method, 1995. 12. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
%$
%# J % #$ + :(S~)0L
?3 ;l
!"# @3# :#
" A, $
)BS
AE
2 .$$ E
3#$ &
:# L
' B 1. Heywood, J.B., Internal Combustion Engine Fundementals, McGraw-Hill, New York 1988. 2. Bensler, H. ,Intake Manifold Optimization Using CFD Analysis, Proceeding of the first Ricardo software International user conference, Detroit, 1996. 3. Alster, M., Improved Calculation of Resonat Frequencies of Helmholtz Resonant, Journal of Sound and Vibration, (1972)24(1)
%"& #$ "!
‹& ' „ X23# ‹ & ' 0
$
/
%# J %
23 :(nr)0L
0L q" 0 7 =" 23 :# ;&
$( 0
B %# J %
23 :(n4)0L
0L q" 0 7 =" 23 :# ;& „ X23#