[PDF Download] Applications of organic and printed electronics a technology enabled revolution integ

Page 1


Visit to download the full and correct content document: https://textbookfull.com/product/applications-of-organic-and-printed-electronics-a-tech nology-enabled-revolution-integrated-circuits-and-systems-2013th-edition-eugenio-ca ntatore/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Printed Electronics Materials Technologies and Applications 1st Edition Zheng Cui

https://textbookfull.com/product/printed-electronics-materialstechnologies-and-applications-1st-edition-zheng-cui/

Smart Electronic Systems Heterogeneous Integration of Silicon and Printed Electronics Li-Rong Zheng

https://textbookfull.com/product/smart-electronic-systemsheterogeneous-integration-of-silicon-and-printed-electronics-lirong-zheng/

Automated Hierarchical Synthesis of Radio Frequency Integrated Circuits and Systems A Systematic and Multilevel Approach Fábio Passos

https://textbookfull.com/product/automated-hierarchicalsynthesis-of-radio-frequency-integrated-circuits-and-systems-asystematic-and-multilevel-approach-fabio-passos/

Enabling the Internet of Things From Integrated Circuits to Integrated Systems 1st Edition Massimo Alioto (Eds.)

https://textbookfull.com/product/enabling-the-internet-of-thingsfrom-integrated-circuits-to-integrated-systems-1st-editionmassimo-alioto-eds/

Energy Efficient Computing Electronics Devices to Systems Devices Circuits and Systems 1st Edition

https://textbookfull.com/product/energy-efficient-computingelectronics-devices-to-systems-devices-circuits-and-systems-1stedition-santosh-k-kurinec/

Design of CMOS Analog Integrated Fractional Order Circuits Applications in Medicine and Biology 1st Edition Georgia Tsirimokou

https://textbookfull.com/product/design-of-cmos-analogintegrated-fractional-order-circuits-applications-in-medicineand-biology-1st-edition-georgia-tsirimokou/

Labs on Chip: Principles, Design and Technology Eugenio Iannone

https://textbookfull.com/product/labs-on-chip-principles-designand-technology-eugenio-iannone/

Ageing of Integrated Circuits: Causes, Effects and Mitigation Techniques Basel Halak

https://textbookfull.com/product/ageing-of-integrated-circuitscauses-effects-and-mitigation-techniques-basel-halak/

Electronics For Beginners: A Practical Introduction To Schematics, Circuits, And Microcontrollers Jonathan Bartlett

https://textbookfull.com/product/electronics-for-beginners-apractical-introduction-to-schematics-circuits-andmicrocontrollers-jonathan-bartlett/

IntegratedCircuitsandSystems

Forfurthervolumes: http://www.springer.com/series/7236

ApplicationsofOrganic andPrintedElectronics

ATechnology-EnabledRevolution

ISSN1558-9412

ISBN978-1-4614-3159-6ISBN978-1-4614-3160-2(eBook) DOI10.1007/978-1-4614-3160-2

SpringerBostonHeidelbergNewYorkDordrechtLondon

LibraryofCongressControlNumber:2012944381

SpringerScience+BusinessMediaNewYork2013

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebrief excerptsinconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthe purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work.Duplicationofthispublicationorpartsthereofispermittedonlyundertheprovisionsof theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateof publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein.

Printedonacid-freepaper

SpringerispartofSpringerScience+BusinessMedia(www.springer.com)

Preface

TheDisruptivePotentialofLow-Cost, Low-TemperatureTechnologiesforElectronics

Electronics,andmorespecificallyintegratedcircuits(IC),havedramatically changedourlivesandthewayweinteractwiththeworld.Followingtheso-called Moore’slaw[1],ICcomplexityisgrowingexponentiallysince40years,andthis trendispredictedtocontinueatleastforthecoming15years[2].Theabundanceof electronicfunctionsataffordablecosthasenabledawealthofapplicationswhere themainICstrengths,namelycomputationalspeedandmemorycapacity,arewell exploited:PCs,portabledevices,gameconsoles,smartphonesandalike.The commercialsuccessofintegratedelectronicsisbasedonasymbioticdevelopment oftechnologyandapplications,wheretechnicalprogressandeconomicgrowth nurtureeachother.Thisprocessrequireslotsoftimeandeffort:firstICpatents wherefiledin1949[3],butitisonlyin1971thatthefirstcommerciallyavailable microprocessor(Intel4004),oneofthemostfar-reachingapplicationofICs,gained themarket;andPCsbecamepopularonlyinthesecondhalfoftheeighties.

Themainstrengthofintegratedelectronicsisinthelow-cost-per-function enabledbyanevergrowingminiaturization:mono-crystallinesiliconrealestateis veryexpensive,butthenumberoftransistorsthatcanbeintegratedperareagrows accordingtoMoore’slaw,bringingdownthecosttorealizeagivenfunction.

Sincethesecondhalfoftheseventies,acompletelydifferentelectronicparadigm,theso-calledlarge-areaelectronics,hasbeendeveloping.Inthisfieldthe majoraimistodecreasethecostperarea(insteadofthecostperfunction), enablinglargesurfacescoveredwithelectronicdevices.Themainapplicationof thiskindoftechnology,typicallybasedonamorphousorpolycrystallinesilicon transistors,isinactive-matrixaddressingofflatdisplays.Thesuccessofthis technologyhasbecomeevidentinthelastdecade,whenflat-panelLCDdisplays haveswiftlyreplacedtraditionalcathoderaytubesintelevisionsets.

Amorphousandpolycrystallinesilicontechnologytypicallyrequirehigh-temperaturevacuum-basedprocessing,withtheconsequencethatglasssubstratesare

usedandthatthetechnologythroughputislimited.Intheninetiesanewtechnology approachhasbeenproposed,basedonmaterialsthatenablelow-temperatureprocessingandtheuseofveryhighthroughputpatterningtechnologies,borrowedfrom thegraphicprintingfield:organicandprintedelectronicswereborn.

Theword‘‘organicelectronics’’,whichIpersonallystartedusingin2000[4] togetherwithmanycolleagues,designateselectronicsmanufacturedusingfunctionalcarbon-basedmaterials,typicallysemiconductors,likepentacene,P3HT, PCBM,PTAAandmanyothers.Thereareseveralreasonsforthischoice:

• Organicmaterialscanformfunctionalfilmswhenprocessedfromsolutions, pavingthewaytomanufacturingprocesseswithareducednumberofvacuum steps(whicharetypicallyexpensiveandcumbersometoscaletolargeareas), andthusenablingpotentiallyverylow-costlarge-areaelectronics;

• Organicmaterialsareprocessedatlowtemperature(typicallybelow200 C), enablingtheuseofinexpensiveandflexibleplasticfoilsassubstratesandpaving thewaytoflexibleelectronics;

• Organicchemistryisintrinsicallyveryrich,enablingtheexplorationofalimitlesslibraryofmaterialshavingverydiverseelectrical,optical,rheologicaland chemicalproperties;

• Togetherwiththechemicalvariety,alargespectrumofphysicallydifferent devicesbasedonorganicmaterialsispossibleandhasbeendevelopedinthe years,themostwell-knownbeingorganiclightemittingdiodes(OLEDs)[5], organicthin-filmtransistors(OTFTs)[6,7],organicphotovoltaics(OPVs)[8], organicsensors[9],organicmemories[10,11],andorganicMEMs[12]1.

Togetherwiththesestrengths,functionalorganicmaterialsandorganicelectronicspresentanumberofdrawbacks:

• Organicsemiconductorshavearelativelypoormobility,withpeakvaluesfor single-crystalmaterialsintherangeof10cm2/Vs[13],andtypicalvaluesin solution-processedfilmsofabout1cm2/Vsatthestateoftheart.Underthis pointofview,othermaterialssuitableforlow-temperatureandlarge-areaprocessing,likemetal-oxidesemiconductorsandcarbonnanotubes,mayofferan advantagecomparedtoorganicsemiconductors.

• Organicsemiconductors(especiallyn-type)aresensitivetooxygen,moisture andotherenvironmentalaggressors,sothatforlongtimeorganicelectronic deviceshavehadpoorshelfandoperationallifetime.Organicmaterialsarealso sensitivetobiasstress,whichtendstoaffectoperationallifetime.Recent improvementsinthematerials,theirformulationandencapsulation,however, showthatinstabilitiesshouldnotbeashow-stopperforcommercialization(see forinstance Sect.2.3 in Chap.2 and Sect.4.4 in Chap.4);

1 Inthissectionafewearlyandsignificantpapershavebeenselectedasreferences.

Organicsemiconductorsaredifficulttodopeinsituwithhighlycontrolled dopantconcentrationsasaprocessequivalentoftheionimplantationdoping usedinsiliconhasstillnotbeendevelopedfororganicmaterials.Thismakes difficulttomanagekeyparametersliketransistorthresholdvoltagesandinjectionbarriersatthecontacts.

Manymoredetailsonthestateoftheartandroadmapsoforganicelectronics aregivenin Chap.1 andintheotherchaptersofthisbook.

Thecapabilitytodepositorganicmaterialsfromsolutionmakespossibleto patternfunctionalmaterialsusingmethodsadaptedfromgraphicprinting,like inkjet,gravure,slotcoatingandmanyothers.Thisleadstotheconceptof‘‘printed electronics’’.Themainstrengthofthisapproachisthehighthroughputthat characterizesprintingproductionprocesses,whichmeansthatprintinghasthe potentialtomakepossibleveryinexpensivelarge-areaelectronics,andthusto enableapplicationsofelectronicsunthinkabletillnow.Moreover,printingisan additiveprocess,thusonlythefunctionalmaterialsthatareneededareeffectively used,contrarytothetraditionallithography-basedsubtractiveapproach.Thishas thepotentialtodecreasematerialusageandthusfurtherbringdownthecosts. Detailedinformationonprintingelectronicsisavailableespeciallyin Chaps.1, 2 and 6 ofthisbook.

Thestrengthsofprintingarepairedwiththechallengesthatthistechnology faces:itisnamelydifficultandexpensivetodevelopanewelectronictechnology usinganapproachthatinafewminutescangeneraterollscoveredwithhundreds ofmetersofelectronicstobecharacterizedandoptimized.Uniformity,performanceandyieldaredauntingtaskstobesolvedforfutureprintedelectronics applications.

Thepotentiallowcost,thecompatibilitywithlargeflexiblesubstratesandthe wealthofdevicesthatcharacterizeorganicandprintedelectronicswillmake possibleapplicationsthatgofarbeyondthewell-knowndisplaysmadewith conventionallarge-areasiliconelectronics.Organicandprintedelectronicscan enableatruerevolutionintheapplicationsofelectronics:thisistheviewthat broughtme,togetherwithalargenumberofcolleagues,towritethisbook.The volumeofferstothereaderanextensiveoverviewofthedifferentdevicesenabled byorganicelectronics,andreviewsalargevarietyofapplicationsthatare developingandcanbeforeseenforthefuture.

Chapter1,writtenbyTampereUniversity,theOrganicElectronicAssociation (OA-E)andPolyIC,offersacomplete RoadmapforOrganicandPrintedElectronics spanningtilltheendofthisdecade.Itisanidealstartingpointtounderstandthecomplexapplicationscenariosandthelikelydevelopmentsinthisrapidly growingtechnologydomain.

In Chap.2 byKonarka,CyprusUniversityofTechnologyandFriedrichAlexander-University,arediscussed OrganicPhotovoltaics,withgreatemphasis ontheuseofprintingprocessesfortheirmanufacturing.Awideoverviewofthe printingprocessesfororganicelectronicsisgiven,togetherwiththestateoftheart oftheirapplicationtosolarcells.Photovoltaiccellsdonotneedfinepatterningof

thestructuresintheplaneofthedevice,andarethusanidealcandidatetoexploit thehighthroughputofprintingprocesses.Thischapterisanexcellentreading forthepersonwillingtounderstandmoreaboutprintingelectronics.Aroadmap fororganicsolarcellsconcludesthiscontribution.

Inthethirdandfourthchapterlightemittingdiodes(OLED),themostadvanced organicelectronicdevicesavailableatthemoment,arediscussed. Chapter3, writtenbyKyungHeeUniversityandSamsung,givesadetailedoverviewof OLEDDisplays,aboomingapplicationthathasreachedthemarketsincesome yearsalready,andisrapidlygrowingtobecomethestandardemissivetechnology forflatdisplays.ThissectioninformsthereaderaboutthedifferenttypesofOLED pixelsincommercialuseandindevelopment,andgivesinsightintothemost relevantdisplayandbackplaneissues.

Chapter4,byPhilips,givesaniceoverviewof OLEDforLighting applications. Thesectionbeginswithaninsightfuldescriptionofthematerials,physics, architectureandbenchmarkingofOLEDlightingdevices,tocontinuewithan overviewoffabricationmethods,reliabilityandcommercialapplications.

Chapter5 byUniversityofTokyogivesaninterestingvisionforfutureorganic electronics:itwillcomplementsiliconICstocreatenewapplicationsenabling unprecedentedwaysofinteractionbetweenelectronicsandpeople.Inthisvision areincludedavarietyofdifferentorganicdevices(TFTs,sensorsandactuators) providingastimulatingviewonhowdifferenttypesoforganicelectronicscanbe integratedtoenablerevolutionaryapplications.

ThesixthandseventhchapterdealwithorganicTFTs. Chapter6 focuseson applicationsof PrintedOrganicTFTs.Thissection,writtenbyPolyIC,describes thedevicesandtechnologyneededtoprinttransistorsandcircuits,thecharacteristicsofprintedTFTs,andwhatthisrevolutionarytechnologycanmeanin termsofapplications(RFIDsandSmartObjects). Chapter7 byIMEC,KUL, KHL,TNOandPolymerVisionfocusesontheapplicationof OrganicTFTs to low-cost RFIDs.ThissectionexplainshoworganicRFIDsaredevelopingtowards becomingfully-complianttoexistingstandardsforRFIDsbasedonsiliconIC technology.Compatibilitywithstandardswouldmeanthatthesameinfrastructure canbesharedbetweensiliconandorganicRFIDs,enablingaseamlesstransition betweenthetwotechnologiesandaneasymarketuptake.Thisdoesnotmean, however,thatsiliconandorganicshouldservethesamemarkets:thecharacteristicsofprintedelectronicslendthemselvesnaturallytothedreamofenabling item-levelidentificationofretailitems,whichisstilloutofreachforsilicon RFIDs,duetothehighcostsandcumbersomeintegrationofsiliconICswiththe itemstobeidentified.

Chapter8,contributedbyUniversityofCaliforniaBerkeley,reviewsthestate oftheartof ChemicalSensors basedonorganicelectronicdevicesanddemonstratesthespecificcompetitiveadvantagethatthesesensorshave,namelytheease ofcreatingmatricesofsensingelementswithdifferentsensitivitytodiverse analytes,thusenablingtheextractionofuniqueanalytesignaturesandgreatly improvingbothspecificityandversatilityofuse.

Thisbookcanbereadatdifferentlevelsofinsightbybeginnersaswellasby expertsinthefield,andisspecificallyconceivedtoaddressawiderangeofpeople withtechnicalandscientificbackground.Iamdeeplygratefultoallcontributors:I hopeyouwillappreciatetheireffortandIwishyouapleasantandfruitfulreading.

Eindhoven,TheNetherlands,January2012EugenioCantatore

References

1.MooreGE(2003)Noexponentialisforever:but‘‘forever’’canbedelayed!In: ISSCC2003digestoftechnicalpapers,pp20–23

2.ITRSRoadmap(2011)Availableat http://www.itrs.net/Links/2011ITRS/ Home2011.htm

3.JacobiW(1949)Halbleiterverstärker,PatentDE833366,15April1949

4.CantatoreE(2001)Stateoftheartelectronicdevicesbasedonorganicmaterials. In:Proceedingsofthe31stEuropeansolid-statedeviceresearchconference (ESSDERC),pp25–34

5.TangCW,VanSlykeSA(1987)Organicelectroluminescentdiodes.Appl PhysLett51:913

6.KoezukaH,TsumuraA,AndoT(1987)Field-effecttransistorwithpolythiophenethinfilm.SynthMet18:699–704

7.BrownAR,PompA,HartCM,deLeeuwDM(1995)Logicgatesmadefrom polymertransistorsandtheiruseinringoscillators.Science270(5238): 972–974

8.SariciftciNS,SmilowitzL,HeegerAJ,WudlF(1992)Photoinducedelectrontransferfromaconductingpolymertobuckminsterfullerene.Science 258(5087):1474–1476

9.TorsiL,DodabalapurA,SabbatiniL,ZamboninPG(2000)Multi-parameter gassensorsbasedonorganicthin-film-transistors.SensActuatorsB67:312

10.ReedMA,ChenJ,RawlettAM,PriceDW,TourJM(2001)Molecular randomaccessmemorycell.AppPhysLett78(23):3735–3737

11.OuyangJY,ChuCW,SzmandaCR,MaLP,YangY(2004)Programmable polymerthinfilmandnon-volatilememorydevice.NatMater3(12):918–922

12.SekitaniT,TakamiyaM,NoguchiY,NakanoS,KatoY,HizuK,KawaguchiH, SakuraiT,SomeyaT(2006)Alarge-areaflexiblewirelesspowertransmission sheetusingprintedplasticMEMSswitchesandorganicfield-effecttransistors. In:IEEEint.electrondevicesmeeting(IEDM),pp287–290

13.JurchescuOD,PopinciucM,vanWeesBJ,PalstraTTM(2007)Interfacecontrolled,high-mobilityorganictransistors.AdvMater19:688–692

1OE-ARoadmapforOrganicandPrintedElectronics ..........1 DonaldLupo,WolfgangClemens,SvenBreitungandKlausHecker

2Solution-ProcessedOrganicPhotovoltaics ...................27 ClaudiaN.Hoth,PavelSchilinsky,SteliosA.Choulis, SrinivasanBalasubramanianandChristophJ.Brabec

3High-PerformanceOrganicLight-EmittingDiodeDisplays ......57 JangHyukKwon,RamchandraPode,HyeDongKim andHoKyoonChung

4HighEfficiencyOLEDsforLightingApplications .............83 CoenVerschuren,VolkervanElsbergenandReinderCoehoorn

5LargeAreaElectronicswithOrganicTransistors .............101 MakotoTakamiya,TsuyoshiSekitani,KoichiIshida, TakaoSomeyaandTakayasuSakurai

6PrintedRFIDandSmartObjectsforNewHigh VolumeApplications ..................................115 WolfgangClemens,JürgenKrummandRobertBlache

7OrganicRFIDTags ...................................133 KrisMyny,SoerenSteudel,PeterVicca,SteveSmout, MoniqueJ.Beenhakkers,NickA.J.M.vanAerle,FrançoisFurthner, BasvanderPutten,AshutoshK.Tripathi,GerwinH.Gelinck, JanGenoe,WimDehaeneandPaulHeremans

8PrintedOrganicChemicalSensorsandSensorSystems

VivekSubramanian,JosephineChangandFrankLiao

Chapter1

OE-ARoadmapforOrganic andPrintedElectronics

DonaldLupo,WolfgangClemens,SvenBreitung andKlausHecker

Abstract Theroadmapfororganicandprintedelectronicsisakeyactivityofthe OE-A,theindustrialorganisationfortheyoungorganic,printedandlargearea electronicsindustry.Organicelectronicsisaplatformtechnologythatenables multipleapplications,whichvarywidelyintheirspecifications.Sincethetechnologyisstillinitsearlystage—andisinthetransitionfromlab-scaleandprototypeactivitiestoproduction—itisimportanttodevelopacommonopinionabout whatkindofproducts,processesandmaterialswillbeavailableandwhen.This chapterisbasedonthethirdversionoftheOE-ARoadmapfororganicandprinted electronics,developedasajointactivitybykeyteamsofexpertsin9applications and3technologyareas,informedbyfurtherdiscussionswithotherOE-Amembers duringassociationmeetings.Theresultingroadmapisasynthesisoftheseresults representingcommonperspectivesofthedifferentOE-Aforums.Throughcomparisonofexpectedproductneedsintheapplicationareaswiththeexpected technologydevelopmentpaths,potentialroadblocksor‘‘redbrickwalls’’suchas resolution,registrationandcomplementarycircuitryareidentified.

D.Lupo(&)

DepartmentofElectronics,TampereUniversityofTechnology, POBox692,33101Tampere,Finland

e-mail:donald.lupo@tut.fi

W.Clemens

PolyICGmbHandCo.KG,Tucherstrasse.2,90763Fürth,Germany e-mail:wolfgang.clemens@polyic.com

S.Breitung K.Hecker

OE-A(OrganicElectronicsAssociation),c/oVDMA,LyonerStreet18, 60538FrankfurtamMain,Germany e-mail:sven.breitung@vdma.org

K.Hecker

e-mail:klaus.hecker@vdma.org

E.Cantatore(ed.), ApplicationsofOrganicandPrintedElectronics, IntegratedCircuitsandSystems,DOI:10.1007/978-1-4614-3160-2_1, SpringerScience+BusinessMediaNewYork2013

Keywords Organicelectronics Printedelectronics RoadmapOE-Aapplications Redbrickwalls Organicelectronicsassociation

1.1Introduction

Organicandprintedelectronicsisbasedonthecombinationofnewmaterialsand cost-effective,largeareaproductionprocessesthatopenupnewfieldsofapplication.Thinness,lightweight,flexibilityandenvironmentalsustainabilityarekey advantagesoforganicelectronics.Organicelectronicsalsoenablesawiderangeof electricalcomponentsthatcanbeproducedanddirectlyintegratedinlowcostreelto-reelprocesses.

Intelligentpackaging,lowcostRFID(radio-frequencyidentification)transponders,rollabledisplays,flexiblesolarcells,disposablediagnosticdevicesor games,andprintedbatteriesarejustafewexamplesofpromisingfieldsof applicationfororganicelectronicsbasedonnew,largescaleprocessable,electricallyconductiveandsemi-conductingmaterials.

Thefollowingpagespresentashortoverviewoforganicelectronicsapplications,technologiesanddevices,aswellasadiscussionofthedifferenttechnology levelsthatcanbeusedinmanufacturingorganicelectronicproducts,basedonthe thirdeditionoftheroadmapdevelopedbytheOE-A.Sincethesecondeditionwe haveaddedfurtherapplicationsthatweexpecttoplayakeyroleinthecommercializationofthisemergingtechnologyandtakenaccountoftheexciting technicalprogressmaderecently.

Intheapplicationssectionwhichfollows,themarketentryonlargerscalesfor thevariousapplicationsisforecasted.Thekeyapplicationandtechnology parametersrelatingtotheseapplicationsandtheprinciplechallenges(so-called redbrickwalls)toachievingthesehavebeenidentified.Inthesubsequenttechnologysectionwesummarisetheprojecteddevelopmentofrelevanttechnologies andtakeaccountofrecentprogressinnewmaterialsandimprovedprocesses.

AWhitePaperexplainingthecurrenteditionoftheroadmapinmoredetailcan bedownloaded[1].

Organicelectronics

Organicelectronicsisbasedonthecombinationofanewclassofmaterials andlargearea,highvolumedepositionandpatterningtechniques.Often termslikeprinted,plastic,polymer,flexible,printableinorganic,largearea orthinfilmelectronicsorabbreviationslikeOLAEorFOLAE(Flexibleand/ orOrganicLargeAreaElectronics)areused,whichessentiallyallmeanthe samething:electronicsbeyondtheclassicalintegratedcircuitapproach.For simplicitywehaveusedthetermorganicelectronicsinthisroadmap,but keepinmindthatweareusingtheterminthisbroadersense.

1.2Applications

Organicandprintedelectronicsisaplatformtechnologythatisbasedonorganic conductingandsemi-conductingaswellasprintableinorganicmaterials.Itopens upnewpossibilitiesforapplicationsandproducts.Anumberofkeyapplicationsof organicandprintedelectronicshavebeenchosentodemonstratetheneedsfrom theapplicationside,identifymajorchallenges,crosscheckwiththepossibilitiesof thetechnologyandtoforecastatimeframeforthemarketentryinlargevolumes.

Below,wecontinuetolookatapplicationsdiscussedinthesecondeditionofthe roadmap.i.e.organic photovoltaiccells(OPV),printed RFIDs,organic memories, organic sensors,flexible batteries and smartobjects.Wealsoexpandonthepreviousapplicationareaoforganicthinfilmtransistor(OTFT)displaybackplanesto lookat flexibledisplays,andlookattwonewapplicationareas,electroluminescence (EL) andorganicLED (OLED)basedlighting and smarttextiles.

Thegrowinglistofapplicationsreflectsthecomplexityofthetopicandthewide possibleusesfororganicelectronics,anditislikelythatthelistwillevengrowin thefuture.Theapplicationfieldsandspecificationscoverawiderange,and althoughseveralparameterslikeaccuracyofthepatterningprocessorelectrical conductivityofthematerialsareofcentralimportance,thetopiccannotbereduced toonesingleparameteratthetimebeing,asisknownfromthefamousSilicon Roadmap(Moore’slaw).Regardless,wewillwatchthetrendsandfindoutwhether itwillbepossibletofindananaloguetoMoore’slawfororganicelectronics.

Thequestionwhetherthereisone‘‘killerapplication’’fororganicelectronics cannotbeansweredatthismoment.Therearemanydifferentfieldsinwhichthe advantagesoforganicelectronicsmightresultintherightproducttobecomethe killerapplication,butatthispoint,itistooearlytodefinewhichoneitis.Past experiencewithnewtechnologieshasshownthatthepredicted‘‘killerapplications’’arefrequentlynottheonesthatreallyopenupthelargestmarkets. Therefore,onehastocontinuetheworkontheroadmap,asisplanned,followthe actualtrendsandtakeaccountofnewdevelopmentsastheyoccur.

Firstorganicelectronicproductsreachedthemarketin2005/2006.OLED displaysarenotspecificallycoveredassuchinthisversionoftheroadmapbutare alsobasedonorganicsemiconductors,andarestartingtoseesubstantialmarket penetrationinrecentyears.PassiveIDcardsthataremassprintedonpaperandare usedforticketingortoyswerepresentedin2006[2].FlexibleLithiumbatteries— producedinareel-to-reelprocess—havebeenavailableforseveralyearsandcan beusedforsmartcardsandothermobileconsumerproducts[3].Printedantennae arecommonlyusedin(stillSi-based)RFIDtags.Large-areaorganicpressure sensorsforapplicationssuchasretaillogisticshavealsobeenintroduced,ashave printedelectrodesforglucoseteststrips.Recently,firstOPV[4, 5]andOLED lightingbasedproducts[6, 7]havebecomeavailableandfirstusertestsofsmart cardswithbuilt-indisplaysforone-timepasswordapplicationshavebeenstarted.

Additionalproducts,likeglass-freehighresolutione-readersorrollabledisplayswithorganicTFTbackplanes,printedradiofrequencytagsandorganic

Fig.1.1 Bagwithintegrated OPVbatterycharger. Source Neubers

memories,havealreadybeendemonstratedtechnicallyandhaverecently approachedthemarket.Within2–4years,itisexpectedthatmassmarketswillbe reachedandthatalltheabovementionedapplications,andseveralmore,willbe availableinlargevolumes.

1.2.1ApplicationsRoadmap

Dyesensitisedsolarcell(DSSC)based organicphotovoltaic productshavebeen producedcommerciallysince2007[8].FirstpolymerOPVproductshavebeen shipped,withincreasingcommercialavailability,e.g.asflexiblesolarcells(see Fig. 1.1)forabatterychargerformobilephones.ForthenextfewyearsOPVwill primarilyaddressconsumer,outdoorrecreationalandinitialoff-gridmarkets,but asefficiencyandlifetimeimprovethetargetistomoveintobuildingintegratedPV (BIPV)andoff-gridpowergenerationmid-termand,inthelongterm,entertheongridpowergenerationmarket.Thiswillrequiresignificanttechnicalprogressin materialsandprocessestodeliverhighefficiency,highlystableproducts.Inthis bookorganicphotovoltaicsarefurtherdiscussedin Chap2.

Flexibledisplays arestartingtoenterthemarket,withrolltorollproduced segmentedelectrophoreticpricelabelsalreadybeingusedinstoresandrollable e-readerdeviceswithOTFTbackplanes(Fig. 1.2)andlargeareaunbreakable OTFTbasede-readerproductstestmarketed2011.Displaysbasedon electrophoretic or electrochromic mediaoron OLEDs arecurrentlygettinga particularlylargeamountofattention,butdisplaysbasedon liquidcrystals, electrowetting etc.arealsopossible.Furtherinthefuture,bothreflectiveand emissivecolourdisplaysandlargeareaproductslikerollableOLEDTVsor electronicwallpaperareanticipated.However,themovetocolour,highresolution andOLEDswillrequiresignificantimprovementsinbackplanepatterningtechnology,displaymediaandOTFTtechnology.

Fig.1.2 Rollable electrophoreticdisplayfor e-readersandmobilephones. Source Polymervision

Electroluminescent(EL)andOLEDLighting isanapplicationthatisnewto thethirdeditionoftheroadmap.WhileOLEDshavebeenpenetratingthedisplay marketforsometimenow,onlyrecentlyhavesignificantimprovementsinefficiency,lifetimeandlargeareadevicesmadeOLEDanimportantpotentialsourceof novellarge-area,energyefficientsolid-statelighting.ELsignageandbacklighting isalreadycommercial,firstOLEDdesignerlamps(Fig. 1.3)arealreadyavailable, andinthefutureOLEDlightingwillmovefrombeingatechnologyfordesignand decorativeapplicationstotechnicallightingandgeneralillumination;thiswill however,requirebothveryhighefficiency,colourpurityandlifetimeaswellas developmentofprocesses,materialsandarchitecturestocutproductioncosts.

Chap.4 ofthisbookfurtheraddressesOLEDlightinganditsapplications.

PrintedRFID (radiofrequencyidentification)basedonorganicelectronics showedsignificanttechnicalprogresssincethelasteditionoftheroadmap,with announcementsofadvancessuchasrolltorollprintedhighfrequency(HF)tags with1–4bits,aswellasfirstorganicCMOS-likecircuits[9],128bittransponders [10],andultrahighfrequency(UHF)rectifiers[11],allbasedonorganicsemiconductors.Inaddition,therehasbeenprogresswithalternativeapproachessuch aschiplessRFIDconcepts.Printedantennasarealreadycommoninconventional Si-basedRFIDproducts.Afurtherapproachforprintedtranspondersisbasedon Sinanoparticlesonstainlesssteelsubstrates.Theseapproachesarenotfurther takenintoaccountinthecurrentroadmapdiscussion,asthisroadmapfocuseson organic/printedchipsonplasticsubstrates.TheactivitiesofprintedRFIDare targetingtowardsElectronicProductCode(EPCTM)compatibletagsinthelong term(see Chap.7),eventhoughthegeneralperformanceofprintedRFIDwillbe onalowerlevelcomparedtostandardRFIDtagsforalongtime.Simpleprinted

Fig.1.3 OLEDdesigner lamp. Source OSRAMOpto semiconductors

Fig.1.4 PrintedRFIDtag. Source PolyIC

RFIDtags(Fig. 1.4)werepilotedalreadyin2007andshouldbeingeneral commercialusewithinthenextfewyears.Thefutureisexpectedtobringatrend tolargermemory,andtoUHFaswellasHFtags.Theexpectedapplicationsrange frombrandprotectionintoticketing,identification,automationandlogistics,asthe technologyadvances.DespitesomedelaysinmarketintroductionofsimpleRF circuits,therapidtechnicalprogressintherecentpastmakesusoptimisticthat moreadvancedproductswillactuallybeavailablewithinthenextyears.Keysto thisprogresswillbematurehighvolumeandlowcostproductionprocesses,fast circuits,smallerdimensionsandCMOS-likecircuitdevelopment,aswellas appropriatestandardsfororganicRFIDproducts.RFIDsarethemainsubjectof Chaps.6 and 7 ofthisbook.

Fig.1.5 Gamecardswith organicNV-RAM. Source Thinfilmelectronics

PrintedMemory deviceshavealreadybeenintroducedtothemarketinthe formofRead-onlyMemories(ROM)orWriteOnceReadMany(WORM) memoriesinIDorgamecards.Recentlyreeltoreelfabricationofprinted rewritablenon-volatileRandomAccessMemories(NV-RAM)wastechnically demonstrated[12],andfirstlow-densitypolymerNV-RAMproductsareavailable onthemarket(Fig. 1.5).Futuregenerationsofprintedmemoryproductswillseea trendtohigherbitdensity,fasterreadingandwriting,on-boardreadoutandatrend tomoreNV-RAM,thoughROMandWORMwillremainimportant.Keytechnicalissuestoresolveinthefuturewillincludescalingofon-boardreadout electronicsandmemorycells.

OrganicSensor devices(Fig. 1.6)openupavarietyofapplications.Thefield hasdevelopedmorerapidlythanexpected,withprototypetemperature,chemical andpressuresensorsalreadydemonstrated.Temperature,pressureandphotodiode sensorsandsensorarrayswillreachthemarketinthenextfewyears.Onetrend willbefromyes/nosensorstoanalogsensorsabletogiveaquantitativereadout. Forexample,potentiometricsensorsforchemicalanalysisarealreadystartingto becomeavailableinayes/noconfigurationbutanalogversionswillbeavailable midterm.Inthelongterm,combinationofsensordevicesintoembeddedsystems includingon-board(organic)circuitryandpossiblyon-boarddisplay-basedreadoutisexpectedtoenableintelligentsensorsystems.Thiswillrequiresignificant advancesnotonlyinthesensorsthemselvesbutalsointheassociatedon-board circuitry,whichwillrequirehighreproducibility,reliability,yield,etc.Sensorsare furtherdiscussedin Chap.8 ofthisbook,whileintegrationwithcircuitstoenable intelligentsensorsystemsisaddressedin Chaps6 and 7

Thinand flexiblebatteries (Fig. 1.7)arealreadycommerciallyavailablefor discontinuoususe,butthereisroomforimprovementinprice,capacityandeaseof integrationintosomesystems.Overthenextfewyearsatrendtocommercial availabilityofcost-effectivelowcapacitybatteries,thenhighercapacitybatteries forcontinuoususeandfinallybatteriesthatcanbedirectlyprintedintoelectronic

Fig.1.6 Large-areaorganic basedpressuresensorarray.

Source Plasticelectronic

Fig.1.7 Ultraslimprimary batteriesformobiledevices.

Source VARTAmicrobattery

systemsorpackagesisexpected.Keyareasfordevelopmentwillbeoptimisation ofcost-effectiveproductionandencapsulationofLibasedthinbatteries.

Abigadvantageoforganicelectronicsisthecombinationandsimpleintegrationofmultipleelectronicsdevicestocreate smartobjects.Assimple example,printedkeypads,printedloudspeakersandsmartcardsincorporatingthin filmbatteriesandflexibledisplays(Fig. 1.8)havebeenshown[13].Inthefuture thetrendwillbetowardsinclusionofmoredifferentfunctionalitiesaswellasmore complexfunctionalities,movingfromsimpleinputdevices,animatedlogosor smartcardstoobjectswithfulldisplays,intelligentticketsandsensors,games,and smartpackages.Thevarietyofsmartobjectswillbelimitedonlybythenumberof organicelectronictechnologiesavailableandthecreativityofproductdevelopers. Oneofthekeyissuestolookatwillbetakingcareofmechanicalandelectrical compatibilityandconnectionbetweenthedifferentfunctions.

Anothernewapplicationinthecurrentroadmapis smarttextiles,inwhich functionalitiessuchascommunication,displays,sensors,orthermalmanagement

Fig.1.8 Smartcardwith flexiblebatteryand electrochromicdisplay.

Source OE-A

areintegratedintofabrictoenablewearableelectronics(Fig. 1.9).Firstexamples ofintegrationofLEDs,opticalfibersorelectroluminescentelementsintoapparel arealreadystartingtohitthemarket[14, 15].Applicationareasrangefromsport, fashion,safetyandhealthclothingtoarchitecture,andovertimethetechnology willbecomemorecomplex,movingfromsimplesensors,keypads,lighteffects etc.intheshorttermtomorecomplexsystemsincorporatingfunctionalitieslike OPV,fuelcellandtextilesensorsinthefuture.

Theseapplicationscenariosaresummarizedinthe OE-Aroadmapfororganic electronicsapplications inFig. 1.10.Foreachofthenineselectedapplications weshowproductsthatareexpectedtoreachthemarketintheshort(2009–2012) andmediumterm(2012–2017).Wealsogiveaforecastforthelongterm,from 2018onward.Suchasummaryovermanyapplicationsisbynecessitynotdetailed; foreachapplicationareaindividualroadmapshavebeenprepared(seeforexample roadmapsforRFIDandOPVinFigs. 1.11 and 1.12).Figure 1.10 isahigh-level overviewforthewholefieldoforganicandprintedelectronicsthathasbeen distilledfromtheindividualroadmaps.

Thislistofproductsreflectstheideasfromtoday’spointofview.Pastexperience ofnewtechnologyshowsusthatwearemostlikelytobesurprisedbyunexpected applications,andthiswillalmostcertainlyhappenintheexcitingbutnascentfield oforganicelectronics.Thereforethetechnologyandthemarketinthisfieldwill continuouslybewatchedandtheroadmapwillbeupdatedonaregularbasis.

Significantprogresshasbeenmadeinthelastseveralyearsandfirstgenerations ofproductshavealreadybeenenabled.However,inordertofulfilthemore demandingspecificationsofmorecomplexfuturegenerationsofproducts,further improvementofmaterials,process,designandequipmentisnecessary.Inthenext sectionwelookatsomeofthemainapplicationparameterswhosedevelopment willbekeytoenablingfutureproductgenerations.Afterthatwewilllookatthe maintechnologiesinorganicelectronicsanddiscussthekeytechnologyparametersunderlyingtheapplicationparameters.

Fig.1.9 Sportsjacket includingsmartfunctions.

Source Francital

1.2.2KeyApplicationParameters

Theviabilityofeachapplicationorproductwilldependonfulfilmentofanumber ofparametersthatdescribethecomplexityorperformanceoftheproduct(applicationparameters).Fortheapplicationsdescribedabovegroupsofspecialists identifiedthemostimportantapplicationandtechnologyparametersand requirementsfordifferentgenerationsofproducts.Herewelistonlyasmall excerptofthekeyapplicationparametersthathavebeenidentifiedasrelevantto severaloftheapplications.Thefollowinglistisinnoparticularordersincethe relevanceofthedifferentparametersvariesforthediverseapplications.

• Complexityofthedevice

Thecomplexityofthecircuit(e.g.numberoftransistors)aswellasthenumber ofdifferentdevices(e.g.circuit,powersupply,switch,sensor,display)thatare integratedhaveacrucialinfluenceonreliabilityandproductionyield.

• Operatingfrequencyofthecircuit

Withincreasingcomplexityoftheapplication(e.g.increasingmemory capacity)higherswitchingspeedsarenecessary.

Fig.1.10 OE-ARoadmapfororganicelectronicsapplications.Forecastforthemarketentryin largevolumes(generalavailability)forthedifferentapplications.SourceOE-A

• Lifetime/stability/homogeneity

Lifetime(shelfandoperation),theenvironmentalstability,stabilityagainst othermaterialsandsolvents,andhomogeneityofthematerialsareissuesdueto theintrinsicpropertiesofthematerialsusedinorganicandprintedelectronics.

• Operatingvoltage

Formobiledevicespoweredbybatteries,PVorradiofrequency,itisessential tohavelowoperatingvoltages(\10V).

• Efficiency

Theconversionefficiencyoflighttoelectricityorelectricitytolightisakey parameterforphoto-voltaiccellsandphotodiodesorOLEDs,andpowerefficiency

OE-A RoadmapforOrganic/ PrintedRFID

Product Generations

Item leveltagging, EPC, identification

96+bit HF + UHF standardized Generalavailability Labdemos, prototypes

16–64bit HF 1–8 bit HF

©OE-A 2009

logistics, automation

Brand protection, e-ticketing,

Short term (2009-2012)

term (2012-2017)

Maturity

term (2018+)

Fig.1.11 ApplicationsroadmapforprintedRFID. Source OE-Aimageand Source PolyIC

OE-A RoadmapforOrganicPhotovoltaics

η≤ 15 % > 10 years < 3 €/Wp

η≤ 10 % ≤ 10 years < 5 €/ W p

η≤ 3 % ≤ 3 years ~ 10€/Wp η≤ 5 % ≤ 5 years < 10€/Wp

©OE-A 2009

Product Generations

Labdemos,prototypes Generalavailability

grid

Short term (2009-2012)

Off-grid buildings Facade & BIPV

Maturity

term (2012-2017)

term (2018+)

Fig.1.12 ApplicationsroadmapforOPV. Source OE-Aimageand Source Konarka

ofcircuitryisalsoimportantformanyapplications,especiallythosewhichare mobileandneedtobelightweight.

• Cost

Althoughmostapplicationstargetnewapplicationsandmarketsratherthan replacements,costshavetobelow.Forsomeapplications,suchasrollable

displays,acostpremiumoverconventionalrigiddisplaysmaybeaccepted, whileforotherapplications,e.g.inpackaging,lowcostwillbeamajordriving factor.

1.3Technology

Aswehavementionedbefore,weusethetermorganicelectronicsforbrevityto refertothefieldofelectronicsbeyondclassicalsiliconICapproaches,butinclude conceptssuchaslargeareaorflexiblecircuitsandprintedinorganicmaterials. Althoughsomeclassic device conceptsareused, materials, including substrates, and patterningprocesses areverydifferentfromthoseusedintheconventional electronicindustry.Inthissectionwereviewkeymaterials,processesanddevices fororganicelectronicsanddiscussthekeytechnologyparametersthatarecritical fordevelopmentoffutureproducts.Amoredetaileddescriptionoftheprintingand otherpatterningprocesses,materialsanddevicescanbefoundinanarticleinthe 1steditionoftheOE-Abrochure,publishedin2006[16]andin Chap.2 ofthis book.

1.3.1Materials

Organicelectronicsrelyonelectricallyactivematerialssuchasconductors, semiconductors,dielectrics,luminescent,electrochromic,electrophoreticor encapsulationmaterials.Thematerialshavetobecarefullychosensinceprocess conditionsandtheinterplaywithotherlayershavealargeinfluenceontheperformanceofthedevice;forexamplethechoiceofappropriatedielectricsandof encapsulationmaterialscanbecriticalfortheperformanceandthestabilityofan organicelectronicproduct.Inthiseditionoftheroadmapwehavefocusedprimarilyonconductingandsemiconductingmaterials,thoughinfutureeditionswe plantoincludeotherclassesofmaterialsaswell.

Therearemanyapproachesonthematerialsideandtheprosandconsofthe differentapproaches—organicorinorganic,solutionbasedorevaporated—arestill underdiscussion.Itisverylikelythatseveralapproacheswillbeusedinparallel.

Organic conductors suchasPEDOT:PSSarestartingtobewidelyusedfor electrodesinavarietyofapplications.Organicconductorscanbehighlytransparent,andwithrecentprogressinconductivityPEDOT:PSSisstartingtobecome arealisticreplacementforIndiumtinOxide(ITO)insomeapplications (Fig. 1.13).Inorganicmaterialslikesilverandothermetals(e.g.asfilledpastesor ultra-thinfilms)arealsousefulifstillhigherconductivityisneeded.

Organic Semiconductors areusedinnumerousactivedevicesandmanyof themaresolutionprocessableandcanbeprinted.Figure 1.14 showsthestructures oftheorganicconductorPEDOT:PSS,ofthecommonpolymersemiconductor

Fig.1.13 ProgressoftheelectricalconductivityofPEDOT:PSS-dispersionsoverthepast 10years. Source OE-A

poly-3-hexyl-thiophene(P3HT),andofthewidelyusedmolecularsemiconductor pentacene[17–19].Organicsemiconductormaterialsarestartingtobeavailableas pre-formulatedinks(seeFig. 1.15).Thechargetransportpropertiesdependon boththemolecularstructureandthedepositionconditionssuchassolvents, depositiontechnique,concentration,interfacesetc.Mostoftheorganicsemiconductorsusedtodayarep-type(likepentaceneandpolythiophene),butn-type materialsarebecomingmorewidespread;havingbothp-andn-typematerials enablesCMOS-typecircuits,whichhavesignificantadvantages,e.g.lowerpower consumption.Thechargecarriermobilityoforganicsemiconductors,thoughstill muchlowerthancrystallinesilicon,hasimproveddramaticallyinrecentyears, alreadymatchingamorphoussilicon(a-Si),andisexpectedtoapproachormatch polycrystallinesilicon(poly-Si)incomingyears,firstinresearch,wheremobilities ofupto2.5cm2/Vshavealreadybeenreported,andsometimelaterincommercialproducts(Fig. 1.16)[20].Thiswillbepossiblewithoptimizedsmall moleculematerialsandpolymersornewmaterialsase.g.inorganics,nanomaterials,carbonnanotubesorhybridmaterials.

Smallmolecule organicsemiconductorsareofgrowinginterest.Thesematerialshaveusuallybeendepositedbyvacuumevaporationorothervapour-phase processes,butmorerecentlydepositionisnolongerrestrictedtoevaporation processes;severalsemiconductorsofthistypecanbeprocessedinsolutionor dispersionandthereforearecompatiblewithsolutioncoatingormassprinting processes.Inaddition,highthroughputevaporationprocessesmightenablethe large-scaleuseofthisclassofmaterials.

Inorganicmaterialssuchas metaloxides [21]or solutionprocessibleSi [22] havealsogeneratedmuchinterestrecently;thesecanbedepositedbyvapour phaseprocessesorfromsolutionasnanoparticlesorprecursors,withreported mobilitiesintherangeofpoly-Siformetaloxidesandevenhigherforsolution

Conductivityof theTransparent OrganicConductors

Fig.1.14 Structuresofcommonmaterialsfororganicelectronics. a conductorPEDOT:PSS. b semiconductorpolythiopheneP3HT. c semiconductorpentacene. Source OE-A

Fig.1.15 Readytousetransparentconductivepolymersolutions. Source H.CStarckClevios

processibleSi.Anopenissuewiththisclassofmaterialsisstilltherelativelyhigh processingtemperatureneededtoachievehighperformance.

Newmaterialclasseslikecarbon nanotubes or hybrid(organic–inorganic) material combinationscouldenablefurtherimprovementsintheperformanceof thedevices.Nanotubeshavebeenusedbothassemiconductorsandasthebasisfor transparentconductingfilms[23].

Aprincipleadvantageoforganicelectronicsisthatlarge,flexibleandlowcost substrates canbeused.Polymerfilms(likethepolyestersPETandPEN,orother polymerslikepolyimideorpolycarbonate)aremostwidelyusedtoday,butpaper, cardboard,thinglassandstainlesssteelarealsoprominentcandidates.Special surfacetreatmentorbarrierlayerscanbeaddedifnecessary.Formany

Fig.1.16 OE-Aroadmapforthechargecarriermobilityofsemiconductorsfororganic electronicsapplications.Thevaluesrefertomaterialsthatareavailableincommercialquantities; researchsamplesmayshowsignificantlyhighermobilities.Thevaluesforamorphoussilicon (a-Si)andpolycrystallinesilicon(poly-Si)aregivenforcomparison. Source OE-A

applicationscarefulsurfacetreatmentsuchasplanarisation,orcoatingwithbarrier materialsisnecessary.Pre-heattreatmentcanimprovethethermalpropertiesof somesubstrates.However,alladditionaltreatmentshaveofcoursesomeeffecton thecost.Thematerialbestsuitedforaspecificapplicationdependsontheprocess conditions,surfaceroughness,thermalexpansion,barrierpropertiesandcost.

1.3.2PrintingandPatterningTechniques

Awiderangeoflargeareadepositionandpatterningtechniquescanbeusedfor organicelectronics.Mostprominentinthiscontextarevariousprintingtechniques thatarewellknownfromthegraphicartsindustryandenablereel-to-reelprocessing.Anin-depthanalysisofthesetechniquesandtheirapplicationtoorganic devicemanufacturingisgivenin Chap.2 ofthisbook(Konarka).

Examplesoftwohighvolumeprintingprocesses, gravure and screen,are showninFigs. 1.17 and 1.18.

Other massprintingprocesses are offsetlithography and flexography. The lateralresolution(smallestfeaturethatcanbeprinted)typicallyrangesfrom20to 100 lmdependingonprocess,throughput,substrateandinkproperties,butthere hasbeenrecentprogressonmovingtofeaturesizesassmallas10 lm.Film thicknessescanrangefromwellunder1to10 lm.Theseprintingprocessescan haveenormousthroughputandlowproductioncost,butplacedemanding requirementsonthefunctionalinksintermsofpropertieslikeviscosity,and

cannotcorrectforissueslikesubstratedistortion.Massprintingwillbean importantproductionprocessespeciallyforapplicationswherelargearea,high volumesandlowcostsareimportant.Relatedtovolumeprintingareunpatterned solutioncoatingtechniques suchas slot-die,wirebar or curtaincoating (Fig. 1.19).

Ink-jetprinting hasreceivedgrowinginterestasawaytodepositfunctional materials(seeFig. 1.20).Beingink-jetadigitalprintingprocess,wherenoprinting plateisneeded,thistechniqueenablesvariableprintingandcancorrectin-linefor distortions.Ink-jetprintingheaddevelopershavecontinuedtomanufacturefiner andfinerprintingheads,whicharestartingtoenablefeaturesontheorderofafew lm,andthroughputisimprovingwiththedevelopmentofmulti-headprinters.

Laserablation,largeareavacuumdeposition,softlithographyandlargearea photolithographyare furtherpatterninganddepositiontechniques. Someof theseprocessesaresubtractive,i.e.involveremovingunwantedmaterialfroma

Fig.1.17 Gravureprinting process. Source OE-A
Fig.1.18 Screenprinting process. Source OE-A

Fig.1.19 Curtaincoating process. Source Coatema coatingmachinery

Fig.1.20 Ink-jetdeposition mechanism(piezo). Source OE-A

largeareaunpatternedfilm,whileothersareadditive,i.e.onlydepositmaterial whereitiswanted.Sub-lmpatterningtechniquessuchasnanoimprintlithography andmicrocontactprintinghavegainedagooddealofattentionrecentlybutare stillprimarilyusedinresearch.Eachmethodhasitsindividualstrengths,andin general,processeswithahigherresolutionhaveasmallerthroughput(Fig. 1.21). Therearenosinglestandardprocessesinexistencetoday.Decidingwhich printingorotherpatterningprocessisuseddependsonthespecificrequirementsofa particulardevice.Ingeneral,differentprocesseshavetobeusedforsubsequentsteps ofamultilayerdeviceinordertooptimizeeachprocessstep.Theabovementioned processesdifferstronglywithregardtoe.g.resolutionandthroughput,andone systemmayrequiresomehighthroughputstepsfollowedbyhighresolutionprocesses,e.g.depositionoflargeamountsofmaterialusingcoatingormassprinting followedbyfinepatterningofasmallportionofthesurfaceusinglaserablation.

Another random document with no related content on Scribd:

ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.