Visit to download the full and correct content document: https://textbookfull.com/product/applications-of-organic-and-printed-electronics-a-tech nology-enabled-revolution-integrated-circuits-and-systems-2013th-edition-eugenio-ca ntatore/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Printed Electronics Materials Technologies and Applications 1st Edition Zheng Cui
https://textbookfull.com/product/printed-electronics-materialstechnologies-and-applications-1st-edition-zheng-cui/
Smart Electronic Systems Heterogeneous Integration of Silicon and Printed Electronics Li-Rong Zheng
https://textbookfull.com/product/smart-electronic-systemsheterogeneous-integration-of-silicon-and-printed-electronics-lirong-zheng/
Automated Hierarchical Synthesis of Radio Frequency Integrated Circuits and Systems A Systematic and Multilevel Approach Fábio Passos
https://textbookfull.com/product/automated-hierarchicalsynthesis-of-radio-frequency-integrated-circuits-and-systems-asystematic-and-multilevel-approach-fabio-passos/
Enabling the Internet of Things From Integrated Circuits to Integrated Systems 1st Edition Massimo Alioto (Eds.)
https://textbookfull.com/product/enabling-the-internet-of-thingsfrom-integrated-circuits-to-integrated-systems-1st-editionmassimo-alioto-eds/
Energy Efficient Computing Electronics Devices to Systems Devices Circuits and Systems 1st Edition
Santosh K. Kurinec
https://textbookfull.com/product/energy-efficient-computingelectronics-devices-to-systems-devices-circuits-and-systems-1stedition-santosh-k-kurinec/
Design of CMOS Analog Integrated Fractional Order Circuits Applications in Medicine and Biology 1st Edition Georgia Tsirimokou
https://textbookfull.com/product/design-of-cmos-analogintegrated-fractional-order-circuits-applications-in-medicineand-biology-1st-edition-georgia-tsirimokou/
Labs on Chip: Principles, Design and Technology Eugenio Iannone
https://textbookfull.com/product/labs-on-chip-principles-designand-technology-eugenio-iannone/
Ageing of Integrated Circuits: Causes, Effects and Mitigation Techniques Basel Halak
https://textbookfull.com/product/ageing-of-integrated-circuitscauses-effects-and-mitigation-techniques-basel-halak/
Electronics For Beginners: A Practical Introduction To Schematics, Circuits, And Microcontrollers Jonathan Bartlett
https://textbookfull.com/product/electronics-for-beginners-apractical-introduction-to-schematics-circuits-andmicrocontrollers-jonathan-bartlett/
IntegratedCircuitsandSystems SeriesEditor
AnanthaP.Chandrakasan
Forfurthervolumes: http://www.springer.com/series/7236
EugenioCantatore Editor
ApplicationsofOrganic andPrintedElectronics ATechnology-EnabledRevolution
Editor
EugenioCantatore DepartmentofElectricalEngineering EindhovenUniversityofTechnology Eindhoven Netherlands
ISSN1558-9412
ISBN978-1-4614-3159-6ISBN978-1-4614-3160-2(eBook) DOI10.1007/978-1-4614-3160-2
SpringerBostonHeidelbergNewYorkDordrechtLondon
LibraryofCongressControlNumber:2012944381
SpringerScience+BusinessMediaNewYork2013
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebrief excerptsinconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthe purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work.Duplicationofthispublicationorpartsthereofispermittedonlyundertheprovisionsof theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateof publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Preface TheDisruptivePotentialofLow-Cost, Low-TemperatureTechnologiesforElectronics Electronics,andmorespecificallyintegratedcircuits(IC),havedramatically changedourlivesandthewayweinteractwiththeworld.Followingtheso-called Moore’slaw[1],ICcomplexityisgrowingexponentiallysince40years,andthis trendispredictedtocontinueatleastforthecoming15years[2].Theabundanceof electronicfunctionsataffordablecosthasenabledawealthofapplicationswhere themainICstrengths,namelycomputationalspeedandmemorycapacity,arewell exploited:PCs,portabledevices,gameconsoles,smartphonesandalike.The commercialsuccessofintegratedelectronicsisbasedonasymbioticdevelopment oftechnologyandapplications,wheretechnicalprogressandeconomicgrowth nurtureeachother.Thisprocessrequireslotsoftimeandeffort:firstICpatents wherefiledin1949[3],butitisonlyin1971thatthefirstcommerciallyavailable microprocessor(Intel4004),oneofthemostfar-reachingapplicationofICs,gained themarket;andPCsbecamepopularonlyinthesecondhalfoftheeighties.
Themainstrengthofintegratedelectronicsisinthelow-cost-per-function enabledbyanevergrowingminiaturization:mono-crystallinesiliconrealestateis veryexpensive,butthenumberoftransistorsthatcanbeintegratedperareagrows accordingtoMoore’slaw,bringingdownthecosttorealizeagivenfunction.
Sincethesecondhalfoftheseventies,acompletelydifferentelectronicparadigm,theso-calledlarge-areaelectronics,hasbeendeveloping.Inthisfieldthe majoraimistodecreasethecostperarea(insteadofthecostperfunction), enablinglargesurfacescoveredwithelectronicdevices.Themainapplicationof thiskindoftechnology,typicallybasedonamorphousorpolycrystallinesilicon transistors,isinactive-matrixaddressingofflatdisplays.Thesuccessofthis technologyhasbecomeevidentinthelastdecade,whenflat-panelLCDdisplays haveswiftlyreplacedtraditionalcathoderaytubesintelevisionsets.
Amorphousandpolycrystallinesilicontechnologytypicallyrequirehigh-temperaturevacuum-basedprocessing,withtheconsequencethatglasssubstratesare
usedandthatthetechnologythroughputislimited.Intheninetiesanewtechnology approachhasbeenproposed,basedonmaterialsthatenablelow-temperatureprocessingandtheuseofveryhighthroughputpatterningtechnologies,borrowedfrom thegraphicprintingfield:organicandprintedelectronicswereborn.
Theword‘‘organicelectronics’’,whichIpersonallystartedusingin2000[4] togetherwithmanycolleagues,designateselectronicsmanufacturedusingfunctionalcarbon-basedmaterials,typicallysemiconductors,likepentacene,P3HT, PCBM,PTAAandmanyothers.Thereareseveralreasonsforthischoice:
• Organicmaterialscanformfunctionalfilmswhenprocessedfromsolutions, pavingthewaytomanufacturingprocesseswithareducednumberofvacuum steps(whicharetypicallyexpensiveandcumbersometoscaletolargeareas), andthusenablingpotentiallyverylow-costlarge-areaelectronics;
• Organicmaterialsareprocessedatlowtemperature(typicallybelow200 C), enablingtheuseofinexpensiveandflexibleplasticfoilsassubstratesandpaving thewaytoflexibleelectronics;
• Organicchemistryisintrinsicallyveryrich,enablingtheexplorationofalimitlesslibraryofmaterialshavingverydiverseelectrical,optical,rheologicaland chemicalproperties;
• Togetherwiththechemicalvariety,alargespectrumofphysicallydifferent devicesbasedonorganicmaterialsispossibleandhasbeendevelopedinthe years,themostwell-knownbeingorganiclightemittingdiodes(OLEDs)[5], organicthin-filmtransistors(OTFTs)[6,7],organicphotovoltaics(OPVs)[8], organicsensors[9],organicmemories[10,11],andorganicMEMs[12]1.
Togetherwiththesestrengths,functionalorganicmaterialsandorganicelectronicspresentanumberofdrawbacks:
• Organicsemiconductorshavearelativelypoormobility,withpeakvaluesfor single-crystalmaterialsintherangeof10cm2/Vs[13],andtypicalvaluesin solution-processedfilmsofabout1cm2/Vsatthestateoftheart.Underthis pointofview,othermaterialssuitableforlow-temperatureandlarge-areaprocessing,likemetal-oxidesemiconductorsandcarbonnanotubes,mayofferan advantagecomparedtoorganicsemiconductors.
• Organicsemiconductors(especiallyn-type)aresensitivetooxygen,moisture andotherenvironmentalaggressors,sothatforlongtimeorganicelectronic deviceshavehadpoorshelfandoperationallifetime.Organicmaterialsarealso sensitivetobiasstress,whichtendstoaffectoperationallifetime.Recent improvementsinthematerials,theirformulationandencapsulation,however, showthatinstabilitiesshouldnotbeashow-stopperforcommercialization(see forinstance Sect.2.3 in Chap.2 and Sect.4.4 in Chap.4);
1 Inthissectionafewearlyandsignificantpapershavebeenselectedasreferences.
•
Organicsemiconductorsaredifficulttodopeinsituwithhighlycontrolled dopantconcentrationsasaprocessequivalentoftheionimplantationdoping usedinsiliconhasstillnotbeendevelopedfororganicmaterials.Thismakes difficulttomanagekeyparametersliketransistorthresholdvoltagesandinjectionbarriersatthecontacts.
Manymoredetailsonthestateoftheartandroadmapsoforganicelectronics aregivenin Chap.1 andintheotherchaptersofthisbook.
Thecapabilitytodepositorganicmaterialsfromsolutionmakespossibleto patternfunctionalmaterialsusingmethodsadaptedfromgraphicprinting,like inkjet,gravure,slotcoatingandmanyothers.Thisleadstotheconceptof‘‘printed electronics’’.Themainstrengthofthisapproachisthehighthroughputthat characterizesprintingproductionprocesses,whichmeansthatprintinghasthe potentialtomakepossibleveryinexpensivelarge-areaelectronics,andthusto enableapplicationsofelectronicsunthinkabletillnow.Moreover,printingisan additiveprocess,thusonlythefunctionalmaterialsthatareneededareeffectively used,contrarytothetraditionallithography-basedsubtractiveapproach.Thishas thepotentialtodecreasematerialusageandthusfurtherbringdownthecosts. Detailedinformationonprintingelectronicsisavailableespeciallyin Chaps.1, 2 and 6 ofthisbook.
Thestrengthsofprintingarepairedwiththechallengesthatthistechnology faces:itisnamelydifficultandexpensivetodevelopanewelectronictechnology usinganapproachthatinafewminutescangeneraterollscoveredwithhundreds ofmetersofelectronicstobecharacterizedandoptimized.Uniformity,performanceandyieldaredauntingtaskstobesolvedforfutureprintedelectronics applications.
Thepotentiallowcost,thecompatibilitywithlargeflexiblesubstratesandthe wealthofdevicesthatcharacterizeorganicandprintedelectronicswillmake possibleapplicationsthatgofarbeyondthewell-knowndisplaysmadewith conventionallarge-areasiliconelectronics.Organicandprintedelectronicscan enableatruerevolutionintheapplicationsofelectronics:thisistheviewthat broughtme,togetherwithalargenumberofcolleagues,towritethisbook.The volumeofferstothereaderanextensiveoverviewofthedifferentdevicesenabled byorganicelectronics,andreviewsalargevarietyofapplicationsthatare developingandcanbeforeseenforthefuture.
Chapter1,writtenbyTampereUniversity,theOrganicElectronicAssociation (OA-E)andPolyIC,offersacomplete RoadmapforOrganicandPrintedElectronics spanningtilltheendofthisdecade.Itisanidealstartingpointtounderstandthecomplexapplicationscenariosandthelikelydevelopmentsinthisrapidly growingtechnologydomain.
In Chap.2 byKonarka,CyprusUniversityofTechnologyandFriedrichAlexander-University,arediscussed OrganicPhotovoltaics,withgreatemphasis ontheuseofprintingprocessesfortheirmanufacturing.Awideoverviewofthe printingprocessesfororganicelectronicsisgiven,togetherwiththestateoftheart oftheirapplicationtosolarcells.Photovoltaiccellsdonotneedfinepatterningof
thestructuresintheplaneofthedevice,andarethusanidealcandidatetoexploit thehighthroughputofprintingprocesses.Thischapterisanexcellentreading forthepersonwillingtounderstandmoreaboutprintingelectronics.Aroadmap fororganicsolarcellsconcludesthiscontribution.
Inthethirdandfourthchapterlightemittingdiodes(OLED),themostadvanced organicelectronicdevicesavailableatthemoment,arediscussed. Chapter3, writtenbyKyungHeeUniversityandSamsung,givesadetailedoverviewof OLEDDisplays,aboomingapplicationthathasreachedthemarketsincesome yearsalready,andisrapidlygrowingtobecomethestandardemissivetechnology forflatdisplays.ThissectioninformsthereaderaboutthedifferenttypesofOLED pixelsincommercialuseandindevelopment,andgivesinsightintothemost relevantdisplayandbackplaneissues.
Chapter4,byPhilips,givesaniceoverviewof OLEDforLighting applications. Thesectionbeginswithaninsightfuldescriptionofthematerials,physics, architectureandbenchmarkingofOLEDlightingdevices,tocontinuewithan overviewoffabricationmethods,reliabilityandcommercialapplications.
Chapter5 byUniversityofTokyogivesaninterestingvisionforfutureorganic electronics:itwillcomplementsiliconICstocreatenewapplicationsenabling unprecedentedwaysofinteractionbetweenelectronicsandpeople.Inthisvision areincludedavarietyofdifferentorganicdevices(TFTs,sensorsandactuators) providingastimulatingviewonhowdifferenttypesoforganicelectronicscanbe integratedtoenablerevolutionaryapplications.
ThesixthandseventhchapterdealwithorganicTFTs. Chapter6 focuseson applicationsof PrintedOrganicTFTs.Thissection,writtenbyPolyIC,describes thedevicesandtechnologyneededtoprinttransistorsandcircuits,thecharacteristicsofprintedTFTs,andwhatthisrevolutionarytechnologycanmeanin termsofapplications(RFIDsandSmartObjects). Chapter7 byIMEC,KUL, KHL,TNOandPolymerVisionfocusesontheapplicationof OrganicTFTs to low-cost RFIDs.ThissectionexplainshoworganicRFIDsaredevelopingtowards becomingfully-complianttoexistingstandardsforRFIDsbasedonsiliconIC technology.Compatibilitywithstandardswouldmeanthatthesameinfrastructure canbesharedbetweensiliconandorganicRFIDs,enablingaseamlesstransition betweenthetwotechnologiesandaneasymarketuptake.Thisdoesnotmean, however,thatsiliconandorganicshouldservethesamemarkets:thecharacteristicsofprintedelectronicslendthemselvesnaturallytothedreamofenabling item-levelidentificationofretailitems,whichisstilloutofreachforsilicon RFIDs,duetothehighcostsandcumbersomeintegrationofsiliconICswiththe itemstobeidentified.
Chapter8,contributedbyUniversityofCaliforniaBerkeley,reviewsthestate oftheartof ChemicalSensors basedonorganicelectronicdevicesanddemonstratesthespecificcompetitiveadvantagethatthesesensorshave,namelytheease ofcreatingmatricesofsensingelementswithdifferentsensitivitytodiverse analytes,thusenablingtheextractionofuniqueanalytesignaturesandgreatly improvingbothspecificityandversatilityofuse.
Thisbookcanbereadatdifferentlevelsofinsightbybeginnersaswellasby expertsinthefield,andisspecificallyconceivedtoaddressawiderangeofpeople withtechnicalandscientificbackground.Iamdeeplygratefultoallcontributors:I hopeyouwillappreciatetheireffortandIwishyouapleasantandfruitfulreading.
Eindhoven,TheNetherlands,January2012EugenioCantatore
References 1.MooreGE(2003)Noexponentialisforever:but‘‘forever’’canbedelayed!In: ISSCC2003digestoftechnicalpapers,pp20–23
2.ITRSRoadmap(2011)Availableat http://www.itrs.net/Links/2011ITRS/ Home2011.htm
3.JacobiW(1949)Halbleiterverstärker,PatentDE833366,15April1949
4.CantatoreE(2001)Stateoftheartelectronicdevicesbasedonorganicmaterials. In:Proceedingsofthe31stEuropeansolid-statedeviceresearchconference (ESSDERC),pp25–34
5.TangCW,VanSlykeSA(1987)Organicelectroluminescentdiodes.Appl PhysLett51:913
6.KoezukaH,TsumuraA,AndoT(1987)Field-effecttransistorwithpolythiophenethinfilm.SynthMet18:699–704
7.BrownAR,PompA,HartCM,deLeeuwDM(1995)Logicgatesmadefrom polymertransistorsandtheiruseinringoscillators.Science270(5238): 972–974
8.SariciftciNS,SmilowitzL,HeegerAJ,WudlF(1992)Photoinducedelectrontransferfromaconductingpolymertobuckminsterfullerene.Science 258(5087):1474–1476
9.TorsiL,DodabalapurA,SabbatiniL,ZamboninPG(2000)Multi-parameter gassensorsbasedonorganicthin-film-transistors.SensActuatorsB67:312
10.ReedMA,ChenJ,RawlettAM,PriceDW,TourJM(2001)Molecular randomaccessmemorycell.AppPhysLett78(23):3735–3737
11.OuyangJY,ChuCW,SzmandaCR,MaLP,YangY(2004)Programmable polymerthinfilmandnon-volatilememorydevice.NatMater3(12):918–922
12.SekitaniT,TakamiyaM,NoguchiY,NakanoS,KatoY,HizuK,KawaguchiH, SakuraiT,SomeyaT(2006)Alarge-areaflexiblewirelesspowertransmission sheetusingprintedplasticMEMSswitchesandorganicfield-effecttransistors. In:IEEEint.electrondevicesmeeting(IEDM),pp287–290
13.JurchescuOD,PopinciucM,vanWeesBJ,PalstraTTM(2007)Interfacecontrolled,high-mobilityorganictransistors.AdvMater19:688–692
1OE-ARoadmapforOrganicandPrintedElectronics ..........1 DonaldLupo,WolfgangClemens,SvenBreitungandKlausHecker
2Solution-ProcessedOrganicPhotovoltaics ...................27 ClaudiaN.Hoth,PavelSchilinsky,SteliosA.Choulis, SrinivasanBalasubramanianandChristophJ.Brabec
3High-PerformanceOrganicLight-EmittingDiodeDisplays ......57 JangHyukKwon,RamchandraPode,HyeDongKim andHoKyoonChung
4HighEfficiencyOLEDsforLightingApplications .............83 CoenVerschuren,VolkervanElsbergenandReinderCoehoorn
5LargeAreaElectronicswithOrganicTransistors .............101 MakotoTakamiya,TsuyoshiSekitani,KoichiIshida, TakaoSomeyaandTakayasuSakurai
6PrintedRFIDandSmartObjectsforNewHigh VolumeApplications ..................................115 WolfgangClemens,JürgenKrummandRobertBlache
7OrganicRFIDTags ...................................133 KrisMyny,SoerenSteudel,PeterVicca,SteveSmout, MoniqueJ.Beenhakkers,NickA.J.M.vanAerle,FrançoisFurthner, BasvanderPutten,AshutoshK.Tripathi,GerwinH.Gelinck, JanGenoe,WimDehaeneandPaulHeremans
8PrintedOrganicChemicalSensorsandSensorSystems
VivekSubramanian,JosephineChangandFrankLiao
Chapter1 OE-ARoadmapforOrganic andPrintedElectronics DonaldLupo,WolfgangClemens,SvenBreitung andKlausHecker
Abstract Theroadmapfororganicandprintedelectronicsisakeyactivityofthe OE-A,theindustrialorganisationfortheyoungorganic,printedandlargearea electronicsindustry.Organicelectronicsisaplatformtechnologythatenables multipleapplications,whichvarywidelyintheirspecifications.Sincethetechnologyisstillinitsearlystage—andisinthetransitionfromlab-scaleandprototypeactivitiestoproduction—itisimportanttodevelopacommonopinionabout whatkindofproducts,processesandmaterialswillbeavailableandwhen.This chapterisbasedonthethirdversionoftheOE-ARoadmapfororganicandprinted electronics,developedasajointactivitybykeyteamsofexpertsin9applications and3technologyareas,informedbyfurtherdiscussionswithotherOE-Amembers duringassociationmeetings.Theresultingroadmapisasynthesisoftheseresults representingcommonperspectivesofthedifferentOE-Aforums.Throughcomparisonofexpectedproductneedsintheapplicationareaswiththeexpected technologydevelopmentpaths,potentialroadblocksor‘‘redbrickwalls’’suchas resolution,registrationandcomplementarycircuitryareidentified.
D.Lupo(&)
DepartmentofElectronics,TampereUniversityofTechnology, POBox692,33101Tampere,Finland
e-mail:donald.lupo@tut.fi
W.Clemens
PolyICGmbHandCo.KG,Tucherstrasse.2,90763Fürth,Germany e-mail:wolfgang.clemens@polyic.com
S.Breitung K.Hecker
OE-A(OrganicElectronicsAssociation),c/oVDMA,LyonerStreet18, 60538FrankfurtamMain,Germany e-mail:sven.breitung@vdma.org
K.Hecker
e-mail:klaus.hecker@vdma.org
E.Cantatore(ed.), ApplicationsofOrganicandPrintedElectronics, IntegratedCircuitsandSystems,DOI:10.1007/978-1-4614-3160-2_1, SpringerScience+BusinessMediaNewYork2013
Keywords Organicelectronics Printedelectronics RoadmapOE-Aapplications Redbrickwalls Organicelectronicsassociation
1.1Introduction
Organicandprintedelectronicsisbasedonthecombinationofnewmaterialsand cost-effective,largeareaproductionprocessesthatopenupnewfieldsofapplication.Thinness,lightweight,flexibilityandenvironmentalsustainabilityarekey advantagesoforganicelectronics.Organicelectronicsalsoenablesawiderangeof electricalcomponentsthatcanbeproducedanddirectlyintegratedinlowcostreelto-reelprocesses.
Intelligentpackaging,lowcostRFID(radio-frequencyidentification)transponders,rollabledisplays,flexiblesolarcells,disposablediagnosticdevicesor games,andprintedbatteriesarejustafewexamplesofpromisingfieldsof applicationfororganicelectronicsbasedonnew,largescaleprocessable,electricallyconductiveandsemi-conductingmaterials.
Thefollowingpagespresentashortoverviewoforganicelectronicsapplications,technologiesanddevices,aswellasadiscussionofthedifferenttechnology levelsthatcanbeusedinmanufacturingorganicelectronicproducts,basedonthe thirdeditionoftheroadmapdevelopedbytheOE-A.Sincethesecondeditionwe haveaddedfurtherapplicationsthatweexpecttoplayakeyroleinthecommercializationofthisemergingtechnologyandtakenaccountoftheexciting technicalprogressmaderecently.
Intheapplicationssectionwhichfollows,themarketentryonlargerscalesfor thevariousapplicationsisforecasted.Thekeyapplicationandtechnology parametersrelatingtotheseapplicationsandtheprinciplechallenges(so-called redbrickwalls)toachievingthesehavebeenidentified.Inthesubsequenttechnologysectionwesummarisetheprojecteddevelopmentofrelevanttechnologies andtakeaccountofrecentprogressinnewmaterialsandimprovedprocesses.
AWhitePaperexplainingthecurrenteditionoftheroadmapinmoredetailcan bedownloaded[1].
Organicelectronics Organicelectronicsisbasedonthecombinationofanewclassofmaterials andlargearea,highvolumedepositionandpatterningtechniques.Often termslikeprinted,plastic,polymer,flexible,printableinorganic,largearea orthinfilmelectronicsorabbreviationslikeOLAEorFOLAE(Flexibleand/ orOrganicLargeAreaElectronics)areused,whichessentiallyallmeanthe samething:electronicsbeyondtheclassicalintegratedcircuitapproach.For simplicitywehaveusedthetermorganicelectronicsinthisroadmap,but keepinmindthatweareusingtheterminthisbroadersense.
1.2Applications Organicandprintedelectronicsisaplatformtechnologythatisbasedonorganic conductingandsemi-conductingaswellasprintableinorganicmaterials.Itopens upnewpossibilitiesforapplicationsandproducts.Anumberofkeyapplicationsof organicandprintedelectronicshavebeenchosentodemonstratetheneedsfrom theapplicationside,identifymajorchallenges,crosscheckwiththepossibilitiesof thetechnologyandtoforecastatimeframeforthemarketentryinlargevolumes.
Below,wecontinuetolookatapplicationsdiscussedinthesecondeditionofthe roadmap.i.e.organic photovoltaiccells(OPV),printed RFIDs,organic memories, organic sensors,flexible batteries and smartobjects.Wealsoexpandonthepreviousapplicationareaoforganicthinfilmtransistor(OTFT)displaybackplanesto lookat flexibledisplays,andlookattwonewapplicationareas,electroluminescence (EL) andorganicLED (OLED)basedlighting and smarttextiles.
Thegrowinglistofapplicationsreflectsthecomplexityofthetopicandthewide possibleusesfororganicelectronics,anditislikelythatthelistwillevengrowin thefuture.Theapplicationfieldsandspecificationscoverawiderange,and althoughseveralparameterslikeaccuracyofthepatterningprocessorelectrical conductivityofthematerialsareofcentralimportance,thetopiccannotbereduced toonesingleparameteratthetimebeing,asisknownfromthefamousSilicon Roadmap(Moore’slaw).Regardless,wewillwatchthetrendsandfindoutwhether itwillbepossibletofindananaloguetoMoore’slawfororganicelectronics.
Thequestionwhetherthereisone‘‘killerapplication’’fororganicelectronics cannotbeansweredatthismoment.Therearemanydifferentfieldsinwhichthe advantagesoforganicelectronicsmightresultintherightproducttobecomethe killerapplication,butatthispoint,itistooearlytodefinewhichoneitis.Past experiencewithnewtechnologieshasshownthatthepredicted‘‘killerapplications’’arefrequentlynottheonesthatreallyopenupthelargestmarkets. Therefore,onehastocontinuetheworkontheroadmap,asisplanned,followthe actualtrendsandtakeaccountofnewdevelopmentsastheyoccur.
Firstorganicelectronicproductsreachedthemarketin2005/2006.OLED displaysarenotspecificallycoveredassuchinthisversionoftheroadmapbutare alsobasedonorganicsemiconductors,andarestartingtoseesubstantialmarket penetrationinrecentyears.PassiveIDcardsthataremassprintedonpaperandare usedforticketingortoyswerepresentedin2006[2].FlexibleLithiumbatteries— producedinareel-to-reelprocess—havebeenavailableforseveralyearsandcan beusedforsmartcardsandothermobileconsumerproducts[3].Printedantennae arecommonlyusedin(stillSi-based)RFIDtags.Large-areaorganicpressure sensorsforapplicationssuchasretaillogisticshavealsobeenintroduced,ashave printedelectrodesforglucoseteststrips.Recently,firstOPV[4, 5]andOLED lightingbasedproducts[6, 7]havebecomeavailableandfirstusertestsofsmart cardswithbuilt-indisplaysforone-timepasswordapplicationshavebeenstarted.
Additionalproducts,likeglass-freehighresolutione-readersorrollabledisplayswithorganicTFTbackplanes,printedradiofrequencytagsandorganic
Fig.1.1 Bagwithintegrated OPVbatterycharger. Source Neubers
memories,havealreadybeendemonstratedtechnicallyandhaverecently approachedthemarket.Within2–4years,itisexpectedthatmassmarketswillbe reachedandthatalltheabovementionedapplications,andseveralmore,willbe availableinlargevolumes.
1.2.1ApplicationsRoadmap Dyesensitisedsolarcell(DSSC)based organicphotovoltaic productshavebeen producedcommerciallysince2007[8].FirstpolymerOPVproductshavebeen shipped,withincreasingcommercialavailability,e.g.asflexiblesolarcells(see Fig. 1.1)forabatterychargerformobilephones.ForthenextfewyearsOPVwill primarilyaddressconsumer,outdoorrecreationalandinitialoff-gridmarkets,but asefficiencyandlifetimeimprovethetargetistomoveintobuildingintegratedPV (BIPV)andoff-gridpowergenerationmid-termand,inthelongterm,entertheongridpowergenerationmarket.Thiswillrequiresignificanttechnicalprogressin materialsandprocessestodeliverhighefficiency,highlystableproducts.Inthis bookorganicphotovoltaicsarefurtherdiscussedin Chap2.
Flexibledisplays arestartingtoenterthemarket,withrolltorollproduced segmentedelectrophoreticpricelabelsalreadybeingusedinstoresandrollable e-readerdeviceswithOTFTbackplanes(Fig. 1.2)andlargeareaunbreakable OTFTbasede-readerproductstestmarketed2011.Displaysbasedon electrophoretic or electrochromic mediaoron OLEDs arecurrentlygettinga particularlylargeamountofattention,butdisplaysbasedon liquidcrystals, electrowetting etc.arealsopossible.Furtherinthefuture,bothreflectiveand emissivecolourdisplaysandlargeareaproductslikerollableOLEDTVsor electronicwallpaperareanticipated.However,themovetocolour,highresolution andOLEDswillrequiresignificantimprovementsinbackplanepatterningtechnology,displaymediaandOTFTtechnology.
Fig.1.2 Rollable electrophoreticdisplayfor e-readersandmobilephones. Source Polymervision
Electroluminescent(EL)andOLEDLighting isanapplicationthatisnewto thethirdeditionoftheroadmap.WhileOLEDshavebeenpenetratingthedisplay marketforsometimenow,onlyrecentlyhavesignificantimprovementsinefficiency,lifetimeandlargeareadevicesmadeOLEDanimportantpotentialsourceof novellarge-area,energyefficientsolid-statelighting.ELsignageandbacklighting isalreadycommercial,firstOLEDdesignerlamps(Fig. 1.3)arealreadyavailable, andinthefutureOLEDlightingwillmovefrombeingatechnologyfordesignand decorativeapplicationstotechnicallightingandgeneralillumination;thiswill however,requirebothveryhighefficiency,colourpurityandlifetimeaswellas developmentofprocesses,materialsandarchitecturestocutproductioncosts.
Chap.4 ofthisbookfurtheraddressesOLEDlightinganditsapplications.
PrintedRFID (radiofrequencyidentification)basedonorganicelectronics showedsignificanttechnicalprogresssincethelasteditionoftheroadmap,with announcementsofadvancessuchasrolltorollprintedhighfrequency(HF)tags with1–4bits,aswellasfirstorganicCMOS-likecircuits[9],128bittransponders [10],andultrahighfrequency(UHF)rectifiers[11],allbasedonorganicsemiconductors.Inaddition,therehasbeenprogresswithalternativeapproachessuch aschiplessRFIDconcepts.Printedantennasarealreadycommoninconventional Si-basedRFIDproducts.Afurtherapproachforprintedtranspondersisbasedon Sinanoparticlesonstainlesssteelsubstrates.Theseapproachesarenotfurther takenintoaccountinthecurrentroadmapdiscussion,asthisroadmapfocuseson organic/printedchipsonplasticsubstrates.TheactivitiesofprintedRFIDare targetingtowardsElectronicProductCode(EPCTM)compatibletagsinthelong term(see Chap.7),eventhoughthegeneralperformanceofprintedRFIDwillbe onalowerlevelcomparedtostandardRFIDtagsforalongtime.Simpleprinted
Fig.1.3 OLEDdesigner lamp. Source OSRAMOpto semiconductors
Fig.1.4 PrintedRFIDtag. Source PolyIC
RFIDtags(Fig. 1.4)werepilotedalreadyin2007andshouldbeingeneral commercialusewithinthenextfewyears.Thefutureisexpectedtobringatrend tolargermemory,andtoUHFaswellasHFtags.Theexpectedapplicationsrange frombrandprotectionintoticketing,identification,automationandlogistics,asthe technologyadvances.DespitesomedelaysinmarketintroductionofsimpleRF circuits,therapidtechnicalprogressintherecentpastmakesusoptimisticthat moreadvancedproductswillactuallybeavailablewithinthenextyears.Keysto thisprogresswillbematurehighvolumeandlowcostproductionprocesses,fast circuits,smallerdimensionsandCMOS-likecircuitdevelopment,aswellas appropriatestandardsfororganicRFIDproducts.RFIDsarethemainsubjectof Chaps.6 and 7 ofthisbook.
Fig.1.5 Gamecardswith organicNV-RAM. Source Thinfilmelectronics
PrintedMemory deviceshavealreadybeenintroducedtothemarketinthe formofRead-onlyMemories(ROM)orWriteOnceReadMany(WORM) memoriesinIDorgamecards.Recentlyreeltoreelfabricationofprinted rewritablenon-volatileRandomAccessMemories(NV-RAM)wastechnically demonstrated[12],andfirstlow-densitypolymerNV-RAMproductsareavailable onthemarket(Fig. 1.5).Futuregenerationsofprintedmemoryproductswillseea trendtohigherbitdensity,fasterreadingandwriting,on-boardreadoutandatrend tomoreNV-RAM,thoughROMandWORMwillremainimportant.Keytechnicalissuestoresolveinthefuturewillincludescalingofon-boardreadout electronicsandmemorycells.
OrganicSensor devices(Fig. 1.6)openupavarietyofapplications.Thefield hasdevelopedmorerapidlythanexpected,withprototypetemperature,chemical andpressuresensorsalreadydemonstrated.Temperature,pressureandphotodiode sensorsandsensorarrayswillreachthemarketinthenextfewyears.Onetrend willbefromyes/nosensorstoanalogsensorsabletogiveaquantitativereadout. Forexample,potentiometricsensorsforchemicalanalysisarealreadystartingto becomeavailableinayes/noconfigurationbutanalogversionswillbeavailable midterm.Inthelongterm,combinationofsensordevicesintoembeddedsystems includingon-board(organic)circuitryandpossiblyon-boarddisplay-basedreadoutisexpectedtoenableintelligentsensorsystems.Thiswillrequiresignificant advancesnotonlyinthesensorsthemselvesbutalsointheassociatedon-board circuitry,whichwillrequirehighreproducibility,reliability,yield,etc.Sensorsare furtherdiscussedin Chap.8 ofthisbook,whileintegrationwithcircuitstoenable intelligentsensorsystemsisaddressedin Chaps6 and 7
Thinand flexiblebatteries (Fig. 1.7)arealreadycommerciallyavailablefor discontinuoususe,butthereisroomforimprovementinprice,capacityandeaseof integrationintosomesystems.Overthenextfewyearsatrendtocommercial availabilityofcost-effectivelowcapacitybatteries,thenhighercapacitybatteries forcontinuoususeandfinallybatteriesthatcanbedirectlyprintedintoelectronic
Fig.1.6 Large-areaorganic basedpressuresensorarray.
Source Plasticelectronic
Fig.1.7 Ultraslimprimary batteriesformobiledevices.
Source VARTAmicrobattery
systemsorpackagesisexpected.Keyareasfordevelopmentwillbeoptimisation ofcost-effectiveproductionandencapsulationofLibasedthinbatteries.
Abigadvantageoforganicelectronicsisthecombinationandsimpleintegrationofmultipleelectronicsdevicestocreate smartobjects.Assimple example,printedkeypads,printedloudspeakersandsmartcardsincorporatingthin filmbatteriesandflexibledisplays(Fig. 1.8)havebeenshown[13].Inthefuture thetrendwillbetowardsinclusionofmoredifferentfunctionalitiesaswellasmore complexfunctionalities,movingfromsimpleinputdevices,animatedlogosor smartcardstoobjectswithfulldisplays,intelligentticketsandsensors,games,and smartpackages.Thevarietyofsmartobjectswillbelimitedonlybythenumberof organicelectronictechnologiesavailableandthecreativityofproductdevelopers. Oneofthekeyissuestolookatwillbetakingcareofmechanicalandelectrical compatibilityandconnectionbetweenthedifferentfunctions.
Anothernewapplicationinthecurrentroadmapis smarttextiles,inwhich functionalitiessuchascommunication,displays,sensors,orthermalmanagement
Fig.1.8 Smartcardwith flexiblebatteryand electrochromicdisplay.
Source OE-A
areintegratedintofabrictoenablewearableelectronics(Fig. 1.9).Firstexamples ofintegrationofLEDs,opticalfibersorelectroluminescentelementsintoapparel arealreadystartingtohitthemarket[14, 15].Applicationareasrangefromsport, fashion,safetyandhealthclothingtoarchitecture,andovertimethetechnology willbecomemorecomplex,movingfromsimplesensors,keypads,lighteffects etc.intheshorttermtomorecomplexsystemsincorporatingfunctionalitieslike OPV,fuelcellandtextilesensorsinthefuture.
Theseapplicationscenariosaresummarizedinthe OE-Aroadmapfororganic electronicsapplications inFig. 1.10.Foreachofthenineselectedapplications weshowproductsthatareexpectedtoreachthemarketintheshort(2009–2012) andmediumterm(2012–2017).Wealsogiveaforecastforthelongterm,from 2018onward.Suchasummaryovermanyapplicationsisbynecessitynotdetailed; foreachapplicationareaindividualroadmapshavebeenprepared(seeforexample roadmapsforRFIDandOPVinFigs. 1.11 and 1.12).Figure 1.10 isahigh-level overviewforthewholefieldoforganicandprintedelectronicsthathasbeen distilledfromtheindividualroadmaps.
Thislistofproductsreflectstheideasfromtoday’spointofview.Pastexperience ofnewtechnologyshowsusthatwearemostlikelytobesurprisedbyunexpected applications,andthiswillalmostcertainlyhappenintheexcitingbutnascentfield oforganicelectronics.Thereforethetechnologyandthemarketinthisfieldwill continuouslybewatchedandtheroadmapwillbeupdatedonaregularbasis.
Significantprogresshasbeenmadeinthelastseveralyearsandfirstgenerations ofproductshavealreadybeenenabled.However,inordertofulfilthemore demandingspecificationsofmorecomplexfuturegenerationsofproducts,further improvementofmaterials,process,designandequipmentisnecessary.Inthenext sectionwelookatsomeofthemainapplicationparameterswhosedevelopment willbekeytoenablingfutureproductgenerations.Afterthatwewilllookatthe maintechnologiesinorganicelectronicsanddiscussthekeytechnologyparametersunderlyingtheapplicationparameters.
Fig.1.9 Sportsjacket includingsmartfunctions.
Source Francital
1.2.2KeyApplicationParameters Theviabilityofeachapplicationorproductwilldependonfulfilmentofanumber ofparametersthatdescribethecomplexityorperformanceoftheproduct(applicationparameters).Fortheapplicationsdescribedabovegroupsofspecialists identifiedthemostimportantapplicationandtechnologyparametersand requirementsfordifferentgenerationsofproducts.Herewelistonlyasmall excerptofthekeyapplicationparametersthathavebeenidentifiedasrelevantto severaloftheapplications.Thefollowinglistisinnoparticularordersincethe relevanceofthedifferentparametersvariesforthediverseapplications.
• Complexityofthedevice
Thecomplexityofthecircuit(e.g.numberoftransistors)aswellasthenumber ofdifferentdevices(e.g.circuit,powersupply,switch,sensor,display)thatare integratedhaveacrucialinfluenceonreliabilityandproductionyield.
• Operatingfrequencyofthecircuit
Withincreasingcomplexityoftheapplication(e.g.increasingmemory capacity)higherswitchingspeedsarenecessary.
Fig.1.10 OE-ARoadmapfororganicelectronicsapplications.Forecastforthemarketentryin largevolumes(generalavailability)forthedifferentapplications.SourceOE-A
• Lifetime/stability/homogeneity
Lifetime(shelfandoperation),theenvironmentalstability,stabilityagainst othermaterialsandsolvents,andhomogeneityofthematerialsareissuesdueto theintrinsicpropertiesofthematerialsusedinorganicandprintedelectronics.
• Operatingvoltage
Formobiledevicespoweredbybatteries,PVorradiofrequency,itisessential tohavelowoperatingvoltages(\10V).
• Efficiency
Theconversionefficiencyoflighttoelectricityorelectricitytolightisakey parameterforphoto-voltaiccellsandphotodiodesorOLEDs,andpowerefficiency
OE-A RoadmapforOrganic/ PrintedRFID
Product Generations
Item leveltagging, EPC, identification
96+bit HF + UHF standardized Generalavailability Labdemos, prototypes
16–64bit HF 1–8 bit HF
©OE-A 2009
logistics, automation
Brand protection, e-ticketing,
Short term (2009-2012)
term (2012-2017)
Maturity
term (2018+)
Fig.1.11 ApplicationsroadmapforprintedRFID. Source OE-Aimageand Source PolyIC
OE-A RoadmapforOrganicPhotovoltaics
η≤ 15 % > 10 years < 3 €/Wp
η≤ 10 % ≤ 10 years < 5 €/ W p
η≤ 3 % ≤ 3 years ~ 10€/Wp η≤ 5 % ≤ 5 years < 10€/Wp
©OE-A 2009
Product Generations
Labdemos,prototypes Generalavailability grid
Short term (2009-2012)
Off-grid buildings Facade & BIPV
Maturity
term (2012-2017)
term (2018+)
Fig.1.12 ApplicationsroadmapforOPV. Source OE-Aimageand Source Konarka
ofcircuitryisalsoimportantformanyapplications,especiallythosewhichare mobileandneedtobelightweight.
• Cost
Althoughmostapplicationstargetnewapplicationsandmarketsratherthan replacements,costshavetobelow.Forsomeapplications,suchasrollable
displays,acostpremiumoverconventionalrigiddisplaysmaybeaccepted, whileforotherapplications,e.g.inpackaging,lowcostwillbeamajordriving factor.
1.3Technology Aswehavementionedbefore,weusethetermorganicelectronicsforbrevityto refertothefieldofelectronicsbeyondclassicalsiliconICapproaches,butinclude conceptssuchaslargeareaorflexiblecircuitsandprintedinorganicmaterials. Althoughsomeclassic device conceptsareused, materials, including substrates, and patterningprocesses areverydifferentfromthoseusedintheconventional electronicindustry.Inthissectionwereviewkeymaterials,processesanddevices fororganicelectronicsanddiscussthekeytechnologyparametersthatarecritical fordevelopmentoffutureproducts.Amoredetaileddescriptionoftheprintingand otherpatterningprocesses,materialsanddevicescanbefoundinanarticleinthe 1steditionoftheOE-Abrochure,publishedin2006[16]andin Chap.2 ofthis book.
1.3.1Materials Organicelectronicsrelyonelectricallyactivematerialssuchasconductors, semiconductors,dielectrics,luminescent,electrochromic,electrophoreticor encapsulationmaterials.Thematerialshavetobecarefullychosensinceprocess conditionsandtheinterplaywithotherlayershavealargeinfluenceontheperformanceofthedevice;forexamplethechoiceofappropriatedielectricsandof encapsulationmaterialscanbecriticalfortheperformanceandthestabilityofan organicelectronicproduct.Inthiseditionoftheroadmapwehavefocusedprimarilyonconductingandsemiconductingmaterials,thoughinfutureeditionswe plantoincludeotherclassesofmaterialsaswell.
Therearemanyapproachesonthematerialsideandtheprosandconsofthe differentapproaches—organicorinorganic,solutionbasedorevaporated—arestill underdiscussion.Itisverylikelythatseveralapproacheswillbeusedinparallel.
Organic conductors suchasPEDOT:PSSarestartingtobewidelyusedfor electrodesinavarietyofapplications.Organicconductorscanbehighlytransparent,andwithrecentprogressinconductivityPEDOT:PSSisstartingtobecome arealisticreplacementforIndiumtinOxide(ITO)insomeapplications (Fig. 1.13).Inorganicmaterialslikesilverandothermetals(e.g.asfilledpastesor ultra-thinfilms)arealsousefulifstillhigherconductivityisneeded.
Organic Semiconductors areusedinnumerousactivedevicesandmanyof themaresolutionprocessableandcanbeprinted.Figure 1.14 showsthestructures oftheorganicconductorPEDOT:PSS,ofthecommonpolymersemiconductor
Fig.1.13 ProgressoftheelectricalconductivityofPEDOT:PSS-dispersionsoverthepast 10years. Source OE-A
poly-3-hexyl-thiophene(P3HT),andofthewidelyusedmolecularsemiconductor pentacene[17–19].Organicsemiconductormaterialsarestartingtobeavailableas pre-formulatedinks(seeFig. 1.15).Thechargetransportpropertiesdependon boththemolecularstructureandthedepositionconditionssuchassolvents, depositiontechnique,concentration,interfacesetc.Mostoftheorganicsemiconductorsusedtodayarep-type(likepentaceneandpolythiophene),butn-type materialsarebecomingmorewidespread;havingbothp-andn-typematerials enablesCMOS-typecircuits,whichhavesignificantadvantages,e.g.lowerpower consumption.Thechargecarriermobilityoforganicsemiconductors,thoughstill muchlowerthancrystallinesilicon,hasimproveddramaticallyinrecentyears, alreadymatchingamorphoussilicon(a-Si),andisexpectedtoapproachormatch polycrystallinesilicon(poly-Si)incomingyears,firstinresearch,wheremobilities ofupto2.5cm2/Vshavealreadybeenreported,andsometimelaterincommercialproducts(Fig. 1.16)[20].Thiswillbepossiblewithoptimizedsmall moleculematerialsandpolymersornewmaterialsase.g.inorganics,nanomaterials,carbonnanotubesorhybridmaterials.
Smallmolecule organicsemiconductorsareofgrowinginterest.Thesematerialshaveusuallybeendepositedbyvacuumevaporationorothervapour-phase processes,butmorerecentlydepositionisnolongerrestrictedtoevaporation processes;severalsemiconductorsofthistypecanbeprocessedinsolutionor dispersionandthereforearecompatiblewithsolutioncoatingormassprinting processes.Inaddition,highthroughputevaporationprocessesmightenablethe large-scaleuseofthisclassofmaterials.
Inorganicmaterialssuchas metaloxides [21]or solutionprocessibleSi [22] havealsogeneratedmuchinterestrecently;thesecanbedepositedbyvapour phaseprocessesorfromsolutionasnanoparticlesorprecursors,withreported mobilitiesintherangeofpoly-Siformetaloxidesandevenhigherforsolution
Conductivityof theTransparent OrganicConductors
Fig.1.14 Structuresofcommonmaterialsfororganicelectronics. a conductorPEDOT:PSS. b semiconductorpolythiopheneP3HT. c semiconductorpentacene. Source OE-A
Fig.1.15 Readytousetransparentconductivepolymersolutions. Source H.CStarckClevios
processibleSi.Anopenissuewiththisclassofmaterialsisstilltherelativelyhigh processingtemperatureneededtoachievehighperformance.
Newmaterialclasseslikecarbon nanotubes or hybrid(organic–inorganic) material combinationscouldenablefurtherimprovementsintheperformanceof thedevices.Nanotubeshavebeenusedbothassemiconductorsandasthebasisfor transparentconductingfilms[23].
Aprincipleadvantageoforganicelectronicsisthatlarge,flexibleandlowcost substrates canbeused.Polymerfilms(likethepolyestersPETandPEN,orother polymerslikepolyimideorpolycarbonate)aremostwidelyusedtoday,butpaper, cardboard,thinglassandstainlesssteelarealsoprominentcandidates.Special surfacetreatmentorbarrierlayerscanbeaddedifnecessary.Formany
Fig.1.16 OE-Aroadmapforthechargecarriermobilityofsemiconductorsfororganic electronicsapplications.Thevaluesrefertomaterialsthatareavailableincommercialquantities; researchsamplesmayshowsignificantlyhighermobilities.Thevaluesforamorphoussilicon (a-Si)andpolycrystallinesilicon(poly-Si)aregivenforcomparison. Source OE-A
applicationscarefulsurfacetreatmentsuchasplanarisation,orcoatingwithbarrier materialsisnecessary.Pre-heattreatmentcanimprovethethermalpropertiesof somesubstrates.However,alladditionaltreatmentshaveofcoursesomeeffecton thecost.Thematerialbestsuitedforaspecificapplicationdependsontheprocess conditions,surfaceroughness,thermalexpansion,barrierpropertiesandcost.
1.3.2PrintingandPatterningTechniques Awiderangeoflargeareadepositionandpatterningtechniquescanbeusedfor organicelectronics.Mostprominentinthiscontextarevariousprintingtechniques thatarewellknownfromthegraphicartsindustryandenablereel-to-reelprocessing.Anin-depthanalysisofthesetechniquesandtheirapplicationtoorganic devicemanufacturingisgivenin Chap.2 ofthisbook(Konarka).
Examplesoftwohighvolumeprintingprocesses, gravure and screen,are showninFigs. 1.17 and 1.18.
Other massprintingprocesses are offsetlithography and flexography. The lateralresolution(smallestfeaturethatcanbeprinted)typicallyrangesfrom20to 100 lmdependingonprocess,throughput,substrateandinkproperties,butthere hasbeenrecentprogressonmovingtofeaturesizesassmallas10 lm.Film thicknessescanrangefromwellunder1to10 lm.Theseprintingprocessescan haveenormousthroughputandlowproductioncost,butplacedemanding requirementsonthefunctionalinksintermsofpropertieslikeviscosity,and
cannotcorrectforissueslikesubstratedistortion.Massprintingwillbean importantproductionprocessespeciallyforapplicationswherelargearea,high volumesandlowcostsareimportant.Relatedtovolumeprintingareunpatterned solutioncoatingtechniques suchas slot-die,wirebar or curtaincoating (Fig. 1.19).
Ink-jetprinting hasreceivedgrowinginterestasawaytodepositfunctional materials(seeFig. 1.20).Beingink-jetadigitalprintingprocess,wherenoprinting plateisneeded,thistechniqueenablesvariableprintingandcancorrectin-linefor distortions.Ink-jetprintingheaddevelopershavecontinuedtomanufacturefiner andfinerprintingheads,whicharestartingtoenablefeaturesontheorderofafew lm,andthroughputisimprovingwiththedevelopmentofmulti-headprinters.
Laserablation,largeareavacuumdeposition,softlithographyandlargearea photolithographyare furtherpatterninganddepositiontechniques. Someof theseprocessesaresubtractive,i.e.involveremovingunwantedmaterialfroma
Fig.1.17 Gravureprinting process. Source OE-A
Fig.1.18 Screenprinting process. Source OE-A
Fig.1.19 Curtaincoating process. Source Coatema coatingmachinery
Fig.1.20 Ink-jetdeposition mechanism(piezo). Source OE-A
largeareaunpatternedfilm,whileothersareadditive,i.e.onlydepositmaterial whereitiswanted.Sub-lmpatterningtechniquessuchasnanoimprintlithography andmicrocontactprintinghavegainedagooddealofattentionrecentlybutare stillprimarilyusedinresearch.Eachmethodhasitsindividualstrengths,andin general,processeswithahigherresolutionhaveasmallerthroughput(Fig. 1.21). Therearenosinglestandardprocessesinexistencetoday.Decidingwhich printingorotherpatterningprocessisuseddependsonthespecificrequirementsofa particulardevice.Ingeneral,differentprocesseshavetobeusedforsubsequentsteps ofamultilayerdeviceinordertooptimizeeachprocessstep.Theabovementioned processesdifferstronglywithregardtoe.g.resolutionandthroughput,andone systemmayrequiresomehighthroughputstepsfollowedbyhighresolutionprocesses,e.g.depositionoflargeamountsofmaterialusingcoatingormassprinting followedbyfinepatterningofasmallportionofthesurfaceusinglaserablation.
Another random document with no related content on Scribd:
ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.
Section 5. General Information About Project Gutenberg™ electronic works Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.
Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.
Most people start at our website which has the main PG search facility: www.gutenberg.org.
This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.