Every section opens with a scenario presenting a unique application of algebra or trigonometry in your life outside the classroom.
Examples are clearly written and provide step-by-step solutions. No steps are omitted, and each step is thoroughly explained to the right of the mathematics.
Interesting applications from nearly every discipline, supported by up-to-date real-world data, are included in every section.
Great Question!Answers to students’ questions offer suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions.
Brief ReviewsNEW to this edition. Brief Reviews cover skills you already learned but may have forgotten.
Achieving Success
Explanatory Voice Balloons
Learning Objectives
NEW to this edition. Achieving Success boxes offer strategies for persistence and success in college mathematics courses.
Voice balloons help to demystify algebra and trigonometry. They translate mathematical language into plain English, clarify problem-solving procedures, and present alternative ways of understanding.
Every section begins with a list of objectives. Each objective is restated in the margin where the objective is covered.
TechnologyThe screens displayed in the technology boxes show how graphing utilities verify and visualize algebraic and trigonometric results.
Work the Problems 2
Feature Description
Check Point Examples
Concept and Vocabulary Checks
Extensive and Varied Exercise Sets
Each example is followed by a matched problem, called a Check Point, that offers you the opportunity to work a similar exercise. The answers to the Check Points are provided in the answer section.
These short-answer questions, mainly fill-in-the-blank and true/false items, assess your understanding of the definitions and concepts presented in each section.
An abundant collection of exercises is included in an Exercise Set at the end of each section. Exercises are organized within several categories. Your instructor will usually provide guidance on which exercises to work. The exercises in the first category, Practice Exercises, follow the same order as the section’s worked examples.
Practice Plus Problems This category of exercises contains more challenging problems that often require you to combine several skills or concepts.
Retaining the Concepts NEW to this edition. Beginning with Chapter 2, each Exercise Set contains review exercises under the header “Retaining the Concepts.”
Preview Problems Each Exercise Set concludes with three problems to help you prepare for the next section.
Benefit
Realizing that algebra and trigonometry are everywhere will help motivate your learning. (See page 162.)
The blue annotations will help you understand the solutions by providing the reason why every algebraic or trigonometric step is true. (See page 654.)
Ever wondered how you’ll use algebra and trigonometry? This feature will show you how algebra and trigonometry can solve real problems. (See page 211.)
By seeing common mistakes, you’ll be able to avoid them. This feature should help you not to feel anxious or threatened when asking questions in class. (See page 323.)
Having these refresher boxes easily accessible will help ease anxiety about skills you may have forgotten. (See page 452.)
Follow these suggestions to help achieve your full academic potential in college mathematics. (See page 574.)
Does math ever look foreign to you? This feature often translates math into everyday English. (See page 136.)
The objectives focus your reading by emphasizing what is most important and where to find it. (See page 613.)
Even if you are not using a graphing utility in the course, this feature will help you understand different approaches to problem solving. (See page 341.)
Benefit
You learn best by doing. You’ll solidify your understanding of worked examples if you try a similar problem right away to be sure you understand what you’ve just read. (See page 719.)
It is difficult to learn algebra and trigonometry without knowing their special language. These exercises test your understanding of the vocabulary and concepts. (See page 175.)
The parallel order of the Practice Exercises lets you refer to the worked examples and use them as models for solving these problems. (See page 377.)
It is important to dig in and develop your problem-solving skills. Practice Plus Exercises provide you with ample opportunity to do so. (See page 378.)
These exercises improve your understanding of the topics and help maintain mastery of the material. (See page 180.)
These exercises let you review previously covered material that you’ll need to be successful for the forthcoming section. Some of these problems will get you thinking about concepts you’ll soon encounter. (See page 640.)
Review for Quizzes and Tests
Feature Description
Mid-Chapter Check Points
Chapter Review Grids
At approximately the midway point in the chapter, an integrated set of review exercises allows you to review the skills and concepts you learned separately over several sections.
Each chapter contains a review chart that summarizes the definitions and concepts in every section of the chapter. Examples that illustrate these key concepts are also referenced in the chart.
Chapter Review Exercises A comprehensive collection of review exercises for each of the chapter’s sections follows the grid.
Chapter TestsEach chapter contains a practice test with approximately 25 problems that cover the important concepts in the chapter. Take the practice test, check your answers, and then watch the Chapter Test Prep Videos to see worked-out solutions for any exercises you miss.
Chapter Test Prep Videos These videos contain worked-out solutions to every exercise in each chapter test and can be found in MyMathLab and on YouTube.
Objective VideosNEW to this edition. These fresh, interactive videos walk you through the concepts from every objective of the text.
Cumulative Review Exercises
Beginning with Chapter 2, each chapter concludes with a comprehensive collection of mixed cumulative review exercises. These exercises combine problems from previous chapters and the present chapter, providing an ongoing cumulative review.
Benefit
By combining exercises from the first half of the chapter, the Mid-Chapter Check Points give a comprehensive review before you move on to the material in the remainder of the chapter. (See page 756.)
Review this chart and you’ll know the most important material in the chapter! (See page 795.)
Practice makes perfect. These exercises contain the most significant problems for each of the chapter’s sections.
(See page 429.)
You can use the chapter test to determine whether you have mastered the material covered in the chapter.
(See page 647.)
The videos let you review any exercises you miss on the chapter test.
The videos provide you with active learning at your own pace.
Ever forget what you’ve learned? These exercises ensure that you are not forgetting anything as you move forward.
(See page 801.)
Precalculus essentials Edition 5th
Miami Dade College
Robert Blitzer
Director, Portfolio Management: Anne Kelly
Courseware Portfolio Manager: Dawn Murrin
Portfolio Management Administrator: Joseph Colella
Content Producer: Kathleen A. Manley
Managing Producer: Karen Wernholm
Producer: Erica Lange
Manager, Courseware QA: Mary Durnwald
Manager, Content Development: Kristina Evans
Product Marketing Manager: Claire Kozar
Marketing Assistant: Jennifer Myers
Executive Marketing Manager: Peggy Lucas
Marketing Assistant: Adiranna Valencia
Senior Author Support/Technology Specialist: Joe Vetere
Production Coordination: Francesca Monaco/codeMantra
Text Design and Composition: codeMantra
Illustrations: Scientific Illustrators
Photo Research and Permission Clearance: Cenveo Publisher Services
Acknowledgments of third-party content appear on page C1, which constitutes an extension of this copyright page.
PEARSON, ALWAYS LEARNING, and MYMATHLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.
Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.
Library of Congress Cataloging-in-Publication Data
Names: Blitzer, Robert.
Title: Precalculus essentials / Robert Blitzer, Miami Dade College.
Description: Fifth edition. | Hoboken, NJ : Pearson, [2018] | Includes index. Identifiers: LCCN 2016032111 | ISBN 9780134578156
Subjects: LCSH: Algebra—Textbooks. | Precalculus—Textbooks. Classification: LCC QA154.3 .B587 2018 | DDC 512—dc23 LC record available at https://lccn.loc.gov/2016032111
ISBN 13: 978-0-13-457815-6
ISBN 10: 0-13-457815-5
Preface vi
Acknowledgments x
To the Student xv
About the Author xvi Applications Index xvii
PPrerequisites: Fundamental Concepts of Algebra 1
P.1 Algebraic Expressions, Mathematical Models, and Real Numbers 2
P.2 Exponents and Scientific Notation 20
P.3 Radicals and Rational Exponents 32
P.4 Polynomials 48
P.5 Factoring Polynomials 58
Mid-Chapter Check Point 70
P.6 Rational Expressions 72
P.7 Equations 88
P.8 Modeling with Equations 109
P.9 Linear Inequalities and Absolute Value Inequalities 126
Summary, Review, and Test 141
Review Exercises 142
Chapter P Test 145
1 Functions and Graphs 149
1.1 Graphs and Graphing Utilities 150
1.2 Basics of Functions and Their Graphs 162
1.3 More on Functions and Their Graphs 181
1.4 Linear Functions and Slope 201
1.5 More on Slope 217
Mid-Chapter Check Point 228
1.6 Transformations of Functions 229
1.7 Combinations of Functions; Composite Functions 246
1.8 Inverse Functions 261
1.9 Distance and Midpoint Formulas; Circles 273
1.10 Modeling with Functions 282
Summary, Review, and Test 296
Review Exercises 299
Chapter 1 Test 305
2 Polynomial and Rational Functions 307
2.1 Complex Numbers 308
2.2 Quadratic Functions 316
2.3 Polynomial Functions and Their Graphs 335
2.4 Dividing Polynomials; Remainder and Factor Theorems 353
2.5 Zeros of Polynomial Functions 366
Mid-Chapter Check Point 381
2.6 Rational Functions and Their Graphs 382
2.7 Polynomial and Rational Inequalities 403
2.8 Modeling Using Variation 416
Summary, Review, and Test 426
Review Exercises 429
Chapter 2 Test 433
Cumulative Review Exercises (Chapters P–2) 435
3 Exponential and Logarithmic Functions 437
3.1 Exponential Functions 438
3.2 Logarithmic Functions 452
3.3 Properties of Logarithms 467
Mid-Chapter Check Point 477
3.4 Exponential and Logarithmic Equations 478
3.5 Exponential Growth and Decay; Modeling Data 493
Summary, Review, and Test 509
Review Exercises 511
Chapter 3 Test 515
Cumulative Review Exercises (Chapters P–3) 516
4
Trigonometric Functions 517
4.1 Angles and Radian Measure 518
4.2 Trigonometric Functions: The Unit Circle 535
4.3 Right Triangle Trigonometry 550
4.4 Trigonometric Functions of Any Angle 564
Mid-Chapter Check Point 577
4.5 Graphs of Sine and Cosine Functions 578
4.6 Graphs of Other Trigonometric Functions 599
4.7 Inverse Trigonometric Functions 613
4.8 Applications of Trigonometric Functions 629
Summary, Review, and Test 640
Review Exercises 643
Chapter 4 Test 647
Cumulative Review Exercises (Chapters P–4) 647
5 Analytic Trigonometry 649
5.1 Verifying Trigonometric Identities 650
5.2 Sum and Difference Formulas 661
5.3 Double-Angle, Power-Reducing, and Half-Angle Formulas 672
Mid-Chapter Check Point 683
5.4 Product-to-Sum and Sum-to-Product Formulas 684
5.5 Trigonometric Equations 693
Summary, Review, and Test 706
Review Exercises 707
Chapter 5 Test 709
Cumulative Review Exercises (Chapters P–5) 709
6 Additional Topics in Trigonometry
6.1 The Law of Sines
6.2 The Law of Cosines
6.3 Polar Coordinates
6.4 Graphs of Polar Equations
Mid-Chapter Check Point
6.5 Complex Numbers in Polar Form; DeMoivre’s Theorem
6.6 Vectors 770
6.7 The Dot Product
Summary, Review, and Test 795
Review Exercises 798
Chapter 6 Test 800
Cumulative Review Exercises (Chapters P–6) 801
Appendix A: Where Did That Come From? Selected Proofs 803
Appendix B: The Transition From Precalculus to Calculus 807 Answers to Selected Exercises AA1 Subject Index I1 Credits C1
PREfaCE
I’ve written Precalculus Essentials, Fifth Edition, to help diverse students, with different backgrounds and future goals, to succeed. The book has three fundamental goals:
1. To help students acquire a solid foundation in algebra and trigonometry, preparing them for other courses such as calculus, business calculus, and finite mathematics.
2. To show students how algebra and trigonometry can model and solve authentic real-world problems.
3. To enable students to develop problem-solving skills, while fostering critical thinking, within an interesting setting.
One major obstacle in the way of achieving these goals is the fact that very few students actually read their textbook. This has been a regular source of frustration for me and for my colleagues in the classroom. Anecdotal evidence gathered over years highlights two basic reasons that students do not take advantage of their textbook:
• “I’ll never use this information.”
• “I can’t follow the explanations.”
I’ve written every page of the Fifth Edition with the intent of eliminating these two objections. The ideas and tools I’ve used to do so are described for the student in “A Brief Guide to Getting the Most from This Book,” which appears at the front of the book.
How Does Precalculus Differ from Algebra and Trigonometry?
Precalculus is not simply a condensed version of my Algebra and Trigonometry book. Precalculus students are different from algebra and trigonometry students, and this text reflects those differences. Here are a few examples:
• Algebra and Trigonometry devotes an entire chapter to linear equations, rational equations, quadratic equations, radical equations, linear inequalities, and developing models involving these equations and inequalities. Precalculus reviews these topics in three sections of the prerequisites chapter (P.7: Equations; P.8: Modeling with Equations; P.9: Linear Inequalities and Absolute Value Inequalities). Functions, the core of any precalculus course, are then introduced in Chapter 1.
• Precalculus contains a section on constructing functions from verbal descriptions and formulas (1.10: Modeling with Functions) that is not included in Algebra and Trigonometry. Modeling skills are applied to situations that students are likely to see in calculus when solving applied problems involving maximum or minimum values.
• Precalculus develops trigonometry from the perspective of the unit circle (4.2: Trigonometric Functions: The Unit Circle). In Algebra and Trigonometry, trigonometry is developed using right triangles.
• Many of the liberal arts applications in Algebra and Trigonometry are replaced by more scientific or higher level applications in Precalculus. Some examples:
• Black Holes in Space (P.2: Exponents and Scientific Notation)
• Average Velocity (1.5: More on Slope)
• Newton’s Law of Cooling (3.5: Exponential Growth and Decay; Modeling Data)
A Note on the Essentials Version of Precalculus
Precalculus Essentials, Fifth Edition is a concise version of the Sixth Edition of Precalculus. The essential version differs from the Sixth Edition only in terms of length. Chapter 7 (Systems of Equations and Inequalities), Chapter 8 (Matrices and Determinants), Chapter 9 (Conic Sections and Analytic Geometry), Chapter 10 (Sequences, Induction, and Probability), and Chapter 11 (Introduction to Calculus) have been eliminated. The essentials version provides a lighter, less expensive alternative to the Sixth Edition for instructors who do not cover the topics in Chapters 7–11.
What’s New in the Fifth Edition?
• New Applications and Real-World Data. The Fifth Edition contains 53 worked-out examples and exercises based on new data sets, and 31 examples and exercises based on data updated from the Fourth Edition. Many of the new applications involve topics relevant to college students, including student-loan debt (Chapter P, Mid-Chapter Check Point, Exercise 42), grade inflation (Exercise Set P.7, Exercises 137–138), median earnings, by final degree earned (Exercise Set P.8, Exercises 3–4), excuses for not meeting deadlines (Chapter P Summary, Exercise 141), and political orientation of college freshmen (Chapter 1 Summary, Exercise 67).
• Brief Reviews. Beginning with Chapter 1, the Brief Review boxes that appear throughout the book summarize mathematical skills, many of which are course prerequisites, that students have learned, but which many students need to review. This feature appears whenever a particular skill is first needed and eliminates the need for you to reteach that skill. For more detail, students are referred to the appropriate section and objective in a previous chapter where the topic is fully developed.
• Achieving Success. The Achieving Success boxes, appearing at the end of many sections in Chapters P through 6, offer strategies for persistence and success in college mathematics courses.
• Retaining the Concepts. Beginning with Chapter 1, Section 1.2, each Exercise Set contains three or four review exercises under the header “Retaining the Concepts.” These exercises are intended for students to review previously covered objectives in order to improve their understanding of the topics and to help maintain their mastery of the material. If students are not certain how to solve a review exercise, they can turn to the section and worked example given in parentheses at the end of each exercise. The Fifth Edition contains 104 new exercises in the “Retaining the Concepts” category
• New Blitzer Bonus Videos with Assessment. Many of the Blitzer Bonus features throughout the textbook have been turned into animated videos that are built into the MyMathLab course. These videos help students make visual connections to algebra and trigonometry and the world around them. Assignable exercises have been created within the MyMathLab course to assess conceptual understanding and mastery. These videos and exercises can be turned into a media assignment within the Blitzer MyMathLab course.
• Updated Learning Guide. Organized by the textbook’s learning objectives, this updated Learning Guide helps students make the most of their textbook for test preparation. Projects are now included to give students an opportunity to discover and reinforce the concepts in an active learning environment and are ideal for group work in class.
• Updated Graphing Calculator Screens. All screens have been updated using the TI-84 Plus C.
What Content and Organizational Changes Have Been Made to the Fifth Edition?
• Section P.1 (Algebraic Expressions, Mathematical Models, and Real Numbers) follows an example on the cost of attending college (Example 2) with a new Blitzer Bonus, “Is College Worthwhile?”
• Section P.6 (Rational Expressions) uses the least common denominator to combine rational expressions with different denominators, including expressions having no common factors in their denominators.
• Section P.8 (Modeling with Equations) has new examples on modelling options for a toll (Example 3) and dual investments (Example 5).
• Section 1.1 (Graphing and Graphing Utilities) contains a new example of a graph with more than one x-intercept (Example 5(d)).
• Section 1.3 (More on Functions and Their Graphs) contains a new discussion on graphs with three forms of symmetry (Examples 2 and 3) before presenting even and odd functions. A new example (Example 4) addresses identifying even or odd functions from graphs.
• Section 1.4 (Linear Functions and Slope) includes a new Blitzer Bonus, “Slope and Applauding Together.”
• Section 1.8 (Inverse Functions) replaces an example on finding the inverse of f(x) = 5 x + 4 with an example on finding the inverse of f(x) = x + 2 x - 3 (Example 4), a function with two occurrences of x
• Section 2.6 (Rational Functions and Their Graphs) opens with a discussion of college students and video games. This is revisited in a new example (Example 9, “Putting the Video-Game Player Inside the Game”) involving the Oculus Rift, a virtual reality headset that enables users to experience video games as immersive three-dimensional environments.
• Section 4.1 (Angles and Radian Measure) has new examples involving radians expressed in decimal form, including converting 2.3 radians to degrees (Example 3(d)) and finding a coterminal angle for a - 10.3 angle (Example 7(d)). Additional Great Question! features provide hints for locating terminal sides of angles in standard position.
• Section 4.2 (Trigonometric Functions: The Unit Circle) has a new Discovery feature on the use of parentheses when evaluating trigonometric functions with a graphing calculator, supported by new calculator screens throughout the section.
• Chapter 5 opens with a new discussion on trigonometric functions and music.
What Familiar Features Have Been Retained in the Fifth Edition?
• Learning Objectives. Learning objectives, framed in the context of a student question (What am I supposed to learn?), are clearly stated at the beginning of each section. These objectives help students recognize and focus on the section’s most important ideas. The objectives are restated in the margin at their point of use.
• Chapter-Opening and Section-Opening Scenarios. Every chapter and every section open with a scenario presenting a unique application of mathematics in students’ lives outside the classroom. These scenarios are revisited in the course of the chapter or section in an example, discussion, or exercise.
• Innovative Applications. A wide variety of interesting applications, supported by up-to-date, real-world data, are included in every section.
• Detailed Worked-Out Examples. Each example is titled, making the purpose of the example clear. Examples are clearly written and provide students with detailed step-by-step solutions. No steps are omitted and each step is thoroughly explained to the right of the mathematics.
• Explanatory Voice Balloons. Voice balloons are used in a variety of ways to demystify mathematics. They translate algebraic and trigonometric ideas into everyday English, help clarify problem-solving procedures, present alternative ways of understanding concepts, and connect problem solving to concepts students have already learned.
• Check Point Examples. Each example is followed by a similar matched problem, called a Check Point, offering students the opportunity to test their understanding of the example by working a similar exercise. The answers to the Check Points are provided in the answer section.
• Concept and Vocabulary Checks. This feature offers short-answer exercises, mainly fill-in-the-blank and true/false items, that assess students’ understanding of the definitions and concepts presented in each section. The Concept and Vocabulary Checks appear as separate features preceding the Exercise Sets.
• Extensive and Varied Exercise Sets. An abundant collection of exercises is included in an Exercise Set at the end of each section. Exercises are organized within nine category types: Practice Exercises, Practice Plus Exercises, Application Exercises, Explaining the Concepts, Technology Exercises, Critical Thinking Exercises, Group Exercises, Retaining the Concepts, and Preview Exercises. This format makes it easy to create well-rounded homework assignments. The order of the Practice Exercises is exactly the same as the order of the section’s worked examples. This parallel order enables students to refer to the titled examples and their detailed explanations to achieve success working the Practice Exercises.
• Practice Plus Problems. This category of exercises contains more challenging practice problems that often require students to combine several skills or concepts. With an average of ten Practice Plus problems per Exercise Set, instructors are provided with the option of creating assignments that take Practice Exercises to a more challenging level.
• Mid-Chapter Check Points. At approximately the midway point in each chapter, an integrated set of Review Exercises allows students to review and assimilate the skills and concepts they learned separately over several sections.
• Graphing and Functions. Graphing and functions are introduced in Chapter 1, with an integrated graphing functional approach emphasized throughout the book. Graphs and functions that model data appear in nearly every section and Exercise Set. Examples and exercises use graphs of functions to explore relationships between data and to provide ways of visualizing a problem’s solution. Because functions are the core of this course, students are repeatedly shown how functions relate to equations and graphs.
• Integration of Technology Using Graphic and Numerical Approaches to Problems. Side-by-side features in the technology boxes connect algebraic and trigonometric solutions to graphic and numerical approaches to problems. Although the use of graphing utilities is optional, students can use the explanatory voice balloons to understand different approaches to problems even if they are not using a graphing utility in the course.
• Great Question! This feature presents a variety of study tips in the context of students’ questions. Answers to questions offer suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions. As a secondary benefit, this feature should help students not to feel anxious or threatened when asking questions in class.
• Chapter Summaries. Each chapter contains a review chart that summarizes the definitions and concepts in every section of the chapter. Examples that illustrate these key concepts are also referenced in the chart.
• End-of-Chapter Materials. A comprehensive collection of Review Exercises for each of the chapter’s sections follows the Summary. This is followed by a Chapter Test that enables students to test their understanding of the material covered in the chapter. Beginning with Chapter 2, each chapter concludes with a comprehensive collection of mixed Cumulative Review Exercises.
• Blitzer Bonuses. These enrichment essays provide historical, interdisciplinary, and otherwise interesting connections to the algebra and trigonometry under study, showing students that math is an interesting and dynamic discipline.
• Discovery. Discovery boxes, found throughout the text, encourage students to further explore algebraic and trigonometric concepts. These explorations are optional and their omission does not interfere with the continuity of the topic under consideration.
I hope that my passion for teaching, as well as my respect for the diversity of students I have taught and learned from over the years, is apparent throughout this new edition. By connecting algebra and trigonometry to the whole spectrum of learning, it is my intent to show students that their world is profoundly mathematical, and indeed, p is in the sky.
Robert Blitzer
Acknowledgments
An enormous benefit of authoring a successful series is the broad-based feedback I receive from the students, dedicated users, and reviewers. Every change to this edition is the result of their thoughtful comments and suggestions. I would like to express my appreciation to all the reviewers, whose collective insights form the backbone of this revision. In particular, I would like to thank the following people for reviewing College Algebra, Algebra and Trigonometry, Precalculus, and Trigonometry
Karol Albus, South Plains College
Kayoko Yates Barnhill, Clark College
Timothy Beaver, Isothermal Community College
Jaromir Becan, University of Texas-San Antonio
Imad Benjelloun, Delaware Valley College
Lloyd Best, Pacific Union College
David Bramlett, Jackson State University
Natasha Brewley-Corbin, Georgia Gwinnett College
Denise Brown, Collin College-Spring Creek Campus
David Britz, Raritan Valley Community College
Mariana Bujac-Leisz, Cameron University
Bill Burgin, Gaston College
Jennifer Cabaniss, Central Texas College
Jimmy Chang, St. Petersburg College
Teresa Chasing Hawk, University of South Dakota
Diana Colt, University of Minnesota-Duluth
Shannon Cornell, Amarillo College
Wendy Davidson, Georgia Perimeter College-Newton
Donna Densmore, Bossier Parish Community College
Disa Enegren, Rose State College
Keith A. Erickson, Georgia Gwinnett College
Nancy Fisher, University of Alabama
Donna Gerken, Miami Dade College
Cynthia Glickman, Community College of Southern Nevada
Sudhir Kumar Goel, Valdosta State University
Donald Gordon, Manatee Community College
David L. Gross, University of Connecticut
Jason W. Groves, South Plains College
Joel K. Haack, University of Northern Iowa
Jeremy Haefner, University of Colorado
Joyce Hague, University of Wisconsin at River Falls
Mike Hall, University of Mississippi
Mahshid Hassani, Hillsborough Community College
Tom Hayes, Montana State University
Christopher N. Hay-Jahans, University of South Dakota
Angela Heiden, St. Clair Community College
Donna Helgeson, Johnson County Community College
Celeste Hernandez, Richland College
Gregory J. Herring, Cameron University
Alysmarie Hodges, Eastfield College
Amanda Hood, Copiah-Lincoln Community College
Jo Beth Horney, South Plains College
Heidi Howard, Florida State College at Jacksonville-South Campus
Winfield A. Ihlow, SUNY College at Oswego
Nancy Raye Johnson, Manatee Community College
Daniel Kleinfelter, College of the Desert
Sarah Kovacs, Yuba College
Dennine Larue, Fairmont State University
Mary Leesburg, Manatee Community College
Christine Heinecke Lehman, Purdue University North Central
Alexander Levichev, Boston University
Zongzhu Lin, Kansas State University
Benjamin Marlin, Northwestern Oklahoma State University
Marilyn Massey, Collin County Community College
Yvelyne McCarthy-Germaine, University of New Orleans
David McMann, Eastfield College
Owen Mertens, Missouri State University-Springfield
James Miller, West Virginia University
Martha Nega, Georgia Perimeter College-Decatur
Priti Patel, Tarrant County College
Shahla Peterman, University of Missouri-St. Louis
Debra A. Pharo, Northwestern Michigan College
Gloria Phoenix, North Carolina Agricultural and Technical State University
Franotis R. Stallworth, Gwinnett Technical College
John David Stark, Central Alabama Community College
Charles Sterner, College of Coastal Georgia
Chris Stump, Bethel College
Scott Sykes, University of West Georgia
Richard Townsend, North Carolina Central University
Pamela Trim, Southwest Tennessee Community College
Chris Turner, Arkansas State University
Richard E. Van Lommel, California State University-Sacramento
Dan Van Peursem, University of South Dakota
Philip Van Veldhuizen, University of Nevada at Reno
Philip Veer, Johnson County Community College
Jeffrey Weaver, Baton Rouge Community College
Amanda Wheeler, Amarillo College
David White, The Victoria College
Tracy Wienckowski, University of Buffalo
Additional acknowledgments are extended to Dan Miller and Kelly Barber for preparing the solutions manuals; Brad Davis for preparing the answer section, serving as accuracy checker, and writing the new learning guide; the codeMantra formatting team for the book’s brilliant paging; Brian Morris and Kevin Morris at Scientific Illustrators for superbly illustrating the book; Francesca Monaco, project manager; and Kathleen Manley, production editor, whose collective talents kept every aspect of this complex project moving through its many stages.
I would like to thank my editor at Pearson, Dawn Murrin, who, with the assistance of Joseph Colella, guided and coordinated the book from manuscript through production. Finally, thanks to Peggy Lucas and Claire Kozar for their innovative marketing efforts and to the entire Pearson sales force for their confidence and enthusiasm about the book.
Robert Blitzer
Get the Most Out of MyMathLa b®
MyMathLab is the leading online homework, tutorial, and assessment program for teaching and learning mathematics, built around Pearson’s best-selling content.
MyMathLab helps students and instructors improve results; it provides engaging experiences and personalized learning for each student so learning can happen in any environment. Plus, it offers flexible and time-saving course management features to allow instructors to easily manage their classes while remaining in complete control, regardless of course format.
Preparedness
MyMathLab course solutions offer a complete College Algebra, Algebra & Trigonometry, or Precalculus course with integrated review of select topics from developmental algebra. These courses help remediate students “just-in-time” and help with student retention of important concepts, ultimately boosting student success.
• Students begin each chapter by completing a Skills Check assignment to pinpoint which developmental topics, if any, they need to review.
• Students who demonstrate mastery of the review topics will move straight into the Algebra & Trigonometry content.
• A personalized review homework assignment will provide extra support for the students who need it.
• Additional review materials (worksheets, videos, and more) are available in an Integrated Review section at the start of each chapter in MyMathLab.
MyMathLab with Integrated Review are appropriate for students who struggle with pre-requisite skills and for co-requisite course models. These Integrated Review MyMathLab courses are available for a variety of College Algebra, Algebra & Trigonometry, and Precalculus programs, as well as a variety of other disciplines.
Used by more than 37 million students worldwide, MyMathLab delivers consistent, measurable gains in student learning outcomes, retention, and subsequent course success.
MyMathLab Online Course for Precalculus Essentials
Get the Most Out of MyMathLa b®
by Robert Blitzer
(access code required)
NEW! Video Program
A fresh, and all new, video program walks through the concepts from every objective of the text. Many videos provide an active learning environment where students try out their newly learned skill.
NEW! Workspace Assignments
Students can now show their work like never before! Workspace Assignments allow students to work through an exercise step-by-step, and show their mathematical reasoning as t hey p rogress. Students receive immediate feedback after they complete each step, and helpful hints and videos offer guidance when they need it. When accessed via a mobile device, Workspace exercises use handwriting recognition software that allows students to naturally write out their answers. Each student’s work is automatically graded and captured in the MyMathLab gradebook so instructors can easily pinpoint exactly where they need to focus their instruction.
NEW! Guided Visualizations
These HTML-based, interactive figures help students visualize the concepts through directed explorations and purposeful manipulation. They encourage active learning, critical thinking, and conceptual learning. They are compatible with iPad and tablet devices. The Guided Visualizations are located in the Multimedia Library and can be assigned as homework with correlating assessment exercises. Additional Exploratory Exercises are available to help students think more conceptually about the figures and provide an excellent framework for group projects or lecture discussion.
Resources for Success
Instructor Resources
Additional resources can be downloaded from www.mymathlab.com or www.pearsonhighered.com or hardcopy resources can be ordered from your sales representative.
Annotated Instructor’s Edition
Shorter answers are on the page beside the exercises. Longer answers are in the back of the text.
Instructor’s Solutions Manual
Fully worked solutions to all textbook exercises.
PowerPoint® Lecture Slides
Fully editable lecture slides that correlate to the textbook.
Mini Lecture Notes
Additional examples and helpful teaching tips for each section.
TestGen®
Enables instructors to build, edit, print, and administer tests using a computerized bank of algorithmic questions developed to cover all the objectives of the text.
Student Resources
Additional resources to help student success are available to be packaged with the Blitzer textbook and MyMathLab access code.
Objective Level Videos
An all new video program covers every objective of the text and is assignable in MyMathLab. Many videos provide an active learning environment where students try out their newly learned skill.
Chapter Test Prep Videos
Students can watch instructors work through step-by-step solutions to all the Chapter Test exercises from the textbook. These are available in MyMathLab and on YouTube.
Student Solutions Manual
Fully worked solutions to odd-numbered exercises and available to be packaged with the textbook.
Learning Guide
The note-taking guide begins each chapter with an engaging application, and provides additional examples and exercises for students to work through for a greater conceptual understanding and mastery of topics.
New to this edition: classroom projects are included for each chapter providing the opportunity for collaborative work. The Learning Guide is available in PDF and customizable Word file formats in MyMathLab. It can also be packaged with the textbook and MyMathLab access code.
MathTalk Videos
Engaging videos connect mathematics to real-life events and interesting applications. These fun, instructional videos show students that math is relevant to their daily lives and are assignable in MyMathLab. Assignable exercises are available in MyMathLab for these videos to help students apply valuable information presented in the videos.
to thE studEnt
The bar graph shows some of the qualities that students say make a great teacher. It was my goal to incorporate each of these qualities throughout the pages of this book.
Explains Things Clearly
I understand that your primary purpose in reading Precalculus Essentials is to acquire a solid understanding of the required topics in your precalculus course. In order to achieve this goal, I’ve carefully explained each topic. Important definitions and procedures are set off in boxes, and worked-out examples that present solutions in a step-by-step manner appear in every section. Each example is followed by a similar matched problem, called a Check Point, for you to try so that you can actively participate in the learning process as you read the book. (Answers to all Check Points appear in the back of the book.)
Funny & Entertaining
Who says that a precalculus textbook can’t be entertaining? From our unusual cover to the photos in the chapter and section openers, prepare to expect the unexpected. I hope some of the book’s enrichment essays, called Blitzer Bonuses, will put a smile on your face from time to time.
Helpful
I designed the book’s features to help you acquire knowledge of algebra and trigonometry, as well as to show you how algebra and trigonometry can solve authentic problems that apply to your life. These helpful features include:
• Explanatory Voice Balloons: Voice balloons are used in a variety of ways to make math less intimidating. They translate algebraic and trigonometric language into everyday English, help clarify problem-solving procedures, present alternative ways of understanding concepts, and connect new concepts to concepts you have already learned.
• Great Question!: The book’s Great Question! boxes are based on questions students ask in class. The answers to these questions give suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions.
• Achieving Success: The book’s Achieving Success boxes give you helpful strategies for success in learning algebra and trigonometry, as well as suggestions that can be applied for achieving your full academic potential in future college coursework.
• Chapter Summaries: Each chapter contains a review chart that summarizes the definitions and concepts in every section of the chapter. Examples from the chapter that illustrate these key concepts are also referenced in the chart. Review these summaries and you’ll know the most important material in the chapter!
Passionate about the Subject
I passionately believe that no other discipline comes close to math in offering a more extensive set of tools for application and development of your mind. I wrote the book in Point Reyes National Seashore, 40 miles north of San Francisco. The park consists of 75,000 acres with miles of pristine surf-washed beaches, forested ridges, and bays bordered by white cliffs. It was my hope to convey the beauty and excitement of mathematics using nature’s unspoiled beauty as a source of inspiration and creativity. Enjoy the pages that follow as you empower yourself with the algebra and trigonometry needed to succeed in college, your career, and your life.
Regards, Bob
Robert Blitzer
aBout thE authoR
Bob Blitzer is a native of Manhattan and received a Bachelor of Arts degree with dual majors in mathematics and psychology (minor: English literature) from the City College of New York. His unusual combination of academic interests led him toward a Master of Arts in mathematics from the University of Miami and a doctorate in behavioral sciences from Nova University. Bob’s love for teaching mathematics was nourished for nearly 30 years at Miami Dade College, where he received numerous teaching awards, including Innovator of the Year from the League for Innovations in the Community College and an endowed chair based on excellence in the classroom. In addition to Precalculus Essentials, Bob has written textbooks covering developmental mathematics, introductory algebra, intermediate algebra, college algebra, algebra and trigonometry, trigonometry, and liberal arts mathematics, all published by Pearson. When not secluded in his Northern California writer’s cabin, Bob can be found hiking the beaches and trails of Point Reyes National Seashore and tending to the chores required by his beloved entourage of horses, chickens, and irritable roosters.
aPPLiCations indEX
AAcid rain, 491
Advertising, sales and price and, 421–422
African Americans, percentage of, with high school diploma, 514
Age(s)
arrests and drunk driving as function of, 402 calories needed to maintain energy by, 86 chances of surviving to various, 179 of driver, and rate of fatal crashes, 107–108 height as function of, 221, 224, 243 marriage and, 156–158, 302 perceived length of time period and, 425 percentage of U.S. population never married, ages 25-29, 214, 216 percent body fat in adults by, 199 preferred age in a mate, 270–271 racial prejudice and, 56–57 and sleep, 160
Aging rate, space travel and, 32, 44, 47
AIDS/HIV cases diagnosed (U.S.), 335–337, 339 number of Americans living with, 335 T cell count and, 162, 171–172
Aircraft/airplanes approaching runway, vector describing, 782 direction angle of, given speed, 784 distance and angle of elevation of, 611 distance flown by, 562 ground speed of, 784 height of, 578 leaving airport at same time, distance between, 723, 727–728, 798 linear speed of propeller, 644 Mach speed of, 682 true bearing of, 783–784 vector describing flight of, 782 velocity vector of, 780 wind speed and direction angle exerted on, 783–784
Airports, distance between, 730
Alcohol use
drunk driving arrests, 402 by high school seniors, 159–160 moderate wine consumption and heart disease, 215–216 number of moderate users in U.S., 514 and risk of accident, 485–486, 491
Alligator, tail and body length of, 424
Altitude
atmospheric pressure and, 513 gained by hiker climbing incline, 645 increase on inclined road of, 562
Angular speed of audio records, 531 of carousel, 530 of hard drive in computer, 530 of propeller on wind generator, 644
Antenna, height on top of building, 646
Applause, decibel level of, 203
Archer’s arrow, path of, 326 Architecture, angles in, 518 Area, of a football field, 116–117 Arrests, drunk driving, 402
Aspirin, half-life of, 506
Atmospheric pressure and altitude, 513 Attitudes, of college freshmen, 112–113
Attractiveness, and success, 147
Audio records, angular speed and linear speed of, 531
Automobiles computing work of pushing, 791, 793 depreciation, 179 drunk driving arrests as function of age, 402 fatal crashes, age of driver and, 107–108 leaving city at same time, distance between, 798 prices of, and average age, 122–123 rentals, 126, 129–130, 135–136, 402, 744 required stopping distance, 403, 413–414 stopping distances, 403, 413–414 Average cost function, 395–396, 400 Average rate of change, 221–222, 243
B Ball
angle of elevation and throwing distance of, 709
thrown upward and outward, 331 Ball (attached to spring)
finding amplitude and period of motion of, 670
simple harmonic motion of, 633–634, 705, 709
Ball (height above ground) baseball, 516
bounce height, 424 football, 17, 324–325 maximum height, 801 when thrown from rooftop, 413 when thrown from top of Leaning Tower of Pisa, 411
Banking angle and turning radius of bicycle, 424
Baseball angle of elevation and throwing distance of, 705
height of ball above ground, 516 pitcher’s angle of turn to throw ball, 732 Baseball diamond, distance from pitcher’s mound to bases on, 731 Bearings, 632–633, 647 of boat, 633, 639, 731 distance at certain, 639, 646
to fire from two fire stations, 719, 721 of jet from control tower, 639 true, of plane, 783–784 between two cities, 646
Beauty, symmetry and, 184
Bias, Implicit Association Test for, 48, 56–57
Bicycles
banking angle, 424 manufacturing, 179, 400
Biorhythms, 517, 535, 549, 597–599
Bird species population decline, 506
Birth(s)
out-of-wedlock, 291 in U.S. from 2000 through 2009, 246, 251–252
distance traveled at certain, 639 to sail into harbor, 639 direction angle of, 800 distance from lighthouse, 646, 723 distance from pier, 731 ground speed, 800 leaving harbor at same time, distance between after three hours, 730 on tilted ramp, vector components of force on, 789, 793
velocity of, 800 velocity vector of, 780
Body fat in adults by age and gender, percent, 199
Body-mass index, 424
Body temperature, variation in, 645
Box dimensions, 364
Brain
exercising your, 175 growth of the human, 501 modeling brain activity, 611
Break-even analysis, 648. See also Cost and revenue functions/break-even points
Breathing cycle, 578 modeling, 592–593 velocity of air flow in, 705
Cigarette consumption. See Smoking Circle, finding length of arc on, 646, 691
Cliff, distance of ship from base of, 638
Clock(s)
angles formed by hands of, 518, 519 degrees moved by minute hand on, 533 distance between tip of hour hand and ceiling, 597 distance between tips of hands at 10:00, 732 minute hand movement in terms of p , 533
Coffee consumption, sleep and, 516 College education cost of, 2, 4–5, 19 and success, 121 women vs. men, 146 College graduates among people ages 25 and older, in U.S., 450 salaries of, in first job after college, 300 Colleges, percentage of U.S. high school seniors applying to more than three, 450 College students excuses of, for not meeting assignment deadlines, 144 freshmen attitudes of, 112–113 claiming no religious affiliation, 163–164, 166 political orientation, 302 grade inflation among, 107 loan debt, 71 College tuition, and student loan debt, 71 Comedians, net worth of, 466 Commuters, toll discount passes, 260, 612
angular speed of hard drive in, 530 computer-generated animation, 229 discounts, 252–253, 260 PC vs. tablet sales, 513 price before reduction, 509 prices, 262 ratio of students to computers in U.S. public schools, 339 sale price, 69
Delicate Arch, angle of elevation to determine height of, 563
Depreciation, 179
Depression, exercise and, 229
Digital camera, price reduction for, 114–115 Dinosaur bones and potassium-40 dating, 506 Dinosaur footprints, pace angle and stride indicated by, 724, 730
Direction, 770–771
Distance across cove, 731 across lake, 558, 561, 645, 730, 731 from base to top of Leaning Tower of Pisa, 721
between cars leaving city at same time, 798 of forest ranger from fire, 639 of island from coast, 638 of marching band from person filming it, 611 of oil platform from ends of beach, 721 between pairs of cities, 281 of rotating beam of light from point, 610, 611 safe, expressway speed and, 142 of ship from base of cliff, 638 of ship from base of Statue of Liberty, 638
of ship from lighthouse, 646 of stolen car from point directly below helicopter, 638 traveled by plane, 562 between two points on Earth, 533 between two points on opposite banks of river, 721
between two trains leaving station at same time, 756
Distance traveled, combined walking and bus travel, 19
Diver’s height above water, 413
Diversity index, 142
Diving board motion, modeling, 611
Divorce, marriage age and probability of, 156–158
DNA, structure of, 550
Doctor, visits to, 200
“Don’t ask, don’t tell” policy, 226–227
Drivers, age of. See under Age(s)
Driving rate and time for trip, 419
Drug concentration, 223, 400
Drug dosage, child vs. adult, 709
Drug use among teenagers, 508
Drunk driving, and age as function of arrests, 402
Dual investments, 19, 115–116, 200 E
Eagle, height and time in flight, 302
Earnings. See Salary(-ies)
Earth age of, 24 angular velocity of point on, 534 distance between two points on, 533 finding radius of, 640 motion of Moon relative to, 550
Football area of field, 116–117 height above ground, 17, 324–325 vector describing thrown, 782 Force(s) on body leaning against wall, 770, 773 in equilibrium, 783 pulling cart up incline, 770 resultant, 783, 799, 800
Free-falling object’s position, 410–411, 413 Frequency, length of violin string and, 421 Freshmen. See under College students
Fuel efficiency, 181
G
Garbage, daily per-pound production of, 71
Gasoline
average U.S. price, 351 gallons of premium sold, 793 gallons of regular sold, 793
Gas pressure, in can, 420 Gay marriage, U.S. public opinion on, 507 Gay service members discharged from military, 226–227
Gender
bachelor’s degrees awarded and, 146 calories needed to maintain energy by, 86 educational level and earnings by, 110–111 first-year U.S. college students claiming no religious affiliation by, 163–164, 166 housework and, 465 jobs in U.S. labor force by, 108 life expectancy by year of birth and, 214 percentage of United States population never married, ages 25-29 and, 214, 216 percent body fat in adults by, 199 wage gap by, 179
Global warming, 149, 210–212 Golden rectangles, 47 Grade inflation, 107 Gravitational force, 422 Gravity model, 425 Groceries, budgeting for, 226
Ground speed, 784
Gutter cross-sectional area, 332 Guy wire attached to pole, angle made with ground and, 631
HHalf-life, for radioactive elements, 506, 514 Hamachiphobia, 507
Happiness average level of, at different times of day, 271 per capita income and national, 215 Harmonic motion, simple. See Simple harmonic motion
Headset manufacturing costs, 382, 395–396 Health care budgeting for, 226 gross domestic product (GDP) spent on, 490 savings needed for expenses during retirement, 507 Heart beats over lifetime, 32 Heart disease coronary, 507 moderate wine consumption and, 215–216 smoking and, 402 Heart rate exercise and, 3, 18 of mammals, and life span, 433 before and during panic attack, 351 Heat generated by stove, 425 Heat loss of a glass window, 425 Height of antenna on top of building, 646 of ball above ground (See Ball [height above ground]) of building, 557–558, 638, 639, 646, 647, 723 child’s height modeled, 459, 465, 466, 487 diver’s height above water, 413 of eagle, in terms of time in flight, 302 on Ferris wheel while riding, 550 of flagpole, 639, 709 as function of age, 221, 224, 243 of leaning wall, finding, 722 maximum, 801 of Mt. Rushmore sculpture, 632 percentage of adult height attained by girl of given age, 465, 487 of plane, 578 of tower, finding, 630, 638, 769 of tree, finding, 756 weight and height recommendations/ calculations, 424
High school education, percentage of U.S. adults completing, 514
High school seniors, marijuana/alcohol use by, 159–160
Hiking trails, finding bearings on, 633
Hill, magnitude of force required to keep car from sliding down, 783 Hispanic Americans, population growth of, 514 HIV/AIDS cases diagnosed (U.S.), 335–337, 339 number of Americans living with, 335 T cell count and, 162, 171–172
Hot-air balloon, distance traveled by ascending, 631, 639, 671
House sales prices, 180 House value, inflation rate and, 450
Housework, 465
Human resources, federal budget expenditures on, 401
Hurricanes, barometric air pressure and, 491 Hydrogen ion concentration, 491
IIllumination intensity, 424, 425
Implicit Association Test, 48, 56–57
Income, of highest paid TV celebrities, 162–165 Income taxes, federal, 180
Inflation grade, 107 rate of, 450 Influenza. See Flu
Inoculation costs for flu, 86
Insulation, rate of heat lost through, 648
Insurance, pet, 199
Intelligence quotient (IQ) and mental/ chronological age, 424
Movies ticket prices, 144 top ten Oscar-winning, 261 Movie theater, finding best viewing angle in, 613, 627, 628
Music amplitude and frequency of note’s sine wave, 688 amusia and, 661, 663 modeling musical sounds, 635, 640
N
National debt, 20, 27–28, 31, 32, 142
National diversity index, 142 Navajo sand painting, 549 Navigation, 550. See also Bearings Neurons, human brain vs. gorilla brain, 71 Newton’s Law of Cooling, 509
Relativity theory, space exploration and, 32, 44, 47
Religious affiliation, first-year U.S. college students claiming no, 163–164, 166
Rentals, car, 126, 129–130, 135–136, 402, 744
Resistance, electrical, 86, 425
Resultant forces, 783, 784, 799, 800
Revenue functions. See Cost and revenue functions/break-even points
Reversibility of thought, 58
Roof of A-frame cabin, finding length of, 798
Rotating beam of light, distance from point, 610, 611
Runner, speed of, 291
Runner’s pulse, 491
S
Sailing angle to 10-knot wind, sailing speed and, 743, 754
Salary(-ies)
earnings with overtime, 516 educational level and, 110–111, 122 first job after college, 300 increases in average, 304 police officers, average, 28 wage gap in, by gender, 179
Sale prices, 69. See also Price reductions
Sales volume/figures PCs vs. tablets, 513 price/advertising and, 421–422 video games, 492
Sand painting, 549
Savings and compound interest, 489–490 needed for health-care expenses during retirement, 507
Shaded region areas, 57, 69
Shadow, length of, 782
Shipping costs, 302. See also Mailing costs
Ships. See Boats/ships
Shot put angle and height of, 331 throwing distance, 682, 722
Freedom 7 spacecraft, 272 relativity theory and, 32, 44, 47
Speed. See also Rate of travel angular, 530, 644 linear, 534 of airplane propeller, 644 of animals on carousel, 530, 534 of wind machine propeller, 531 Mach speed of aircraft, 682
Speed skating, winning time for, 306
Spring(s)
force required to stretch, 424 simple harmonic motion of object attached to, 633–636 ball, 633–634, 705, 709 distance from rest position, 637, 646 frequency of, 637
maximum displacement of, 637 phase shift of motion, 637 time required for one cycle, 637
Statue of Liberty, distance of ship from base of, 638
Stomach acid, pH of, 491
Stonehenge, raising stones of, 562
Stopping distances for cars, 403, 413–414 for trucks, 414
Surveying bearings in, 632–633 to find distance between two points on opposite banks of river, 721
Sushi, population who won’t try, 507
Synthesizers, musical sounds modeled by, 629, 635
TTablet sales, 513
Target heart rate for exercise, 18 Task mastery, 476, 513
Tax code, U.S., increase in number of pages in, 451
Taxes
federal tax rate schedule for tax owed, 199 government spending and, 31 income, 180 tax rate percentage and revenue, 365 U.S. population and total tax collections, 31
Teenage drug use, 508
Telephone(s)
calls between cities, 416, 425 sound from touching buttons on, 684, 690
Telephone pole angle between guy wire and, 562 tilted, finding length of, 722
Television lifetime hours spent watching, 122 sale prices, 69
Temperature average monthly, 597, 598 body, variation in, 645 of cooling cup of coffee, 512 and depth of water, 424 in enclosed vehicle, increase in, 461–462 Fahrenheit-Celsius interconversions, 17 global warming, 149, 210–212 home temperature as function of time, 244
increase in an enclosed vehicle, 507 as magnitude, 770 Newton’s Law of Cooling, 509 time-temperature flu scenario, 181–182
Text messaging plans, modeling costs of, 283–285
Throwing distance, 672, 682 angle of elevation of, 705, 709 maximum height of thrown ball, 801 shot put, 682, 722
Ticket prices/sales, 144
Tides, behavior of, 535, 544, 549 modeling cycle of, 594 modeling water depth and, 597 Tigers, worldwide population, 350 Time, perceived length of, 425 Time traveled, average rate and, 179 Tobacco use. See Smoking Tolls, 113–114, 260, 612
Touch-tone phone, sounds from touching buttons on, 684, 690
Tower
angle of elevation between point on ground and top of, 648, 769 height of, finding, 630, 638, 639, 769 length of two guy wires anchoring, 731 Trains leaving station at same time, distance between, 756
Volume of carry-on luggage, 378–379 of sound (See Sound intensity)
WWage gap, 179
Wages. See Salary(-ies)
Wagon, computing work of pulling, 791, 793, 800
Walking speed and city population, 501 Washington Monument, angle of elevation to top of, 562
Water pressure and depth, 416–417 temperature and depth, 424 used in a shower, 418
Water pipe diameter, number of houses served and size of, 424
Water supply, from melting snow, 432
Water wheel, linear speed of, 534
Weight
blood volume and body, 417–418 of elephant, 491 of great white shark, cube of its length and, 419 and height recommendations/ calculations, 424 of person on Moon, 424
Weightlifting, 508, 785, 794
Wheelchair business, manufacturing costs in, 396
Wheelchair ramp, angle of elevation of, 639
Wheel rotation, centimeters moved with, 533
Wind, velocity vector of, 779, 780, 783–784
Wind force, 425
Wind generator angular speed of propeller on, 644 linear speed of propeller of, 531
Wind pressure, 425
Wine consumption, heart disease and, 215–216
Wing span of jet fighter, finding, 723
Women. See also Gender average level of happiness at different times of day, 271 and housework, 465
• the meaning of the national debt that is nearly $19 trillion?
• time dilation on a futuristic high-speed journey to a nearby star?
• racial bias?
• ethnic diversity in the United States?
• the widening imbalance between numbers of women and men on college campuses?
This chapter reviews fundamental concepts of algebra that are prerequisites for the study of precalculus. Throughout the chapter, you will see how the special language of algebra describes your world.
Here’s wHere you’ll find tHese applications:
College costs: Section P.1, Example 2; Exercise Set P.1, Exercises 131–132
Student-loan debt: Mid-Chapter Check Point, Exercise 42
Workouts: Exercise Set P.1, Exercises 129–130
The effects of alcohol: Blitzer Bonus beginning on page 15
The national debt: Section P.2, Example 6
Time dilation: Blitzer Bonus on page 44
Racial bias: Exercise Set P.4, Exercises 91–92
U.S. ethnic diversity: Chapter P Review, Exercise 23
College gender imbalance: Chapter P Test, Exercise 32.
Section P.1
What am I supposed to learn?
After studying this section, you should be able to:
❶ Evaluate algebraic expressions.
❷ Use mathematical models.
❸ Find the intersection of two sets.
❹ Find the union of two sets.
❺ Recognize subsets of the real numbers.
❻ Use inequality symbols.
❼ Evaluate absolute value.
❽ Use absolute value to express distance.
❾ Identify properties of the real numbers.
❿ Simplify algebraic expressions.
Algebraic Expressions, Mathematical Models, and Real Numbers
How would your lifestyle change if a gallon of gas cost $9.15? Or if the price of a staple such as milk was $15? That’s how much those products would cost if their prices had increased at the same rate college tuition has increased since 1980. (Source: Center for College Affordability and Productivity) In this section, you will learn how the special language of algebra describes your world, including the skyrocketing cost of a college education.
Algebraic Expressions
Algebra uses letters, such as x and y, to represent numbers. If a letter is used to represent various numbers, it is called a variable. For example, imagine that you are basking in the sun on the beach. We can let x represent the number of minutes that you can stay in the sun without burning with no sunscreen. With a number 6 sunscreen, exposure time without burning is six times as long, or 6 times x. This can be written 6 # x, but it is usually expressed as 6x. Placing a number and a letter next to one another indicates multiplication.
Notice that 6x combines the number 6 and the variable x using the operation of multiplication. A combination of variables and numbers using the operations of addition, subtraction, multiplication, or division, as well as powers or roots, is called an algebraic expression. Here are some examples of algebraic expressions:
x + 6, x - 6, 6x, x 6 , 3x + 5, x 2 - 3, 1x + 7
Many algebraic expressions involve exponents. For example, the algebraic expression
4x 2 + 330x + 3310
approximates the average cost of tuition and fees at public U.S. colleges for the school year ending x years after 2000. The expression x 2 means x # x and is read “x to the second power” or “x squared.” The exponent, 2, indicates that the base, x, appears as a factor two times.
Exponential Notation
If n is a counting number (1, 2, 3, and so on),
b appears as a factor n times.
bn is read “the nth power of b” or “b to the nth power.” Thus, the nth power of b is defined as the product of n factors of b The expression bn is called an exponential expression. Furthermore, b1 = b.
Evaluate algebraic expressions.
Evaluating Algebraic Expressions
Evaluating an algebraic expression means to find the value of the expression for a given value of the variable.
Many algebraic expressions involve more than one operation. Evaluating an algebraic expression without a calculator involves carefully applying the following order of operations agreement:
The Order of Operations Agreement
1. Perform operations within the innermost parentheses and work outward. If the algebraic expression involves a fraction, treat the numerator and the denominator as if they were each enclosed in parentheses.
2. Evaluate all exponential expressions.
3. Perform multiplications and divisions as they occur, working from left to right
4. Perform additions and subtractions as they occur, working from left to right
Exam P l E 1
Evaluating an Algebraic Expression
Evaluate 7 + 5(x - 4)3 for x = 6. Solution
7 + 5(x - 4)3 = 7 + 5(6 - 4)3 Replace x with 6.
= 7 + 5(2)3 First work inside parentheses: 6 - 4 = 2.
An equation is formed when an equal sign is placed between two algebraic expressions. One aim of algebra is to provide a compact, symbolic description of the world. These descriptions involve the use of formulas. A formula is an equation that uses variables to express a relationship between two or more quantities.
Here are two examples of formulas related to heart rate and exercise.
Another random document with no related content on Scribd:
aspirazioni a far di Roma una città mercantile, come aveva tentato la monarchia: aspirazioni, che la maggior conoscenza del mondo ellenico, la cresciuta fiducia, l’abbondanza del capitale, l’ampliato dominio non potevano non incoraggiare. Infine, anche i costumi e le idee si rinnovano. L’ellenismo fa rapidi progressi a Roma, dopochè la Magna Grecia è stata incorporata nel suo impero, e con la Magna Grecia le vie più rapide per tragittare in Grecia e nell’Oriente ellenistico. Un greco di Taranto, Livio Andronico, porta in Roma l’epica e la dramatica greca, anzi la mania di tutta la coltura ellenica. A sciami, assai più che ai tempi di Tarquinio I e di Tarquinio II gli Etruschi, irrompono dall’Italia meridionale nella antica città i Greci, portando la coltura, le divinità, i costumi, i vizi ed il lusso dell’Asia ellenica. Già nel 275 un console era stato espulso dal senato, perchè sulla sua mensa splendeva un troppo ricco vasellame; e due anni dopo la conquista dell’Italia meridionale, Roma avrà bisogno di coniare monete d’argento, di aprire all’uopo zecche nel Lazio e in Campania.
39. La guerra a Cartagine deliberata dai Comizi. (264). — Tutte queste aspirazioni ed inclinazioni e ambizioni confluirono in una corrente unica, che spinse la repubblica a varcare lo stretto, anche a rischio di dar di cozzo contro Cartagine. Grandi possidenti che arricchivano sulle terre conquistate nel Sannio e nell’Italia meridionale; giovani signori, che imparavano a gustare la letteratura e la filosofia greca; appaltatori degli eserciti o dei lavori pubblici; operai od artigiani, che vivevano sulle guerre o sulle spese pubbliche; senatori, cavalieri e ricchi liberati, che incominciavano a tentar qualche commercio, imitando i Tarantini, i Siracusani o i Cartaginesi; oscuri plebei e modesti possidenti che, dimenticando quanti eran morti od erano stati rovinati dalle guerre precedenti, vedevano soltanto i fortunati, ritornati con un gruzzolo, facevano violenza alla pavida prudenza dei saggi. Cartagine, l’amica secolare, era diventata il pericolo; Cartagine, che aveva occupato l’Africa e la Sardegna, che si impadroniva della Spagna, avrebbe, se Roma non
si affrettava, invaso un giorno l’Italia, come già aveva invaso la Sicilia.
Questa corrente popolare era così forte che il senato non osò pigliarla di petto. Ma non osò neppure secondarla; onde si appigliò ad un partito, di cui raramente fece uso nella lunga storia di Roma: trasmise la domanda dei Mamertini ai comizi centuriati. In questo momento supremo, il popolo fu chiamato ad esser giudice ed arbitro della sorte di Roma! E nei comizi centuriati il partito della guerra prevalse.
32 P , 1, 10
CAPITOLO SETTIMO
LA PRIMA GUERRA PUNICA E IL SECONDO
TENTATIVO MERCANTILE DI ROMA
40. La prima guerra punica (264-241). — La prima guerra tra Roma e Cartagine incomincia con una spedizione a Messina. Nel 264 Roma manda il console Appio Claudio con un esercito in aiuto ai Mamertini, i quali, non appena sicuri della protezione di Roma, avevano scacciato il presidio cartaginese. Ma Cartagine risponde inviando un’armata e un esercito contro Messina, e stringendo alleanza con i Siracusani; e con tanta prontezza che, quando il console Appio Claudio, nell’estate del 264, giunse a Reggio con le legioni, Messina già era stretta per mare e per terra dai Cartaginesi e dai Siracusani. Che fare? Passare lo stretto, senza aver prima vinta la flotta cartaginese? La mossa era temeraria. Misurarsi con Cartagine sul mare? Roma non aveva un’armata sufficiente. Il senato aveva avuto ragione di esitare, innanzi a quel breve braccio di mare; poichè era singolare temerarietà disputare un’isola ad una grande potenza navale con una piccola armata.
Ma la guerra ormai era dichiarata, e Appio Claudio non poteva guardare da Reggio, con le braccia conserte, l’assedio di Messina. Affrontò dunque — non aveva altro scampo — il doppio rischio: eludere il blocco cartaginese di notte e gettarsi, forzando le linee degli assedianti, nella città. Le due imprese erano arditissime; e se l’una o l’altra falliva, l’esercito era perduto. Ma Appio Claudio riuscì nell’una e nell’altra. Una volta in Messina, non perdette tempo; e sconfisse in due battaglie Cartaginesi e Siracusani, liberando la città. Padrona di Messina, Roma poteva ormai comunicare con il
continente abbastanza sicuramente, per quanto ancora sotto la minaccia di Siracusa. Ne approfittò per mandare l’anno seguente in Sicilia un nuovo esercito, che doveva assalire Siracusa e togliere a Cartagine tutti i punti di appoggio sulla costa orientale. Anche questa mossa riuscì. Ora che i Romani si erano impadroniti di Messina, Siracusa si sentì troppo addosso la potenza romana, da poter perseverare nell’alleanza con Cartagine. Il partito avverso ai Cartaginesi prevalse in Siracusa; e Gerone, abbandonata l’alleanza cartaginese, si alleò con Roma. Alla fine del 263 Roma aveva dunque posto saldamente il piede sulla Sicilia.
Ma non bastavano queste vittorie a scoraggire Cartagine. Cartagine assoldò Liguri, Galli e Spagnuoli in quantità; mandò in Sicilia soldati ed armi; fece di Agrigento la nuova base di operazione contro Romani e Siracusani; spedì flotte a saccheggiare le coste dell’Italia. A loro volta Romani e Siracusani posero, nel 262, l’assedio ad Agrigento, iniziando il secondo periodo della guerra, che doveva durar quanto l’assedio, otto mesi, e cioè tutto il terzo anno. Solo nel tardo autunno e dopo essere stati più volte sul punto di levare il campo, i Romani poterono vincere in battaglia un esercito cartaginese, spedito al soccorso, e impadronirsi della città, non però della guarnigione cartaginese che riuscì a fuggire attraverso le linee romane, raggiungendo l’esercito vinto. Ma questa nuova vittoria, la resa delle altre città, che seguì quella di Agrigento, soprattutto l’ingente e inusitato bottino esaltarono in Roma il sentimento pubblico. Popolo e grandi ormai furon tutti concordi in un solo pensiero: costruire una armata e scacciare i Cartaginesi dalla Sicilia. La tradizione narrò come Roma, ignara di navi, avesse pigliato a modello una quinquireme, che la tempesta aveva gettata sulle coste dell’Italia meridionale. Senonchè Roma non era così nuova al mare come la leggenda suppone, poichè possedeva navi da guerra e da carico, e disponeva delle flotte degli alleati, italici e siracusani. Ma la leggenda, se esagera, non è tutta una invenzione, poichè sembra probabile che nè Roma nè l’Italia conoscessero ancora l’uso delle navi a cinque ordini di remi, di cui si compose quasi tutta la sua prima grande armata navale, forte di 120 vascelli. Tuttavia i Romani
diffidavano della propria capacità sul mare; e perciò provvidero la armata di un nuovo ordigno, i ponti volanti d’abbordaggio, a cui diedero il nome di corvi. Con questi ponti, ciascuna nave poteva avvinghiare un naviglio nemico, e dare il passo ai legionari.
Ad approntare quest’armata navale sembra sia stato speso tutto l’anno 261, nel quale non si registrano grandi fatti di guerra. Nè il tempo sembrerà troppo lungo, chè fu necessario anche addestrare le ciurme. Al principio del 260 la flotta romana era in mare; e a primavera aprì la terza fase della guerra (260-255), discendendo lucida e nuova verso la Sicilia e cercando animosamente, sotto il comando del console C. Duilio, la vecchia flotta cartaginese, rotta a tutti i mari, carica di trofei, che da secoli combatteva su quelle acque. La trovò infatti, dopo un primo insuccesso, a Milazzo (Mylae) presso Messina e le diede battaglia (260). I corvi furon provati con buon successo; i Romani combatterono con grande impegno, volendo mostrare che anche sul mare eran forti; la flotta cartaginese perdette oltre la metà dei suoi legni, che erano 130; lo stesso ammiraglio ebbe a stento salva la vita e Roma riportò sul mare una vittoria non indegna degli allori che aveva raccolti sulla terra.
Al suo ritorno in Roma C. Duilio fu oggetto di straordinari onori, e per quale ragione, non è difficile intendere. Poche vittorie sbalordirono i contemporanei, come la vittoria di Milazzo. Roma aveva appena varata la sua prima grande armata; e subito vinceva sul mare la maggior potenza navale del tempo! Ma gli effetti della vittoria furono più piccoli della impressione. Cartagine si accinse con grande lena a rinforzare l’armata; si difese ostinatamente contro tutti gli attacchi romani; cercò di tirare in lungo la guerra, sperando di stancare Roma, che doveva ogni anno chiamare alle armi i suoi cittadini, mentre essa adoperava dei mercenari. Difatti, nei tre anni che seguono (259-257) noi vediamo i Romani combattere in Sicilia, assalire la Corsica e la Sardegna, ritornare a combattere in Sicilia; cercar insomma di mettere a frutto la padronanza del mare, conquistata con la vittoria di Milazzo: ma senza costringere Cartagine alla pace. Sinchè, volendo terminare a ogni costo questa onerosissima guerra, che durava ormai da nove anni, Roma si
risolvè, nel 256, per finirla, a ripetere il tentativo fatto dal siracusano Agatocle nel 310, sbarcando in Africa addirittura. L’impresa era ardua e pericolosa, poichè l’armata cartaginese vigilava poderosa il passaggio. I preparativi furon grandi e adeguati. Presso la foce del Salso (l’antico Himera) non lungi dall’odierno monte S. Angelo (l’antico promontorio Ecnomo) sulla costa meridionale della Sicilia, fu apparecchiata una grande armata di 300 legni, fra navi da guerra e da carico; e in quella furono imbarcati circa 140.000 uomini tra soldati e ciurme, agli ordini dei consoli L. Manlio Volsone e M. Atilio Regolo. La flotta cartaginese, non minore di forze, tentò di sbarrarle il passo; nei pressi di Ecnomo stesso si impegnò una aspra battaglia navale, nella quale i Romani riuscirono a passare; e, sconfitta la flotta cartaginese, poterono approdare all’opposto lido africano, occupando la città di Clupea, a occidente del Capo Bon, e facendo di questa la propria base di operazione in Africa.
Occorre a questo punto supporre che Cartagine si credesse al sicuro da un simile attacco e fosse sorpresa dall’invasione con forze insufficienti. Non è una supposizione invece, ma una notizia sicura che, appena l’esercito romano fu sbarcato in Africa, una grave rivolta scoppiò tra i Numidi, i quali irruppero nel territorio cartaginese. Ma solo quella supposta impreparazione e questa rivolta accertata dei Numidi possono spiegare come l’esercito romano abbia comodamente saccheggiato in un vasto territorio città e villaggi, che, le più non essendo fortificate, non si difendevano; abbia raccolto con poco pericolo un ingente bottino, massime di quadrupedi e di schiavi; l’abbia spedito tranquillamente in Italia e rimpatriato dopo poco con uno dei consoli una parte considerevole dell’esercito di invasione. Non rimase che Atilio Regolo con forze non grandi: imprudenza singolarissima, che soltanto la difficoltà di tenere a lungo un esercito numeroso in Africa e la illusione di aver già debellato Cartagine possono spiegare. Ma Cartagine non era punto debellata. Impreparata a respingere l’attacco improvviso, cercò di temporeggiare, trasse in lungo, mandò un piccolo esercito a trattenere i Romani; e quando questo esercito fu vinto, aprì trattative di pace.... Ma intanto arruolava soldati in Numidia, in Spagna ed in
Grecia; assoldava Santippo, un generale spartano, che conosceva l’arte della guerra meglio dei generali cartaginesi. Atilio Regolo accettò volentieri di trattare la pace; ma credendo proprio che la resistenza di Cartagine fosse infranta, impose condizioni durissime. Invece il nuovo esercito cartaginese si stava approntando; alla fine Cartagine respinse le condizioni; e Santippo entrò in campo. L’esercito romano fu dall’abile stratega sgominato; Atilio Regolo stesso fatto prigioniero (255).
L’audace mossa dell’esercito romano, che la fortuna aveva favorito da principio, era da ultimo rovinosamente fallita. Ma Roma non sbigottì: subito approntò un’altra flotta e la mandò a salvare gli avanzi dell’esercito romano, che si erano rifugiati e fortificati a Clupea. Questa flotta riuscì, sconfiggendo una armata cartaginese, a passare il mare e a imbarcare i superstiti di Clupea; ma a sua volta fu nel viaggio di ritorno quasi tutta distrutta da una tempesta, non lungi dal Capo Passaro. Di 364 navi se ne salvarono 80. Rianimati da questa nuova sventura romana, i Cartaginesi pensarono addirittura di passare all’attacco e di scacciare i Romani dalla Sicilia, mandando una spedizione. Pronta Roma rispose mandando a sua volta, nel 254, una flotta e un esercito ad assediare Palermo, che fu presa; e si accinse ad allestire una nuova spedizione che assalirebbe l’Africa, per il 253. La guerra riardeva dunque nella terra e sul mare più violenta che mai; ma fu questa l’ultima fiammata di audacia. La seconda spedizione romana in Africa fallì come quella del 256, e ancora prima di giungere in Africa, parte per gli errori dei comandanti, parte per un’altra tempesta; e con essa cadde a Roma per sempre l’ambizioso disegno di colpire Cartagine in Africa. Disperando di tener testa a Cartagine sul mare, Roma si restringe a combattere con le sue legioni in Sicilia, per la conquista della ricca isola.
Incomincia il quarto ed ultimo periodo della guerra, quello che è ormai circoscritto alla Sicilia (253-241). Abbraccia ben 13 anni, e la sua stessa lunghezza, l’alternativa incessante di sconfitte e di vittorie mostrano la stanchezza dei due avversari. Nel 251 il console L. Cecilio Metello infligge una grave sconfitta sotto Palermo ai
Cartaginesi che tentano di liberar la città; i Cartaginesi sgombrano allora tutte le piazzeforti della Sicilia, riducendosi a difendere, sulla costa occidentale, Lilibeo e Trapani; la Sicilia è ormai quasi tutta in potere dei Romani. Questi, ripreso coraggio, si propongono di finirla con un ultimo sforzo; rifanno un’armata; e con quella pongono l’assedio a Lilibeo. Ma nel 250 il console Publio Clodio perde una flotta, volendo attaccare nelle acque di Trapani l’ammiraglio cartaginese Aderbale; e un’altra ne perde l’anno dopo il console Lucio Giunio Pullo sulla costa meridionale della Sicilia. I Romani sono costretti a togliere l’assedio di Lilibeo e a rinunciar di nuovo al dominio sul mare; e buon per loro che Gerone restò fedele e, nel 248, rinnovò l’alleanza con Roma: chè altrimenti avrebbero potuto trovarsi a mal partito quando, nel 247, Cartagine mandò finalmente in Sicilia un grande generale, Amilcare Barca, il padre di Annibale. Costui riorganizzò l’esercito; occupò una posizione formidabile presso Palermo (Monte Pellegrino?), conquistò Erice, e comunicando per Trapani con Cartagine, incominciò a molestare con rapide e continue incursioni sulla terra e sui mare tutta la Sicilia e le coste dell’Italia, con il chiaro proposito di vincere Roma con una guerra di spossamento, esaurendo il suo erario e stancando la pazienza delle popolazioni, tutti gli anni chiamate alle armi. Difatti dal 247 al 242, Roma sembra sul punto di dichiararsi vinta, tanto il popolo è scoraggito. Quando, in uno sforzo supremo, essa capisce che non è possibile costringere Amilcare a scendere dalla formidabile posizione, da cui minaccia la Sicilia e l’Italia, se non riconquistando il dominio del mare, e tagliando le comunicazioni con Cartagine. Ma come varare, dopo tante altre che il fuoco o l’acqua hanno distrutte, una nuova flotta? I più ricchi cittadini romani, coloro ai quali risalivano le maggiori responsabilità dell’impresa, dovettero, per salvare lo Stato in mezzo allo scoramento universale, armare a proprie spese una nuova flotta. Era la primavera del 242, allorchè furono messe in mare le ultime 200 grosse navi da guerra, che lo Stato romano era in grado di approntare. Con queste il console C. Lutazio Catulo si recò a bloccare Drepano (Trapani) e Lilibeo (Marsala). Una flotta cartaginese tentò di rompere il blocco e portare ad Amilcare rinforzi e rifornimenti. Ma Lutazio l’affrontò, la vinse e in
parte la distrusse in una grande battaglia, combattuta presso l’isola di Aegusa, una delle Egadi.
Lo sforzo supremo aveva sortito il suo effetto. Roma era di nuovo padrona del mare; le comunicazioni tra Cartagine e la Sicilia erano interrotte; Amilcare non poteva più mantenersi se Cartagine non avesse riconquistato in poco tempo il mare. Ma anche Cartagine ormai era esausta. I suoi mercenari le costavano molto più che a Roma gli eserciti di leva; e a lungo andare la spesa della guerra era diventata insopportabile anche per la sua ricchezza. Essa non era più in grado di pagare gli eserciti, che tumultuavano e insorgevano. Fu quindi forza stipulare la pace, consigliata dallo stesso Amilcare. Roma non fu molto esigente, perchè non ne poteva più e si accontentò di assai meno che non avesse chiesto Regolo. Cartagine dovè cedere la parte della Sicilia che era stata sua insieme con le isolette limitrofe, fra l’Italia e la Sicilia, e impegnarsi a versare a Roma, entro dieci anni, la somma di 2200 talenti.
41. La riforma dei comizi centuriati (241). — Roma aveva vinto; ma a quale prezzo! Il censimento, fatto proprio nell’anno della pace, contò 260.000 cittadini; e quello fatto cinque anni prima 241.712, mentre i censimenti precedenti erano riusciti a contarne perfino 297.234. Diminuzione pari, o forse maggiore, deve argomentarsi per i Latini e gli alleati. Sulle finanze non abbiamo notizie; ma non è temerario supporle nelle più gravi strettezze, dopo una guerra così lunga, e sinchè la indennità cartaginese non fosse venuta a restaurarle, mentre occorrevano spese maggiori per tenere saldamente la parte della Sicilia conquistata e per far fronte agli impegni di una politica più vasta e grandiosa.
A tutte queste difficoltà Roma cerca di provvedere, come al solito, con concessioni politiche. La guerra democratizzava la costituzione romana! Già nell’ultimo anno della guerra i censori si erano mostrati larghi nel conferire la cittadinanza a buon numero di Italici, quanti bastavano a creare due nuove tribù, la Velina nel Piceno, e la
Quirina nella Sabina, destinate forse a riempire i vuoti fatti dalla guerra nella popolazione. Ma ben presto si procedette oltre, ad una riforma dell’ordinamento dei comizi centuriati, che accrebbe di molto il potere del ceto medio e del popolare, a danno delle classi più ricche. Fu abbassato il censo dell’ultima classe, per accrescere il numero dei cittadini obbligati al servizio militare. Da un pezzo si chiamavano alle armi, quando occorreva, anche cittadini senza censo, che la legge esonerava; cosicchè, per quel che concerne gli obblighi, la riforma legalizzò soltanto una pratica ormai inveterata. Ma d’altra parte la riforma dovette riconoscere i diritti corrispondenti agli oneri, facendo entrare questi cittadini non solo tra le file dei soldati, ma anche nelle schiere dei legislatori. Senonchè una siffatta innovazione non avrebbe da sola alterato l’equilibrio delle forze dei partiti e dei ceti nei comizi centuriati, se non si fosse anche assegnato ad ogni classe il numero medesimo di centurie, ossia di unità votanti. La complicata riforma ci è pur troppo mal nota: sembra che le cinque classi siano state, per dir così, immerse nelle 35 tribù esistenti; e, mentre prima le centurie erano composte di cittadini appartenenti a tutte le tribù, d’ora innanzi i componenti di ciascuna tribù siano stati, a seconda del patrimonio, distribuiti nelle cinque classi, ogni classe dovendo essere rappresentata in ciascuna tribù con due centurie. Si ebbero così, per ciascuna tribù, 10 centurie (2 x 5); in totale 350 (10 x 35), e per ciascuna classe, 70 centurie (35 x 2). E, giacchè al conto devono aggiungersi le 18 centurie dei cavalieri della prima classe e le cinque vecchie centurie poste fuori delle classi, la nuova cittadinanza romana fu divisa in 373 centurie, egualmente distribuite in ogni classe. Ne seguì che la maggioranza discese verso la terza e la quarta classe, e che l’assemblea centuriata rappresentò ormai la volontà e il pensiero, non più dell’aristocrazia, ma delle classi medie[33]
42. La conquista della Sardegna e della Corsica (238). — La pace con Roma era appena conchiusa, che Cartagine era impegnata in due nuove guerre, l’una con i sudditi africani, l’altra con
i mercenari non soddisfatti. Nè basta: questa era stata appena repressa, che si sollevavano i mercenari di Sardegna, invocando l’aiuto di Roma. Roma da prima esitò; ma poi cedè alla tentazione e dichiarò novamente guerra a Cartagine con pretesti piuttosto speciosi: che gli armamenti fatti per riconquistare l’isola minacciavano l’Italia; che taluni mercanti romani erano stati maltrattati in Africa; che, infine, la Sardegna, quale territorio tra la Sicilia e l’Italia, era compresa nel trattato precedente (238). Cartagine, non sentendosi in forze per resistere, piegò il capo per il momento; cedè la Sardegna e acconsentì anche a pagar 1200 talenti di indennità[34]. Alla conquista della Sardegna seguì quella della Corsica, che Cartagine forse aveva già abbandonata e che non aveva mai sicuramente tenuta.
Roma si era impadronita in pochi anni della maggior parte della Sicilia, della Sardegna e della Corsica. Ma queste isole erano poste fuori dei confini dell’Italia propriamente detta, abitate da genti d’altra lingua e costume. Non si poteva governarle come le regioni dell’Italia; onde proprio dopo la conquista della Sicilia, della Sardegna e della Corsica, Roma incomincia ad abbozzare un nuovo regime politico ed amministrativo: quello che applicherà poi via via a tutte le province del suo vasto impero. La Sicilia, la Sardegna e la Corsica furono appunto le prime province dell’impero. Questo ordinamento provinciale posa sul principio che il suolo e l’autorità appartengono a Roma. Il suolo è di regola proprietà (praedium) del popolo romano, che può confiscarlo a proprio vantaggio, quale ager publicus, o lasciarlo ai sudditi nella forma di possesso, con l’obbligo di pagare come tributo un decimo dei prodotti (decuma). E tutta la provincia è sotto la piena autorità di un governatore, da principio un pretore (Roma infatti, nel 227, avrà ben quattro pretori), munito dei pieni poteri, militari, civili e giudiziari, che la regge e amministra. A quanti popoli e territori saranno un giorno applicati questi due principî! E quanti abusi nasceranno!
43. La conquista delle due rive adriatiche (229-215). — Ma per il momento, nessuno a Roma pensava che in Sicilia, in Sardegna e in Corsica si faceva il primo esperimento di ordinamenti e istituzioni, che dovrebbero per secoli essere le travi e i muri maestri di un immenso impero. Roma aveva appena assestato, dopo una così lunga guerra, le faccende del Mediterraneo, e già doveva volgere la sua attenzione all’Adriatico; e per ragioni e in condizioni, che meritano di essere considerate con particolare attenzione. Mentre Roma era impegnata nel Tirreno e in Sicilia contro Cartagine, s’era formato sulle coste della Dalmazia, così frastagliata di scogliere, di rifugi, di porti e di isolette, un principato illirico, il quale, cattivatosi l’amicizia del nuovo Re di Macedonia, Demetrio, minacciava l’Epiro, e le città della costa occidentale della penisola balcanica. Il nuovo Stato, come tutti gli Stati antichi, cercava di accaparrare per sè il commercio di queste regioni e di escludere, un po’ con la concorrenza, un po’ con la violenza e la pirateria, i rivali. Ora non appena la guerra con Cartagine fu terminata e appianate le nuove difficoltà nate da quelle, da ogni parte d’Italia si levarono verso il senato lamenti per questa condizione di cose; e con i lamenti, le più vive sollecitazioni perchè le armi di Roma assicurassero ai negozianti italici il libero commercio nell’Adriatico[35]. E questi lamenti e queste sollecitazioni furono alla fine così forti, da costringere il senato a mandare nel 230 un’ambasceria alla regina degli Illiri, Teuta. Basta questo fatto a provare quanto lo spirito mercantile, che abbiamo visto svilupparsi dopo la guerra con Taranto, si fosse rafforzato e diffuso in Italia durante la prima guerra punica; a provare che i mercanti italiani tentavano ora di impadronirsi del commercio dell’Adriatico; a provare che cresceva a Roma il numero dei senatori, i quali ambivano che Roma, ora che l’aveva vinta con le armi, umiliasse Cartagine nei traffici, fondasse un impero mercantile non meno vasto e ricco. Dopo più di tre secoli, insomma, la repubblica ritornava ai disegni ed alle ambizioni mercantili della monarchia. Ma in condizioni quanto diverse!
L’ambasceria, mandata a Teuta, non ottenne soddisfazione. La guerra fu dichiarata. Duecento navi con 22.000 uomini furono
spedite in Illiria; il nemico fu facilmente vinto; e Teuta dovette accettare la pace impostale. I confini meridionali del principato illirico furono stabiliti a Lissos (Alessio); gli Illirî si impegnarono a non navigare più a sud di Lissos con un numero di navi maggiore di due e a pagare tributo; i territori, tolti ad essi, furono quasi tutti dati a Demetrio di Faro. La potenza illirica era fiaccata; e gli interessi mercantili degli Italici messi al sicuro. Una clausola della pace aprì a Roma un nuovo campo di azione politica. I territori di parecchie città greche — Corcira, Apollonia, Epidamno — in una parola, la costa illirica, da Alessio ai confini dell’Epiro, comprese le isolette limitrofe, furono introdotte nella confederazione italica, e la pace annunziata a parecchie città greche, agli Etoli, agli Achei, ai Corinzi, agli Ateniesi, che accolsero il messaggio e i messaggeri con entusiastiche dimostrazioni di giubilo. Anche i Greci si volgevano verso Roma, sperando protezione contro i loro nemici, massime contro i Macedoni: grande fatto, dal quale nasceranno grandissimi eventi, e che prova quanto il prestigio romano fosse cresciuto in tutto il mondo mediterraneo!
44. La nuova reazione delle campagne: il tribunato di Caio Flaminio (233). — Se la guerra illirica era stata un nuovo segno della crescente potenza degli interessi mercantili, fra qualche anno se ne aggiungerà un altro anche più chiaro: una legge Claudia, votata nel 218 dai comizi tributi, non ostante la più accanita opposizione del senato, la quale interdiceva ai senatori di possedere navigli di più che 300 anfore (8000 litri circa) di volume[36] e capaci di trasportare più che i prodotti delle loro terre. Quale prova più chiara che l’amore della ricchezza, la passione del lucro, la smania dei traffici erano entrate perfino nel senato, rocca venerabile dell’antica tradizione romana? La mercatura, che secondo questa tradizione non si addiceva a quell’altissima dignità politica, cominciava ad essere tollerata, e in misura tale, che una legge aveva dovuto tentare di porre un freno al male. Ma ancor più che per i senatori i quali si davano al commercio, il ceto mercantile si
rafforzava per il crescere dei pubblici appaltatori. Roma non era più una piccola città, ma un grande Stato, il quale non disponeva, come gli Stati moderni, di una numerosa burocrazia, ma solo di pochi magistrati, eletti quasi tutti ogni anno, e ordinati in principio per servire una città. Sebbene il numero dei magistrati fosse stato accresciuto nel corso delle generazioni, lo Stato aveva bisogno di essere di continuo aiutato dalla intraprendenza privata a disimpegnare i servizi pubblici. La lista delle aggiudicazioni, a cui i censori procedevano ogni anno, si era fatta molto lunga e molto più lucrosa di un tempo: lavori pubblici, trasporti, forniture militari, percezioni di decime, di altre imposte e di dogane nelle province, locazioni di agro pubblico, di miniere, di saline, di boscaglie. Era regola antica e sempre osservata dall’amministrazione romana dividere questi appalti tra molti medi e piccoli accollatari; cosicchè a mano a mano che l’impero di Roma ingrandiva, crescevano in Roma quelli che noi chiameremmo agiati borghesi, accollatari di questo o quel servizio pubblico; e costoro si interponevano tra l’ordine senatorio ed equestre, dai quali ricevevano gli appalti e talora i capitali da far fruttare, e il popolino degli artigiani e dei proletari a cui davano lavoro e pane: vero puntello e sostegno della politica di espansione. In tempi in cui la grande industria era ignota, solo il continuo ingrandirsi di Roma poteva moltiplicare, per questa gente avida e intraprendente, le fonti di lucro e le occasioni di fortuna. Molteplici interessi si davano dunque la mano, attraverso tutto lo Stato romano, dal senato sino alla plebe, per rinfocolare in Roma l’ambizione di emulare Cartagine nei traffici, per spingerla a più vaste conquiste, per indebolire in tutti i modi le tradizioni e la potenza del ceto rurale[37].
E infatti, mentre il ceto mercantile ingrossava, arricchiva, si impadroniva dello Stato, l’antico ceto rurale, che era stato nei secoli precedenti il nerbo di Roma, si logorava, per ragioni molteplici. Infatti il tributo del sangue era sempre più gravoso. Ormai occorrevano ogni anno intorno alle quattro legioni, spesso di più; il servizio militare si allungava; molti soldati avevano perduto il conto dei loro stipendi; altri da anni non avevano più rivisto l’Italia, e già
cominciavano a invecchiare sotto le insegne. Nè tutti tornavano. Sarebbe stato necessario dedurre nuove colonie sulle terre conquistate, piantando dappertutto nuovi seminari di possidenti e di soldati. E invece, ormai da un pezzo non si deducono più colonie; le terre che Roma conquista, sono quasi tutte appaltate ai ricchi, cavalieri e senatori i più, e non soltanto per l’egoismo e l’ingordigia dei grandi. A questi riesciva facile di togliere al popolo le terre, perchè le terre non erano più desiderate come un tempo dal popolo; e non erano più desiderate come un tempo, perchè la piccola possidenza andava rovinandosi oltre che per le guerre, per ragioni di ordine generale. L’Italia antica era allora in gran parte coltivata a grano; ma ingombra di troppe montagne e male irrigata da pochi e piccoli fiumi, poco fertile, fuorchè in alcune regioni, e isterilita ancora più dalla siccità e dal calore estivo, produceva poco. La piccola possidenza aveva potuto vivere, sinchè le famiglie erano state paghe di lavorare molto e di vivere semplicemente, consumando i prodotti della propria terra, facendo con la propria lana gli abiti, fabbricando tutti gli oggetti, di cui avevano bisogno, e comperando al mercato meno che si potesse. Ma i contatti più frequenti con l’ellenismo, le spedizioni militari in paesi ricchi come la Sicilia, svogliavano i possidenti dal duro lavoro dei padri e li invogliavano a vivere meglio, mentre la cresciuta abbondanza dei metalli preziosi rincarava gli oggetti. Anche la piccola proprietà sentiva dunque maggior bisogno di denaro; ma del grano, che essa coltivava, solo una piccola parte poteva esser venduto, e a prezzi bassi, nel mercato più vicino, perchè lontano non si poteva trasportare. Nè poteva il piccolo possidente sperare nemmeno di approfittare delle carestie, che ricorrevano frequenti, massime a Roma. Lo Stato, sospinto dalle recriminazioni e dai clamori della plebe, ammucchiava nei granai di Ostia e di Roma il frumento della decima di Sicilia e di Sardegna, ch’esso buttava sul mercato, ogni qualvolta i prezzi rincaravano troppo. Cosicchè il piccolo possidente stentava la vita, e quanti potevano cercavano una sorte migliore, diventando accollatari o mercanti, i più intraprendenti e fortunati; artigiani o proletari nelle città vicine o a Roma, i più inetti e disgraziati. Protrarre il servizio militare diventava facile, anche perchè a molti non spiaceva di
restare lunghi anni sotto le armi, guadagnando il soldo e il bottino. L’esercito di mestiere si formava dalla rovina della piccola possidenza, il cui potere politico anche scemava. Ogni tanto, è vero, qualche censore cercava di annullare la riforma di Appio Claudio, che aveva inscritto in tutte le tribù i nullatenenti, relegandoli di nuovo nelle quattro tribù urbane. Ma invano: chè la disposizione non rimaneva mai in vigore per lungo tempo, e dopo qualche anno un altro censore imitava di nuovo Appio Claudio.
Senonchè Roma era da secoli una repubblica di contadini, alla quale l’aristocrazia aveva inculcato sul nascere una diffidenza vivissima del commercio. L’elemento mercantile non poteva impadronirsi dello Stato senza contrasto. Tra la prima e la seconda guerra punica, infatti, la piccola possidenza si agita, cerca di difendere gli interessi e i principî che erano suoi, contro il mercantilismo che si fa adulto; nasce e cresce un partito democratico rurale, il quale trova per capo un grande uomo, che doveva acquistare nella storia una fama immortale: Caio Flaminio. Tribuno della plebe nel 233, nell’anno stesso in cui i mercanti minacciati nell’Adriatico dagli Illirici assediavano il senato con i loro reclami, Caio Flaminio proponeva una legge con la quale il territorio, tolto ai Galli Senoni sin dal 283 e rimasto ozioso agro pubblico, era distribuito in piccoli lotti ai plebei poveri d’Italia. Il pensiero riformatore della legge è chiaro; ed è un pensiero che ritornerà per due secoli, come una fissazione, nelle lotte nei partiti romani: la piccola proprietà, semenzaio di soldati, decade; occorre dunque impedire che i ricchi accaparrino tutte le terre e dedurre nuove colonie, ma più grandi che un tempo, per rifare il medio ceto rurale, che la guerra e il nuovo corso dei tempi andavano man mano annientando. Il senato si oppose vivacemente; ma Flaminio si servì senza scrupoli dei privilegi conferiti alla plebe dalla lex Hortensia del 287, per far approvare il suo plebiscito ad ogni costo. Senonchè, mentre i proponimenti aspettavano da quella una rinascita della piccola possidenza, ne nacque intanto una guerra: una guerra, che doveva contare nella storia di Roma quanto le guerre puniche.
45. La conquista della valle del Po (225-222). — La colonizzazione dell’antico paese dei Senoni risvegliò l’odio dei Galli. Quel popolo non si era mai rassegnato alla perdita dell’ager gallicus. Nel 237, anzi, i Galli Cisalpini, dopo avere radunato numerose milizie mercenarie nella regione del Rodano, avevano, sia pure invano, tentato di ricuperarlo. Ma adesso, certo temendo che quella colonizzazione fosse il primo passo a nuove conquiste, tentarono una riscossa disperata. Tra Galli d’Italia e di oltr’Alpe, misero in piedi un forte esercito, e irruppero, attraverso l’Etruria, nell’Italia centrale fino a tre giornate dalla capitale. Roma dovè approntare le maggiori difese: chiamò alle armi tutta la lega italica, trasse dalla sua alcune popolazioni dell’Italia transpadana, i Galli Cenomani e i Veneti; aspettò che la gola della preda facesse dimenticare a quei barbari il vero scopo della guerra; e riuscì ad accerchiare e sgominare, presso il promontorio Telamone, sulle coste dell’Etruria, il grande esercito gallico. Distrutto il maggior nerbo delle forze galliche, la Cisalpina, per qualche anno almeno, era in balia delle armi romane. E Roma non era più la timida potenza di un tempo, che si fermava dopo ogni vittoria. Il partito democratico, che aveva voluto l’assegnazione dell’ager gallicus, vide che, per render sicure queste terre da futuri assalti gallici, occorreva approfittare dell’occasione, conquistare la valle del Po e annientare per sempre il pericolo gallico: il popolo lo capì; e sebbene nel senato fosse un forte partito avverso a questa nuova impresa, la Gallia Cisalpina fu nel 224 invasa. Tre anni (224222) durò la guerra. Nel 224, dopo aver conquistato la parte orientale della Cispadana, la terra dei Galli Boi, i consoli varcarono la linea del Po e occuparono, nella Transpadana, il paese degli Insubri. L’anno successivo, lo stesso C. Flaminio, il tribuno del 233, l’autore primo della guerra gallica, fu console. Flaminio e i consoli dell’anno successivo assoggettarono la Transpadana, espugnando la sua capitale, l’antica Milano (Mediolanum). Nel paese dei Galli Boi fu fondata la colonia romana di Modena (Mutina) e la linea del Po fu assicurata con le colonie di Piacenza (Placentia) e di Cremona (218).
Mentre il ceto mercantile spingeva il senato a conquistare la sponda orientale dell’Adriatico e a combattere Cartagine, il medio ceto rurale, affamato di terre, aveva spinto Roma nella valle del Po, nella grande pianura, coperta di foreste e di paludi silenziose, sparsa di bei laghi, solcata da numerosi corsi d’acqua, attraversata dal maggior fiume, che fino ad allora i Romani avessero conosciuto e che l’Italia possegga. La plebe rovinata dalla guerra cercava di salvarsi con la guerra, quasi rinnovando il mito della lancia d’Achille. Illusione anche questa: poichè neppure la conquista della valle padana poteva salvare la piccola possidenza romana. Ma inseguendo questa vana speranza, sul punto di sparire per sempre, l’antica plebe rurale aveva dato a Roma quella che sarebbe la più bella gemma dell’Italia. Tra un secolo e mezzo il paese conquistato da Flaminio sarà il giardino d’Italia e il baluardo dell’impero romano[38].
N C S .
33 Le fonti non ci indicano con precisione nè il tempo nè il modo di questa riforma; e neppure ci attestano che, com’è verosimile, essa coincida con la riduzione del censo dell’ultima classe, che apprendiamo solo per via indiretta, da P ., 6, 19, 2. Gli eruditi hanno quindi oscillato nelle più varie opinioni, nè può aversene alcuna sicura. Noi abbiamo preferito pensare al 241, non solo per le ragioni di politica interna accennate nel testo, ma perchè questo fu l’anno in cui le tribù raggiunsero il numero di 35 e in cui la conquista della prima provincia transmarina dovette porre lo Stato romano di fronte a nuove necessità militari. Circa poi il contenuto specifico della riforma stessa, intorno al quale gli accenni delle nostre fonti sono davvero insufficienti, noi abbiamo seguìto l’ipotesi che fu per primo avanzata da un umanista italiano, Ottavio Pacato (il Pantagato) parecchi secoli or sono, e ch’è ancor oggi la più sensata e la più diffusa. Cfr. G. B , La République romaine, Paris, 1913, pp. 132 sgg.
34. P ., 1, 88, 8, 12; 3, 10, 3.
35 P , 2, 8
36 L , 21, 63
37 Questo processo sarà compiuto alla metà del II secolo a C , come risulta da P , 6, 17