Extreme States of Matter: on Earth and in the Cosmos 2011th Edition Vladimir E.
Fortov Visit to download the full and correct content document: https://textbookfull.com/product/extreme-states-of-matter-on-earth-and-in-the-cosmos -2011th-edition-vladimir-e-fortov/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
The liquid and supercritical fluid states of matter
First Edition Proctor
https://textbookfull.com/product/the-liquid-and-supercriticalfluid-states-of-matter-first-edition-proctor/
Earth Cosmos and Culture Geographies of Outer Space in Britain 1900 2020 1st Edition Oliver Tristan Dunnett
https://textbookfull.com/product/earth-cosmos-and-culturegeographies-of-outer-space-in-britain-1900-2020-1st-editionoliver-tristan-dunnett/
The Lattice Boltzmann Equation: For Complex States of Flowing Matter Sauro Succi
https://textbookfull.com/product/the-lattice-boltzmann-equationfor-complex-states-of-flowing-matter-sauro-succi/
My Holiday in North Korea The Funniest Worst Place on Earth 1st Edition Wendy E. Simmons
https://textbookfull.com/product/my-holiday-in-north-korea-thefunniest-worst-place-on-earth-1st-edition-wendy-e-simmons/
Public Policy in the United States Mark E. Rushefsky
https://textbookfull.com/product/public-policy-in-the-unitedstates-mark-e-rushefsky/
Foundations of High Energy Density Physics Physical Processes of Matter at Extreme Conditions 1st Edition Jon Larsen
https://textbookfull.com/product/foundations-of-high-energydensity-physics-physical-processes-of-matter-at-extremeconditions-1st-edition-jon-larsen/
Smart Education and e Learning 2019 Vladimir L. Uskov
https://textbookfull.com/product/smart-education-and-elearning-2019-vladimir-l-uskov/
Extraterrestrial Altruism Evolution and Ethics in the Cosmos Vakoch
https://textbookfull.com/product/extraterrestrial-altruismevolution-and-ethics-in-the-cosmos-vakoch/
Energetic nanomaterials : synthesis, characterization, and application 1st Edition Vladimir E Zarko
https://textbookfull.com/product/energetic-nanomaterialssynthesis-characterization-and-application-1st-edition-vladimire-zarko/
THEFRONTIERSCOLLECTION THEFRONTIERSCOLLECTION SeriesEditors:
A.C.ElitzurL.Mersini-HoughtonM.A.SchlosshauerM.P.Silverman
J A Tuszynski R Vaas H D Zeh
Thebooksinthiscollectionaredevotedtochallengingandopenproblemsattheforefrontof modernscience,includingrelatedphilosophicaldebates.Incontrasttotypicalresearchmonographs,however,theystrivetopresenttheirtopicsinamanneraccessiblealsotoscientifically literatenon-specialistswishingtogaininsightintothedeeperimplicationsandfascinating questionsinvolved.Takenasawhole,theseriesreflectstheneedforafundamentalandinterdisciplinaryapproachtomodernscience.Furthermore,itisintendedtoencourageactivescientistsin allareastoponderoverimportantandperhapscontroversialissuesbeyondtheirownspeciality. Extendingfromquantumphysicsandrelativitytoentropy,consciousnessandcomplexsystems–theFrontiersCollectionwillinspirereaderstopushbackthefrontiersoftheirownknowledge.
OtherRecentTitles WeakLinks
TheUniversalKeytotheStabilityofNetworksandComplexSystems
ByP.Csermely
Entanglement,Information,andtheInterpretationofQuantumMechanics
ByG.Jaeger
ParticleMetaphysics
ACriticalAccountofSubatomicReality
ByB.Falkenburg
ThePhysicalBasisoftheDirectionofTime
ByH.D.Zeh
MindfulUniverse
QuantumMechanicsandtheParticipatingObserver
ByH.Stapp
DecoherenceandtheQuantum-To-ClassicalTransition
ByM.A.Schlosshauer
TheNonlinearUniverse
Chaos,Emergence,Life
ByA.Scott
SymmetryRules
HowScienceandNatureAreFoundedonSymmetry
ByJ.Rosen
QuantumSuperposition
CounterintuitiveConsequencesofCoherence,Entanglement,andInterference
ByM.P.Silverman
Forallvolumesseebackmatterofthebook
Vladimir E. Fortov E T R E M E S T AT E S X O F M AT T ER on E ar t h and in t he Cosmos
VladimirE.Fortov
RussianAcademyofSciences
JointInstituteforHigh Temperatures
Izhorskaya Street 13 Bldg 2 125412Moscow
Russia
fortov@ficp.ac.ru
SeriesEditors:
AvshalomC.Elitzur
Bar-IlanUniversity,UnitofInterdisciplinaryStudies,52900Ramat-Gan,Israel email:avshalom.elitzur@weizmann.ac.il
LauraMersini-Houghton Dept.Physics,UniversityofNorthCarolina,ChapelHill,NC27599-3255,USA email:mersini@physics.unc.edu
MaximilianA.Schlosshauer NielsBohrInstitute,Blegdamsvej17,2100Copenhagen,Denmark email:schlosshauer@nbi.dk
MarkP.Silverman
TrinityCollege,Dept.Physics,HartfordCT06106,USA email:mark.silverman@trincoll.edu
JackA.Tuszynski UniversityofAlberta,Dept.Physics,EdmontonABT6G1Z2,Canada email:jtus@phys.ualberta.ca
RüdigerVaas
UniversityofGiessen,CenterforPhilosophyandFoundationsofScience,35394Giessen,Germany email:ruediger.vaas@t-online.de
H.DieterZeh
GaibergerStraße38,69151Waldhilsbach,Germany email:zeh@uni-heidelberg.de
ISSN1612-3018
ISBN978-3-642-16463-7e-ISBN978-3-642-16464-4
DOI10.1007/978-3-642-16464-4
SpringerHeidelbergDordrechtLondonNewYork
©Springer-VerlagBerlinHeidelberg2011
Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw.
Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse.
Coverdesign:KuenkelLopkaGmbH,Heidelberg
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
...butthouhastorderedallthingsinmeasureandnumberandweight TheWisdomofSolomon11:20
Preface Thisbookisconcernedwiththephysicalpropertiesofmatterandthediverseprocessesthatoccurinnatureatultrahighenergydensities,whichcorrespondtoextremepressuresandtemperatures.ItisbasedonthelecturecourseIholdatthe MoscowInstituteofPhysicsandTechnology,aswellasreviewsandinvitedpapers writtenforscientificconferencesandsymposia.
Fig.0.1 ThebattlebetweenDavidandGoliath[1].
Interestinthephysicsofextremestateshasalwaysbeenstrong,owingtothe naturaldesireofhumanstoachievemoreandtooperatewithrecordparameters,as wellasowingtothewealthofapplicationstoastrophysics,energyproduction,and defense.Itwasindeedmilitaryapplicationthatfosteredthefirstsuccessfulexper-
Goliath
imentinvolvingextremestates,whichwasconductedmorethan3000yearsago–duringthebattlebetweenDavidandGoliath(Fig. 0.1).AccordingtotheOldTestament[1],thehigh-velocityimpactofastone,whichwasshotfromDavid’ssling, onGoliath’sheadkilledhim.ItgaverisetoashockwaveinGoliath’sheadwith anamplitudepressureof ≈ 1.5kbar,whichwasmorethantwicethestrengthof Goliath’sfrontalboneanddeterminedtheoutcomeoftheduel,tothegreatjoyof thearmyandpeopleofIsrael.Discoveredtobesuccessfulatthattime,thisscheme ofactionservesasthebasisforallsubsequentexperimentsintheareaofdynamic high-energy-densityphysics.
Theapplicationofmorepowerfulandhighlysophisticatedenergycumulation systems–chemicalandnuclearexplosives,powder,light-gas,andelectrodynamic “guns”,charged-particlefluxes,laserandX-rayradiation–hasenabledthevelocity of“thrown”projectilestoberaisedbythreeorfourordersofmagnitude,sincethe timeofDavid,andthepressureintheshockwavebysixtoeightordersofmagnitude,therebyreachingthemegabar–gigabarpressurerangeand“nuclear”energy densitiesinsubstances.
Inthe20thcentury,mainstreamhigh-energy-densityphysicswascloselyrelated tothearrivaloftheatomicandspaceerainourcivilization.Innuclearcharges, thehighenergydensitiesgeneratedbyintenseshockwavesservetoinitiatechain nuclearreactionsincompressednuclearfuel.Inthermonuclearchargesandmicrotargetsforcontrolledfusion,high-energystatesarethemaininstrumentforcompressingandheatingthethermonuclearfuelandinitiatingthermonuclearreactions init.
Recently,interestinthescienceofextremestateshasbeenrekindledasaresult oftheemergenceofnewexperimentaltechniquesforthegenerationofhigh-energy statesinterrestrialconditionsaswellasintriguingnewobservationalastrophysical dataobtainedbymodern-generationground-basedandspacetelescopesoperating atdifferentwavelengthsandbyunmannedspacestations.
Althoughthelimitingpressuresinlaboratoryplasmassofardifferfromthemaximumastrophysicalvaluesby20–30ordersofmagnitude,thisgapisrapidlyshrinking.Thephysicalprocessesinalaboratoryandinspacequitefrequentlyexhibitan amazingdiversityand,atthesametime,strikingsimilarities,therebytestifying,at theleast,totheuniformityofthephysicalprinciplesofthebehaviorofmatterover anextremelybroadrangeofpressures(42ordersofmagnitude)andtemperatures (upto1013 K).
However,aspointedoutbyVoltaire,“ innaturethisphenomenonisperfectly naturalandcommonplace.ThedomainsofsomerulersinGermanyandItaly,which canbecircledinaboutahalfhour,whencomparedwiththeempiresofTurkey, Moscow,orChina,giveonlyafaintideaoftheremarkablecontraststhatarehidden inallofnature”(Voltaire, LeMicrom ´ egas,Paris1752)[3].
Itissignificantthattherangeoftechnicalproblemsrelatedtothephysicsofextremestatesisprogressivelybroadeningalongwiththerangeofthefundamental ones.Thesestatesofmatterunderlietheoperationofpulsedthermonuclearreactors withinertialconfinementofthehotplasma,high-powerexplosive-drivenmagnetic generators,powerinstallationsandrocketpropulsorswithgas-phasenuclearreac-
tors,plasmachemicalandmicrowavereactors,plasmatrons,andhigh-powersources ofopticalradiationandX-rays.Intheenergyinstallationsofthefuture,strongly compressedandheatedplasmaswillbeemployedastheworkingmedium,likewatervaporinmodernthermalpowerstations.
Extremestatesemergewhenasubstanceissubjectedtointenseshock,detonation,orelectroexplosionwaves,concentratedlaserradiation,electronandion beams,inpowerfulchemicalandnuclearexplosions,inthepulsedvaporizationof linersinpinchesandmagneticcumulationgenerators,inthehypersonicmotionof bodiesindenseplanetaryatmospheres,inhigh-velocityimpacts,andinmanyother situationscharacterizedbyultrahighpressuresandtemperatures.Thephysicsof near-electrode,contact,andelectroexplosionprocessesinvacuumbreakdownisintimatelyrelatedtothehigh-energyplasmathatdefinestheoperationofhigh-power pulsedaccelerators,microwaveradiationgenerators,andplasmaswitches.
Highenergydensitiesdeterminethebehaviorofmatterinavastdomainofthe phasediagramthatoccupiestherangefromasolidandafluidtoaneutralgas, coversthephaseboundariesofmeltingandboiling,andalsothemetal–dielectric transitiondomain.Themetal–dielectrictransitionproblemhasbeenmuchexplored inexperimentsinvolvingthemultiple(quasi-isentropic)shock-wavecompressionof dielectrics,theirmetallization,andtherecentlydiscoveredplasmaphasetransitions inthemegabarpressurerange,aswellasdielectrizationofstronglycompressed simplemetals.
Scientificinterestinhigh-energyplasmashasalsobeenrekindledalongwith pragmaticinterest,becausethegreatbulkofmatterintheuniverseisinprecisely thisexoticstate.Forabout95%ofthemass(neglectingdarkmatter),accordingto modernestimates,istheplasmaofordinaryandneutronstars,pulsars,blackholes, andgiantplanetsofthesolarsystem,aswellastherecentlydiscoveredhundredsof planetsbeyondthesolarsystem.
Priortobecomingastar,thematteroftheuniverseexperiencesthemostdiversephysicaltransformations:fromquarksandelementaryparticlestocomplex moleculesandagaintoatomsandparticles;fromrelativisticenergiestoabsolute zeroandagaintothestateofhigh-energy-densityplasma;fromenormousdensities toultrahighvacuumandagaintothedensitiesofatomicnucleiandquarks.And soourfundamentalknowledgeofthestructure,evolution,andhistoryoftheuniverseisdirectlydependentonourunderstandingofthebehaviorofmatterinallof itstransformationsuptoultrahighenergydensities,whichformsnotonlyspecific physicalmodels,butalsotheworld-outlookofmodernnaturalsciencebecause,by steadilyincreasingthehighenergydensitiesattainablebyinvestigationsonEarth andinspace,wedelveintothepast,usinga“timemachine”,lookingforthesingularconditionsoftheBigBang–theinstantoftheuniverse’sinception ≈ 15billion yearsago.
Todaywecanclearlyseethatthestudyofmatterinextremestatesisoneof the“hottest”andmostrapidlydevelopingbasicscientificdisciplines,situatedat theinterfacebetweenplasmaphysics,nonlinearoptics,condensed-matterphysics, nuclear,atomicandmolecularphysics,relativisticandmagnetichydrodynamics, involvingawealthofcompression-andheating-stimulatedphysicaleffectsanda
constantlywideningvarietyofobjectsandstatesinwhichtheplasmanonideality iscriticallyimportant.Despitetheextraordinarydiversityoftheobjectsandexperimentalandastrophysicalsituations,theyallsharethecommonpropertythathigh energydensitiesplayadecisiveroleintheirphysicalbehavior.
Thesecircumstancesareapermanentsteadfastincentiveforintensivetheoretical andexperimentalinvestigations,whichhaverecentlyresultedinagreatbodyofnew and,mostimportant,reliableinformationaboutthethermodynamic,structural,gasdynamic,optical,electrophysical,andtransportpropertiesofmatterunderextreme conditions.Thesespecificdataarecontainedinamassiveflowoforiginalpublications,someofwhicharenoteasilyaccessibletoRussianscientists,especiallyyoung ones.
Thisbookattemptstosystematize,generalize,andsetforthfromaunifiedviewpointthetheoreticalandexperimentalmaterialrelatedtothisnewrealmofscience, andtoshow,followingTitusLucretiusCarus,“Thusfromthemixtureoftheelementsthereemergeinfinitemultitudesofcreatures,whichareStrangeandhighly diversifiedinappearance”(TitusLucretiusCarus)[2].InitIendeavortodiscussthe maximallybroadrangeofproblemsrelatedtohigh-energy-densityphysics.Thatis whymanyinterestingastrophysical,laser,andnuclear-physicalproblemsaswell astechnicalapplicationsarebrieflyoutlinedandthereaderisreferredtooriginal papersandmonographs.Indoingthis,Ididnotaimtoincludeeverythingknown aboutextremestatestodate.Emphasiswasplacedontheissueswhichappearedto bemostinterestingtomeandwhichIhappenedtoworkondirectly.Realizingthat thematerialtoucheduponinthisbookwillsteadilybroaden,becomedefinedmore precisely,andinevitablybecomeobsoleteowingtotheextremelyrapiddevelopment ofhigh-energy-densityphysics,Iwouldbethankfultoreaderswhosendmecritical remarksandsuggestions.
Itishopedthatthisbookwillbebeneficialtoawidereadershipofscientists,postgraduates,andstudentsinthenaturalsciencesbyofferingthemaccesstooriginal papersandbeingahelpfulguidethroughtheexcitingproblemsofmodernExtreme StatePhysics.
InthepreparationofthemanuscriptIbenefitedfromtheassistance,stimulating discussions,andadviceofYu.Yu.Balega,N.E.Andreev,A.Ya.Faenov,S.I.Blinnikov,M.B.Kozintsova,A.N.Starostin,V.S.Imshennik,I.L.Iosilevskii,N.S.Kardashev,V.G.Sultanov,A.N.Sissiakian,B.Yu.Sharkov,andV.A.Yakovleva,to whomIexpressmysinceregratitude.
Abramtsevo,May2009. VladimirFortov
References
[1]Bible.OldTestament,1Samuel,17:34,40,43,48–51
[2]Lucretius:TheNatureofThings.Penguin,London(2007)
[3]Voltaire:Microm ´ egasandOtherShortFiction.Penguin,London(2002)
1Introduction
2MatterunderExtremeConditions:ClassificationofStates
3HighEnergyDensitiesinLaboratories ...........................25
3.1MainLinesofResearch .....................................25
3.2GeneratorsofHighEnergyDensities
3.3StaticMethodsUsingDiamondAnvils
3.4DynamicMethods
3.5Light-GasGunsorChemicalandNuclearExplosions
3.6Quasi-classicalModelofaSubstance
3.7DevicesofHigh-CurrentImpulseEnergetics
4High-PowerLasersinHigh-Energy-DensityPhysics
5RelativisticChargedParticleBeams
5.1ProductionofMacroscopicHotPlasmaVolumes
5.2TheNuclearMatterPhaseDiagramandQuark–GluonPlasma
5.3Low-EnergyScanExperimentswithHeavyIonsattheNICA Collider
6TechnicalApplicationsofthePhysicsofHighEnergyDensities
6.1LaserInertialConfinementFusion
6.1.3FastIgnition ........................................153
6.2Heavy-IonBeamFusion .....................................156
6.3Laser-PlasmaAccelerationofChargedParticles .................157
6.4Free-ElectronLasersandUltrashortHigh-IntensityRadiation Sources ...................................................167
6.5PlasmainAccelerators ......................................173
7AstrophysicalAspectsofHighEnergyDensities ...................185
7.1Planets,Exoplanets,Substars,andWhiteandBrownDwarfs ......190
7.2SuperextremeStates:NeutronStars,BlackHoles,Magnetars,and Wormholes ................................................224
7.3CosmicJets,RadiativeShockWaves,andMolecularClouds ......251
7.4CosmicRays ..............................................282
7.5Gamma-RayBursts .........................................286
7.6MatterTransformationaftertheBigBang
Chapter1 Introduction “Wealreadyknowthelawsthatgovern thebehaviorofmatterunderallbut themostextremeconditions”
S.Hawking.ABriefHistoryofTime(p.168)
Thestatesofmatteratextremelyhightemperaturesanddensities,andhencewith extraordinarilyhighenergydensities,havealwaysattractedresearchers,owingto thepossibilityofreachingrecordparameters,advancingtonewdomainsofthe phasediagram,andproducinginthelaboratorytheexoticstatesthatgavebirth toouruniversethroughthebigbangandwhichnowaccountforthegreatbulk (90–95%)ofthemassofbaryon(visible)matter–instellarandinterstellarobjects, planets,andexoplanets[25, 14, 11, 16, 33, 19, 18, 40, 10, 39].Thatiswhythestudy ofthesestatesofmatter–soexoticforusinterrestrialconditionsandyetsotypical fortherestoftheuniverse–isofgreatcognitiveimportance,formingourmodernnotionsofthesurroundingworld.Furthermore,aconstantpragmaticincentive forsuchinvestigationsistheapplicationofhigh-energy-densitystatesinnuclear, thermonuclear,andimpulsepowerengineering,high-voltageandhigh-powerelectrophysics,forthesynthesisofsuperhardmaterials,forstrengtheningandwelding materials,fortheimpactprotectionofspacevehicles,and,ofcourse,indefense.For thenucleardeviceswithcontrollable(inertialconfinementfusion,ICF)andquasicontrollable(atomicandhydrogenbombs)energyreleaserelyontheinitiationof nuclearreactionsinastronglycompressedandheatednuclearfuel.
Therevolutionarydiscoveriesinastronomyofrecentdecades[25, 33, 19, 18, 40, 10, 39](neutronstars,pulsars,blackholes,wormholes, γ–raybursts,exoplanets) furnishnewexamplesofextremestates,whichcallforinvestigationinorderto solvethemostfundamentalproblemsofmodernastrophysics.
Beginninginthemid-1950sintheframeworkofnucleardefenseprojects,highenergy-densityresearchhasmadeconsiderableprogressowingtotheadventofnew devicesforthegenerationofhighenergydensities,suchaslasers,charged-particle beams,high-currentZ-pinches,explosionandelectricexplosiongeneratorsofintenseshockwaves,multistagelight-gasgunsanddiamondanvils.Thesecomplicatedandexpensivetechnicaldeviceshavemadeitpossibletosubstantiallyadvance
V.E.Fortov, ExtremeStatesofMatter,TheFrontiersCollection,1 DOI10.1007/978-3-642-16464-4 1, c Springer-VerlagBerlinHeidelberg2011
alongthescaleofenergydensityattainableinaphysicalexperimentandtoobtain inlaboratoryorquasi-laboratoryconditionsthestatesthatrangeintothemegabar–gigabarpressuredomain,whichisunattainablewiththetraditionaltechniquesof experimentalphysics.Theuseofnewgeneratorsforthecumulationofhighenergydensitiesleadstoavarietyoffascinatingphysicaleffects,suchasaradical restructuringoftheenergyspectrumandcompositionofacompressedandheated material[25, 14, 11, 16, 33, 17],newcooperativeeffectsanddiverseinstabilitiesin theinteractionofdirectedenergyfluxeswithadenseplasma,itstransientmotion undertheconditionsofsubstantialradiativeenergytransfer,andrelativistic,gravitational,andnuclearphenomenaaswellasanumberofotherexoticeffects,which maybepredicted,ifatall,onlyinthemostgeneralform[33, 19, 18].
Bynowhigh-energy-densityphysicshasturnedintoanextensiveandrapidlydevelopingbranchofmodernsciencethatmakesuseofthemostsophisticatedmeans ofgeneration,diagnostictechniques,andnumericalsimulationswithhigh-power supercomputers.
Itisnoaccidentthathalfofthe30problemsof“thephysicsminimumatthe beginningoftheXXIstcentury”proposedbyAcademicianV.L.Ginzburg[19]are toagreaterorlesserdegreededicatedtohigh-energy-densityphysics.
Theterm“high”isconventionally[25, 14, 11, 16, 33, 10]usedtorefertoinsubstanceenergydensitiesexceeding ≈ 104 –105 J/cm3 ,whichcorrespondstothe bindingenergyofcondensedmedia(forinstance,highexplosives(HEs),H2 ,or metals)andthepressurelevelofmillionsofatmospheres.Forcomparison:thepressureatthecenteroftheEarthisequalto ≈ 3.6Mbar,ofJupiterto ≈ 40Mbar,and atthecenteroftheSunto ≈ 200Gbar.Wementionthattheterm“substance”is consideredtomeanalengthycontinuousmediumofmacroscopicsize.The“ultraextreme”statesinsidetheatomicnucleusandtheconditionsoccurringinmicroscopicvolumesintheindividualcollisionsofthenucleispeededupinaccelerators tosubluminalvelocities,whicharethesubjectofrelativisticnuclearphysics[35], arethereforebeyondthescopeofdetailedconsideration.
Asarule,asubstanceunderhigh-energy-densityconditionsisintheplasma state—anionizedstatearisingfromthermal-and/orpressure-inducedionization.Inastrophysicalobjects,suchcompressionandheatingiseffectedbygravitationalforcesandnuclearreactions,andinlaboratoryconditionsbyintenseshock waves,whichareexcitedbyawidevarietyof“drivers”,rangingfromtwo-stagegas guns[34]tolasers[22, 2]andhigh-currentZ-pinches[27, 21]withpowersofhundredsofterawatts1 However,whilethelifetimeofextremestatesinastrophysical objectsrangesfrommillisecondstobillionsofyears,makingitpossibletoconduct detailedobservationsandmeasurementsofthemwiththehelpofspaceprobesand orbitalandground-basedtelescopesofdifferentwavelengths,interrestrialconditionswehavetodowiththemicrosecond–femtoseconddurationrange[14, 11, 16, 2],whichcallsfortheapplicationofultrafastspecificdiagnostictechniques.
Atpresent,everylarge-scalephysicalfacilitythatgeneratesextremelyhighpressuresandtemperaturesisengagedinworkprograms(notinfrequentlyinternational)
1 Thetotalpowerofterrestrialelectricpowerplantsamountstoabout3 5TW.
onthebasicphysicsofhighenergydensity,inadditiontohavingpractical,applied tasksinimpulseenergeticsordefense.Itissignificantthattheexperimentalcapabilitiesofthesedevicesareextendingrapidly.Inparticular,modernshort-pulselaser systems(NIKE;OMEGA;TRIDENT,LULI-200,thefirstmoduleoftheNational IgnitionFacility(NIF),USA;LaserM ´ egajoule(LMJ),France;GEKKO-XII,Japan; VULKAN,GreatBritain;Iskra-6,Russia;etc.(seeTables 2.1 and 3.1))arecapableofreleasing1–40kJinavolumeoftheorderof1mm3 inseveralnanoseconds toproducepressuresoftenstohundredsofmegabars.Theprojectedlaunchofthe NIF(Livermore)[22, 31]andLMJ(France)[7, 20]lasersystemswouldraisethe at-focusenergyliberationtothemegajoulelevel.
Furthermore,theZ-pinchtechnologyisnowexhibitingconsiderableprogress:at theSandiafacility(USA), ≈ 1.8MJsoftX-rayradiationwasobtainedinthecollapseofplasmalinersduring5–15nsinaregionmeasuringabout1cm3 [38, 9, 37].
Supplementedbyexperimentswithdiamondanvils,explosionandelectricexplosiondevices,andlight-gasgunsinthemegabarpressurerange,thesedataatrecord parametersarenowthesourceofnewandsometimesunexpectedinformationabout thebehaviorofextreme-parameterplasmas[11, 16].
Interestingly,whenconductingexperimentsonextreme-statelaboratoryplasma, eventodayitispossibletopartlyreproduceonasmallscalemanyparameters,effects,andprocessesoccurringinastrophysicalobjects,informationonwhichhas becomeaccessiblebyuseofground-andspace-basedmeansofobservation.These arethedataonhydrodynamicmixingandinstabilities,shock-wavephenomena, stronglyradiatingandrelativisticstreamsandjets,solitons,relativisticphenomena, equationsofstate,andthecompositionandspectraofnonidealplasmas,aswellas thecharacteristicsofinterstellarcosmicplasma,dust,andanumberofothereffects.
Thephysicsofhigh-energydensitiesisintimatelyrelatedtoseveralbranches ofscience,forexampleplasmaphysicsandcondensed-matterphysics,relativisticphysics,thephysicsoflasersandcharged-particlebeams,nuclear,atomic,and molecularphysics,radiative,gasandmagnetichydrodynamics,andastrophysics.In thiscase,thedistinguishingfeaturesofhigh-energy-densityphysicsareanextreme complexityandstrongnonlinearityoftheplasmaprocessesoccurringinit,thesignificanceofcollectiveinterparticleinteraction,andrelativity.Thismakesthestudy ofphenomenaoccurringinthisareaafascinatingandabsorbingtask,whichattracts aconstantlyincreasingnumberofresearchers.
Forallthesereasons,theNationalResearchCounciloftheUSANational AcademiesofScienceformulatedalarge-scalenationalprogramofresearch[33] intheareaofhigh-energy-densityphysicsandgaveithighpriority.Inoursubsequentdiscussionsweshallorientourselveswithrespecttothisdocumentinseveral aspects[33].Similarworkprogramsarebeingvigorouslypursuedinmanydevelopedcountriescapableofmakingtherequisiteexperimentaldevicesandhaving qualifiedpersonnelinsufficientnumber.
Theaimofthisbookistodiscussthecurrentstate-of-the-artinhigh-energydensityphysicsanditstrends,theadvantagesandlimitationsofdifferentexperimentaltechniquesforgeneratinganddiagnosingdenseplasmas,andtobrieflyanalyzetheresultsachieved.Becauseofthevastnessanddissimilarityofthematerial,
inseveralcasesthepresentationwillbeabstract-likeinform,referringthereaderto thecorrespondingreviewsandmonographs[25, 14, 11, 16, 33, 19, 18, 40, 10, 39, 3, 26, 12, 23, 13, 28, 4, 29, 36, 32, 24, 5, 6, 8, 1, 15, 30].
AftertheIntroduction(Chap. 1),thesecondchapterpresentsaclassificationof thestatesofmatterathighenergydensitiesanddiscussesthegeneralformofthe phasediagram,dimensionlessparameters,andthephysicalconditionscorrespondingtoterrestrialandastrophysicalobjects.
Themeansofgeneratingextremestatesavailabletoexperimentersarepresented inChapter 3.Thepropertiesoftheinteractionofhigh-powerfluxesofdirectedenergywithplasmasaretheconcernofChapters 4 and 5.Numeroustechnicalapplicationsofhigh-energy-densityphysicsarebrieflyoutlinedinChapter 6.Themonographconcludes(Chapter 7)withadiscussionofthemosttypicalastrophysical objectsandphenomenarelatedtotherealizationofextremestatesofmatter.
Theauthorendeavoredtointroducethereadertotheratherbroadscopeofdiverse problemsofhigh-energy-densityphysics,andthereforemanytopicsarediscussed bynomeansinsufficientdetail,fortheaimofthisbookistohelpreadersorient himselvesinthevastseaofinformationaccumulatedtodate,seethetrend,and tohelpyoungscientistschoosethedirectionsoffutureinvestigationsratherthan provideanswerstoallsteadilyarisingquestions.
References [1]Al’tshuler,L.V.,Krupnikov,K.K.,Fortov,V.E.,Funtikov,A.I.:Originsof megabarpressurephysics.HeraldRuss.Acad.Sci. 74(6),613(2004)
[2]Anisimov,S.I.,Prokhorov,A.M.,Fortov,V.E.:Applicationofhigh-power laserstostudymatteratultrahighpressures.Sov.Phys.–Usp. 27(3),181–205(1984).DOI10.1070/PU1984v027n03ABEH004036.URL http:// stacks.iop.org/0038-5670/27/181
[3]Ashkroft,N.A.:Condensedmatterathigherdensities.In:G.L.Chiarotti,R.J. Hemley,M.Bernasconi,L.Ulivi(eds.)HighPressurePhenomena,ProceedingsoftheInternationalSchoolofPhysics“EnricoFermi”CourseCXLVII,p. 151.IOSPress,Amsterdam(2002)
[4]Atzeni,S.,Meyer-ter-Vehn,J.:ThePhysicsofInertialFusion.OxfordUniversityPress,Oxford(2004)
[5]Avrorin,E.N.,Vodolaga,B.K.,Simonenko,V.A.,Fortov,V.E.:Intenseshock wavesandextremestatesofmatter.Phys.Usp. 36(5),337–364(1993).DOI 10.1070/PU1993v036n05ABEH002158.URL http://stacks.iop. org/1063-7869/36/337
[6]Calderola,P.,Knopfel,H.(eds.):PhysicsofHighEnergyDensity.Academic, NewYork(1971)
[7]Cavailler,C.:InertialfusionwiththeLMJ.PlasmaPhys.Control.Fusion 47(12B),B389–B403(2005).DOI10.1088/0741-3335/47/12B/S28
[8]Chen,F.F.:IntroductiontoPlasmaPhysicsandControlledFusion,Vol.1,2nd edn.Springer,NewYork(1984)
[9]Cuneo,M.E.,Vesey,R.A.,Bennett,G.R.,etal.:ProgressinsymmetricICF capsuleimplosionsandwire-arrayZ-pinchsourcephysicsfordouble-pinchdrivenhohlraums.PlasmaPhys.Control.Fusion 48(2),R1–R35(2006).DOI 10.1088/0741-3335/48/2/R01
[10]Drake,R.P.:High-Energy-DensityPhysics.Springer,Berlin,Heidelberg (2006)
[11]Fortov,V.,Iakubov,I.,Khrapak,A.:PhysicsofStronglyCoupledPlasma.OxfordUniversityPress,Oxford(2006)
[12]Fortov,V.E.(ed.):Entsiklopediyanizkotemperaturnoiplazmy(Encyclopedia ofLow-TemperaturePlasma).Nauka,Moscow(2000)
[13]Fortov,V.E.:IntenseShockWavesandExtremeStatesofMatter.Bukos, Moscow(2005)
[14]Fortov,V.E.:Intenseshockwavesandextremestatesofmatter.Phys. Usp. 50(4),333(2007).DOI10.1070/PU2007v050n04ABEH006234.URL http://ufn.ru/en/articles/2007/4/c/
[15]Fortov,V.E.,Al’tshuler,L.V.,Trunin,R.F.,Funtikov,A.I.:High-Pressure ShockCompressionofSolidsVII:ShockWavesandExtremeStatesofMatter. Springer,NewYork(2004)
[16]Fortov,V.E.,Khrapak,A.G.,Yakubov,I.T.:Fizikaneideal’noiplazmy(Physics ofNonidealPlasma).Fizmatlit,Moscow(2004)
[17]Fortov,V.E.,Ternovoi,V.Y.,Zhernokletov,M.V.,etal.:Pressure-producedionizationofnonidealplasmainamegabarrangeofdynamicpressures.JETP 97(2),259–278(2003).DOI10.1134/1.1608993
[18]Ginzburg,V.L.:ThePhysicsofaLifetime:ReflectionsontheProblemsand Personalitiesof20thCenturyPhysics.Springer,Berlin,Heidelberg(2001)
[19]Ginzburg,V.L.:Onsuperconductivityandsuperfluidity(whatIhaveandhave notmanagedtodo),aswellasonthe“physicalminimum”atthebeginning oftheXXIcentury(December8,2003).Phys.Usp. 47(11),1155(2004). DOI10.1070/PU2004v047n11ABEH001825.URL http://ufn.ru/en/ articles/2004/11/d/
[20]Giorla,J.,Bastian,J.,Bayer,C.,etal.:Targetdesignforignitionexperiments onthelaserM ´ egajoulefacility.PlasmaPhys.Control.Fusion 48(12B),B75–B82(2006).DOI10.1088/0741-3335/48/12B/S0
[21]Grabovskii,E.V.,Vorob’ev,O.Y.,Dyabilin,K.S.,etal.:Excitationofintense shockwavesbysoftxradiationfromaZ-pinchplasma.JETPLett. 60(1),1 (1994)
[22]Hammel,B.A.,NationalIgnitionCampaignTeam:TheNIFignitionprogram: progressandplanning.PlasmaPhys.Control.Fusion 48(12B),B497–B506 (2006).DOI10.1088/0741-3335/48/12B/S47
[23]Hemley,R.J.,Mao,H.K.:Overviewofstatichighpressurescience.In:R.J. Hemley,G.L.Chiarotti,M.Bernasconi,L.Ulivi(eds.)HighPressurePhenomena,ProceedingsoftheInternationalSchoolofPhysics“EnricoFermi” CourseCXLVII,p.3.IOSPress,Amsterdam(2002)
[24]Hogan,W.J.(ed.):EnergyfromInertialFusion.IAEA,Vienna,Austria(1995)
[25]Kirzhnits,D.A.:Extremalstatesofmatter(ultrahighpressuresandtemperatures).Sov.Phys.–Usp. 14(4),512–523(1972).DOI10. 1070/PU1972v014n04ABEH004734.URL http://stacks.iop.org/ 0038-5670/14/512
[26]Kirzhnits,D.A.,Lozovik,Y.E.,Shpatakovskaya,G.V.:Statisticalmodel ofmatter.Sov.Phys.–Usp. 18(9),649–672(1975).DOI10. 1070/PU1975v018n09ABEH005199.URL http://stacks.iop.org/ 0038-5670/18/649
[27]Knudson,M.D.,Hanson,D.L.,Bailey,J.E.,etal.:Equationofstatemeasurementsinliquiddeuteriumto70GPa.Phys.Rev.Lett. 87(22),225501 (2001).DOI10.1103/PhysRevLett.87.225501.URL http://link.aps. org/abstract/PRL/v87/e225501
[28]Kruer,W.L.:ThePhysicsofLaserPlasmaInteractions.Addison-Wesley, Reading,MA(1988)
[29]Lindl,J.D.:InertialConfinementFusion.Springer,NewYork(1998)
[30]Maksimov,E.G.,Magnitskaya,M.V.,Fortov,V.E.:Non-simplebehaviorof simplemetalsathighpressure.Phys.Usp. 48(8),761(2005).DOI10.1070/ PU2005v048n08ABEH002315.URL http://ufn.ru/en/articles/ 2005/8/a/
[31]Moses,E.I.,Bonanno,R.E.,Haynam,C.A.,etal.:TheNationalIgnitionFacility:pathtoignitioninthelaboratory.Eur.Phys.J.D 44(2),215–218(2006). DOI10.1140/epjd/e2006-00106-3
[32]Mourou,G.A.,Tajima,T.,Bulanov,S.V.:Opticsintherelativisticregime.Rev. Mod.Phys. 78(2),1804–1816(2006).DOI10.1103/RevModPhys.78.309. URL http://link.aps.org/abstract/RMP/v78/p309
[33]NationalResearchCouncil:FrontiersinHighEnergyDensityPhysics.NationalAcademiesPress,Washington,DC(2003)
[34]Nellis,W.J.:Dynamiccompressionofmaterials:metallizationoffluidhydrogenathighpressures.Rep.Prog.Phys. 69(5),1479–1580(2006).DOI 10.1088/0034-4885/69/5/R05
[35]Okun’,L.B.:Leptonyikvarki,2ndedn.Nauka,Moscow(1990).[English Transl.:LeptonsandQuarks.North-Holland,Amsterdam(1982)]
[36]Pukhov,A.:Strongfieldinteractionoflaserradiation.Rep.Prog.Phys. 66(1), 47–101(2003).DOI10.1088/0034-4885/66/1/202
[37]Quintenz,J.,Sandia’sPulsedPowerTeam:Pulsedpowerteam.In:Proc.13th Int.Conf.onHighPowerParticleBeams.Nagaoka,Japan(2000)
[38]Spielman,R.B.,Deeney,C.,Chandler,G.A.,etal.:Tungstenwire-arrayZpinchexperimentsat200TWand2MJ.Phys.Plasmas 5(5),2105–2111 (1998).DOI10.1063/1.872881
[39]Vacca,J.R.(ed.):TheWorld’s20GreatestUnsolvedProblems.PrenticeHall PTR,EnglewoodCliffs,NJ(2004)
[40]Zasov,A.V.,Postnov,K.A.:Obshchayaastrofizika(GeneralAstrophysics). Vek2,Fryazino(2006)
Chapter2 MatterunderExtremeConditions: ClassificationofStates Figures 2.1 and 2.2 showthediagramsfortheextremeconditionsthatarerealizedin anumberofnaturalphysicalobjectsandinlaboratoryexperiments.Ofcourse,the parametersgivenarenobetterthananestimateandprovideonlythemostgeneral impressionoftheorderofmagnitudeofthequantitiesunderdiscussion.
Theemergenceofextremestatesinnatureiscausedbytheforcesofgravity, whichareinherentlylongrangeandunscreened,unlikeCoulombforces(inplasmas).Theseforcescompressandheatthesubstanceeitherdirectlyorbystimulating exothermicnuclearreactionsinmassiveastrophysicalobjectsandduringtheearly stagesoftheevolutionoftheuniverse[35, 29, 28].
Thescaleofextremestatesrealizedinnaturedefiesthemostvividimagination, seeFig. 2.3.AtthebottomoftheMarianaTroughinthePacificOcean(11km)the waterpressureamountsto1.2kbar(1kbar = 100MPa),attheEarth’scenterthe pressureis3 6Mbar,thetemperature1 T ≈ 0 5eV,andthedensity ρ ≈ 10–20g/cm3 ; atthecenterofJupiter P ≈ 40–60Mbar, ρ ≈ 30g/cm3 , T ≈ 2 × 104 K;atthecenter oftheSun P ≈ 240Gbar, T ≈ 1 6 × 103 eV, ρ ≈ 150g/cm3 ;inthecooling-down stars–whitedwarfs– P ≈ 1010 –1016 Mbar, ρ ≈ 106 –109 g/cm3 ,and T ≈ 103 eV. Inthetargetsforcontrolledfusionwithinertialplasmaconfinement P ≈ 200Gbar, ρ ≈ 150–200g/cm3 ,and T ≈ 108 eV.Neutronstars,whichareelementsofpulsars, blackholes, γ-rayburstsandmagnetars,havewhatarethoughttobetherecord parameters P ≈ 1019 Mbar, ρ ≈ 1011 g/cm3 , T ≈ 104 eVforthemantleandfor thecore P ≈ 1022 Mbar, ρ ≈ 1014 g/cm3 , T ≈ 104 eVforagreatmagneticfieldof 1011 –1016 Gs(1Gs = 10 4 T).
Asnotedabove,bythelowerboundof“highenergydensities”wemeananenergydensitycomparabletothebindingenergyofcondensedmatter,104 –105 J/cm3 , whichcorrespondstothevalenceelectronbindingenergy(ofseveralelectronvolts) andtopressuresofca.100kbar–1Mbar.Thesepressuresfarexceedtheultimate mechanicalstrengthofmaterialsandcallfortheinclusionoftheircompressibility andhencehydrodynamicmotionunderpulsedenergyliberation.
1 Incertainfields,suchasplasmaphysics,theelectronvoltisusedasaunitoftemperature.The conversiontokelvinsisdefinedusing k ,theBoltzmannconstant:1eV/k ≈ 11 6kK(kilokelvin).
V.E.Fortov, ExtremeStatesofMatter,TheFrontiersCollection,7 DOI10.1007/978-3-642-16464-4 2, c Springer-VerlagBerlinHeidelberg2011
Relativisticnuclearcollisions (15.7)
Relativityof nucleons
Neutronstars(11-15.6)
Whitedwarfs (6-9)
electrons-relativity-nucleons
Redgiants (3-4)
Atomicnucleus(14.5)
theEarth(1)
Hightemperatures
lg T , eV
Fig.2.2 Extremestates[ 35 ]innatureandinthelaboratory.Thefiguresinparenthesesindicatethelogarithmofdensity(ing/cm 3 ).The“statics”domaincorre- spondstostatictechniquesforhigh-pressureproduction,the“dynamics”domaintothedynamicones,and“hightemperatures”tohigh-temperaturee xperiments.
Fig.2.3 Thepressurescale(1atm ≈ 105 Pa)innatureencompasses ≈ 64ordersofmagnitude. Theright-handscalerelatestoexperimentallyattainableconditions[4].
Inthedomainoflowpressuresandtemperatures,matterexhibitstheexceptional diversityofpropertiesandstructuresthatweencounterundernormalconditionsday afterday[35].
Thephysical,chemical,structural,andbiologicalpropertiesofsubstancesare sharpnonmonotonicfunctionsofcomposition.Theclassificationofthese“lowenergy”statesiscomplicatedandcumbersome.Theyaredefinedbytheposition,properties,andoccupationfeaturesoftheelectronlevelsofatoms,ions,and moleculesandultimatelyunderlietheamazingwealthoftheformsandmanifestationsoforganicandinorganicnatureonEarth.
Laserandevaporativecoolingtechniques(Fig. 2.4)enableultralow(10 9 K) iontemperaturestobereachedandinterestingquantumphenomenasuchasBose–Einsteincondensation,Rydbergmatter,andCoulombcondensationtobestudied.
T = 300 K, n 3 106 cm-3
Magneto-optical
Evaporative cooling in magnetic (or optical) trap
Fig.2.4 Methodsofobtainingextremelylowtemperatures.
Laser cooling to T = 50 K, n 1011 cm-3
Bosons condense, fermions form Cooper pairs
T = 1-103 nK, n 1014-15 cm-3
N 105 -108
Withincreasingenergydensity(P and T ),substancesacquireanincreasingly universalstructure[35, 36].Thedistinctionsbetweentheneighboringelementsof theperiodicsystemsmoothoutandthepropertiesofasubstancebecomeprogressivelysmootherfunctionsofitscomposition.Owingtoanincreaseinenergydensity thereoccursanobvious“universalization”orsimplificationofthesubstanceproperties.Thegrowthofpressureandtemperaturerupturesmolecularcomplexesto formatomicstates,whichnextloseouter-shellelectrons,whichareresponsiblefor thechemicalindividualityofthesubstance,duetothermaland/orpressure-induced ionization.Atomicandionelectronshellsrestructuretoacquireanincreasinglyregularleveloccupation,andacrystallatticeafteranumberofpolymorphictransformations(thisordinarilytakesplacefor P <0.5Mbar)transformstoaclose-packed body-centeredcubicarrangementcommontoallsubstances.
Thesesubstance“simplification”processestakeplaceatenergydensitiescomparabletothecharacteristicenergiesoftheaforementioned“universalization”pro-
Warm atomic vapor
trap
Fig.2.5 Experimentallyattainabletemperatures.
2MatterunderExtremeConditions:ClassificationofStates13
cesses.Whenthecharacteristicenergydensityisoftheorderofthevalenceshell energies, e2 /a4 0 ≈ 3 × 1014 erg/cm3 (a0 = /(mc2 )= 5 2 × 10 9 cmistheBohrradius,1erg = 1 7 J),theorderofmagnitudeofthelowersubstance“universalizing” bound T ≈ 10eV, P ≈ 300Mbar,isreached.Theexactquantitativedetermination oftheseboundsisanimportanttaskoftheexperimentalphysicsofhighenergydensities(seeChap. 6),especiallyastheory[36]alsopredictsahighlyvariedbehavior ofsubstancesintheultramegabarpressurerange(shelleffects[36],electronand plasmaphasetransitions[2, 1, 19, 17, 16, 7, 24, 42, 33, 64, 25, 14],etc.).
Theupperboundofthedomainofextremestatesisdefinedbythecontemporary levelofknowledgeinhigh-energyphysics[28, 63, 51]andobservationalastrophysicaldata,andisexpectedtobelimitedonlybyourimagination.Theultraextreme matterparametersaccessibleusingmodernphysicalconceptsaredefinedbythe so-calledPlanckquantities[28, 51],whicharecombinationsofthefundamental constantsPlanck’sconstant ,thevelocityoflight c,thegravitationalconstant G, andtheBoltzmannconstant k : —thelength l
Thesesuperextremematterparameters,atwhichtheknownphysicallawsare thoughttobenolongervalid,mighthavebeenrealizedearlyintheBigBangorat thesingularityinthecollapseofblackholes.Inthisfieldphysicalmodelsarediscussedthatassumethatourspacehasmorethanthreedimensionsandthatordinary matterisinathree-dimensionalmanifold–the“3-braneworld”[55]–embedded inthismany-dimensionalspace.Forthepresent,thecapabilitiesofmodernexperimentsintheareaofhigh-energy-densityphysicsarefarfromthese“Planck”values andallowthepropertiesofelementaryparticlestobeelucidateduptoenergieson theorderof0.1–10TeVanddowntodistances ≈ 10 16 cm.Thelaunchofthe proton–protoncollideratCERNwithaprotoncollisionenergyof7 × 7TeVisan importantmilestone,openinguptheteraelectronvoltenergyrange.
Considering(followingKirzhnits[35])theenergyrange mc2 ≈ 1GeV,which isamenabletoamoresubstantialanalysisandisnonrelativisticfornucleons,we obtainaboundarytemperatureof109 eV,anenergydensityof1037 erg/cm2 ,anda pressureof ≈ 1025 Mbar,althoughitisnotunlikelythatevenmoreextremestates ofmatterarerealizedinthecoresofmassivepulsarsandcouldbefoundearlyinthe evolutionoftheuniverse.
Althoughourexperimentalcapabilitiesareprogressingrapidly,ofcoursethey areonlypartlyabletoentertheprovinceofultraextremeastrophysicalstates.Materialstrengthsabruptlylimittheuseofstatictechniquesforinvestigatinghighenergy densities,becausetheoverwhelmingmajorityofconstructionalmaterialsareunable towithstandthepressuresofinteresttous.Anexceptionisdiamond—therecord holderinhardness(σn ≈ 500kbar);itsuseindiamondanvilsenablesapressureof 3–5Mbartobereachedinstaticexperiments[42, 33, 32].
Table2.1 Physicalconditionscorrespondingtohighenergydensitiesof104 –105 J/cm3 [49].
Physicalconditions
Energydensity
Pressure
Condensedexplosives
pressure temperature
density velocityofdetonation
Impactofaluminumplateonaluminum,velocity
Impactofmolybdenumplateonmolybdenum,velocity
Electromagneticradiation
laser,intensity q (W ∼ q)
blackbodytemperature T ( p ∼ T 4 )
Electricintensity E (W ∼ E 2 )
Magneticinduction B (W ∼ B2 )
Plasmadensityforatemperature T = 1keV ( p = nkT )
Laserradiationintensity q,for λ = 1 μm, W ∼ q2/3 blackbodytemperature T ( p ∼ T 3 5 )
Valuesofphysicalparameters
≈ 104 –105 J/cm3
≈ 0.1–1Mbar
W ≈ 104 J/cm3
≈ 400kbar, ≈ 4000K, ≈ 2 7g/cm3 , ≈ 9 × 105 cm/s
5–13 2 × 105 cm/s
3–7 5 × 105 cm/s
2.6×1015 –3 × 1015 W/cm2
2 × 102 –4 × 102 eV
0 5 × 109 –1 5 × 109 V/cm
1 6 × 102 –5 × 102 T
6×1019 –6 × 1020 cm 3
0.86 × 1012 –4×1012 W/cm2
66–75eV
Currentlysuperioraredynamictechniques[21, 18, 26, 27, 50, 2, 1, 64],which relyonthepulsedcumulationofhighenergydensitiesinsubstances.Thelifetime ofsuchhigh-energystatesisdefinedbythetimeofinertialplasmaexpansion,typicallyintherange10 10 –10 6 s,whichcallsfortheapplicationofsophisticated fastdiagnostictechniques.Table 2.1 givesthephysicalconditionscorrespondingto thelowerboundofthestatesofinterest[49, 18, 26, 9].Onecanseethattheproductionofhighenergydensitiesinplasmasimposeshighdemandsonthemeansof generation,necessitatingefficientspatialandtemporalpowercompression.
Thematterphasediagramcorrespondingtohighenergydensitiesisdepictedin Fig. 2.1 [21, 27, 18, 26, 49],whichindicatestheconditionsexistinginastrophysicalobjectsaswellasintechnicalandlaboratoryexperimentaldevices.Beingthe mostwidespreadstateofmatterinnature(95%ofthemassoftheuniverse,neglectingdarkmatter),plasmaoccupiesvirtuallyallthedomainsofthephasediagramas seeninFig. 2.1.Inthiscase,specialdifficultiesinthephysicaldescriptionofsuch amediumarepresentedbythenonidealplasmadomain,wheretheCoulombinterparticleinteractionenergy e2 n1/3 iscomparabletoorhigherthanthekineticenergy Ek ofparticlemotion.Inthisdomain, Γ = e2 n1/3 /Ek > 1,plasmanonidealityeffectscannotbedescribedbyperturbationtheory[35, 18, 26],whiletheapplication ofcomputerparameter-freeMonte-Carloormoleculardynamicsmethods[19, 42] isfraughtwiththedifficultiesofselectionofadequatepseudopotentialsandcorrect inclusionofquantumeffects.
Theeffectsofelectronrelativityintheequationofstateandtransportplasma properties,when me c2 ≈ kT ,correspondto T ≈ 0.5MeV ≈ 6 × 106 K.Abovethis
162MatterunderExtremeConditions:ClassificationofStates temperature,thematterbecomesunstablewithrespecttospontaneouselectron–positronpairproduction.
Quantumeffectsaredefinedbythedegeneracyparameter nλ3 ( 2 /2mkT is thethermaldeBrogliewavelength).Foradegenerateplasma, nλ3 1,thekineticenergyscaleistheFermienergy EF ∼ 2 n2/3 /2m,whichincreaseswith plasmadensity,makingtheplasmamoreandmoreidealasitcontracts, n → ∞; Γ = me2 /( 2 n1/3 ) → 0.Therelativitycondition,whichcorrespondstothecondition me c2 ∼ EF ≈ 0.5MeV,yieldsadensityof ≈ 106 g/cm3 .
Similarasymptotesarealsofoundintheotherlimitingcase T → 0ofaclassical(nλ3 1)plasma,where Ek ≈ kT andtheplasmabecomesincreasingly ideal, Γ ≈ e2 n1/3 /(kT ),underheating.Onecanseethattheperipheryofthematter phasediagramisoccupiedbyideal(Γ 1),Boltzmann(nλ3 1),ordegenerate (nλ3 1)plasmas,whichareadequatelydescribedbycurrentlyavailablephysical models[35, 21, 18, 26, 19, 17, 16, 7, 24].
Theelectronplasmainmetalsandsemiconductorscorrespondstothedegenerate casewithaninteractionenergy Eint ∼ e2 /r0 , r0 ∼ /k f , Ek ∼ k 2 f /m; Γ ∼
1–5,where vf ≈ 10 2 –10 3 sandthesubscriptfindicatesparametersattheFermi limit.
Foraquark–gluonplasma Eint ∼ g2 /r0 , r0 ∼ 1/T , Ek ∼ T ; Γ ∼ g2 ≈ 1–50.The mostsignificantchallengetothetheoryispresentedbythevastdomainofnonideal plasmas Γ 1occupiedbynumeroustechnicalapplications(semiconductorand metalplasma,impulseenergetics,explosions,arcs,electricdischarges,etc.),where theorypredictsqualitativelynewphysicaleffects(metallization,“cool”ionization, dielectrization,plasmaphasetransitions,etc.[21, 18, 26, 20]).Theirstudyrequires substantialexperimentalandtheoreticalefforts.
OfspecialinterestareplasmaphasetransitionsinstronglynonidealCoulomb systems:thecrystallizationofdustplasmas(Fig. 2.6)[24, 25]andionsinelectrostatictraps[14]andcyclotrons[58, 59],electrolytes[52, 56]andcolloidalsystems[48],two-dimensionalelectronsystemsonthesurfaceofliquidhelium[61], excitoncondensationinsemiconductors[16],etc.Specialmentionshouldbemade oftherecentlydiscoveredphasetransitioninthermaldeuteriumplasma[23, 17, 16, 7]quasi-adiabaticallycompressedtomegabarpressuresbyaseriesofreverberating shockwaves.
Thequestforqualitativelyneweffectsofthiskindinthenonidealparameterdomainisapowerfulandpermanentincentivetoinvestigatesubstancesathighenergy densities[21, 18, 26, 49].
Anothercharacteristicpropertyofahigh-energy-densityplasmaisthecollectivenatureofitsbehaviorandthestrongnonlinearityofitsresponsetoexternal energyactionssuchasshockandelectromagneticwaves,solitons,laserradiation, andfastparticlefluxes.Inparticular,thepropagationofelectromagneticwavesin plasmaexcitesseveralparametricinstabilities(Raman,Thomson,andBrillouinradiationscattering)andisaccompaniedbytheself-focusingandfilamentationof radiation,thedevelopmentofinherentlyrelativisticinstabilities,theproductionof fastparticlesandjets,and–athigherintensities–the“boiling”ofthevacuumwith electron–positronpairproduction[49, 3, 39, 5, 41, 38, 20, 53, 11, 45, 43, 57, 47, 8].
Ofspecialinterestintheexposuretoextremeenergyactionsaretransienthydrodynamicphenomenasuchastheinstabilitiesofshockwavesandlaminarflows[38], transitiontotheturbulentmode[15],turbulentmixing,andjetandsolitondynamics[15, 13].
Figure 2.7,whichistakenfrom[49],showsthedomainsofthedimensionlessparametersReynoldsnumber Re ∼ Ul /ν andMachnumber M = v/c (where c isthe velocityofsound, l isthecharacteristicdimension,and ν isthekinematicviscosity)inwhichthedifferenthydrodynamicphenomenarelatedtohigh-energy-density physicsoccur.Toastrophysicalapplicationstherecorrespondtheflowmodes,where Re > 104 and M > 0.5.
Allthesefascinatingandinherentlynonlinearphenomenamanifestthemselves inbothastrophysicalandlaboratoryplasmasand,despitetheenormousdifference inspatialscale,havemuchincommonandmakeupthesubjectof“laboratoryastrophysics”[13, 57].
Laboratoryastrophysics[13, 57]permitsthestatesofmatterandprocesseswith highenergydensitiescharacteristicforastrophysicalobjectstobereproducedinmicroscopicvolumes.Thesearetheeffectsofinstabilityandhydrodynamicmixing; ordinaryandmagnetohydrodynamicturbulence;thedynamicsofintenseradiative, soliton,andshockwaves;expansionwaves;magneticallycompressedandfastrelativisticjets;andstronglyradiatingflows.
Ofconsiderableinterestisinformationabouttheequationofstate,composition, opticalandtransportproperties,emissionandabsorptionspectra,crosssectionsof elementaryprocesses,radiativethermalconductivitycoefficients,andpropertiesof relativisticplasma.Thismakesitpossibletostudyandmodelthephysicalconditions,stationaryandpulsedprocessesinastrophysicalobjectsandphenomena
Fig.2.6 Dustplasmacrystalandplasmaliquid.
Another random document with no related content on Scribd:
The Project Gutenberg eBook of Foods; nutrition and digestion This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.
Title: Foods; nutrition and digestion
Author: Susanna Cocroft
Release date: October 30, 2023 [eBook #71988]
Language: English
Original publication: Chicago: Physical culture extension society, 1912
Credits: Bob Taylor and the Online Distributed Proofreading Team at https://www.pgdp.net (This file was produced from images generously made available by The Internet Archive)
*** START OF THE PROJECT GUTENBERG EBOOK FOODS; NUTRITION AND DIGESTION ***
FOODS Nutrition and Digestion KNOW THYSELF SERIES S E The author, in giving remedial exercises and diet prescribed to suit the individual need, has for ten years realized the necessity of a book which shall give to the homemaker a clear idea of the uses of foods, that she may be able to compile her own diets for various blood conditions. Since the blood is made from food elements, its conditions can be largely controlled by a knowledge and regulation of these elements.
Acknowledgment is here made of the valuable assistance of Winfield S. Hall, Ph. D., M. D., Professor of Physiology of Northwestern Medical School, Lecturer and Author of Nutrition and Dietetics; of Alida Frances Pattee, late instructor of Dietetics Bellevue Training School for Nurses, Bellevue Hospital, New York City, author of “Practical Dietetics with reference to Diet in Disease,” and of D. Appleton & Co., for their kindness in allowing the use of Dr. Hall’s tables of food values, in the preparation of this book.
The tables of Food Values and the classifications of foods are kindly furnished by Dr. Hall and used by the courtesy of his publishers, while a few of the receipts are generously furnished by Miss Pattee.
Recognition is also made of the good work of Miss Helen Hammel, former dietitian in Wesley Hospital, Chicago, in the preparation of some of the receipts in the Appendix.
FOODS Nutrition and Digestion BY S C
AUTHOR OF
G S S S T V O
H : T N
P S F
C E B
I P W E ., E .
ORIGINATOR OF THE P C E S
F E 1906
S E 1912
P
P C E S
624 S. M A ., C , I
C , 1906-1912