[FREE PDF sample] Instrumentation and control systems 3rd edition william bolton ebooks

Page 1


Instrumentation and Control Systems

3rd Edition William Bolton

Visit to download the full and correct content document: https://textbookfull.com/product/instrumentation-and-control-systems-3rd-edition-willia m-bolton/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Fundamentals of Industrial Instrumentation and Process Control, Second Edition William C Dunn

https://textbookfull.com/product/fundamentals-of-industrialinstrumentation-and-process-control-second-edition-william-cdunn/

Engineering science Seventh Edition William Bolton

https://textbookfull.com/product/engineering-science-seventhedition-william-bolton/

Materials for Engineers and Technicians; Seventh Edition William Bolton

https://textbookfull.com/product/materials-for-engineers-andtechnicians-seventh-edition-william-bolton/

Thermal Power Plant Control and Instrumentation The control of boilers and HRSGs 2nd edition David Lindsley

https://textbookfull.com/product/thermal-power-plant-control-andinstrumentation-the-control-of-boilers-and-hrsgs-2nd-editiondavid-lindsley/

Measurement and Instrumentation: Theory and Application 3rd Edition Alan S. Morris

https://textbookfull.com/product/measurement-and-instrumentationtheory-and-application-3rd-edition-alan-s-morris/

Automation in Textile Machinery: Instrumentation and Control System Design Principles 1st Edition L. Ashok Kumar

https://textbookfull.com/product/automation-in-textile-machineryinstrumentation-and-control-system-design-principles-1st-editionl-ashok-kumar/

The Pact Sharon Bolton

https://textbookfull.com/product/the-pact-sharon-bolton/

MOSQUITOES identification ecology and control 3rd Edition Norbert Becker

https://textbookfull.com/product/mosquitoes-identificationecology-and-control-3rd-edition-norbert-becker/

Classical Feedback Control with Nonlinear Multi-Loop Systems: With MATLAB® and Simulink® 3rd Edition Boris J. Lurie

https://textbookfull.com/product/classical-feedback-control-withnonlinear-multi-loop-systems-with-matlab-and-simulink-3rdedition-boris-j-lurie/

INSTRUMENTATIONANDCONTROLSYSTEMS

THIRDEDITION

INSTRUMENTATION ANDCONTROL SYSTEMS

THIRDEDITION

WILLIAM BOLTON

NewnesisanimprintofElsevier

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,includingphotocopying, recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission, furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenterand theCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding,changesinresearch methods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation,methods, compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjuryand/ordamageto personsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,or ideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary.

LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress. ISBN:978-0-12-823471-6

ForInformationonallNewnespublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionsEditor: SonniniR.Yura

EditorialProjectManager: AliceGrant

ProductionProjectManager: PrasannaKalyanaraman

CoverDesigner:MatthewLimbert

TypesetbyMPSLimited,Chennai,India

Prefaceix Acknowledgementxiii

1.MeasurementSystems1

1.1Introduction1

1.1.1Systems1

1.2InstrumentationSystems2

1.2.1TheConstituentElementsofan InstrumentationSystem2

1.3PerformanceTerms4

1.3.1Resolution,Accuracy,andError4

1.3.2Range6

1.3.3Precision,Repeatability,andReproducibility7

1.3.4Sensitivity7

1.3.5Stability8

1.3.6DynamicCharacteristics9

1.4Dependability9

1.4.1Reliability10

1.5Requirements11

1.5.1Calibration12

1.5.2SafetySystems13 Problems14

2.InstrumentationSystemElements17

2.1Introduction18

2.2DisplacementSensors18

2.2.1Potentiometer18

2.2.2Strain-GaugedElement19

2.2.3CapacitiveElement20

2.2.4LinearVariableDifferentialTransformer21

2.2.5OpticalEncoders21

2.2.6Moire ´ Fringes22

2.2.7OpticalProximitySensors23

2.2.8MechanicalSwitches24

2.2.9CapacitiveProximitySensor25

2.2.10InductivityProximitySensor26

2.3SpeedSensors26

2.3.1OpticalMethods26

2.3.2IncrementalEncoder26

2.3.3Tachogenerator26

2.4FluidPressureSensors26

2.4.1DiaphragmSensor27

2.4.2PiezoelectricSensor28

2.4.3BourdonTube28

2.5FluidFlow29

2.5.1DifferentialPressureMethods29

2.5.2TurbineMeter31

2.5.3UltrasonicTimeofFlightFlowMeter32

2.5.4VortexFlowRateMethod32

2.5.5CoriolisFlowMeter33

2.6LiquidLevel33

2.6.1Floats34

2.6.2DisplacerGauge34

2.6.3DifferentialPressure34

2.6.4LoadCell34

2.6.5ElectricalConductivityLevelIndicator35

2.6.6CapacitiveLevelIndicator35

2.6.7UltrasonicLevelGauge35

2.6.8NucleonicLevelIndicators36

2.7TemperatureSensors36

2.7.1BimetallicStrips36

2.7.2LiquidinGlassThermometers36

2.7.3ResistanceTemperatureDetectors(RTDs)36

2.7.4Thermistors37

2.7.5Thermocouples37

2.7.6ThermodiodesandTransistors40

2.7.7Pyrometers40

2.8SensorSelection41

2.9SignalProcessing42

2.9.1ResistancetoVoltageConverter42

2.9.2TemperatureCompensation45

2.9.3ThermocoupleCompensation45

2.9.4Protection47

2.9.5Analogue-to-DigitalConversions47

2.9.6Digital-to-AnalogueConversions50

2.9.7MicrocontrollerSystems51

2.9.8Op-Amps52

2.9.9Pressure-to-CurrentConverter56

2.10SignalTransmission56

2.10.1Noise59

2.11SmartSystems60

2.11.1MEMS61

2.12DataPresentationElement62

2.12.1Indicator62

2.12.2IlluminativeDisplays62

2.12.3GraphicalUserInterface(GUI)64

2.12.4DataLoggers64

2.12.5Printers65 Problems66

3.MeasurementCaseStudies71

3.1Introduction71 3.2CaseStudies72

3.2.1ATemperatureMeasurement72

3.2.2AnAbsolutePressureMeasurement73

3.2.3DetectionoftheAngularPositionofa Shaft74

3.2.4AirFlowRateDetermination74

3.2.5FluidLevelMonitoring75

3.2.6MeasurementofRelativeHumidity75

3.2.7DimensionChecking76

3.2.8TemperatureofaFurnace77

3.2.9AutomobileTyrePressureMonitoring77

3.2.10ControlSystemSensorswithAutomobiles77

3.3DataAcquisitionSystems78

3.3.1DataAcquisitionSoftware80

3.3.2DataLoggers80

3.4Testing80

3.4.1Maintenance80

3.4.2CommonFaults81 Problems82

4.ControlSystems85

4.1Introduction85

4.2ControlSystems86

4.2.1Open-andClosed-LoopControl87

4.3BasicElements89

4.3.1BasicElementsofaClosed-LoopSystem89

4.4CaseStudies91

4.4.1ControloftheSpeedofRotationofa MotorShaft91

4.4.2ControlofthePositionofaTool92

4.4.3PowerSteering92

4.4.4ControlofFuelPressure93

4.4.5AntilockBrakes93

4.4.6ThicknessControl94

4.4.7ControlofLiquidLevel95

4.4.8RobotGripper95

4.4.9MachineToolControl97

4.4.10FluidFlowControl97

4.5Discrete-TimeControlSystems98

4.6DigitalControlSystems99

4.7HierarchicalControl100 Problems101

5.ProcessControllers103

5.1Introduction103

5.1.1DirectandReverseActions104

5.1.2DeadTime104

5.1.3Capacitance104

5.2On OffControl104

5.2.1Relays106

5.3ProportionalControl107

5.3.1ProportionalBand107

5.3.2LimitationsofProportionalControl109

5.4DerivativeControl110

5.4.1PDControl110

5.5IntegralControl112

5.5.1PIControl112

5.6PIDControl114

5.6.1PIDProcessController116

5.7Tuning117

5.7.1ProcessReactionTuningMethod118

5.7.2UltimateCycleTuningMethod120

5.7.3QuarterAmplitudeDecay121

5.7.4LambdaTuning121

5.7.5SoftwareTools121

5.7.6AdaptiveControllers122

5.8DigitalSystems122

5.8.1EmbeddedSystems123

5.9FuzzyLogicControl124

5.9.1FuzzyLogic124

5.9.2FuzzyLogicControlSystems126

5.9.3FuzzyLogicController127

5.9.4FuzzyLogicTuningofPIDControllers130

5.10NeuralNetworks130

5.10.1NeuralNetworksforControl132 Problems133

6.CorrectionElements137

6.1Introduction137

6.1.1TheRangeofActuators138

6.2PneumaticandHydraulicSystems138

6.2.1CurrenttoPressureConverter138

6.2.2PressureSources138

6.2.3ControlValves139

6.2.4Actuators140

6.3DirectionalControlValves141

6.3.1Sequencing143

6.3.2ShuttleValve145

6.4FlowControlValves146

6.4.1FormsofPlug147

6.4.2RangeabilityandTurndown149

6.4.3ControlValveSizing149

6.4.4ValvePositioners151

6.4.5OtherFormsofFlowControlValves151

6.4.6Fail-SafeDesign152 6.5Motors152

6.5.1D.C.Motors152

6.5.2BrushlessPermanentMagnetD.C.Motor154

6.5.3StepperMotor154 6.6CaseStudies159

6.6.1ALiquidLevelProcessControlSystem159

6.6.2MillingMachineControlSystem159

6.6.3ARobotControlSystem159 Problems160

7.PLCSystems165

7.1Introduction165

7.2LogicGates166

7.2.1Field-ProgrammableGateArrays169

7.3PLCSystem170

7.4PLCProgramming171

7.4.1LogicGates173

7.4.2Latching174

7.4.3InternalRelays174

7.4.4Timers175

7.4.5Counters176

7.5TestingandDebugging178

7.6CaseStudies179

7.6.1SignalLamptoMonitorOperations179

7.6.2CyclicMovementofaPiston179

7.6.3SequentialMovementofPistons179

7.6.4CentralHeatingSystem181 Problems182

8.SystemModels189

8.1Introduction189

8.1.1StaticResponse189

8.1.2DynamicResponse189

8.2Gain190

8.2.1GainofSystemsinSeries191

8.2.2FeedbackLoops191

8.3DynamicSystems193

8.3.1MechanicalSystems193

8.3.2RotationalSystems194

8.3.3ElectricalSystems196

8.3.4ThermalSystems198

8.3.5HydraulicSystems200

8.4DifferentialEquations202

8.4.1First-OrderDifferentialEquations202

8.4.2Second-OrderDifferentialEquations204

8.4.3SystemIdentification205 Problems206

9.TransferFunction209

9.1Introduction209

9.2TransferFunction210

9.2.1TransferFunction211

9.2.2TransferFunctionsofCommonSystem Elements212

9.2.3TransferFunctionsandSystems213

9.3SystemTransferFunctions214

9.3.1SystemsinSeries214

9.3.2SystemswithFeedback215

9.4BlockManipulation216

9.4.1BlocksinSeries217

9.4.2MovingTakeoffPoints217

9.4.3MovingaSummingPoint217

9.4.4ChangingFeedbackandForwardPaths217 9.5MultipleInputs220

9.6Sensitivity221

9.6.1SensitivitytoChangesinParameters221

9.6.2SensitivitytoDisturbances223 Problems223

10.SystemResponse227 10.1Introduction227 10.2Inputs227

10.3DeterminingOutputs228

10.3.1PartialFractions230 10.4First-OrderSystems233

10.4.1First-OrderSystemParameters235 10.5Second-OrderSystems237

10.5.1Second-OrderSystemParameters240 10.6Stability245

10.6.1The s Plane246 10.7Steady-StateError250 Problems252

11.FrequencyResponse257 11.1Introduction257

11.1.1SinusoidalSignals258 11.1.2ComplexNumbers258 11.2SinusoidalInputs260

11.2.1FrequencyResponseFunction260

11.2.2FrequencyResponseforFirst-Order Systems262

11.2.3FrequencyResponseforSecond-Order Systems264 11.3BodePlots265

11.3.1TransferFunctionaConstant K 266

11.3.2TransferFunction1/s n 266

11.3.3TransferFunction s m 267

11.3.4TransferFunction1/(1 1 τ s)267

11.3.5TransferFunction(1 1 τ s)269

11.3.6TransferFunction ω n2/(s 2 1 2ζω ns 1 ω n2)270

11.3.7TransferFunction

n 2 272 11.4SystemIdentification274 11.5Stability276

11.5.1StabilityMeasures277 11.6Compensation278

11.6.1ChangingtheGain278

11.6.2Phase-LeadCompensation280

11.6.3Phase-LagCompensation281 Problems283

12.NyquistDiagrams287 12.1Introduction287 12.2ThePolarPlot287

12.2.1NyquistDiagrams289 12.3Stability290 12.4RelativeStability292 Problems293

13.ControlSystems297

13.1Introduction297 13.2Controllers298

13.2.1ProportionalSteady-StateOffset300

13.2.2DisturbanceRejection301

13.2.3IntegralWind-Up301

13.2.4BumplessTransfer302

13.3FrequencyResponse302

13.4SystemswithDeadTime303

13.5CascadeControl305

13.6FeedforwardControl306

13.7DigitalControlSystems307

13.7.1The z-Transform309

13.7.2TheDigitalTransferFunction G(z)311

13.7.3PIDController314

13.7.4SoftwareImplementationofPID Control317

13.8ControlNetworks317

13.8.1DataTransmission318

13.8.2Networks319

13.8.3ControlAreaNetwork(CAN)320

13.8.4AutomatedAssemblyLines321

13.8.5AutomatedProcessPlantNetworks321

13.8.6PLCNetworks323

13.8.7SupervisoryControlandData Acquisition(SCADA)325

13.8.8TheCommonIndustrialProtocol (CIP)326

13.8.9SecurityIssues326 Problems327 Answers329

AppendixA:Errors341 AppendixB:DifferentialEquations347 AppendixC:LaplaceTransform353 AppendixD:The z-Transform361 Index367

Preface

Thisbookprovidesafirst-levelintroductiontoinstrumentationandcontrolengineeringand assuchissuitablefortheBTECunitsof IndustrialProcessControllers and IndustrialPlantand ProcessControl fortheNationalCertificatesandDiplomasinEngineering,andtheunit Control SystemsandAutomation fortheHigherNationalCertificatesandDiplomasinEngineeringand alsoprovidingabasicintroductiontoinstrumentationandcontrolsystemsforundergraduates.Thebookaimstogiveanappreciationoftheprinciplesofindustrialinstrumentationand aninsightintotheprinciplesinvolvedincontrolengineering.

Thebookintegratesactualhardwarewiththeoryandanalysis,aimingtomakethemathematicsofcontrolengineeringasreadableandapproachableaspossible.

STRUCTUREOFTHEBOOK

Thebookhasbeendesignedtogiveaclearexpositionandguidereadersthroughtheprinciplesinvolvedinthedesignanduseofinstrumentationandcontrolsystems,reviewingbackgroundprincipleswherenecessary.Eachchapterincludesworkedexamples,multiple-choice questionsandproblems;answersaresuppliedtoallquestionsandproblems.Thereare numerouscasestudiesinthetextindicatingapplicationsoftheprinciples.

PERFORMANCEOUTCOMES

Thefollowingindicatetheoutcomesforwhicheachchapterhasbeenplanned.Attheend ofthechaptersthereadershouldbeableto:

Chapter1:Measurementsystems

Readandinterpretperformanceterminologyusedinthespecificationsof instrumentation.

Chapter2:Instrumentationsystemelements

Describeandevaluatesensorscommonlyusedwithinstrumentationusedinthe measurementofposition,rotationalspeed,pressure,flow,liquidlevel,temperatureand thedetectionofthepresenceofobjects.

Describeandevaluatemethodsusedforsignalprocessinganddisplay.

Chapter3:Measurementcasestudies

Explainhowsystemelementsarecombinedininstrumentationforsomecommonly encounteredmeasurements.

Chapter4:Controlsystems

Explainwhatismeantbyopenandclosed-loopcontrolsystems,thedifferencesin performancebetweensuchsystems.

Explaintheprinciplesinvolvedinsomesimpleexamplesofopenandclosed-loopcontrol systems.

Describethebasicelementsofdigitalcontrolsystems.

Chapter5:Processcontrollers

Describethefunctionandterminologyofaprocesscontrollerandtheuseoftwo-step, proportional,derivativeandintegralcontrollaws.

ExplainPIDcontrolandhowsuchacontrollercanbetuned.

Explainwhatismeantbyfuzzylogicandhowitcanbeusedforcontrolapplications.

Explainwhatismeantbyartificialneuralnetworksandhowtheycanbeusedforcontrol applications.

Chapter6:Correctionelements

Describecommonformsofcorrection/regulatingelementsusedincontrolsystems.

Describetheformsofcommonlyusedpneumatic/hydraulicandelectriccorrection elements.

Chapter7:PLCsystems

Describethefunctionsoflogicgatesandtheuseoftruthtables.

DescribethebasicelementsinvolvedwithPLCsystems. DeviseprogramstoenablePLCstocarryoutsimplecontroltasks.

Chapter8:Systemmodels

Explainhowmodelsforphysicalsystemscanbeconstructedintermsofsimplebuilding blocks.

Chapter9:Transferfunction

Definethetermtransferfunctionandexplainhowitisusedtorelateoutputstoinputsfor systems.

Useblockdiagramsimplificationtechniquestoaidintheevaluationoftheoverall transferfunctionofanumberofsystemelements.

Chapter10:Systemresponse

UseLaplacetransformstodeterminetheresponseofsystemstocommonformsofinputs. Usesystemparameterstodescribetheperformanceofsystemswhensubjecttoastep input.

Analysesystemsandobtainvaluesforsystemparameters. Explainthepropertiesdeterminingthestabilityofsystems. Derivethesteady-stateerrorforabasicclosed-loopcontrolsystem.

Chapter11:Frequencyresponse

Explainhowthefrequencyresponsefunctioncanbeobtainedforasystemfromits transferfunction.

ConstructBodeplotsfromaknowledgeofthetransferfunction.

UseBodeplotsforfirstandsecond-ordersystemstodescribetheirfrequencyresponse. UsepracticallyobtainedBodeplotstodeducetheformofthetransferfunctionofa system.

Comparecompensationtechniques.

Chapter12:Nyquistdiagrams

DrawandinterpretNyquistdiagrams.

Chapter13:Controlsystems

ExplainthereasonsforthechoicesofP,PI,orPIDcontrollers.

Explaintheeffectofdeadtimeonthebehaviourofacontrolsystem.

Explaintheusesofcascadecontrolandfeedforwardcontrol.

Explaintheprinciplesofdigitalcontrolsystemsandtheuseofthez-transformtoanalyse them.

Describetheprinciplesinvolvedincontrolnetworks.

DescribetheprinciplesinvolvedinFieldbus.

DescribetheprinciplesofCAN,SCADA,DSCandCIPcontrolnetworks.

Identifytheissuesinvolvedinmaintainingasecuresystem.

SOFTWARETOOLS

Detailsofprogramsandmethodssuitablefortheirdevelopmenthavenotbeenincluded inthisbook.ItwasfelttobemoreappropriatetoleavesuchdevelopmenttomorespecialisttextssuchasMATLABandSIMULINKforEngineersbyAgamKumarTyagi(Oxford HigherEducation2011),AGuidetoMATLAB:ForBeginnersandExperiencedUsersby B.R.HuntandR.L.Lipsman(CambridgeUniversityPress2014),Hands-OnIntroduction toLabViewforScientistsandEngineersbyJohnEssick(OxfordUniversityPress2012),and LabviewforEveryone:GraphicalProgrammingMadeEasyandFunbyJeffreyTravis (PrenticeHall,2006).

CHANGESFORTHE3RDEDITION

Themajorchangesintroducedtothethirdeditionareadiscussionofdependabilitythathas beenincludedinChapter1,thediscussionofsmartsystemsextendedandanintroductionto radiotelemetryfordatatransmission.Adiscussionofinteractiveandnon-interactiveformsof PIDcontrolandintegratorwinduphasbeenaddedtoChapter5,anditalsonowincludesa reviseddiscussionofsteady-stateerrorandfuzzylogicandartificialneuralnetworksforcontrolapplications.Chapter10extendsthediscussionofthesteady-stateerror.Chapter13 extendsthediscussionofthe z-transformandbussystemsusedwithcontrolnetworks,introducingtheHARTCommunicationProtocol,FieldbusandCIPcontrolnetworks,andalso extendsthediscussionofsecurityissues.Anappendixhasbeenincludedonthebasicfeatures ofthe z-transform.

W.Bolton

Acknowledgement

Iamgratefultoallthosewhoreviewedthepreviouseditionandmadeveryhelpful suggestionsforthisnewedition.

1.1INTRODUCTION

Thischapterisanintroductiontotheinstrumentationsystemsusedformakingmeasurementsanddealswith thebasicelementsofsuchsystemsandtheterminologyusedtodescribetheirperformanceinuse.

1.1.1Systems

Theterm system willbefreelyusedthroughoutthisbook,andsohereisabriefexplanationofwhatismeant byasystemandhowwecanrepresentsystems.

Ifyouwanttouseanamplifierthenyoumightnotbeinterestedintheinternalworkingoftheamplifierbut whatoutputyoucanobtainforaparticularinput.Insuchasituationwecantalkoftheamplifierbeingasystem anddescribeitbymeansofspecifyinghowtheoutputisrelatedtotheinput.Withanengineeringsysteman engineerisoftenmoreinterestedintheinputsandoutputsofasystemthantheinternalworkingsofthecomponentelementsofthatsystem.

A system canbedefinedasanarrangementofpartswithinsomeboundarywhichworktogethertoprovide someformofoutputfromaspecifiedinputorinputs.Theboundarydividesthesystemfromtheenvironmentand thesysteminteractswiththeenvironmentbymeansofsignalscrossingtheboundaryfromtheenvironmenttothe system,i.e.inputs,andsignalscrossingtheboundaryfromthesystemtotheenvironment,i.e.outputs(Figure1.1).

Ausefulwayofrepresentingasystemisasa blockdiagram.Withintheboundarydescribedbytheboxoutline isthesystem,andinputstothesystemareshownbyarrowsenteringtheboxandoutputsbyarrowsleavingthe box. Figure1.2 illustratesthisforanelectricmotorsystem;thereisaninputofelectricalenergyandanoutputof

System

FIGURE1.1 Asystem. Electric

Inputs

FIGURE1.2 Electricmotorsystem. Input

FIGURE1.3 Amplifiersystem.

Interconnectedsystems.

mechanicalenergy,thoughyoumightconsiderthereisalsoanoutputofwasteheat.Theinterestisintherelationshipbetweentheoutputandtheinputratherthantheinternalscienceofthemotorandhowitoperates.Itis convenienttothinkofthesystemintheboxoperatingontheinputtoproducetheoutput.Thus,inthecaseofan amplifiersystem(Figure1.3)wecanthinkofthesystemmultiplyingtheinput V bysomefactor G,i.e.theamplifiergain,togivetheoutput GV

Oftenweareconcernedwithanumberoflinkedsystems.Forexample,wemighthaveaCDplayersystem linkedtoanamplifiersystem,which,inturn,islinkedtoaloudspeakersystem.Wecanthendrawthisasthree interconnectedboxes(Figure1.4)withtheoutputfromonesystembecomingtheinputtothenextsystem.Indrawingasystemasaseriesofinterconnectedblocks,itisnecessarytorecognisethatthelinesdrawntoconnectboxes indicateaflowofinformationinthedirectionindicatedbythearrowandnotnecessarilyphysicalconnections.

1.2INSTRUMENTATIONSYSTEMS

Thepurposeofan instrumentationsystem usedformakingmeasurementsistogivetheuseranumericalvalue correspondingtothevariablebeingmeasured.Thusathermometermaybeusedtogiveanumericalvaluefor thetemperatureofaliquid.Wemust,however,recognisethat,foravarietyofreasons,thisnumericalvaluemay notactuallybethetruevalueofthevariable.Thus,inthecaseofthethermometer,theremaybeerrorsdueto thelimitedaccuracyinthescalecalibration,orreadingerrorsduetothereadingfallingbetweentwoscalemarkings,orperhapserrorsduetotheinsertionofacoldthermometerintoahotliquid,loweringthetemperatureof theliquidandsoalteringthetemperaturebeingmeasured.Wethusconsiderameasurementsystemtohavean inputofthetruevalueofthevariablebeingmeasuredandanoutputofthemeasuredvalueofthatvariable (Figure1.5). Figure1.6 showssomeexamplesofsuchinstrumentationsystems.

An instrumentationsystem formakingmeasurementshasaninputofthetruevalueofthevariablebeingmeasuredandanoutputofthemeasuredvalue.Thisoutputmightbethenusedinacontrolsystemtocontrolthe variabletosomesetvalue.

1.2.1TheConstituentElementsofanInstrumentationSystem

Aninstrumentationsystemformakingmeasurementsconsistsofseveralelementswhichareusedtocarryout particularfunctions.Thesefunctionalelementsare:

1. Sensor

Thisistheelementofthesystemwhichiseffectivelyincontactwiththeprocessforwhichavariableis beingmeasuredandgivesanoutputwhichdependsinsomewayonthevalueofthevariableandwhichcan

FIGURE1.4

Input: true value of variable

Measurement system

Measurement system InputOutput

Pressure Value for the pressure (A)

Output: measured value of variable

FIGURE1.5 Aninstrumentation/measurementsystem.

Measurement system InputOutput Value for the speed (B) Speed

Measurement system InputOutput Value for the flow rate (C) Flow rate

Sensor: thermocouple

Input: temperature Output: e.m.f. (A)

Sensor: resistance element

Input: temperature Output: resistance change (B)

Input: Output: small e.m.f. larger voltage Wheatstone bridge Amplifier

Amplifier

FIGURE1.6 Examplesofinstrumentation systems:(A)pressuremeasurement,(B)speedometer,(C)flowratemeasurement.

FIGURE1.7 Sensors:(A)thermocouple,(B)resistance thermometer.

Output: FIGURE1.8 Examplesofsignalprocessing.

Input: resistance change Voltage change Larger voltage change (A) (B)

beusedbytherestofthemeasurementsystemtogiveavaluetoit.Forexample,athermocoupleisasensor whichhasaninputoftemperatureandanoutputofasmalle.m.f.(Figure1.7A)whichintherestofthe measurementsystemmightbeamplifiedtogiveareadingonameter.Anotherexampleofasensorisa resistancethermometerelementwhichhasaninputoftemperatureandanoutputofaresistancechange (Figure1.7B).

2. Signalprocessor

Thiselementtakestheoutputfromthesensorandconvertsitintoaformwhichissuitablefordisplayor onwardtransmissioninsomecontrolsystem.Inthecaseofthethermocouplethismaybeanamplifierto makethee.m.f.bigenoughtoregisteronameter(Figure1.8B).Thereoftenmaybemorethananitem, perhapsanelementwhichputstheoutputfromthesensorintoasuitableconditionforfurtherprocessingand thenanelementwhichprocessesthesignalsothatitcanbedisplayed.Theterm signalconditioner isusedfor anelementwhichconvertstheoutputofasensorintoasuitableformforfurtherprocessing.Thusinthecase oftheresistancethermometertheremightbeasignalconditioner,suchasaWheatstonebridge,which transformstheresistancechangeintoavoltagechange,thenanamplifiertomakethevoltagebigenoughfor display(Figure1.8B)orforuseinasystemusedtocontrolthetemperature.

3. Datapresentation

Thispresentsthemeasuredvalueinaformwhichenablesanobservertorecogniseit(Figure1.9).Thismay beviaadisplay,e.g.apointermovingacrossthescaleofameterorperhapsinformationonavisualdisplay unit(VDU).Alternatively,oradditionally,thesignalmayberecorded,e.g.inacomputermemory,or transmittedtosomeothersystemsuchasacontrolsystem.

Figure1.10 showshowthesebasicfunctionalelementsformameasurementsystem.

Display

Input:Output: signal from system signal in observable form

FIGURE1.9 Adatapresentationelement.

Input

Display Record Transmit True value of variable

Sensor Signal processor

Output Measured value of the input variable

Theterm transducer isoftenusedinrelationtomeasurementsystems.Transducersaredefinedasanelement thatconvertsachangeinsomephysicalvariableintoarelatedchangeinsomeotherphysicalvariable.Itisgenerallyusedforanelementthatconvertsachangeinsomephysicalvariableintoanelectricalsignalchange.Thus sensorscanbetransducers.However,ameasurementsystemmayusetransducers,inadditiontothesensor,in otherpartsofthesystemtoconvertsignalsinoneformtoanotherform.

EXAMPLE

Witharesistancethermometer,elementAtakesthetemperaturesignalandtransformsitintoresistancesignal,elementB transformstheresistancesignalintoacurrentsignal,elementCtransformsthecurrentsignalintoadisplayofamovement ofapointeracrossascale.Whichoftheseelementsis(a)thesensor,(b)thesignalprocessor,(c)thedatapresentation?

ThesensoriselementA,thesignalprocessorelementB,andthedatapresentationelementisC.Thesystemcanbe representedby Figure1.11.

Sensor Signal processor Data presentation

FIGURE1.10 Measurementsystemelements. ABC

Temperature signal Resistance change Current change Movement of pointer across a scale

FIGURE1.11 Example.

1.3PERFORMANCETERMS

Thefollowingaresomeofthemorecommontermsusedtodefinetheperformanceofmeasurementsystems andfunctionalelements.

1.3.1Resolution,Accuracy,andError

Resolution isthesmallestamountofaninputsignalchangethatcanbereliablydetectedbyaninstrument. Resolutionasstatedinamanufacturer’sspecificationsforaninstrumentisusuallytheleast-significantdigit (LSD)oftheinstrumentorinthecaseofasensorthesmallestchangethatcanbedetected.Forexample,the OMRONZX-Edisplacementsensorhasaresolutionof1 μm.

Accuracy istheextenttowhichthevalueindicatedbyameasurementsystemorelementmightbewrong. Forexample,athermometermayhaveanaccuracyof 6 0.1 C.Accuracyisoftenexpressedasapercentageofthefull

rangeoutputorfull-scaledeflection(f.s.d).Forexample,asystemmighthaveanaccuracyof 6 1%off.s.d.Ifthe full-scaledeflectionis,say,10A,thentheaccuracyis 6 0.1A.Theaccuracyisasummationofallthepossibleerrors thatarelikelytooccur,aswellastheaccuracytowhichthesystemorelementhasbeencalibrated.Asanillustration, theaccuracyofadigitalthermometerisquotedinthespecificationas:fullscaleaccuracy betterthan2%.

Theterm error isusedforthedifferencebetweentheresultofthemeasurementandthetruevalueofthequantitybeingmeasured,i.e.

Error 5 Measuredvalue Truevalue

Thusifthemeasuredvalueis10.1whenthetruevalueis10.0,theerroris 1 0.1.Ifthemeasuredvalueis9.9 whenthetruevalueis10.0,theerroris 0.1.

SeeAppendixAforadiscussionofhowtheaccuracyofavaluedeterminedforsomequantitycanbecomputed fromvaluesobtainedfromanumberofmeasurements,e.g.theaccuracyofthevalueofthedensityofsomematerial whencomputedfrommeasurementsofitsmassandvolume,boththemassandvolumemeasurementshavingerrors.

Errorscanariseinanumberofwaysandthefollowingdescribessomeoftheerrorsthatareencounteredin specificationsofinstrumentationsystems.

1. Hysteresiserror

Theterm hysteresiserror (Figure1.12)isusedforthedifferenceinoutputsgivenfromthesamevalueof quantitybeingmeasuredaccordingtowhetherthatvaluehasbeenreachedbyacontinuouslyincreasing changeoracontinuouslydecreasingchange.Thus,youmightobtainadifferentvaluefromathermometer usedtomeasurethesametemperatureofaliquidifitisreachedbytheliquidwarminguptothemeasured temperatureoritisreachedbytheliquidcoolingdowntothemeasuredtemperature.

2. Non-linearityerror

Theterm non-linearityerror (Figure1.13)isusedfortheerrorthatoccursasaresultofassumingalinear relationshipbetweentheinputandoutputovertheworkingrange,i.e.agraphofoutputplottedagainstinput isassumedtogiveastraightline.Fewsystemsorelements,however,haveatrulylinearrelationshipandthus errorsoccurasaresultoftheassumptionoflinearity.Linearityerrorisusuallyexpressedasapercentage erroroffullrangeorfullscaleoutput.Asanillustration,thenon-linearityerrorfortheOMRONZX-E displacementsensorisquotedas 6 0.5%.Asafurtherillustration,aloadcellisquotedinitsspecificationas having:non-linearityerror 6 0.03%offullrange,hysteresiserror 6 0.02%offullrange.

3. Insertionerror

Whenacoldthermometerisputintoahotliquidtomeasureitstemperature,thepresenceofthecold thermometerinthehotliquidchangesthetemperatureoftheliquid.Theliquidcoolsandsothethermometer endsupmeasuringalowertemperaturethanthatwhichexistedbeforethethermometerwasintroduced.Theact ofattemptingtomakethemeasurementhasmodifiedthetemperaturebeingmeasured.Thiseffectiscalled loading andtheconsequenceasan insertionerror.Ifwewantthismodificationtobesmall,thenthethermometer shouldhaveasmallheatcapacitycomparedwiththatofthe liquid.Asmallheatcapacitymeansthatverylittleheat isneededtochangeitstemperature.Thustheheattakenfromtheliquidisminimisedandsoitstemperature littleaffected.

Loadingisaproblemthatisoftenencounteredwhenmeasurementsarebeingmade.Forexample,whenan ammeterisinsertedintoacircuittomakeameasurementofthecircuitcurrent,itchangestheresistanceofthe circuitandsochangesthecurrentbeingmeasured(Figure1.14).Theactofattemptingtomakesucha

FIGURE1.12
FIGURE1.13

FIGURE1.14 Loadingwithanammeter:(A)circuitbeforemeter introduced,(B)extraresistanceintroducedbymeter.

FIGURE1.15 Loadingwithavoltmeter:(A)beforemeter,(B) withmeterpresent.

FIGURE1.16 Deadspace.

measurementhasmodifiedthecurrentthatwasbeingmeasured.Iftheeffectofinsertingtheammeteristobeas smallaspossibleandfortheammetertoindicatetheoriginalcurrent,theresistanceoftheammetermustbevery smallwhencomparedwiththatofthecircuit.

Whenavoltmeterisconnectedacrossaresistortomeasurethevoltageacrossit,thenwhatwehavedoneis connectedaresistance,thatofthevoltmeter,inparallelwiththeresistanceacrosswhichthevoltageistobe measured.Iftheresistanceofthevoltmeterisnotconsiderablyhigherthanthatoftheresistor,thecurrent throughtheresistorismarkedlychangedbythecurrentpassingthroughthemeterresistanceandsothevoltage beingmeasuredischanged(Figure1.15).Theactofattemptingtomakethemeasurementhasmodifiedthe voltagethatwasbeingmeasured.Iftheeffectofinsertingthevoltmeterinthecircuitistobeassmallaspossible, theresistanceofthevoltmetermustbemuchlargerthanthatoftheresistanceacrosswhichitisconnected.Only thenwillthecurrentbypassingtheresistorandpassingthroughthevoltmeterbeverysmallandsothevoltage notsignificantlychanged.

EXAMPLE

Twovoltmetersareavailable,onewitharesistanceof1kΩ andtheother1MΩ.Whichinstrumentshouldbeselectedif theindicatedvalueistobeclosesttothevoltagevaluethatexistedacrossa2kΩ resistorbeforethevoltmeterwas connectedacrossit?

The1MΩ voltmetershouldbechosen.Thisisbecausewhenitisinparallelwith2kΩ,lesscurrentwillflowthroughit thanifthe1kΩ voltmeterhadbeenusedandsothecurrentthroughtheresistorwillbeclosertoitsoriginalvalue.Hence theindicatedvoltagewillbeclosertothevaluethatexistedbeforethevoltmeterwasconnectedintothecircuit.

1.3.2Range

The range ofvariableofsystemisthelimitsbetweenwhichtheinputcanvary.Forexample,aresistancethermometersensormightbequotedashavingarangeof 200 Cto 1 800 C.Theterm deadband or deadspace is usedifthereisarangeofinputvaluesforwhichthereisnooutput. Figure1.16 illustratesthis.Forexample, bearingfrictioninaflowmeterusingarotormightmeanthatthereisnooutputuntiltheinputhasreacheda particularflowratethreshold.

1.3.3Precision,Repeatability,andReproducibility

Theterm precision isusedtodescribethedegreeoffreedomofameasurementsystemfromrandomerrors. Thus,ahighprecisionmeasurementinstrumentwillgiveonlyasmallspreadofreadingsifrepeatedreadings aretakenofthesamequantity.Alowprecisionmeasurementsystemwillgivealargespreadofreadings.For example,considerthefollowingtwosetsofreadingsobtainedforrepeatedmeasurementsofthesamequantity bytwodifferentinstruments:

20.1mm,20.2mm,20.1mm,20.0mm,20.1mm,20.1mm,20.0mm 19.9mm,20.3mm,20.0mm,20.5mm,20.2mm,19.8mm,20.3mm

Theresultsofthemeasurementgivevaluesscatteredab outsomevalue.Thefirstsetofresultsshowsasmallerspreadofreadingsthanthesecondandindicatesahigherdegreeofprecisionfortheinstrumentusedfor thefirstset.

Thetermsrepeatabilityandreproducibilityarewaysoftalkingaboutprecisioninspecificcontexts.Theterm repeatability isusedfortheabilityofameasurementsystemtogivethesamevalueforrepeatedmeasurementsof thesamevalueofavariable.Commoncausesoflackofrepeatabilityarerandomfluctuationsintheenvironment, e.g.changesintemperatureandhumidity.Theerrorarisingfromrepeatabilityisusuallyexpressedasapercentageofthefullrangeoutput.Forexample,apressuresensormightbequotedashavingarepeatabilityof 6 0.1% offullrange.Thuswitharangeof20kPa,thiswouldbeanerrorof 6 20Pa.Theterm reproducibility isused describetheabilityofasystemtogivethesameoutputwhenusedwithaconstantinputwiththesystemor elementsofthesystembeingdisconnectedfromitsinputandthenreinstalled.Theresultingerrorisusually expressedasapercentageofthefullrangeoutput.

Notethatprecisionshouldnotbeconfusedwithaccuracy.Highprecisiondoesnotmeanhighaccuracy. Ahighprecisioninstrumentcouldhavelowaccuracy. Figure1.17 illustratesthis.

1.3.4Sensitivity

The sensitivity indicateshowmuchtheoutputofaninstrumentsystemorsystemelementchangeswhenthe quantitybeingmeasuredchangesbyagivenamount,i.e.theratiooutput/input.Forexample,athermocouple mighthaveasensitivityof20 μV/ Candsogiveanoutputof20 μVforeach1 Cchangeintemperature.Thus,if wetakeaseriesofreadingsoftheoutputofaninstrumentforanumberofdifferentinputsandplotagraphof outputagainstinput(Figure1.18),thesensitivityistheslopeofthegraph.Forexample,aniron constantan thermocouplemightbequotedashavingasensitivityat0 Cof0.05mV/ C.

Thetermisalsofrequentlyusedtoindicatethesensitivitytoinputsotherthanthatbeingmeasured,i.e.environmentalchanges.Forexample,thesensitivityofasystemorelementmightbequotedtochangesintemperatureorperhapsfluctuationsinthemainsvoltagesupply.Thusapressuremeasurementsensormightbequoted ashavingatemperaturesensitivityof 6 0.1%ofthereadingper Cchangeintemperature.

FIGURE1.17 Precisionandaccuracy.

FIGURE1.18 Sensitivityasslopeofinput outputgraph.

Asanillustrationofthetypeofinformationavailableinaspecification,acommercialpressuremeasurement systemisquotedinthemanufacturer’sspecificationashaving:

Range0to10kPa

SupplyVoltage 6 15Vdc

Linearityerror 6 0.5%FS

Hysteresiserror 6 0.15%FS

Sensitivity5Vdcforfullrange

Thermalsensitivity 6 0.02%/ C

Thermalzerodrift0.02%/ CFS

Temperaturerange0to50 C

EXAMPLE

Aspringbalancehasitsdeflectionmeasuredforanumberofloadsandgavethefollowingresults.Determineitssensitivity.

Loadinkg0 1234

Deflectioninmm010203040

Figure1.19 showsthegraphofoutputagainstinput.Thegraphhasaslopeof10mm/kgandsothisisthesensitivity.

FIGURE1.19 Example.

EXAMPLE

Apressuremeasurementsystem(adiaphragmsensorgivingacapacitancechangewithoutputprocessedbyabridgecircuit anddisplayedonadigitaldisplay)isstatedashavingthefollowingcharacteristics.Explainthesignificanceoftheterms:

Range:0to125kPaand0to2500kPa

Accuracy: 6 1%ofthedisplayedreading

Temperaturesensitivity: 6 0.1%ofthereadingper C

Therangeindicatesthatthesystemcanbeusedtomeasurepressuresfrom0to125kPaor0to2500kPa.Theaccuracyis expressedasapercentageofthedisplayedreading,thusiftheinstrumentindicatesapressureof,say,100kPathentheerror willbe 6 1kPa.Thetemperaturesensitivityindicatesthatifthetemperaturechangesby1 Cthedisplayedreadingwillbein errorby 6 0.1%ofthevalue.Thusforapressureof,say,100kPatheerrorwillbe 6 0.1kPafora1 Ctemperaturechange.

1.3.5Stability

The stability ofasystemisitsabilitytogivethesameoutputwhenusedtomeasureaconstantinputovera periodoftime.Theterm drift isoftenusedtodescribethechangeinoutputthatoccursovertime.Thedriftmay beexpressedasapercentageofthefullrangeoutput.Theterm zerodrift isusedforthechangesthatoccurin outputwhenthereiszeroinput.

Steady-state reading

1.3.6DynamicCharacteristics

Thetermsgivenaboverefertowhatcanbetermedthe staticcharacteristics.Thesearethevaluesgivenwhen steady-stateconditionsoccur,i.e.thevaluesgivenwhenthesystemorelementhassettleddownafterhaving receivedsomeinput.The dynamiccharacteristics refertothebehaviourbetweenthetimethattheinputvalue changesandthetimethatthevaluegivenbythesystemorelementsettlesdowntothesteady-statevalue.For example, Figure1.20 showshowthereadingofananalogueammetermightchangewhenthecurrentisswitched on.Themeterpointeroscillatesbeforesettlingdowntogivethesteady-statereading.

Thefollowingaretermscommonlyusedfordynamiccharacteristics.

1. Responsetime

Thisisthetimewhichelapsesaftertheinputtoasystemorelementisabruptlyincreasedfromzerotoa constantvalueuptothepointatwhichthesystemorelementgivesanoutputcorrespondingtosome specifiedpercentage,e.g.95%,ofthevalueoftheinput.

2. Risetime

Thisisthetimetakenfortheoutputtorisetosomespecifiedpercentageofthesteady-stateoutput.Often therisetimereferstothetimetakenfortheoutputtorisefrom10%ofthesteady-statevalueto90%or95%of thesteady-statevalue.

3. Settlingtime

Thisisthetimetakenfortheoutputtosettletowithinsomepercentage,e.g.2%,ofthesteady-statevalue.

1.4DEPENDABILITY

Theterm dependability (seethepaper DependabilityandItsThreats:ATaxonomy byAlgurdisAvizienis,JeanClaudeLaprieandBrianRandell freelyavailableon-line)ishereusedtodescribetheabilityofasystemto deliveraservicethatcanbetrusted,servicebeingasystem’sbehaviourasperceivedbytheuser.OtherdefinitionsthathavebeenusedfordependabilityincludetheISOdefinitionasavailabilityperformanceanditsinfluencingfactors,namelyreliabilityperformance,maintainability,performanceandmaintenancesupport performance.AnIECdefinitioninvolvestheextenttowhichthesystemcanbereliedupontoperformexclusivelyandcorrectlythesystemtasksunderdefinedoperationalandenvironmentalconditionsoveradefined periodoftimeoratagiventime.

Dependabilityencompassesthefollowingattributes:

• Availability,i.e.readinessforcorrectservice;

• Reliability,i.e.theabilitytocontinuewithcorrectservice;

• Safety,i.e.theabilitytodeliveraservicewhichissafetotheuserandtheenvironment;

• Maintainability,i.e.theabilitytoundergorepairssuchastheremovaloffaultycomponents,preventive maintenanceandmodifications;and

• Integrity,i.e.theabsenceofimpropersystemalterations.

FIGURE1.20 Oscillationsofameterreading.

Thedependabilityspecificationforasystemneedstoincludetherequirementsfortheaboveattributesin termsoftheacceptablefrequencyandseverityoffailuresforthespecifieduseenvironment.

Ingeneral,themeanstoattaindependabilityinclude:

• Faultprevention,i.e.theabilitytopreventtheoccurrenceorintroductionoffaults;

• Faulttolerance,i.e.themeanstoavoidservicefailuresinthepresenceoffaults;

• Faultremoval,i.e.themeanstoreducethenumberandseverityoffaults;and

• Faultforecasting,i.e.themeanstoestimatethefutureoccurrenceandconsequencesoffaults.

Faultpreventionandfaulttoleranceaimsinvolvethegivingtothesystemoftheabilitytodeliveraservice thatcanbetrustedwhilefaultremovalandfaultforecastingaimtogiveconfidenceinthatabilityandthatthe dependabilityspecificationsareadequateandthesystemislikelytomeetthem.Faultscanariseduringthe developmentofthesystemorduringitsoperationandmaybeinternalfaultswithinthesystemorresultfrom faultsexternaltothesystemwhichpropagateserrorsintothesystem.Faultsmayoriginateinthehardwareof thesystemorbefaultsthataffectsoftwareusedwiththesystem.Thecauseofafaultmaybearesultofhuman actions,possiblymaliciousorsimplyomissionssuchaswrongsettingofparameters.Maliciousactionscanbe designedtodisruptserviceoraccessconfidentialinformationandinvolvesuchelementsasaTrojanhorseor virus.Thepaperreferredtoearlier,i.e. DependabilityandItsthreats:ATaxonomy,givesaclassificationoffaults thatcanoccuras:

• Thephaseofsystemlifeduringwhichfaultsoccurduringthedevelopmentofthesystem,duringmaintenance whenitisinuse,andproceduresusedtooperateormaintainthesystem;

• Thelocationoffaults:internaltothesystemorexternal;

• Thephenomenologicalcauseofthefaults:naturalfaultsthatnaturallyoccurwithouthumanintervention,and human-madefaultsasaresultofhumanactions;

• Thedimensioninwhichfaultsoccurinhardwareorsoftware;

• Howthefaultswereintroduced:maliciousornon-malicious;

• Theintentofthehumanorhumanswhointroducedthefaults:deliberateornon-deliberate;

• Howthehumanintroducedthefaults:accidentalorincompetence;and

• Thepersistenceofthefaults:permanentortransient.

Maintainabilityforasysteminvolvesbothcorrectivemaintenancewithrepairsfortheremovaloffaultsand preventativemaintenanceinwhichrepairsarecarriedoutinanticipationoffailures.Maintenancealsoinvolves adjustmentsinresponsetoenvironmentalchangesandaugmentationofthesystem’sfunction.

1.4.1Reliability

Ifyoutossacointentimesyoumightfind,forexample,thatitlandsheadsuppermostsixtimesoutofthe ten.If,however,youtossthecoinforaverylargenumberoftimesthenitislikelythatitwilllandheadsuppermosthalfofthetimes.Theprobabilityofitlandingheadsuppermostissaidtobehalf.The probability ofaparticulareventoccurringisdefinedasbeing

Probability 5

Numberofoccurencesoftheevent

Totalnumberoftrials

Whenthetotalnumberoftrialsisverylarge.Theprobabilityofthecoinlandingwitheitheraheadsortails uppermostislikelytobe1,sinceeverytimethecoinistossedthiseventwilloccur.Aprobabilityof1meansa certaintythattheeventwilltakeplaceeverytime.Theprobabilityofthecoinlandingstandingonedgecanbe consideredtobezero,sincethenumberofoccurrencesofsuchaneventiszero.Theclosertheprobabilityisto 1themorefrequentaneventwilloccur;thecloseritistozerothelessfrequentitwilloccur.

Reliabilityisanimportantrequirementofameasurementsystem.The reliability ofameasurementsystem,or elementinsuchasystem,isdefinedasbeingtheprobabilitythatitwilloperatetoanagreedlevelofperformance,foraspecifiedperiod,subjecttospecifiedenvironmentalconditions.Theagreedlevelofperformance mightbethatthemeasurementsystemgivesaparticularaccuracy.Thereliabilityofameasurementsystemis likelytochangewithtimeasaresultofperhapsspringsslowlystretchingwithtime,resistancevalueschanging

asaresultofmoistureabsorption,wearoncontactsandgeneraldamageduetoenvironmentalconditions.For example,justafterameasurementsystemhasbeencalibrated,thereliabilityshouldbe1.However,afterperhaps 6monthsthereliabilitymighthavedroppedto0.7.Thusthesystemcannotthenbereliedontoalwaysgivethe requiredaccuracyofmeasurement,ittypicallyonlygivestherequiredaccuracyseventimesintenmeasurements,seventytimesinahundredmeasurements.

Ahighreliabilitysystemwillhavealowfailurerate. Failurerate isthenumberoftimesduringsomeperiodof timethatthesystemfailstomeettherequiredlevelofperformance,i.e.:

Numberoffailures

Failurerate 5

Numberofsystemsobserved 3 Timeobserved

Afailurerateof0.4peryearmeansthatinoneyear,iftensystemsareobserved,4willfailtomeetthe requiredlevelofperformance.If100systemsareobserved,40willfailtomeettherequiredlevelofperformance. Failurerateisaffectedbyenvironmentalconditions.Forexample,thefailurerateforatemperaturemeasurement systemusedinhot,dusty,humid,corrosiveconditionsmightbe1.2peryear,whileforthesamesystemusedin dry,cool,non-corrosiveenvironmentitmightbe0.3peryear.

Failureratesaregenerallyquantifiedbygivingthe meantimebetweenfailures (MTBF).Thisisastatistical representationofthereliabilityin thatwhileitdoesnotgivethetimetofailureforaparticularexampleof thesystemitdoesrepresentthetimetofailurewhen thetimesforalotoftheexamplesofthatsystemare considered.

Withameasurementsystemconsistingofanumberofelements,failureoccurswhenjustoneoftheelements failstoreachtherequiredperformance.Thusinasystemforthemeasurementofthetemperatureofafluidin someplantwemighthaveathermocouple,anamplifier,andameter.Thefailurerateislikelytobehighestfor thethermocouplesincethatistheelementincontactwiththefluidwhiletheotherelementsarelikelytobein thecontrolledatmosphereofacontrolroom.Thereliabilityofthesystemmightthusbemarkedlyimprovedby choosingmaterialsforthethermocouplewhichresistattackbythefluid.Thusitmightbeinastainlesssteel sheathtopreventfluidcomingintodirectcontactwiththethermocouplewires.

EXAMPLE

ThefailurerateforapressuremeasurementsystemusedinfactoryAisfoundtobe1.0peryearwhilethesystemused infactoryBis3.0peryear.Whichfactoryhasthemostreliablepressuremeasurementsystem?

Thehigherthereliabilitythelowerthefailurerate.ThusfactoryAhasthemorereliablesystem.Thefailurerateof 1.0peryearmeansthatif100instrumentsarecheckedoveraperiodofayear,100failureswillbefound,i.e.onaverage eachinstrumentisfailingonce.Thefailurerateof3.0meansthatif100instrumentsarecheckedoveraperiodofayear, 300failureswillbefound,i.e.instrumentsarefailingmorethanonceintheyear.

1.5REQUIREMENTS

Themainrequirementofameasurementsystemis fitnessforpurpose.Thismeansthatif,forexample,alength ofaproducthastobemeasuredtoacertainaccuracythatthemeasurementsystemisabletobeusedtocarry outsuchameasurementtothataccuracy.Forexample,alengthmeasurementsystemmightbequotedashaving anaccuracyof 6 1mm.Thiswouldmeanthatallthelengthvaluesitgivesareonlyguaranteedtothisaccuracy, e.g.forameasurementwhichgavealengthof120mmtheactualvaluecouldonlybeguaranteedtobebetween 119and121mm.Iftherequirementisthatthelengthcanbemeasuredtoanaccuracyof 6 1mmthenthesystem isfitforthatpurpose.If,however,thecriterionisforasystemwithanaccuracyof 6 0.5mmthenthesystemis notfitforthatpurpose.

Inordertodelivertherequiredaccuracy,themeasurementsystemmusthavebeencalibratedtogivethataccuracy. Calibration istheprocessofcomparingtheoutputofameasurementsystemagainststandardsofknownaccuracy.Thestandardsmaybeothermeasurementsystemswhicharekeptspeciallyforcalibrationdutiesorsome meansofdefiningstandardvalues.Inmanycompaniessomeinstrumentsanditemssuchasstandardresistorsand cellsarekeptinacompanystandardsdepartmentandusedsolelyforcalibrationpurposes.

1.5.1Calibration

Calibration shouldbecarriedoutusingequipmentwhichcanbetraceablebacktonationalstandardswitha separatecalibrationrecordkeptforeachmeasurementinstrument.Thisrecordislikelytocontainadescription oftheinstrumentanditsreferencenumber,thecalibrationdate,thecalibrationresults,howfrequentlytheinstrumentistobecalibrated,andprobablydetailsofthecalibrationproceduretobeused,detailsofanyrepairsor modificationsmadetotheinstrument,andanylimitationsonitsuse.

The nationalstandards aredefinedbyinternationalagreementandaremaintainedbynationalestablishments, e.g.theNationalPhysicalLaboratoryinGreatBritainandtheNationalBureauofStandardsintheUnitedStates. Therearesevensuch primarystandards,andtwo supplementary ones,theprimaryonesbeing:

1. Mass

ThekilogramisdefinedbysettingPlanck’sconstant h toexactly662607015 3 10 34 Jsgiventhedefinitions ofthemetreandsecond.Then1kgis h/(662607015 3 10 34).

2. Length

Thelengthstandard,themetre,isdefinedasthedistancetravelledbylightinavacuumin1/(299792458) second.

3. Time

Thetimestandard,thesecond,isdefinedasatimedurationof9192631770periodsofoscillationofthe radiationemittedbythecaesium-133atomunderpreciselydefinedconditionsofresonance.

4. Current

Thecurrentstandard,theampere,isdefinedastheflowof1/(602176634 3 10 19)timestheelementary charge e persecond.

5. Temperature

Thekelvin(K)istheunitoftemperatureandisdefinedbysettingthenumericalvalueoftheBoltzmann constant k tobe1380649 3 10 23 J/Kgiventhedefinitionsofthekilogram,metreandsecond.

6. Luminousintensity

Thecandelaisdefinedastheluminousintensity,inagivendirection,ofaspecifiedsourcethatemits monochromaticradiationoffrequency540 3 1012 Hzandthathasaradiantintensityof1/683wattperunit steradian(aunitsolidangle,seelater).

7. Amountofsubstance

Themoleisdefinedastheamountofsubstanceofexactly602214076 3 1023 elementaryentities.

The supplementarystandards are:

1. Planeangle

Theradianistheplaneanglebetweentworadiiofacirclewhichcutsoffonthecircumferenceanarcwith alengthequaltotheradius(Figure1.21).

2. Solidangle

Thesteradianisthesolidangleofaconewhich,havingitsvertexinthecentreofthesphere,cutsoffan areaofthesurfaceofthesphereequaltothesquareoftheradius(Figure1.22).

Primarystandardsareusedtodefinenationalstandards,notonlyintheprimaryquantitiesbutalsoinother quantitieswhichcanbederivedfromthem.Forexample,aresistancestandardofacoilofmanganinwireis definedintermsoftheprimaryquantitiesoflength,mass,time,andcurrent.Typicallythesenationalstandards

inturnareusedtodefinereferencestandardswhichcanbeusedbynationalbodiesforthecalibrationof standardswhichareheldincalibrationcentres.

Theequipmentusedinthecalibrationofaninstrumentineverydaycompanyuseislikelytobe traceable back tonationalstandardsinthefollowingway:

1. Nationalstandardsareusedtocalibratestandardsforcalibrationcentres.

2. Calibrationcentrestandardsareusedtocalibratestandardsforinstrumentmanufacturers.

3. Standardisedinstrumentsfrominstrumentmanufacturersareusedtoprovidein-companystandards.

4. In-companystandardsareusedtocalibrateprocessinstruments.

Thereisasimpletraceabilitychainfromtheinstrumentusedinaprocessbacktonationalstandards (Figure1.23).Inthecaseof,say,aglassbulbthermometer,thetraceabilitymightbe:

1. Nationalstandardoffixedthermodynamictemperaturepoints.

2. Calibrationcentrestandardofaplatinumresistancethermometerwithanaccuracyof 6 0.005 C.

3. Anin-companystandardofaplatinumresistancethermometerwithanaccuracyof 6 0.01 C.

4. Theprocessinstrumentofaglassbulbthermometerwithanaccuracyof 6 0.1 C.

1.5.2SafetySystems

Statutorysafetyregulationslaydowntheresponsibilitiesofemployersandemployeesforsafetyinthe workplace.Theseincludeforemployersthedutyto:

• Ensurethatprocessplantisoperatedandmaintainedinasafewaysothatthehealthandsafetyofemployees isprotected.

• Provideamonitoringandshutdownsystemforprocessesthatmightresultinhazardousconditions.

Employeesalsohavedutiesto:

• Takereasonablecareoftheirownsafetyandthesafetyofothers.

• Avoidmisusingordamagingequipmentthatisdesignedtoprotectpeople’ssafety. Thus,inthedesignofmeasurementsystems,dueregardhastobepaidtosafetybothintheirinstallationand operation.Thus:

• Thefailureofanysinglecomponentinasystemshouldnotcreateadangeroussituation.

• Afailurewhichresultsincableopenorshortcircuitsorshortcircuitingtogroundshouldnotcreatea dangeroussituation.

FIGURE1.23 Traceabilitychain.

• Foreseeablemodesoffailureshouldbeconsideredforfail-safedesignsothat,intheeventoffailure,the systemperhapsswitchesoffintoasafecondition.

• Systemsshouldbeeasilycheckedandreadilyunderstood.

Themainrisksfromelectricalinstrumentationareelectrocutionandthepossibilityofcausingafireorexplosion asaconsequenceofperhapscablesorcomponentsoverheatingorarcingsparksoccurringinanexplosiveatmosphere.Thusitisnecessarytoensurethatanindividualcannotbecomeconnectedbetweentwopointswithapotentialdifferencegreaterthanabout30Vandthisrequiresthecarefuldesignofearthingsothatthereisalwaysan adequateearthingreturnpathtooperateanyprotectivedeviceintheeventofafaultoccurring.

PROBLEMS

Questions1to5havefouransweroptions:A.B,C,andD Choosethecorrectanswerfromtheansweroptions

1. DecidewhethereachofthesestatementsisTrue(T)orFalse(F).

Sensorsinameasurementsystemhave:

i. Aninputofthevariablebeingmeasured.

ii. Anoutputofasignalinaformsuitableforfurtherprocessinginthemeasurementsystem.

WhichoptionBESTdescribesthetwostatements?

A. (i)T(ii)T

B. (i)T(ii)F

C. (i)F(ii)T

D. (i)F(ii)F

2. Thesignalconditionerelementinameasurementsystem:

A. Givesanoutputsignaldependentonthetemperature.

B. Changesthetemperaturesignaltoacurrentsignal.

C. Takestheoutputfromthesensorandmakesitbigger.

D. Givesanoutputdisplay.

3. DecidewhethereachofthesestatementsisTrue(T)orFalse(F). Thediscrepancybetweenthemeasuredvalueofthecurrentinanelectricalcircuitandthevaluebeforethe measurementsystem,anammeter,wasinsertedinthecircuitisbiggerthelarger: i. Theresistanceofthemeter.

ii. Theresistanceofthecircuit.

WhichoptionBESTdescribesthetwostatements?

A. (i)T(ii)T

B. (i)T(ii)F

C. (i)F(ii)T

D. (i)F(ii)F

4. DecidewhethereachofthesestatementsisTrue(T)orFalse(F). Ahighlyreliablemeasurementsystemisonewherethereisahighchancethatthesystemwill: i. Haveahighmeantimebetweenfailures.

ii. Haveahighprobabilityoffailure.

WhichoptionBESTdescribesthetwostatements?

A. (i)T(ii)T

B. (i)T(ii)F

C. (i)F(ii)T

D. (i)F(ii)F

5. DecidewhethereachofthesestatementsisTrue(T)orFalse(F). Ameasurementsystemwhichhasalackofrepeatabilityisonewheretherecouldbe: i. Randomfluctuationsinthevaluesgivenbyrepeatedmeasurementsofthesamevariable. ii. Fluctuationsinthevaluesobtainedbyrepeatingmeasurementsoveranumberofsamples. WhichoptionBESTdescribesthetwostatements?

A. (i)T(ii)T

B. (i)T(ii)F

C. (i)F(ii)T

D. (i)F(ii)F

6. Listandexplainthefunctionalelementsofameasurementsystem.

7. Explaintheterms(a)reliabilityand(b)repeatabilitywhenappliedtoameasurementsystem.

8. Explainwhatismeantbycalibrationstandardshavingtobetraceabletonationalstandards.

9. Explainwhatismeantby‘fitnessforpurpose’whenappliedtoameasurementsystem.

10. Thereliabilityofameasurementsystemissaidtobe0.6.Whatdoesthismean?

11. Themeasurementinstrumentsusedinthetoolroomofacompanyarefoundtohaveafailurerateof0.01per year.Whatdoesthismean?

12. Determinethesensitivityoftheinstrumentsthatgavethefollowingreadings: (a)

Loadkg0 2468

Deflectionmm018365472

(b)

Temperature C010203040

VoltagemV00.591.191.802.42

(c)

LoadN 01234

ChargepC 036912

13. Calibrationofavoltmetergavethefollowingdata.Determinethemaximumhysteresiserrorasapercentage ofthefull-scalerange.

Increasinginput:

StandardmV01.02.03.04.0

VoltmetermV01.01.92.94.0

Decreasinginput:

StandardmV4.03.02.01.00

VoltmetermV4.03.02.11.10

InstrumentationSystemElements

OUTLINE

2.1Introduction18

2.2DisplacementSensors18

2.2.1Potentiometer18

2.2.2Strain-GaugedElement19

2.2.3CapacitiveElement20

2.2.4LinearVariableDifferentialTransformer21

2.2.5OpticalEncoders21

2.2.6Moire ´ Fringes22

2.2.7OpticalProximitySensors23

2.2.8MechanicalSwitches24

2.2.9CapacitiveProximitySensor25

2.2.10InductivityProximitySensor26

2.3SpeedSensors26

2.3.1OpticalMethods26

2.3.2IncrementalEncoder26

2.3.3Tachogenerator26

2.4FluidPressureSensors26

2.4.1DiaphragmSensor27

2.4.2PiezoelectricSensor28

2.4.3BourdonTube28

2.5FluidFlow29

2.5.1DifferentialPressureMethods29

2.5.2TurbineMeter31

2.5.3UltrasonicTimeofFlightFlowMeter32

2.5.4VortexFlowRateMethod32

2.5.5CoriolisFlowMeter33

2.6LiquidLevel33

2.6.1Floats34

2.6.2DisplacerGauge34

2.6.3DifferentialPressure34

2.6.4LoadCell34

2.6.5ElectricalConductivityLevelIndicator35

2.6.6CapacitiveLevelIndicator35

2.6.7UltrasonicLevelGauge35

2.6.8NucleonicLevelIndicators36

2.7TemperatureSensors36

2.7.1BimetallicStrips36

2.7.2LiquidinGlassThermometers36

2.7.3ResistanceTemperatureDetectors(RTDs)36

2.7.4Thermistors37

2.7.5Thermocouples37

2.7.6ThermodiodesandTransistors40

2.7.7Pyrometers40

2.8SensorSelection41

2.9SignalProcessing42

2.9.1ResistancetoVoltageConverter42

2.9.2TemperatureCompensation45

2.9.3ThermocoupleCompensation45

2.9.4Protection47

2.9.5Analogue-to-DigitalConversions47

2.9.6Digital-to-AnalogueConversions50

2.9.7MicrocontrollerSystems51

2.9.8Op-Amps52

2.9.9Pressure-to-CurrentConverter56

2.10SignalTransmission56 2.10.1Noise59

2.11SmartSystems60 2.11.1MEMS61

2.12DataPresentationElement62

2.12.1Indicator62

2.12.2IlluminativeDisplays62

2.12.3GraphicalUserInterface(GUI)64

2.12.4DataLoggers64

2.12.5Printers65 Problems66

2.1INTRODUCTION

Thischapterdiscussesthesensors,signalprocessors,anddatapresentationelementscommonlyusedinengineering.Theterm sensor isusedforanelementwhichproducesasignalrelatingtothequantitybeingmeasured. Theterm signalprocessor isusedfortheelementthattakestheoutputfromthesensorandconvertsitintoaform whichissuitablefordatapresentation. Datapresentation iswherethedataisdisplayed,recorded,ortransmitted tosomecontrolsystem.

2.2DISPLACEMENTSENSORS

Adisplacementsensorishereconsideredtobeonethatcanbeusedto:

1. Measurealineardisplacement,i.e.achangeinlinearposition.Thismight,forexample,bethechangein lineardisplacementofasensorasaresultofachangeinthethicknessofsheetmetalemergingfromrollers.

2. Measureanangulardisplacement,i.e.achangeinangularposition.Thismight,forexample,bethechange inangulardisplacementofadriveshaft.

3. Detectmotion,e.g.thismightbeaspartofanalarmorautomaticlightsystem,wherebyanalarmis soundedoralightswitchedonwhenthereissomemovementofanobjectwithinthe‘view’ofthesensor.

4. Detectthepresenceofsomeobject,i.e.aproximitysensor.Thismightbeinanautomaticmachiningsystem whereatoolisactivatedwhenthepresenceofaworkpieceissensedasbeinginposition.

Displacementsensorsfallintotwogroups:thosethatmakedirectcontactwiththeobjectbeingmonitored,by springloadingormechanicalconnectionwiththeobject,andthosewhicharenon-contacting.Forthoselinear displacementmethodsinvolvingcontact,thereisusuallyasensingshaftwhichisindirectcontactwiththeobject beingmonitored,thedisplacementofthisshaftisthenbeingmonitoredbyasensor.Thisshaftmovementmay beusedtocausechangesinelectricalvoltage,resistance,capacitance,ormutualinductance.Forangulardisplacementmethodsinvolvingmechanicalconnection,therotationofashaftmightdirectlydrive,throughgears,the rotationofthesensorelement,thisperhapsgeneratingane.m.f.Non-contactingproximitysensorsmightconsist ofabeamofinfraredlightbeingbrokenbythepresenceoftheobjectbeingmonitored,thesensorthengivinga voltagesignalindicatingthebreakingofthebeam,orperhapsthebeambeingreflectedfromtheobjectbeing monitored,thesensorgivingavoltageindicatingthatthereflectedbeamhasbeendetected.Contactingproximity sensorsmightbejustmechanicalswitcheswhicharetrippedbythepresenceoftheobject,thetermlimitswitch beingused.Thefollowingareexamplesofdisplacementsensors.

2.2.1Potentiometer

A potentiometer consistsofaresistanceelementwithaslidingcontactwhichcanbemovedoverthelengthof theelementandconnectedasshownin Figure2.1.Withaconstantsupplyvoltage Vs,theoutputvoltage Vo betweenterminals1and2isafractionoftheinputvoltage,thefractiondependingontheratiooftheresistance R12 betweenterminals1and2comparedwiththetotalresistance R oftheentirelengthofthetrackacrosswhich thesupplyvoltageisconnected.Thus Vo/Vs 5 R12/R.Ifthetrackhasaconstantresistanceperunitlength,the outputisproportionaltothedisplacementofthesliderfromposition1.Arotarypotentiometerconsistsofacoil

FIGURE2.1 Potentiometer.

ofwirewrappedroundintoacirculartrack,oracircularfilmofconductiveplasticoraceramic metalmix termedacermet,overwhicharotatableslidingcontactcanberotated.Henceanangulardisplacementcanbe convertedintoapotentialdifference.Lineartrackscanbeusedforlineardisplacements.

Withawire-woundtracktheoutputvoltagedoesnotcontinuouslyvaryasthesliderismovedoverthetrack butgoesinsmalljumpsastheslidermovesfromoneturnofwiretothenext.Thisproblemdoesnotoccurwith aconductiveplasticorthecermettrack.Thus,thesmallestchangeindisplacementwhichwillgiverisetoa changeinoutput,i.e.theresolution,tendstobemuchsmallerforplastictracksthanwire-woundtracks.Errors duetonon-linearityofthetrackforwiretrackstendtorangefromlessthan0.1%toabout1%ofthefullrange outputandforconductiveplasticscanbeaslowasabout0.05%.Thetrackresistanceforwire-woundpotentiometerstendstorangefromabout20 Ω to200kΩ andforconductiveplasticfromabout500 Ω to80kΩ. Conductiveplastichasahighertemperaturecoefficientofresistancethanwireandsotemperaturechangeshave agreatereffectonaccuracy.Theresolutionofsuchasensordependsonitsconstruction.Ifitisawire-wound coilwitharotatableslidingcontactthenthefinerthewirethehighertheresolution.Thusasensorwith25turns permmwouldhavearesolutionof 6 40 μm.Suchasensorhasafastresponsetimeandalowcost.

Thefollowingisanexampleofpartofthespecificationofacommerciallyavailabledisplacementsensorusing aplasticconductingpotentiometertrack:

Rangesfrom0to10mmto0to2m

Non-linearityerror 6 0.1%offullrange

Resolution 6 0.02%offullrange

Temperaturesensitivity 6 120partspermillion/ C

Resolution 6 0.02%offullrange

Anapplicationofapotentiometeristosensethepositionoftheacceleratorpositioninanautomobileandfeed theinformationtotheenginecontrolsystem.Anotherpotentiometermightbeusedasthethrottleposition sensor.

2.2.2Strain-GaugedElement

Straingauges consistofametalfoilstrip(Figure2.2A),flatlengthofmetalwire(Figure2.2B),orastripofsemiconductormaterialwhichcanbestuckontosurfaceslikeapostagestamp.Whenthewire,foil,strip,orsemiconductorisstretched,itsresistance R changes.Thefractionalchangeinresistance ΔR/R isproportionaltothe strain ε,i.e.:

where G,theconstantofproportionality,istermedthe gaugefactor.

Metalstraingaugestypicallyhavegaugefactorsoftheorderof2.0.Whensuchastraingaugeisstretchedits resistanceincreases,andwhencompresseditsresistancedecreases.Strainis‘changeinlength/originallength’ andsotheresistancechangeofastraingaugeisameasurementofthechangeinlengthofthegaugeandhence thesurfacetowhichthestraingaugeisattached.Thusadisplacementsensormightbeconstructedbyattaching straingaugestoacantilever(Figure2.3),thefreeendofthecantileverbeingmovedasaresultofthelinear

FIGURE2.2 Straingauges.
FIGURE2.3 Strain-gaugedcantilever.

Another random document with no related content on Scribd:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.