Download ebooks file Sustainable water engineering theory and practice 1st edition ramesha chandrapp

Page 1


Sustainable Water Engineering Theory and Practice 1st Edition Ramesha Chandrappa

Visit to download the full and correct content document: https://textbookfull.com/product/sustainable-water-engineering-theory-and-practice-1s t-edition-ramesha-chandrappa/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Sustainable Air Pollution Management Theory and Practice 1st Edition Ramesha Chandrappa

https://textbookfull.com/product/sustainable-air-pollutionmanagement-theory-and-practice-1st-edition-ramesha-chandrappa/

Sustainable Development of Water Resources and Hydraulic Engineering in China Wei Dong

https://textbookfull.com/product/sustainable-development-ofwater-resources-and-hydraulic-engineering-in-china-wei-dong/

Transportation Engineering Theory Practice and Modeling 1st Edition Dusan Teodorovic

https://textbookfull.com/product/transportation-engineeringtheory-practice-and-modeling-1st-edition-dusan-teodorovic/

Water and Wastewater Engineering: Design Principles and Practice Second Edition Mackenzie L. Davis

https://textbookfull.com/product/water-and-wastewaterengineering-design-principles-and-practice-second-editionmackenzie-l-davis/

Theory and practice of water and wastewater treatment Second Edition. Edition Ronald L. Droste

https://textbookfull.com/product/theory-and-practice-of-waterand-wastewater-treatment-second-edition-edition-ronald-l-droste/

Reliability engineering theory and practice 8th Edition Birolini A

https://textbookfull.com/product/reliability-engineering-theoryand-practice-8th-edition-birolini-a/

Inclusive Innovation for Sustainable Development: Theory and Practice 1st Edition Nathaniel O. Agola

https://textbookfull.com/product/inclusive-innovation-forsustainable-development-theory-and-practice-1st-editionnathaniel-o-agola/

Engineering Optimization Theory and Practice 5th Edition Singiresu S. Rao

https://textbookfull.com/product/engineering-optimization-theoryand-practice-5th-edition-singiresu-s-rao/

Through life Engineering Services Motivation Theory and Practice 1st Edition Louis Redding

https://textbookfull.com/product/through-life-engineeringservices-motivation-theory-and-practice-1st-edition-louisredding/

SustainableWater Engineering

Theauthorsdedicatethebookto theirfamiliesandcolleagues

SustainableWater Engineering

TheoryandPractice

RameshaChandrappa DigantaB.Das

Thiseditionfirstpublished2014 ©2014JohnWiley&Sons,Ltd

Registeredoffice

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom

Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissiontoreuse thecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com.

TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright,Designs andPatentsAct1988.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorby anymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright,Designsand PatentsAct1988,withoutthepriorpermissionofthepublisher.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailablein electronicbooks.

Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesandproduct namesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespectiveowners.The publisherisnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook, theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookand specificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstanding thatthepublisherisnotengagedinrenderingprofessionalservicesandneitherthepublishernortheauthorshallbeliablefor damagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofacompetentprofessional shouldbesought.

Theadviceandstrategiescontainedhereinmaynotbesuitableforeverysituation.Inviewofongoingresearch,equipment modifications,changesingovernmentalregulations,andtheconstantflowofinformationrelatingtotheuseofexperimental reagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertor instructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.ThefactthatanorganizationorWebsiteisreferredtointhisworkas acitationand/orapotentialsourceoffurtherinformationdoesnotmeanthattheauthororthepublisherendorsestheinformation theorganizationorWebsitemayprovideorrecommendationsitmaymake.Further,readersshouldbeawarethatInternet Websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.No warrantymaybecreatedorextendedbyanypromotionalstatementsforthiswork.Neitherthepublishernortheauthorshallbe liableforanydamagesarisingherefrom.

LibraryofCongressCataloging-in-PublicationData

Chandrappa,Ramesha. Sustainableandwaterengineering:theoryandpractice/RameshaChandrappa,DigantaB.Das. pagescm

Includesindex. ISBN978-1-118-54104-3(cloth)

1.Waterquality.2.Water–Purification.3.Water-supply–Management.4.Hydraulicengineering. I.Das,D.B.(DigantaBhusan),1974–II.Title. TD370.C4842014 628.1028′ 6–dc23 2013050546

AcataloguerecordforthisbookisavailablefromtheBritishLibrary.

ISBN:9781118541043

Setin10/12ptTimesbyAptaraInc.,NewDelhi,India. 12014

Preface xi

Abbreviations xiii

Glossary xvii

1WaterCrisis1

1.1WaterResourceIssues6

1.1.1WaterFootprint8

1.2ClimateChangeandItsInfluenceonGlobalWaterResources9

1.3ProtectionandEnhancementofNaturalWatershedandAquifer Environments12

1.4WaterEngineeringforSustainableCoastalandOffshore Environments12

1.5EndangeringWorldPeaceandSecurity13

1.6AwarenessamongDecisionMakersandthePublicacrosstheWorld15

1.7CriteriaforSustainableWaterManagement16

1.8WaterScarcityandMillenniumDevelopmentGoals18

1.9LackofAccesstoCleanDrinkingWaterandSanitation19

1.10FragmentationofWaterManagement20

1.11EconomicsandFinancialAspects22

1.11.1WaterTreatmentandDistribution24

1.11.2WastewaterTreatment,CollectionandDisposal27

1.12LegalAspects28 References30

2RequirementsfortheSustainabilityofWaterSystems35

2.1HistoryofWaterDistributionandWastewaterCollection38

2.2IntegratedWaterManagement40

2.3SewerageTreatmentandUrbanPollutionManagement44

2.4ConventionalWaterSupply45

2.4.1Features49

2.4.2CapacityandPressureRequirements50

2.4.3DesignandHydraulicAnalysisofDistributionSystem52

2.4.4UnsustainableCharacteristics55

2.4.5SustainableApproach64

2.5ConventionalWastewaterCollectionSystems71

2.5.1Features71

2.5.2UnsustainableCharacteristics

3.4WaterQualityCharacteristicsofPotableDrinkingWaterand

4.2.4ModellingofTreatmentProcessestoAttainSustainability172

4.2.5Operation,Management,Financial,Socio-EconomicAspect173

4.3PreliminaryandPrimaryTreatment

4.3.1Screening

4.3.2Coarse-SolidReduction

4.3.3GreaseRemovalChamber

4.3.4FlowEqualization

4.3.5MixingandFlocculation

4.3.6Sedimentation

4.3.7Flotation

4.4SecondaryTreatment

4.4.1BiologicalTreatment

4.4.2Vermifiltration

4.4.3ChemicalTreatment

4.5TertiaryTreatment

4.5.2ActivatedCarbonTreatment

4.5.3IonExchange

4.5.4ForwardandReverseOsmosis,MembraneFiltration, MembraneBioreactor,MembraneDistillation,andElectro Dialysis

4.5.5AirStripping

4.5.6DisinfectionandFluoridation

4.5.7RemovalofSpecificConstituents

4.6EmergingTechnologies

4.6.1NanotechnologyappliedforWaterPurification

4.6.4Incineration

4.6.5Sono-Photo-FentonProcess

4.7ResidualManagement

4.7.5Composting

4.7.6Dewatering

4.7.7Incineration

4.7.8RemediationofContaminantsinSubsurface

4.8PortableWaterPurificationKit

4.9RequirementsofElectrical,InstrumentationandMechanicalEquipment inWaterandWastewaterTreatmenttoAchieveSustainability

4.9.1ElectricalEquipmentandEnergyRequirement

4.9.2PipingandInstrumentation

4.9.3MechanicalEquipmentRequirementsandRelatedIssues224

4.9.4SystemsandOperationalIssues

4.9.5Real-TimeControl

4.9.6IndicatorsofSustainablePerformance;SystemsApproachfor SustainabilityAssessmentofWaterInfrastructure

4.9.7Troubleshooting

5SustainableIndustrialWaterUseandWastewaterTreatment

5.1SustainablePrinciplesinIndustrialWaterUseandWastewaterTreatment237

5.1.1IndustrieswithHighDissolvedSolids

5.1.2Industries/ActivitieswithHighInorganicContent

Preface

Havingspenttwodecadesworkinginsustainabledevelopmentwefeelthatitisnotabedof roses.Problemsintheformofcorruption,illiteracy,datainadequacy,skilldeficienciesand theinactionofgovernmentsarekeepingmanypeopleawayfromadequatequalitywater.

Manybookshavebeenwrittenonwaterengineeringbuttheoriespublishedfourdecades backoftencannotbeusedtodaybecausethequantityandqualityofthewaterthatis availablehaschangedandsohastheworld’spopulationanditswaysofliving.Similarly thelargedamsbuiltinthepasthavenotproventobeenvironmentallyfriendlyandhave causedconflictsinmanycases.Conservingfloraandfaunahasbecomemoreimportantall overtheworldandeatingmeatwilljustleavealargewaterfootprint.

Sustainabilitydoesnothappenovernightandneedsinvestmentintermsofmoney, honesty,knowledge,informationandtime.Therehavebeensubstantialexamplesalloverthe worldwherethesustainableuseofwaterhasbeenpractised,settinganexampleforothers. Thisbookisapackageoftheoryandpracticeconcerningsustainableandunsustainable waterusepickedfromdifferentpartsoftheworld.Unlikebooksthatonlyelaborateon theoreticalknowledgeorsimplycriticize,thisbookmakesanefforttogobeyondtheories andtoexplainthepracticalworldweareexposedto.Allisnotwellallovertheworldbut atthesametimenotalliswrong.Thephotographsinthebookshowboththeinteresttaken insomepartsoftheworldandthenegligenceinotherparts.

WewouldliketothankDrVamanAcharya,D.R.KumaraswamyandS.NandaKumar ofKarnatakaStatePollutionControlBoard,Bangalore,India,fortheirencouragementin ourendeavour.

WewouldalsoliketothankS.Madhusudhan,AnilKumar,AmarYeshwanth,ofKarnatakaStatePollutionControlBoardandR.Savyasachi,K.Rahitha,N.Kamalammaand S.Rekhafortheirhelptowardsthecompletionofbook.WethanktheBritishCouncil,the SwedishInternationalAgencyandtheSwissDevelopmentCooperationfortheirfinancial aidextendedtothefirstauthorduringhiscareer.Theauthorsareextremelygratefultothe CentreforScienceandEnvironment,Delhi,IndiaandtheSwedishEnvironmentalAgency, Stockholm,forarrangingextensiveinternationaltrainingtothefirstauthorinSweden, whichwashelpfulandgaveanopportunitytotakethephotographspresentedinthisbook.

WethankJohnWileypublishersfortheirfaithinusandforinvestingtimeandresources. Wehaveworkedhardtomeettheexpectationofthepublishersandreadersandlookforward toanyfeedback.

Abbreviations

ACalternatingcurrent

ADPair-driedpulp

AFOamorphousferricoxide

AIDSacquiredimmunodeficiencysyndrome

ANNartificialneuralnetworks

AOPadvancedoxidationprocess

Asarsenic

ASPactivatedsludgeprocess

BODbiochemicaloxygendemand

BOFbasicoxygenfurnace

Br bromide

BrO3- bromateion

CaCO3 calciumcarbonate

CaCl2 calciumchloride

CandDconstructionanddemolition

Cdcadmium

Cecerium

CETPcommoneffluenttreatmentplant

CFLcompactfluorescentlamp

CNcyanide

CN cyanideion

Cocobalt

CODchemicaloxygendemand

CPcleanerproduction

Crchromium

CTMPchemithermalmechanicalpulping

Cucopper

DBPdisinfectionbyproductcontrol

DCdirectcurrent

DCBdichlorobenzine

DDDdichlorodiphenyldichloroethane

DDTdichlorodiphenyltrichloroethane

DMPdisastermanagementplan

Dydysprosium

EAFelectricarcfurnace

ECFelementalchlorinefree

xivAbbreviations

EIAenvironmentimpactassessment

Ererbium

FAOFoodandAgricultureOrganization

FDIforeigndirectinvestment

FTWfloatingtreatmentwetland

FDNPPFukushimaDai-ichiNuclearPowerPlant

Feiron

FOGfat,oil,grease

Gdgadolinium

GDPgrossdomesticproduct

GFCIground-faultcircuit-interrupters

GHGgreenhousegas

GPPgreenpublicprocurement

GTZGermantechnicalcooperation

Hbhaemoglobin

HCBHexoChloroBenezenes

HClhydrochloricacid

HEX-BCHHexachlorobicycloheptadiene,Bicyclo(2.2.1)hepta-2,5-diene

Hgmercury

HgCl2 mercurychloride

HgSO4 mercurysulfate

HIVhumanimmunodeficiencyvirus

H2 SO4 sulphuricacid

IARCInternationalAgencyforResearchonCancer

ICLEIInternationalCouncilforLocalEnvironmentalInitiatives

IFCInternationalFinanceCorporation

IFRCInternationalFederationofRedCrossandRedCrescent

IGESInstituteforGlobalEnvironmentalStrategies

IUCNInternationalUnionfortheConservationofNature

IWRMintegratedwaterresourcemanagement

KClpotassiumchloride

K2 Cr2 O7 potassiumdichromate

KSPCBKarnatakaStatePollutionControlBoard

kVAkilovolt-ampere

kWhkilowatthour

LaLanthanum

LDCleastdevelopedcountries

LEEDleadershipinenergyandenvironmentaldesign

LNWTlowornowastetechnology

lpdlitresperday

Lulutetium

MCBmonochlorobenzene

MCMmillioncubicmetres

MDGMillenniumDevelopmentGoal

MEDmulti-effectdistillation

metHbmethomoglobin

MLDmillionlitresperday

MLSSmixedliquorsuspendedsolids

Mnmanganese

MSDSmaterialsafetydatasheet

MSEWmechanicallystabilizedearthwall

MSFmultistageflashdistillation

NaClsodiumchloride

NaOHsodiumhydroxide

NAPLnonaqueousphaseliquid

Nbniobium

Ndneodymium

NDMA N-nitrosodimethylamine

NFnanofilter

NGOnongovernmentorganization

Ninickel

Ni(NO3 )2 nickelnitrate

NIOSHNationalInstituteforOccupationalSafetyandHealth

NO3 nitrate

NO3 nitrateion

NOxnitrogenoxide

NTOnanocrystallinetitaniumdioxide

NTUANationalTechnicalUniversityofAthens

OFoverflow

OSHAOccupationalSafetyandHealthAdministration

PAHspolynucleararomatichydrocarbons

Pblead

PCPpentachlorophenol

PIMpotentiallyinfectiousmaterial

PO4 phosphate

POTWpubliclyownedtreatmentworks

PPEpersonalprotectiveequipment

Prpraseodymium

PRBpermeablereactivebarriers

PVCpolyvinylchloride

RBCrotatingbiologicalcontactors

RFBriverbankfiltration

RIrapidinfiltration

ROreverseosmosis

RWIrecreationalwaterillnesses

SATsoil-aquifertreatmentsystems

Sbantimony

SBRsequentialbatchreactors

SCEsnowcoverextent

Seselenium

SIDSsmallislanddevelopingstates

Smsamarium

Abbreviationsxv

xviAbbreviations

SMZsurfactantmodifiedzeolite

Sntin

SO4 sulfate

SOCsyntheticorganiccompound

SRslowrate

STPsewagetreatmentplant

TAtechnologyassessment

Tbterbium

Tctechnetium

TCFtotalchlorinefree

TCUtruecolourunits

Ththorium

THMstriholomethanes

Tititanium

TKNtotalKjedalnitrogen

Tmthulium

TOCtotalorganiccompound

Uuranium

UDDTurinediversiondehydratingtoilets

UFWunaccounted-forwater

UNECAUnitedNationsEconomicCommissionforAfrica

UNEPUnitedNationalEnvironmentProtection

UNESCOUnitedNationsEducational,ScientificandCulturalOrganisation

UNICEFUnitedNationsChildrenFund

UPSuninterruptedpowersupply

USEPAUnitedStatesEnvironmentalProtectionAgency

VLHvolatileliquidhydrocarbons

VOCvolatileorganiccompounds

WCEDWorldCommissiononEnvironmentandDevelopment

WHOWorldHealthOrganization

WWFWorldWideFundforNature

WWTPwastewatertreatmentplant

Yyttrium

Ybytterbium

Znzinc

Zrzirconium

Glossary

Acidity: Thecapacityofwastewaterorwatertoneutralizebases.

Activatedsludge: Sludgegeneratedinwastewaterbythegrowthofmicrobesinaeration tanks.Inotherwordsitisflocculatedsludgeofmicro-organisms.

Advancedprimarytreatment: Primarytreatmentusingadditivesbeforetreatmentto augmentsettling.

Aeration: Theprocessofaddingairtowater.

Aerobicprocesses: Biologicaltreatmentprocessesinthepresenceofoxygen.

Aqua-privy: Watertighttankplacedimmediatelybelowthelatrinefloorwhereexcreta dropdirectlyintothewatertankthroughapipe.

Algae: Varietyofplantwithoutdistinctfunctionalplanttissue.

Algalbloom: Increaseinalgaepopulationinwater.

Alkalinity: Ameasureofasubstance’sabilitytoneutralizeacid.

Alumina: Syntheticallyproducedaluminiumoxidethatisusedasastartingmaterialfor theproductionofaluminiummetal.

Anaerobicprocesses: Biologicaltreatmentprocessesthatoccurintheabsenceofoxygen.

Anoxicdenitrification: Thisprocessisalsoknownasanaerobicdenitrification.Inthis processnitratenitrogenisconvertedtonitrogengasbiologicallyintheabsenceof oxygen.

Aquifer: Waterstoredinthesaturatedzonebelowthewatertable.

Attached-growthprocesses: Thebiologicaltreatmentprocessesinwhichthemicrobes areattachedtomedia.

Autotroph: Organismthatusescarbondioxideastheonlycarbonsource.

Backflowprevention: Preventingthereverseflowofwaterinwatersupplysystem.

Backflushvalve: three-waydiaphragmvalvesusedinfiltrationapplications.

Backpressure: Pressureopposingthefreeflowofliquid/gas;itcansuckforeignsubstances intothewater-supplysystem.

Backsiphonage: Backflowduetoadifferentialpressurethatsucksforeignsubstancesinto thewater-supplysystem.

Batchreactor: Reactorsthatareoperatedinbatches.

Biochemicaloxygendemand(BOD): Measureofthequantityofoxygenusedbymicrobes todegradeorganicmatter.

Biodegradability: Capableofbeingdecomposedbylivingthings,especiallymicroorganisms.

Biodiversity: Overalldiversityoforganismsintheworld.

Biogas: Mixtureofgasesreleasedfromanaerobicdigestion.

Biologicalwastewatertreatment: wastewatertreatmentusinglivingorganisms.

Biologicalnutrientremoval: Thetermappliedtotheremovalofnitrogenandphosphorus inbiologicaltreatmentprocesses.

Biosolids: Thenutrient-richorganicmaterialsfromthetreatmentofsludge.

Or Organic,richmaterialleftoverfromaerobicwastewatertreatment.

Or

Treatedsludgefromwastewatertreatment.

Blackwater: Wastewaterwithhighorganicandpathogencontent,consistingofurine, faeces,flushingwater,analcleansingwaterandgreywater.

Boilerfeedwater: Waterfedtoaboilerforthegenerationofsteam.

Boreholelatrine: Theboreholelatrineisanexcretadisposalsystemwhereaboreholeis combinedwithaslabaswellasasuperstructure.

Borewell: Wellsmadebydrillingboreholesintheearth.

Bottleirrigation: Thebottleisfirstfilledwithwaterandthenplacedinthegroundnextto theplantandwaterismadetotricklethroughit.

Brackishwater: Watercontaininglesssaltthansaltwaterandmoresaltthanfreshwater.

Brownwater: Waterconsistsoffaecesandflushwater.

Bund: Embankmentconstructedfromsoil.

Capnophilic: Organismsthatrequireincreasedcarbondioxide.

CarbonaceousBOD: BODexertedbycarbonfractionoforganicmatter.

Carbonsequestration: Theeliminationofatmosphericcarbondioxidebybiologicalor geologicalprocesses.

Chemicaloxygendemand(COD): Standardtechniquetomeasuretheamountoforganic compoundsthatcannotbeoxidizedbiologicallyinwater.

Chlorination: Aprocessinawater-treatmentsystemwherechlorineorachlorinecompoundisaddedtokillharmfulmicro-organismssuchasbacteria.

Clarifier: Atankusedforreducingtheconcentrationofsuspendedsolidspresentina liquid.

Clusterwastewatersystem: Wastewatercollectionandtreatmentsystem,whichserves someofthedwellingsinthecommunitybutlessthantheentirecommunity.

Coagulation: Aprocessofaggregationofcolloidalsuspendedsolidsbyfloc-forming chemicals.

Combinedsewer: Combiningthestormdrainagewithmunicipalsewersystems.

Constructedwetlands: Wetlandsdesignedandconstructedtotreatwastewater.

Cross-connection: Theresultofaconnectionbetweencontaminatedandnoncontaminated waterinawaternetwork.

Deadzone: Low-oxygen(hypoxic)areasintheoceans.

Decentralizedwastewatertreatment: Asystemdividedintogroupsorclusterswhere wastewateristreatedindependentlyinsteadofacentralizedsystem.

Denitrification: Microbiologicalprocesswherenitrities/nitratesarereducedtonitrogen gas,or,removingnitratebiologicallyandconvertingittonitrogengas.

Desalination: Processofremovingsaltfromwater.

Detentiontime: Thetimerequiredforaliquidtopassthroughatankatagivenrateof flow.

Dewatering: Removingwaterfromsludgeforfurtherhandlinganddisposal.

Directsurfacegroundwaterrecharge: Groundwaterrechargetotheaquiferviasoil percolation.

Disinfectionbyproduct: Chemicalbyproducts,formedafterdisinfection.

Downstreamecosystem: Ecosystemofalowerwatercourse.

Dripirrigation: Irrigationinwhichplantsareirrigatedthroughspecialdrippipes.

Dryingbed: Shallowpondswithdrainagelayersusedfortheseparationoftheliquidand solidfractionofsludge.

Dualflushtoilet: Flushtoiletdesignedwithtwohandles/buttonstoflushdifferentlevels ofwatertosavewater.

Economicinstruments: Fiscalandothereconomicincentivesalongwithdisincentivesto includeenvironmentalcostsaswellasbenefits.

Ecosystemservices: Theservicesprovidedbyecosystemlikehabitatforfloraandfauna, biologicaldiversity,oxygenproduction,biogeochemicalcyclesandsoforth.

End-of-pipeapproach: Waste-treatmentmethodsconductedattheendoftheprocess stream.

Enteropathogenicserotypes: E.coli strainsthatcancauseharmfuleffectstohumanbeings whenconsumedincontaminateddrinkingwater.

Eukaryotes: Organismswhosecellscontainanucleusaswellasotherorganellesenclosed withinmembranes.

Eutrophication: Aprocessoftransformationfromnutrient-deficitconditionstonutrientrichconditions,leadingtoalgalbloomsinwaterbodies.

Factorofsafety(safetyfactor): Capacityofasystembeyondtheexpectedloads.

Facultativeprocesses: Biologicaltreatmentprocessinwhichthemicrobescanfunctionin theabsenceorpresenceofoxygen.

Filamentousorganism: Threadlikebacteriaservingasthebackboneofflocformation.

Floc: Particulateorbacterialclumpsformedduringwastewatertreatment.

Flocculation: Theprocessofformingflocs.

Fogharvesting: Collectingfogforanthropogenicactivities.

Foodtomicro-organismratio(F/M): Amountoffood(BOD)availabletomicroorganismsperunitweightmicrobes(usuallyanalysedformixedliquorvolatilesuspendedsolids).

Freewatersurfacewetland: Aconstructedwetlandexposeddirectlytotheair.

Greeninfrastructure: Alsoknownasblue-greeninfrastructurewhichhighlightstheimportanceofnaturalenvironmentwhenmakingdecisionsaboutplanningtheuseofland.

Greywater: Wastewaterfrombaths,sinkandwashthatcanberecycledfor insitu consumption.

Gritchamber: Achamberortankinwhichprimaryinfluentissloweddowntoremove inorganicsolids.

Groundwater: Availablenaturalwaterfoundundergroundinthesoilorinbetweenrocks.

Headworks: Structureattheheadofawaterway.Inthecontextofwater/wastewater treatment,thecommencementofthetreatment.

Heavymetal: Heavymetalsarerelativelydensemetalslikecadmium,chromates,leadand mercury.

High-temperatureshort-timepasteurization: Passingthemilkthroughheatedaswellas cooledplatesortubes.

Humus: Adark-brownorblackmaterialconsistingchieflyofnonlivingorganicmaterial derivedfrommicrobialdegradationofplantandanimalsubstances.

Hydrolysis: Adecompositionprocessthatbreaksdownacompoundbyreactionwithwater.

Hypernatraemia: Aconditionwherebloodsodiumlevelistoohigh.

Imhofftank: Itistypeoftreatmentinwhichsolidssettleintheuppersettlingcompartments andsludgesinkstothebottomofthelowersettlingcompartmentwhereitisdecomposed.

Inconduithydropower: Productionofhydroelectricpowerinexistingmanmadewater conveyanceslikecanals,tunnels,pipelines,aqueducts,ditchesandflumes.

Indicatororganism: Organismsthatserveasameasureoftheenvironmentalconditions.

Industrialecology: Industrialecologyisconcernedwiththeflowofddandmaterials throughsystems.

Infiltrationbasins: Basinsusedforcollectingwaterforsurfacegroundwaterbypercolation.

Influent: Liquidthatentersintoaplace/process.Wastewaterenteringtreatmentplant.

Ionexchange: Processinwhichionsofonesubstancearereplacedbyionsofanother substance.

Lacustrine: Anylivingorganismsgrowingalongtheedgesoflakes.

Lamellaclarifier: Primaryclarificationdevicecomposedofarackofinclinedmetalplates tofiltermaterialsfromwaterthatflowacrosstheplate.

Leachate: Wastewaterthattricklesinlandfillorwastedumps.

Littoral/sublittoral: Anylivingorganismslivingalongcoastalareas.

Lockout: Theplacementofdevicestoseparateenergytoensurethatequipmenttobe servicedisoperatedtillthelockoutdeviceisremoved.

Macrophyte: Aquaticplantthatgrowsnearorinwater.

Microaerophilic: Organismsthatrequiredecreasedoxygen.

Mixedliquor: Thecombinationofwastewaterandreturnactivatedsludgeintheaeration tank.

Mixedliquorsuspendedsolids: Concentrationofsuspendedsolidscomprisingbiomass inanaerationtankintheactivatedsludgeprocess.

Mutagenic: Capableofinducingmutationandincreasingtherateofgrowth.

Organicloading: AmountofadditionalorganicmaterialsorBODappliedtothefilterper daypervolumeoffiltermedia.

Oxidationpond: Lagoondesignedtotreatsewagewastewaterbiologicallyinsecondary treatmentwiththeaidofsunlight,microbesandalgae.

Ozonation: Aprocessthatintroducesozoneintowatermolecules.

Pathogenicorganisms: Bacteriathatcancauseinfectiousdiseasesandharmfuleffectsto humanswheninfected.

Percolationbasins: Seepageofwaterthroughsoilundergravity.

Permaculture: Branchofecologicaldesign,ecologicalengineeringandenvironmental designthatdevelopssustainablearchitecture,humansettlementsandself-maintained agriculturalsystems.

Permeablereactivebarrier: Insitu treatmentzonethatpassivelycapturesaplumeof contaminantsandbreaksdownorremovesthecontaminants,releasinguncontaminated water.

Photochemicaloxidants: Chemicalsthatcanundergooxidationreactionsinthepresence oflight.

Photolysis: Aprocessofdecompositionofmoleculesbylight.

Phytoplankton: Theplantformsofplankton.

Plankton: Microscopicaquaticorganismsthatswimordriftweakly.

Pour-flushlatrine: Latrinesarefittedwithatrapforprovidingwaterseal.

Primarywastewatertreatment: Thefirstprocessusuallyassociatedwithmunicipalwastewatertreatmenttoremovethelargeinorganicsolidsandsettleoutsand andgrit.

Prokariotes: Agroupoforganismswhosecellslackamembrane-boundnucleus.

Quenching: Rapidcoolingofasubstancetoimpartcertainmaterialproperties.

ReggioEmilia: Approachtoteachingyoungchildrentoimprovecloserelationshipsthey sharewiththeirenvironment.

Salt-waterintrusion: Displacementoffreshsurface/groundwaterbythemovementofsalt water.

Sequentialbatchreactor: Aerobicwastewatertreatmentprocessthatcombinesreaction andsettlinginoneunit,therebydecreasingfootspace.

Sludge: Solidmattergeneratedfromwastewatertreatment.

Substrate: Organicmatterconvertedduringbiologicaltreatment.

Suspended-growthprocesses: Thebiologicaltreatmentprocessinwhichthemicrobes responsibleforthechangingoftheorganicmattertobiomass.

Swale: Grassedareaofdepression.

Tagout: Placementofatagoutdeviceonanenergy-isolatingdevicetoindicatethatthe energy-isolatingdeviceandequipmentarebeingcontrolledandshouldnotbeoperated untilthetagoutdeviceisremoved.

Thermotolerantcoliforms: Groupofbacteriathatcanwithstandandgrowatelevated temperatures.

TotalKjeldahlnitrogen: Ananalysistofindoutboththeammonianitrogenandtheorganic nitrogencontentoforganicsubstances.

Toxoplasmosis: Aninfectiousdiseasecausedby T.gondii harmfultohumanbeings. Symptomsincludelesionsofthecentralnervoussystemthatcancausebraindamage andblindness.

Turbidity: Thecapacityofsuspendedsolidsinwatertoscatter/absorblight.

Ultrafiltration: Akindofmembranefiltration.

Ultrasonic: Ultrasonicisadjectivereferringtoultrasound(soundwithafrequencymore thanthehigherlimitofhumanhearing(20kHz).

Ultravioletdisinfection: DisinfectionusingUVrays.

Ultravioletradiation: Radiationwithwavelengthsfromabout10nmto400nm.

Unconfinedaquifers: Saturatedpermeablesoilnotcappedbyimpermeablelayer.

Urbanheatisland: Phenomenonwherecentralurbanlocationswillbehotterthannearby ruralareas.

UV-ARadiation: UVradiationwithwavelengthintherangeof315and400nm.

UV-BRadiation: UVradiationwithwavelengthintherangeof280and315nm.

UV-CRadiation: UVradiationwithwavelengthbetween100and280nm.

Valency: Thevalencyofanatomorgroupisnumberofhydrogenatomsofthatcandisplace itorcombinewithitinformingcompounds.

Vatpasteurization: Heatingamaterialforalongperiodinavatfollowedbycooling.

Vector(inthecontextofepidemiology): Anyagent(micro-organism,personoranimal) thatcarriesandtransmitsapathogenintoanotherlivingorganism.

Waterseal: Thetrapthatretainsasmallquantityofwaterafterthefixture’suse.

Watershed: Areaoflandthatcontributesrainwatertoawaterbodyorstream.

Watertable: Toplevelofthegroundwater.

Wellcasing: Tubularmaterialthatgivessupporttothewallsoftheborehole.

Welldevelopment: Developmentproceduresdesignedtorestoreorimprovetheperformanceoftheborehole.

Wellrehabilitation: Cleaninganddisinfectionofthewellandwelldevelopmentprocedures toobtainqualitywater.

Wellremediation: Cleaningofoilwellstoimproveperformance.

Wellscreen: Filteringdevicethatpermitgroundwatertoenterthewell.

Wetwell: Undergroundpitusedtostorewastewater.

Windrowcomposting: Compostingprocessinwhichthematerialispiledupinelongated heapscalledwindrows.

Yellowwater: Urinemixedwithflushingwater.

Zoonosis: Diseasesthatoccurnormallyinanimalsandthataretransmittedtopeople.

Zooplankton: Theanimalformsofplankton.

1

WaterCrisis

Waterisessentialforlife;ourfoodcannotgrowwithoutwaterandmillionsofplantsand animalsliveinit.Despitethis,itistakenforgrantedinmanypartsoftheworld.Attimes itmayfeelasthoughthereisaninfinitestockoffreshwaterbutavailablefreshwaterin theworldislessthan1%ofallthewateronearth.Thehumanpopulationhasincreased enormouslyanddatashowthatfreshwaterspeciesarethreatenedbyhumanactivities. Theaveragepopulationoffreshwaterspeciesfellbyaround47%between1970and2000 (UNESCO,2006).Theproblemswefacetodayarenumerousbutweexperienceonlysome ofthemdirectly.Forexample,whilemanypeopleandanimalshavediedduetowater scarcityinvariouspartsoftheworld,excessnitraterunoffisresponsiblefordeadzones (low-oxygenareasintheoceans)inotherpartsoftheworld.

Drinkingwaterthatiscleanandsafeisoneofthebasicneedsforthesurvivalofhuman beingsandotherspecies.Ithasalargeeffectonourdailylivesandthereforecivilizations areconcentratedaroundwaterbodies(Figure1.1).Wemayhavetopayacertainamount ofmoneytowatersupplierstoaccessdrinkingwater,orwemayreceivethewatersupply asanamenityfromgovernments.

Althoughourplanethasalargeamountofwater,estimatedat1.4billionkm3 ,only2.8% consistsoffreshwater.Moreover,mostofthisfreshwateriscontainedinpolarglaciers, whichdramaticallyreducestheamountofwateravailabletohumanbeings.Renewable waterresourcesdecreasedfrom17000m3 perinhabitantperyearin1950,to7500m3 in 1995(UNESCO,1996),andtheyarecontinuingtodecrease.Waterresourcedistributionis notuniformontheplanetandsomecountriessufferfromnaturaldisasters,suchasfloods orearthquakes.Insuchcases,theshortageofdrinkingwaterbecomesamajorproblem. Waterqualitycanbedramaticallyreduced,aswasthecaseafterthetsunamiinIndonesia in2004(Barbot etal.,2009).

Statisticallytherearemanyproblemsassociatedwithalackofacleanfreshwatersupply. Diseasesandcontaminationarespreadthroughunsafewaterandmanypeoplebecome sickasaresult.Problemswithwaterareexpectedtogrowworseinthecomingdecades, withwaterscarcityoccurringglobally.Inregionscurrentlyconsideredwaterrich,primary

SustainableWaterEngineering:TheoryandPractice,FirstEdition.RameshaChandrappaandDigantaB.Das. ©2014JohnWiley&Sons,Ltd.Published2014byJohnWiley&Sons,Ltd.

Civilizationhasbeenmainlyconcentratedadjacenttowaterbodies.

watertreatmentmaynotbeaccessiblewhennaturaldisastersoccur(Shannon etal.,2008). Problemswithdrinkingwaterintheeventofnaturaldisastersoftenconcernmicrobial pollutants,althoughorganicandinorganicchemicalpollutantscanalsoplayarole(Ashbolt, 2004).Access,topotablecleanandsafedrinkingwaterhasbeenreportedasamajorproblem facedbythepeopleaffectedbynaturaldisasters.

Virtuallyallbusinessdecisionswillaffectnaturalresources.Ofthesenaturalresources, wateristhemostaffectedbybusinessdecisionsallovertheworld.Asotherresourceshave beenextracted,thewaterfitfordirecthumanconsumptiondiminished;oftenitisnoteven directlysuitableforotherpurposes,forexampleindustrialandagriculturaluses.

Waterstresscanbedefinedasasituationwherethereisinsufficientwaterforalluses. Itresultsfromanincreaseinpopulation,inventionofnewusesforwaterandtheuseof waterbodiesasdisposalpointsforwastes.Technologyhasalsomadeiteasytoextract waterfromthegroundwatertable,divertsurfacewaterflowsandtransportthewaterto water-scarcelocations.Intenseurbanizationandindustrializationhaveresultedinclimate change,therebyenhancingwaterscarcityandreducingthesustainablesupply.Changing climatehasincreasedwatershortagesduetovariationinprecipitationpatternsandintensity. Thesubtropicsandmid-latitudes,wheremostoftheworld’spoorestpeoplelive,arelikely tobecomesubstantiallydrier(Chandrappa etal.,2011).Anincreaseinthetemperaturehas beenlinkedtoglacier/snow-capmelting.Thiswaterwillultimatelyreachthesea,sothatit willnolongerbeusefulunlessitistreatedincostlydesalinationplants.Extremeweather patternsmayresultindisasters,affectingthequalityofwater.

Groundwater-dependentareas(whereopenwellswereoncesunk)havenowadopted drillingtechnologytoextractgroundwaterthroughborewells.Thistechnologywasattractiveasitreducedthetimeforsinkingawellfrom3monthstoaday.Failureatonespot doesnotdiscouragepeoplefromsinkinganotherborewellafewmetresawayatagreater

Figure1.1

depththantheearlierone.Competitionamongstneighboursresultedinemptyingground water,withinadecade,whichhadaccumulatedoverthousandsofyears.

Astheperceptionofwaterasaninfiniteresourceisdiminishing,manyattemptshave beenmadearoundtheworldtoadapttothesituationusingwisdomwithinthecommunity. Someideasweresuccessfulovertime;othersfailed.WhilethepeopleinGreenlandused meltedsnowtomeettheirwaterneeds,thepeopleintheSaharasettledaroundoases. WhilepeopleindryareasofIndiatookabathonceaweekoronceamonth,othersinthe samecountrytriedtobuildhugedamsacrossriversanddivertedthewatercoursethrough asystemofcanals.Whiletheurbanagglomerationgrew,theseapproachescouldnotbe sustained.Thewisdomofengineersfourdecadesbackisnolongermeetingtheneedsof presentpopulation.Systemsdesignedhalfacenturyagohaveplacedenvironmentaland economicburdensoncountriesandcommunitiesalike.

Manyofthesolutionshavenowbecomeproblems.Examplesincludehugewastewatertreatmentplantsthatarenotadequatetocaterfortoday’ssewagegeneration.The entrepreneurswhobuiltindustriesinthepastdidnotbothertoconstructsoundwastetreatmentplants.Asaresult,mankinddependsontechnologythatrequireslargeamounts ofenergyandchemicals,resultinginhighcarbonemissionsandlargeecologicalfootprints.

Negligenceandlackofconsiderationbygovernment(legislative,executiveandjudiciary) aswellasinadequateinvestmentinpublicdrinkingwatersuppliesledtoadaptivemeasures likesellingwaterinsachetsinsomepartsoftheworld.Whilepollutionhasencouraged thebottledwaterindustry,waterscarcityhasadverselyaffectedfoodsecurity.Irrigation hashelpedtoimproveagriculturalyieldsinsemi-aridandaridenvironments(Hanjra etal., 2009a,2009b)but40%oftheworld’sfoodisproducedby19%oftheirrigatedagricultural land(Molden etal.,2010).Continueddemandforwaterforurbanandindustrialusehas putirrigationwaterundergreaterstress.

Figure1.2showstheavailabilityofwaterperpersonindifferentregionaloftheworld basedontheinformationavailableinRamirez etal. (2011).Thesefiguresleadtothe conclusionthatfreshrainwaterismoreavailableforapersoninAmericathanforone inAsia.ThisistruebecauseAsiahashistoricallymorepopulouscountries.Asiaalso experiencesaloweramountofrainduetoitsgeographicallocation.Someofthelargest desertsareinthiscontinent.

Notallofthe112100km3 ofwateronthesurfaceoftheearthisavailabletohumans.It flowsandreachesthesea,makinglessthan3%oftheworld’swaterfresh,ofwhich2.5% isfrozen,lockedupintheArctic,onAntarcticaaswellasinglaciers.Thus,humanityand terrestrialecosystemshavetorelyonthe0.5%ofglobalwater.Butglobalfreshwaterdistributionisnotequal.Thefollowingcountriespossessnearly60%oftheworld’sfreshwater resources:Brazil,Russia,China,Canada,Indonesia,theUnitedStates,India,Columbia andtheDemocraticRepublicofCongo.But,itdoesnotmeanthatallthepeopleinthese countrieshavesufficientwatertofulfiltheirneeds.Localvariationswithinthesecountries arehighlysignificant.

Giventhat120l/person/dayisjustsufficienttofulfilthewaterneedsofoneperson,precipitationacrosstheglobeissufficienttomeetrequirements.Unfortunately,notallthewateris sharedequallyamongstthepeopleacrosstheglobe.AsshowninFigure1.3,only8%ofthe waterusedintheworld(notwaterreceivedbytheworldthroughprecipitation)issuppliedto thepublicbygovernmentsacrosstheglobe(www.climate.org/topics/water.html,accessed 13December2013)andnotallpeoplearefortunateenoughtohavewatersuppliedtotheir

Figure1.2 Availabilityofwaterperpersonindifferentregionaloftheworld(basedonthe informationavailableinRamirez etal.,2011).

home.Apartfromhumandomesticconsumption(drinking,cooking,bathing/sanitation andwashing)therehasbeenshiftinwaterconsumptionbyindustrysincetheIndustrial Revolution.Industrialactivitycurrentlyconsumes25%ofwaterandagricultureconsumes around67%,leavingbehindtherestofthewaterforotherpurposes.

Apartfromthediscrepanciesinwateravailability,discrepanciesinpurchasingpowerdue todifferentialfinancialdistributionhavecreatedartificialwaterscarcity.Someofthepetsin richpeople’shouseswillhaveeasieraccesstowaterthanpoorandmarginalpeople(Figure 1.4).Whiletherichandelitesenjoythewater(swimming,carwashing,longshowersin bathtubs,etc.),poorandmarginalpeoplemayhavetosatisfytheirneedswithlessthan 10l/person/day.

TheIndustrialRevolutionandassociatedpoorpracticesandwastemanagementhave resultedinpollutionandresourcedegradation.Thecost-cuttingprinciplesofindustrialistsleadtopoortreatmentofwastewatergenerated.Manyentrepreneursdiscoveredthat

Figure1.3 Globalwaterusepattern.

Average hu m an con s u m ption (120 l/per s on/day)

Poor and marginal Water availability for people without water s upply con s i s ting of world population living in s lu ms, tribal s ettle m ent s, ho m ele ss people , rural area without water s upply/re s ource (< 10 l/per s on/day)

Water wa s ted per capita during treat m ent , di s tribution and u s e (20 l/per s on/day)

Rich and elite (> 10000 l/per s on/day)

Average water con s u m ed by cow 1000 l/ani m al/day

Figure1.4 Discrepanciesinwaterconsumptionbetweenrich,poorandanimals.

‘corruptionischeaperthancorrection’anddischargedwastewaterwithouttreatmentall overtheworld.Buttheenactmentandenforcementofstringentlawsindevelopedcountriesmakeitpossibletoregainthequalitytogreaterextent.Asaresult,someofthe developedcountrieslostmanufacturingbusinesstoothercountrieslikeChinaandIndia. ThetextilemillsthatwerelandmarksofManchesterintheUnitedKingdomandNorrkoping inSwedenarenolongermanufacturingtextilesbutIndiaandChina,whichexportgarments toEuropeandtheUnitedStates,haveaddedpollutiontowaterbodies.

Agriculturerequiresmorethan60%ofglobalwateruseand90%oftheuseinthe developingcountries.GlobalfreshwaterconsumptionhasmorethandoubledafterWorld WarIIandislikelytoriseanother25%by2030.

Asiahas32%ofglobaltotalfreshwaterresourcesbutAsiaishometoabout60%ofthe globalpopulation.Itisprojectedthat2.4billionpeopleinAsiawillsufferfromwaterstress by2025(IGES,2005).Developingcountrieshaveinvestedinwaterinfrastructurebutnot insustainableinfrastructure.

Economicdevelopmenthasmadecountriesthirsty.ThesituationsinEuropeduringthe IndustrialRevolutionmadethecountriesthirstyduringthelateeighteenthcentury.China, withaneconomicgrowthrateof10%perannumsincethelate1970s,currentlyhas20% oftheglobalpopulationandhasonly7%oftheglobalfreshwatertoquenchitsthirst.

Onaverage,thepeopleofsouthernChinahavefourtimesmorewaterthanthepeoplein thenorthwhereaspeopleinnorthernIndiahavemorewaterthantheircounterpartsinthe south,thereasonbeingthattheHimalayanmountainrange,withglaciersthatfeedperennial rivers,islocatedtowardsthenorthinthecaseofIndiaandthesouthinthecaseofChina.

PopulationprojectionsbytheUNin1996revealedthatworldpopulationgrowthis slowingmorethanpreviouslythought.TheUNprojectionsprovethatevenslightvariations inpopulationgrowthratescanhaveaffectthequantityandqualityofwateravailableto eachperson.Slowerpopulationgrowthhasresultedfromthedesireofmillionsofpeople tohavefewerchildren,whichisawelcomedevelopmentforthefuture.

1.1WaterResourceIssues

Waterisusedmuchfasterthannaturecanreplaceit.Waterisafiniteresourcecirculating betweentheatmosphereandtheearth.Long-termwatersecuritycannotbeguaranteedif rainwateraccumulatedinaquifersisminedandoverused.

Waterstressiscausedby(i)excessivewithdrawalfromsurfacewaterandgroundwater; (ii)waterpollutionand(iii)inefficientuseofwater.

Despitewaterstress,peoplestayandfacewatercrisesformanyreasons,someofwhich are:

1.Inheritanceofproperty/businessinthelocality.

2.Absenceorlackofskillstomovetonewplace.

3.Lackofconfidencetoliveinnewplace.

4.Resistancefromotherregionorcountriestoacceptingpeoplefromsomeothercountries/religion/region.

5.Cultural,linguisticandfinancialissues.

6.Attachmenttolandandpeople.

7.Dependentslikechildrenandoldpeoplewhocannotmovetonewplaceindependently.

Migrationofpeopletowater-abundantareasisnotpossibleinthecurrentcontextofthe politicalfragmentationoftheglobe,therebyrulingoutthissolution.Countriesjustcannot acceptenvironmentalrefugeesasitwillputburdenontheircitizensandintimemaycause povertyamongtheiroriginalcitizens.

Sharingwaterwithothercountrieslocatedfarawayisnotconsideredforfinancialreasons. Sharingofwaterbyneighbouringstatesmightbeasolutionbuttherearenumerousexamples wheretherehasbeenconflictbetweensuchstates.States/countries/regionsreleasewater whenthereisabundanceandholdwaterwhenthereiswaterscarcity,therebycausingfloods anddroughtsrespectivelydownstream.

Asaresult,peopleareleftonlywithcombinationsofthefollowingchoices:

1.Reducethepopulation.

2.Reduceconsumptionofwater.

3.Reducewastageofwater.

4.Reduce/avoidwaterpollution.

5.Reuse/recyclewater.

Discussinghowtoreducethehumanpopulationisbeyondscopeofthisbookandthere havebeenmanyattemptsacrosstheglobeusinglegislation,increasingawarenessand providingincentivesinthisregard.Areductioninconsumptioncouldbedonebyavoiding water-intensivecropsbut,peoplejustrefusetoswitchoverfromfoodswithahigherwater footprinttothosewithalowerwaterfootprint.Peopledonotswitchovertovegetarian foodinsteadofmeatanddairyproductstosavewater,eventhoughthewaterfootprint ofvegetarianfoodisfarsmallerthanthatoffoodderivedfromanimals.Hence,theonly choicespeopleprefertomakeis(i)reducingwastage,(ii)reducing/avoidingpollutionand (iii)reusing/recyclingwater.Thisbookelaboratesonvariousmethodologies,strategies, issuesandchallengesinachievingthesethreeobjectives.

Manmadeandnaturaldisastersareoftenfollowedbyconsiderablelossoflifeand temporarydisruptionofnormallife,whichmayresultinsufferingandsubstantialdamage toinfrastructure,societyandtheeconomy.Ithasbeenreportedthatmorethan90%of alldisastersoccurnaturallyand95%ofdisaster-relatedcasualtiesoccurindeveloping countries(Thuy,2010).IthasalsobeenreportedthatAsiaandthePacificaretheregions thatareparticularlyaffectedbydisasters(Thuy,2010).

TheearthquakeintheRepublicofChinain1976wasrankedasoneofthemostdevastatingeventsintermsofthenumberofpeoplekilledandeconomicdamage.Asia,with itsgeographicpositionandtopographicconditions,hasspecialclimaticcharacteristics, resultinginseriousdisasterssuchasfloods,typhoons,tornados,tsunamis,earthquakesand droughts.

Meanwhilemanmadedisasterssuchaswarandpoliticalviolence,apartfromdeathand destruction,alsocausedisruptiontoeconomicnetworksandcontributetoenvironmental degradation,whichinturnjeopardizesfoodproduction,waterqualityandlivingconditions (Thuy,2010).Itwasreportedthat,in2008,about5600peoplelosttheirlivesbecause ofhuman-madedisasterssuchasshippingdisasters,miningaccidents,stampedesand terrorism(Thuy,2010).

Aswellasfood,shelterandmedicalaid,providingcleanwaterisusuallyoneofthe highestprioritiesintheeventofanemergency(Reed,1995).Duringemergencysituations, theshortageofdrinkingwaterisnotonlyaninconveniencebutitsavailabilityanduse

undersuchconditionsisalsoassociatedwithrisksthatthreatenhumanlives(Thuy,2010). Effectiveprimarywatertreatmentmaynotbeavailabletoahugepercentageofundeveloped countries.Itisthereforeessentialtohaveafullyfunctionalportablewaterpurificationdevice inordertolivewhennaturaldisasterhappens.Failuretoprovidesafewatercanoftenbe fatalinthewakeofnaturaldisasters.

Themostpopularwatertreatmentmethodsnowadaysincludefiltrationsuchassand filtration(Thuy,2010),bio-sandfiltration(Elliott etal.,2008)ormembranefiltration (Butler,2009;McBean,2009;Park etal.,2009),andcoagulation(Garsadi etal.,2008). Normally,theseprocessesdonotensurethedisinfectionoftreatedwatersoachlorination processisnecessary.However,duetotheadverseeffectsfromdisasters,thereislimited accesstochemicalssuchaschlorineoriodinefordisinfectionandaluminiumsulfatefor coagulationandalsoelectricitytosupplypowerinordertooperatesystems.Thisisthe mainreasonwhychemicalandelectricityrequirementsarethemostimportantfactorsthat restricttheuseofthesemethodsinemergencies(Thuy,2010).

Membranetechnologyhasemergedandhasproventobeanadvancedtechnologyfor watertreatmenttoproducesafedrinkingwater.Itsapplicationisincreasingdaybyday.As comparedwithconventionaltreatmentmethods,watertreatmentusingmembranetechnologyproducesabetterwaterquality,usesamuchmorecompactsystem,iseasiertocontrol intermsofoperationandmaintenance,requiresfewerchemicalsandproduceslesssludge (NakatsukaandNakate,1996).Themethodstocreatethedrivingforceforthisfiltration aremoreflexibleandlessdependentonelectricalenergy;theyincludeuseofgravitationalforce(Butler,2009),bicycle-poweredfiltration(McBean,2009)orwind-powered renewableenergy(Park etal.,2009).Researchwillfocusondevelopingamembrane-based portablewaterpurificationsystemthatcouldbedeployedtocountriesinthewakeofnatural disastersorforemergencies.

1.1.1WaterFootprint

Thewaterfootprintisanindicatorofwaterusewithrespecttoconsumergoods(Hoekstra etal.,2011).Thewaterfootprintofaproduct/serviceisthequantityoffreshwater used/evaporated/pollutedtoproducetheproduct/service.Awaterfootprinthasthreecomponents:blue,green,andgrey(Figure1.5).Thequantityoffreshwaterevaporatedfrom thesurface/groundwaterisconsideredtobethebluefootprint.Thegreenwaterfootprintis thequantityofwaterevaporatedfromrainwaterstoredinthesoil.Thegreywaterfootprint isthequantityofwaterrequiredsothatthequalityoftheambientwaterwillbeabove

Figure1.5 Definitionofblue,greenandgreywaterfootprint.(Foracolourversionofthis figure,seethecolourplatesection.)

Blue, green and grey water footprint

Figure1.6 Averagefootprintforproductionofvegetables,bovinemeatandfruits.(Source: basedondatainMekonnenandHoekstra,2010.)

waterqualitystandards(HoekstraandChapagain,2008).Figure1.6showstheaverage footprintfortheproductionofvegetables,bovinemeatandfruits.Twenty-sevenpercent oftheglobalwaterfootprintisduetotheproductionofanimalproducts(Mekonnenand Hoekstra,2010).

Apartfromwaterconsumptionforfoodanddrinking,theworldhaswitnessedanincrease intheuseofgoodsandservices,whichhasleftagreaterfootprintthanfoodproduction. Hydropower,whichaccountsfornearly16%oftheglobalelectricitysupply,hasabluewater footprintofaround90Gm3 /yearwhichisequivalentto10%ofthebluewaterfootprintof worldwidecropproductionintheyear2000(MekonnenandHoekstra,2012).Theincrease inthenumberofcarsintheworldhasalsoplacedahighdemandonpetroleum-basedfuel, whichisanonrenewableresource.Hence,theblendingofethanolhasbeenconsideredas asustainablesolutioninmanypartsoftheworldandmanygovernmentsareencouraging productionofsugarbeetandsugarcanetoenhanceproductionofethanol.Thedemand forandsubsequentdiversionofwatertogrowrawmaterialforethanolhasalsoresultedin competitionforwaterwithconventionaluses.

1.2ClimateChangeandItsInfluenceonGlobalWaterResources

DuringthePalaeolithicperiod(before10000BCE)peoplelivedasnomadsandthere werenopermanentsettlementsandhencenostressonwaterresources.Humansdeveloped thefirststonetoolsbutdidnotputanystressonwaterbodies.Thiswasfollowedbythe Neolithicperiod(orNewStoneAge),whichstartedinabout9500BCEintheMiddleEast. TheNeolithicperiodwasfollowedbytheterminalHoloceneEpipalaeolithicperiod,when farmingwasstarted.TheMesolithicperiod,whichoccurred10000–5000yearsago,sawa growthinpopulation,whichstartedusingwaterresourcesaswellasothernaturalresources.

Vegetables (322 l/kg)
Bovine meat (14414 l/kg)
Fruits (962 l/kg)

Another random document with no related content on Scribd:

PAIR OF COTTAGES.

V F P —This plate shows the development and variation of the inside houses of the block of four shown on Plate ., with a superior arrangement of larder, and with projecting coals. The long sloping roof has been hipped back to give a pleasing line, especially in perspective.

T

L

S

R.—The long sloping roof, a feature frequently introduced at Bournville, has several advantages. If it were not employed, and the front walls were carried up level with the ceiling line of the bedroom, the proportions of the elevation would not be so happy, while an additional expense would be incurred by the extra brickwork. Such a height, moreover, would be wholly unnecessary In the case of cottages with the long sloping roof the height of bedrooms to the point of intersection of roof and wall need only be 5 ft. 6 ins. Ample ventilation is obtained by the simple insertion of a 9 in. by 7 in. air-brick on the outside wall, and a Sheringham ventilator or Tobin tube within, about 5 ft. 6 ins. from the floor, the cost of the latter being about 3s., and of the former a little more. The long sloping roof can rarely be treated tastefully without boldly projecting the eaves. The projection gives a verandah in front of the house which affords a pleasant shelter. Wooden posts may be used as supports, and by training climbing plants up them, and allowing them to festoon, a really delightful summer bower may be formed. As the roof is broad, pantiles may be used with safety so far as good taste is concerned: bold roof, bold covering. By omitting the gutters at the dormer eaves a pleasing effect is gained, and gutters are quite unnecessary with an eaves projection. The cheeks of the dormers should be dressed with lead. The cottages in question are whitewashed, and have a tarred plinth of about 2 ft. to prevent the unsightliness of mud splashes.

FRONT ELEVATION GROUND PLAN

BEDROOM PLAN

PLATE XX.

PAIR OF COTTAGES. SEE PAGE 30

T L L R.—In view of the gain to health of one spacious living room over the parlour plan, a number of these cottages has been built in varying design at Bournville, and no difficulty has been found in letting them. There has been, however, considerable discussion with regard to their convenience to the artisan in other districts where they have been introduced. Although cottages in the past had no third room, there having been, as here, one large comfortable room (often with the ingle nook) and a small kitchen at the back—all the accommodation really required—yet at the present time many artisans are not content without the useless

parlour, which they appear to think adds dignity to the house, but which is used by them chiefly as a store-room for gim-cracks. There is, perhaps, a reasonable objection to a single large living room on the part of a particular class who let the front room to a lodger. Nevertheless, for a model village or a garden city it is strongly recommended that the plan should be adopted freely, and the preference for the useless front room in small cottages discouraged.

Total cost of the example given, including all extras, £268 per cottage.

Laying out of gardens, £10 each.

Cubical contents, 28,587 ft., at 4½d. per foot cube, £536, or £268 per cottage.

Instances of the last two types of cottages dealt with appear in the view given on Plate

PLATE XXI. PAIR OF COTTAGES.

PAIR OF COTTAGES. SEE PAGE 32

The smaller cottage shown here is planned on similar lines to the foregoing, but with the additional accommodation of an attic, and bay windows to the two storeys. This is an instance of how a smaller cottage may be joined to a larger one in treating a corner site, the larger one on the corner giving importance to each road.

PLATE XXI.

PLATES

XXII., XXIII., I. (FRONTISPIECE), XXIV., XXV., AND XXVI.

BLOCKS OF FOUR.

PLATE XXII.

BLOCK OF FOUR COTTAGES. SEE PAGE 32.

PLATE XXIII. BLOCK OF FOUR COTTAGES. SEE PAGE 32

PLATE XXIV BLOCK OF FOUR COTTAGES. SEE PAGE 32

These plates show examples of cottages in blocks of four rather larger in size than the last type, and treated in different materials. Plate . shows the details of the cottages on Plate .

PLATE XXV BLOCK OF FOUR COTTAGES. SEE PAGE 32.

PLATE XXVI. DETAIL VIEW SEE PAGE 32

PLATE XXVII. PAIR OF COTTAGES.

FRONT ELEVATION GROUND PLAN

BEDROOM PLAN

PLATE XXVII. PAIR OF COTTAGES. SEE PAGE 33

Plate . gives the plan and elevation of a pair of cottages also having similar accommodation to those with the long sloping roofs shown on Plate . The cost, however, is here considerably reduced by each house having a side entrance, and by the omission of the ingle nook, verandah and bay, while the living room, though smaller,

is not a passage room. By approaching the stairs from the lobby, not only is more privacy secured, but the space beneath is made available in the kitchen for a “Cabinet” bath, which is so placed as to occupy it when in use instead of projecting into the kitchen. The planning is simple and square, which, with the omission of bays and the introduction of plain casements, all helps to reduce the cost.

The accommodation is:—

G F.

Living Room, 12 ft 4 ins × 16 ft Kitchen, 10 ft 3 ins × 11 ft 6 ins Lobby Larder, and Coals

B F

First Bedroom, 12 ft. 4 ins. × 16 ft. Second Bedroom, 7 ft. 8 ins. × 11 ft. 6 ins.

Third Bedroom, 8 ft. × 8 ft. 3 ins. Linen Closet.

Total cost, including all extras, £250 per cottage.

Laying out of gardens, £10 each.

Cubical contents, 24,000 ft., at 5d. per foot cube, £500, or £250 per cottage.

PLATE XXVIII. PAIR OF COTTAGES.

FRONT ELEVATION

GROUND PLAN

BEDROOM PLAN

PLATE XXVIII. PAIR OF COTTAGES. SEE PAGE 34.

This plate shows the plan and elevation of a pair of cottages having the parlour in addition to the living room and scullery. The living room, which should always be the larger, is here the full width of the house. The measurements are:—

G F

Living Room, 11 ft. 5 ins. × 16 ft. 6 ins. Parlour, 11 ft. 4 ins. × 13 ft. 3 ins.

Scullery, Outside Larder, .. and Coals.

B F.

First Bedroom, 11 ft 4 ins × 13 ft 3 ins

Second Bedroom, 8 ft 6 ins × 11 ft

5 ins Third Bedroom, 7 ft 8 ins × 8 ft 6 ins Linen Closet

Total cost, including all extras, £230 per cottage. Cubical contents, 33,918 ft. at 3¼d. per ft. cube. £460, or £230 each. (Built in 1899.)

The stairs in this instance descend to the entrance lobby, but they may be planned the other way about in order to avoid the necessity of traversing the parlour to get to the bedrooms, and to insure children crying upstairs being heard in the living room or the scullery. This, however, would necessitate the cutting of 3 ft. off the large front bedroom, while the respective spaces for the larder and the lobby below would be reversed, the position of the former being undesirable.

Ordinary roofing tiles and common bricks have been used. The living room is boarded, and the scullery quarried.

It might be pointed out that there is but little scope for variety of plan in these smaller cottages. The variations must be obtained in the treatment of elevations. As already stated, to build cheaply the main point is to get the walls as long and straight as possible.

FRONT ELEVATION

BLOCK OF THREE COTTAGES.

PLATES XXIX. AND XXX.

BLOCK OF THREE COTTAGES.

GROUND PLAN BEDROOM PLAN

PLATE XXIX. BLOCK OF THREE COTTAGES. SEE PAGE 35

Plate . and the accompanying scale-drawing give the plan and elevation of a block of three cottages, a sketch of which appears in Plate . The inner one occupies an exact third of the land, and is double fronted. By putting the inner one with its axis to the front, an equal garden-space is given to all the houses without incurring a redivision of the land.

PLATE XXX. BLOCK OF THREE COTTAGES. SEE PAGE 35.

The inner and left-hand houses have practically the same accommodation, but the right-hand has several advantages: there is a wider hall, the living room is not a passage room, while the kitchen is reached from the hall, and the wash-house is entered from the yard.

Accommodation of left-hand and inner houses.

G F.

Parlour, 11 ft. 4 ins. × 15 ft. 3 ins. Living Room, 10 ft. × 14 ft. 6 ins. and bay. Scullery, 10 ft × 6 ft and recess for Bath Coals, Tools, and

B F.

First Bedroom, 11 ft. 4 ins. × 15 ft. 3 ins. Second Bedroom, 7 ft. 6 ins. × 14 ft. 6 ins , and bay Third Bedroom, 7 ft 5 ins × 11 ft 6 ins Fourth Bedroom, 9 ft 6 ins. × 6 ft. (middle house only). Linen Closet.

Cost of left-hand and inner houses, including all extras, £293 per cottage. (Built in 1904.)

The right-hand house, owing to the extra conveniences, works out at rather more.

In the middle house the recess between the range and small window makes a very convenient space for a writing table, especially if curtains are dropped from a rod to screen it off, its proximity to the range making it a warm and cosy retreat in winter. There is a bay window to the living room of the outside houses.

Two of the houses in this block are fitted with Cornes’ Patent Combined Scullery-Bath-Range and Boiler, described on page 52, and the third with the “Cabinet” bath.

The elevation, with the forecourt formed by the projection of the two outside houses, may be made very pleasing. From the perspective it will be seen that the inner house is covered with rough-cast, making an agreeable contrast with the outer ones of plain brickwork. Roughcast, while fairly economical, is very effective, and helps to brighten the forecourt. The projection of the outer houses affords a break, the abruptness of which does not attract attention, but which gives an opportunity of stopping the rough-cast, which would otherwise have to be carried round to the back of the whole block.

It is not advisable to introduce a variety of colour upon exteriors. Colour is best disposed in masses—that is, it should be treated broadly, not distributed in isolated portions, or in sharply contrasting tints. (See page 59.)

The roof of this block is of green slates of varying sizes, diminishing towards the ridge.

Aspect in the placing of the house is here studied as well as the site. The axis runs south-west and north-east, and the front commands a pleasing perspective of one of the principal Bournville roads, and an admirable view of the Lickey Hills in the distance.

DESCRIPTIONS OF PLATES XXXI.-XXXIII.

PLATE XXXI.

PAIR OF COTTAGES (SHALLOW SITE).

PLATE XXXI. PAIR OF COTTAGES. SEE PAGE 38

The view shown in this plate illustrates the treatment of a shallow corner site, the block being a pair of semi-detached, double-fronted cottages. The plan is similar to the middle house of the foregoing block.

PLATE XXXII.

PAIR OF COTTAGES.

PLATE XXXII. PAIR OF COTTAGES. SEE PAGE 38

A pair of cottages also planned on the same lines as the middle house shown in Plate . and the foregoing shallow-site pair, but placed at right angles instead of lengthwise, and occupying a corner position.

PLATE XXXIII. PAIR OF COTTAGES.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.