Sustainable Water Engineering Theory and Practice 1st Edition Ramesha Chandrappa Visit to download the full and correct content document: https://textbookfull.com/product/sustainable-water-engineering-theory-and-practice-1s t-edition-ramesha-chandrappa/
More products digital (pdf, epub, mobi) instant download maybe you interests ...
Sustainable Air Pollution Management Theory and Practice 1st Edition Ramesha Chandrappa
https://textbookfull.com/product/sustainable-air-pollutionmanagement-theory-and-practice-1st-edition-ramesha-chandrappa/
Sustainable Development of Water Resources and Hydraulic Engineering in China Wei Dong
https://textbookfull.com/product/sustainable-development-ofwater-resources-and-hydraulic-engineering-in-china-wei-dong/
Transportation Engineering Theory Practice and Modeling 1st Edition Dusan Teodorovic
https://textbookfull.com/product/transportation-engineeringtheory-practice-and-modeling-1st-edition-dusan-teodorovic/
Water and Wastewater Engineering: Design Principles and Practice Second Edition Mackenzie L. Davis
https://textbookfull.com/product/water-and-wastewaterengineering-design-principles-and-practice-second-editionmackenzie-l-davis/
Theory and practice of water and wastewater treatment Second Edition. Edition Ronald L. Droste
https://textbookfull.com/product/theory-and-practice-of-waterand-wastewater-treatment-second-edition-edition-ronald-l-droste/
Reliability engineering theory and practice 8th Edition Birolini A
https://textbookfull.com/product/reliability-engineering-theoryand-practice-8th-edition-birolini-a/
Inclusive Innovation for Sustainable Development: Theory and Practice 1st Edition Nathaniel O. Agola
https://textbookfull.com/product/inclusive-innovation-forsustainable-development-theory-and-practice-1st-editionnathaniel-o-agola/
Engineering Optimization Theory and Practice 5th Edition Singiresu S. Rao
https://textbookfull.com/product/engineering-optimization-theoryand-practice-5th-edition-singiresu-s-rao/
Through life Engineering Services Motivation Theory and Practice 1st Edition Louis Redding
https://textbookfull.com/product/through-life-engineeringservices-motivation-theory-and-practice-1st-edition-louisredding/
SustainableWater Engineering Theauthorsdedicatethebookto theirfamiliesandcolleagues
SustainableWater Engineering TheoryandPractice RameshaChandrappa DigantaB.Das Thiseditionfirstpublished2014 ©2014JohnWiley&Sons,Ltd
Registeredoffice
JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom
Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissiontoreuse thecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com.
TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright,Designs andPatentsAct1988.
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorby anymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright,Designsand PatentsAct1988,withoutthepriorpermissionofthepublisher.
Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailablein electronicbooks.
Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesandproduct namesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespectiveowners.The publisherisnotassociatedwithanyproductorvendormentionedinthisbook.
LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook, theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookand specificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstanding thatthepublisherisnotengagedinrenderingprofessionalservicesandneitherthepublishernortheauthorshallbeliablefor damagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofacompetentprofessional shouldbesought.
Theadviceandstrategiescontainedhereinmaynotbesuitableforeverysituation.Inviewofongoingresearch,equipment modifications,changesingovernmentalregulations,andtheconstantflowofinformationrelatingtotheuseofexperimental reagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertor instructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.ThefactthatanorganizationorWebsiteisreferredtointhisworkas acitationand/orapotentialsourceoffurtherinformationdoesnotmeanthattheauthororthepublisherendorsestheinformation theorganizationorWebsitemayprovideorrecommendationsitmaymake.Further,readersshouldbeawarethatInternet Websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.No warrantymaybecreatedorextendedbyanypromotionalstatementsforthiswork.Neitherthepublishernortheauthorshallbe liableforanydamagesarisingherefrom.
LibraryofCongressCataloging-in-PublicationData
Chandrappa,Ramesha. Sustainableandwaterengineering:theoryandpractice/RameshaChandrappa,DigantaB.Das. pagescm
Includesindex. ISBN978-1-118-54104-3(cloth)
1.Waterquality.2.Water–Purification.3.Water-supply–Management.4.Hydraulicengineering. I.Das,D.B.(DigantaBhusan),1974–II.Title. TD370.C4842014 628.1028′ 6–dc23 2013050546
AcataloguerecordforthisbookisavailablefromtheBritishLibrary.
ISBN:9781118541043
Setin10/12ptTimesbyAptaraInc.,NewDelhi,India. 12014
Preface xi
Abbreviations xiii
Glossary xvii
1WaterCrisis1
1.1WaterResourceIssues6
1.1.1WaterFootprint8
1.2ClimateChangeandItsInfluenceonGlobalWaterResources9
1.3ProtectionandEnhancementofNaturalWatershedandAquifer Environments12
1.4WaterEngineeringforSustainableCoastalandOffshore Environments12
1.5EndangeringWorldPeaceandSecurity13
1.6AwarenessamongDecisionMakersandthePublicacrosstheWorld15
1.7CriteriaforSustainableWaterManagement16
1.8WaterScarcityandMillenniumDevelopmentGoals18
1.9LackofAccesstoCleanDrinkingWaterandSanitation19
1.10FragmentationofWaterManagement20
1.11EconomicsandFinancialAspects22
1.11.1WaterTreatmentandDistribution24
1.11.2WastewaterTreatment,CollectionandDisposal27
1.12LegalAspects28 References30
2RequirementsfortheSustainabilityofWaterSystems35
2.1HistoryofWaterDistributionandWastewaterCollection38
2.2IntegratedWaterManagement40
2.3SewerageTreatmentandUrbanPollutionManagement44
2.4ConventionalWaterSupply45
2.4.1Features49
2.4.2CapacityandPressureRequirements50
2.4.3DesignandHydraulicAnalysisofDistributionSystem52
2.4.4UnsustainableCharacteristics55
2.4.5SustainableApproach64
2.5ConventionalWastewaterCollectionSystems71
2.5.1Features71
2.5.2UnsustainableCharacteristics
3.4WaterQualityCharacteristicsofPotableDrinkingWaterand
4.2.4ModellingofTreatmentProcessestoAttainSustainability172
4.2.5Operation,Management,Financial,Socio-EconomicAspect173
4.3PreliminaryandPrimaryTreatment
4.3.1Screening
4.3.2Coarse-SolidReduction
4.3.3GreaseRemovalChamber
4.3.4FlowEqualization
4.3.5MixingandFlocculation
4.3.6Sedimentation
4.3.7Flotation
4.4SecondaryTreatment
4.4.1BiologicalTreatment
4.4.2Vermifiltration
4.4.3ChemicalTreatment
4.5TertiaryTreatment
4.5.2ActivatedCarbonTreatment
4.5.3IonExchange
4.5.4ForwardandReverseOsmosis,MembraneFiltration, MembraneBioreactor,MembraneDistillation,andElectro Dialysis
4.5.5AirStripping
4.5.6DisinfectionandFluoridation
4.5.7RemovalofSpecificConstituents
4.6EmergingTechnologies
4.6.1NanotechnologyappliedforWaterPurification
4.6.4Incineration
4.6.5Sono-Photo-FentonProcess
4.7ResidualManagement
4.7.5Composting
4.7.6Dewatering
4.7.7Incineration
4.7.8RemediationofContaminantsinSubsurface
4.8PortableWaterPurificationKit
4.9RequirementsofElectrical,InstrumentationandMechanicalEquipment inWaterandWastewaterTreatmenttoAchieveSustainability
4.9.1ElectricalEquipmentandEnergyRequirement
4.9.2PipingandInstrumentation
4.9.3MechanicalEquipmentRequirementsandRelatedIssues224
4.9.4SystemsandOperationalIssues
4.9.5Real-TimeControl
4.9.6IndicatorsofSustainablePerformance;SystemsApproachfor SustainabilityAssessmentofWaterInfrastructure
4.9.7Troubleshooting
5SustainableIndustrialWaterUseandWastewaterTreatment
5.1SustainablePrinciplesinIndustrialWaterUseandWastewaterTreatment237
5.1.1IndustrieswithHighDissolvedSolids
5.1.2Industries/ActivitieswithHighInorganicContent
Preface Havingspenttwodecadesworkinginsustainabledevelopmentwefeelthatitisnotabedof roses.Problemsintheformofcorruption,illiteracy,datainadequacy,skilldeficienciesand theinactionofgovernmentsarekeepingmanypeopleawayfromadequatequalitywater.
Manybookshavebeenwrittenonwaterengineeringbuttheoriespublishedfourdecades backoftencannotbeusedtodaybecausethequantityandqualityofthewaterthatis availablehaschangedandsohastheworld’spopulationanditswaysofliving.Similarly thelargedamsbuiltinthepasthavenotproventobeenvironmentallyfriendlyandhave causedconflictsinmanycases.Conservingfloraandfaunahasbecomemoreimportantall overtheworldandeatingmeatwilljustleavealargewaterfootprint.
Sustainabilitydoesnothappenovernightandneedsinvestmentintermsofmoney, honesty,knowledge,informationandtime.Therehavebeensubstantialexamplesalloverthe worldwherethesustainableuseofwaterhasbeenpractised,settinganexampleforothers. Thisbookisapackageoftheoryandpracticeconcerningsustainableandunsustainable waterusepickedfromdifferentpartsoftheworld.Unlikebooksthatonlyelaborateon theoreticalknowledgeorsimplycriticize,thisbookmakesanefforttogobeyondtheories andtoexplainthepracticalworldweareexposedto.Allisnotwellallovertheworldbut atthesametimenotalliswrong.Thephotographsinthebookshowboththeinteresttaken insomepartsoftheworldandthenegligenceinotherparts.
WewouldliketothankDrVamanAcharya,D.R.KumaraswamyandS.NandaKumar ofKarnatakaStatePollutionControlBoard,Bangalore,India,fortheirencouragementin ourendeavour.
WewouldalsoliketothankS.Madhusudhan,AnilKumar,AmarYeshwanth,ofKarnatakaStatePollutionControlBoardandR.Savyasachi,K.Rahitha,N.Kamalammaand S.Rekhafortheirhelptowardsthecompletionofbook.WethanktheBritishCouncil,the SwedishInternationalAgencyandtheSwissDevelopmentCooperationfortheirfinancial aidextendedtothefirstauthorduringhiscareer.Theauthorsareextremelygratefultothe CentreforScienceandEnvironment,Delhi,IndiaandtheSwedishEnvironmentalAgency, Stockholm,forarrangingextensiveinternationaltrainingtothefirstauthorinSweden, whichwashelpfulandgaveanopportunitytotakethephotographspresentedinthisbook.
WethankJohnWileypublishersfortheirfaithinusandforinvestingtimeandresources. Wehaveworkedhardtomeettheexpectationofthepublishersandreadersandlookforward toanyfeedback.
Abbreviations ACalternatingcurrent
ADPair-driedpulp
AFOamorphousferricoxide
AIDSacquiredimmunodeficiencysyndrome
ANNartificialneuralnetworks
AOPadvancedoxidationprocess
Asarsenic
ASPactivatedsludgeprocess
BODbiochemicaloxygendemand
BOFbasicoxygenfurnace
Br bromide
BrO3- bromateion
CaCO3 calciumcarbonate
CaCl2 calciumchloride
CandDconstructionanddemolition
Cdcadmium
Cecerium
CETPcommoneffluenttreatmentplant
CFLcompactfluorescentlamp
CNcyanide
CN cyanideion
Cocobalt
CODchemicaloxygendemand
CPcleanerproduction
Crchromium
CTMPchemithermalmechanicalpulping
Cucopper
DBPdisinfectionbyproductcontrol
DCdirectcurrent
DCBdichlorobenzine
DDDdichlorodiphenyldichloroethane
DDTdichlorodiphenyltrichloroethane
DMPdisastermanagementplan
Dydysprosium
EAFelectricarcfurnace
ECFelementalchlorinefree
xivAbbreviations
EIAenvironmentimpactassessment
Ererbium
FAOFoodandAgricultureOrganization
FDIforeigndirectinvestment
FTWfloatingtreatmentwetland
FDNPPFukushimaDai-ichiNuclearPowerPlant
Feiron
FOGfat,oil,grease
Gdgadolinium
GDPgrossdomesticproduct
GFCIground-faultcircuit-interrupters
GHGgreenhousegas
GPPgreenpublicprocurement
GTZGermantechnicalcooperation
Hbhaemoglobin
HCBHexoChloroBenezenes
HClhydrochloricacid
HEX-BCHHexachlorobicycloheptadiene,Bicyclo(2.2.1)hepta-2,5-diene
Hgmercury
HgCl2 mercurychloride
HgSO4 mercurysulfate
HIVhumanimmunodeficiencyvirus
H2 SO4 sulphuricacid
IARCInternationalAgencyforResearchonCancer
ICLEIInternationalCouncilforLocalEnvironmentalInitiatives
IFCInternationalFinanceCorporation
IFRCInternationalFederationofRedCrossandRedCrescent
IGESInstituteforGlobalEnvironmentalStrategies
IUCNInternationalUnionfortheConservationofNature
IWRMintegratedwaterresourcemanagement
KClpotassiumchloride
K2 Cr2 O7 potassiumdichromate
KSPCBKarnatakaStatePollutionControlBoard
kVAkilovolt-ampere
kWhkilowatthour
LaLanthanum
LDCleastdevelopedcountries
LEEDleadershipinenergyandenvironmentaldesign
LNWTlowornowastetechnology
lpdlitresperday
Lulutetium
MCBmonochlorobenzene
MCMmillioncubicmetres
MDGMillenniumDevelopmentGoal
MEDmulti-effectdistillation
metHbmethomoglobin
MLDmillionlitresperday
MLSSmixedliquorsuspendedsolids
Mnmanganese
MSDSmaterialsafetydatasheet
MSEWmechanicallystabilizedearthwall
MSFmultistageflashdistillation
NaClsodiumchloride
NaOHsodiumhydroxide
NAPLnonaqueousphaseliquid
Nbniobium
Ndneodymium
NDMA N-nitrosodimethylamine
NFnanofilter
NGOnongovernmentorganization
Ninickel
Ni(NO3 )2 nickelnitrate
NIOSHNationalInstituteforOccupationalSafetyandHealth
NO3 nitrate
NO3 nitrateion
NOxnitrogenoxide
NTOnanocrystallinetitaniumdioxide
NTUANationalTechnicalUniversityofAthens
OFoverflow
OSHAOccupationalSafetyandHealthAdministration
PAHspolynucleararomatichydrocarbons
Pblead
PCPpentachlorophenol
PIMpotentiallyinfectiousmaterial
PO4 phosphate
POTWpubliclyownedtreatmentworks
PPEpersonalprotectiveequipment
Prpraseodymium
PRBpermeablereactivebarriers
PVCpolyvinylchloride
RBCrotatingbiologicalcontactors
RFBriverbankfiltration
RIrapidinfiltration
ROreverseosmosis
RWIrecreationalwaterillnesses
SATsoil-aquifertreatmentsystems
Sbantimony
SBRsequentialbatchreactors
SCEsnowcoverextent
Seselenium
SIDSsmallislanddevelopingstates
Smsamarium
Abbreviationsxv
xviAbbreviations
SMZsurfactantmodifiedzeolite
Sntin
SO4 sulfate
SOCsyntheticorganiccompound
SRslowrate
STPsewagetreatmentplant
TAtechnologyassessment
Tbterbium
Tctechnetium
TCFtotalchlorinefree
TCUtruecolourunits
Ththorium
THMstriholomethanes
Tititanium
TKNtotalKjedalnitrogen
Tmthulium
TOCtotalorganiccompound
Uuranium
UDDTurinediversiondehydratingtoilets
UFWunaccounted-forwater
UNECAUnitedNationsEconomicCommissionforAfrica
UNEPUnitedNationalEnvironmentProtection
UNESCOUnitedNationsEducational,ScientificandCulturalOrganisation
UNICEFUnitedNationsChildrenFund
UPSuninterruptedpowersupply
USEPAUnitedStatesEnvironmentalProtectionAgency
VLHvolatileliquidhydrocarbons
VOCvolatileorganiccompounds
WCEDWorldCommissiononEnvironmentandDevelopment
WHOWorldHealthOrganization
WWFWorldWideFundforNature
WWTPwastewatertreatmentplant
Yyttrium
Ybytterbium
Znzinc
Zrzirconium
Glossary Acidity: Thecapacityofwastewaterorwatertoneutralizebases.
Activatedsludge: Sludgegeneratedinwastewaterbythegrowthofmicrobesinaeration tanks.Inotherwordsitisflocculatedsludgeofmicro-organisms.
Advancedprimarytreatment: Primarytreatmentusingadditivesbeforetreatmentto augmentsettling.
Aeration: Theprocessofaddingairtowater.
Aerobicprocesses: Biologicaltreatmentprocessesinthepresenceofoxygen.
Aqua-privy: Watertighttankplacedimmediatelybelowthelatrinefloorwhereexcreta dropdirectlyintothewatertankthroughapipe.
Algae: Varietyofplantwithoutdistinctfunctionalplanttissue.
Algalbloom: Increaseinalgaepopulationinwater.
Alkalinity: Ameasureofasubstance’sabilitytoneutralizeacid.
Alumina: Syntheticallyproducedaluminiumoxidethatisusedasastartingmaterialfor theproductionofaluminiummetal.
Anaerobicprocesses: Biologicaltreatmentprocessesthatoccurintheabsenceofoxygen.
Anoxicdenitrification: Thisprocessisalsoknownasanaerobicdenitrification.Inthis processnitratenitrogenisconvertedtonitrogengasbiologicallyintheabsenceof oxygen.
Aquifer: Waterstoredinthesaturatedzonebelowthewatertable.
Attached-growthprocesses: Thebiologicaltreatmentprocessesinwhichthemicrobes areattachedtomedia.
Autotroph: Organismthatusescarbondioxideastheonlycarbonsource.
Backflowprevention: Preventingthereverseflowofwaterinwatersupplysystem.
Backflushvalve: three-waydiaphragmvalvesusedinfiltrationapplications.
Backpressure: Pressureopposingthefreeflowofliquid/gas;itcansuckforeignsubstances intothewater-supplysystem.
Backsiphonage: Backflowduetoadifferentialpressurethatsucksforeignsubstancesinto thewater-supplysystem.
Batchreactor: Reactorsthatareoperatedinbatches.
Biochemicaloxygendemand(BOD): Measureofthequantityofoxygenusedbymicrobes todegradeorganicmatter.
Biodegradability: Capableofbeingdecomposedbylivingthings,especiallymicroorganisms.
Biodiversity: Overalldiversityoforganismsintheworld.
Biogas: Mixtureofgasesreleasedfromanaerobicdigestion.
Biologicalwastewatertreatment: wastewatertreatmentusinglivingorganisms.
Biologicalnutrientremoval: Thetermappliedtotheremovalofnitrogenandphosphorus inbiologicaltreatmentprocesses.
Biosolids: Thenutrient-richorganicmaterialsfromthetreatmentofsludge.
Or Organic,richmaterialleftoverfromaerobicwastewatertreatment.
Or
Treatedsludgefromwastewatertreatment.
Blackwater: Wastewaterwithhighorganicandpathogencontent,consistingofurine, faeces,flushingwater,analcleansingwaterandgreywater.
Boilerfeedwater: Waterfedtoaboilerforthegenerationofsteam.
Boreholelatrine: Theboreholelatrineisanexcretadisposalsystemwhereaboreholeis combinedwithaslabaswellasasuperstructure.
Borewell: Wellsmadebydrillingboreholesintheearth.
Bottleirrigation: Thebottleisfirstfilledwithwaterandthenplacedinthegroundnextto theplantandwaterismadetotricklethroughit.
Brackishwater: Watercontaininglesssaltthansaltwaterandmoresaltthanfreshwater.
Brownwater: Waterconsistsoffaecesandflushwater.
Bund: Embankmentconstructedfromsoil.
Capnophilic: Organismsthatrequireincreasedcarbondioxide.
CarbonaceousBOD: BODexertedbycarbonfractionoforganicmatter.
Carbonsequestration: Theeliminationofatmosphericcarbondioxidebybiologicalor geologicalprocesses.
Chemicaloxygendemand(COD): Standardtechniquetomeasuretheamountoforganic compoundsthatcannotbeoxidizedbiologicallyinwater.
Chlorination: Aprocessinawater-treatmentsystemwherechlorineorachlorinecompoundisaddedtokillharmfulmicro-organismssuchasbacteria.
Clarifier: Atankusedforreducingtheconcentrationofsuspendedsolidspresentina liquid.
Clusterwastewatersystem: Wastewatercollectionandtreatmentsystem,whichserves someofthedwellingsinthecommunitybutlessthantheentirecommunity.
Coagulation: Aprocessofaggregationofcolloidalsuspendedsolidsbyfloc-forming chemicals.
Combinedsewer: Combiningthestormdrainagewithmunicipalsewersystems.
Constructedwetlands: Wetlandsdesignedandconstructedtotreatwastewater.
Cross-connection: Theresultofaconnectionbetweencontaminatedandnoncontaminated waterinawaternetwork.
Deadzone: Low-oxygen(hypoxic)areasintheoceans.
Decentralizedwastewatertreatment: Asystemdividedintogroupsorclusterswhere wastewateristreatedindependentlyinsteadofacentralizedsystem.
Denitrification: Microbiologicalprocesswherenitrities/nitratesarereducedtonitrogen gas,or,removingnitratebiologicallyandconvertingittonitrogengas.
Desalination: Processofremovingsaltfromwater.
Detentiontime: Thetimerequiredforaliquidtopassthroughatankatagivenrateof flow.
Dewatering: Removingwaterfromsludgeforfurtherhandlinganddisposal.
Directsurfacegroundwaterrecharge: Groundwaterrechargetotheaquiferviasoil percolation.
Disinfectionbyproduct: Chemicalbyproducts,formedafterdisinfection.
Downstreamecosystem: Ecosystemofalowerwatercourse.
Dripirrigation: Irrigationinwhichplantsareirrigatedthroughspecialdrippipes.
Dryingbed: Shallowpondswithdrainagelayersusedfortheseparationoftheliquidand solidfractionofsludge.
Dualflushtoilet: Flushtoiletdesignedwithtwohandles/buttonstoflushdifferentlevels ofwatertosavewater.
Economicinstruments: Fiscalandothereconomicincentivesalongwithdisincentivesto includeenvironmentalcostsaswellasbenefits.
Ecosystemservices: Theservicesprovidedbyecosystemlikehabitatforfloraandfauna, biologicaldiversity,oxygenproduction,biogeochemicalcyclesandsoforth.
End-of-pipeapproach: Waste-treatmentmethodsconductedattheendoftheprocess stream.
Enteropathogenicserotypes: E.coli strainsthatcancauseharmfuleffectstohumanbeings whenconsumedincontaminateddrinkingwater.
Eukaryotes: Organismswhosecellscontainanucleusaswellasotherorganellesenclosed withinmembranes.
Eutrophication: Aprocessoftransformationfromnutrient-deficitconditionstonutrientrichconditions,leadingtoalgalbloomsinwaterbodies.
Factorofsafety(safetyfactor): Capacityofasystembeyondtheexpectedloads.
Facultativeprocesses: Biologicaltreatmentprocessinwhichthemicrobescanfunctionin theabsenceorpresenceofoxygen.
Filamentousorganism: Threadlikebacteriaservingasthebackboneofflocformation.
Floc: Particulateorbacterialclumpsformedduringwastewatertreatment.
Flocculation: Theprocessofformingflocs.
Fogharvesting: Collectingfogforanthropogenicactivities.
Foodtomicro-organismratio(F/M): Amountoffood(BOD)availabletomicroorganismsperunitweightmicrobes(usuallyanalysedformixedliquorvolatilesuspendedsolids).
Freewatersurfacewetland: Aconstructedwetlandexposeddirectlytotheair.
Greeninfrastructure: Alsoknownasblue-greeninfrastructurewhichhighlightstheimportanceofnaturalenvironmentwhenmakingdecisionsaboutplanningtheuseofland.
Greywater: Wastewaterfrombaths,sinkandwashthatcanberecycledfor insitu consumption.
Gritchamber: Achamberortankinwhichprimaryinfluentissloweddowntoremove inorganicsolids.
Groundwater: Availablenaturalwaterfoundundergroundinthesoilorinbetweenrocks.
Headworks: Structureattheheadofawaterway.Inthecontextofwater/wastewater treatment,thecommencementofthetreatment.
Heavymetal: Heavymetalsarerelativelydensemetalslikecadmium,chromates,leadand mercury.
High-temperatureshort-timepasteurization: Passingthemilkthroughheatedaswellas cooledplatesortubes.
Humus: Adark-brownorblackmaterialconsistingchieflyofnonlivingorganicmaterial derivedfrommicrobialdegradationofplantandanimalsubstances.
Hydrolysis: Adecompositionprocessthatbreaksdownacompoundbyreactionwithwater.
Hypernatraemia: Aconditionwherebloodsodiumlevelistoohigh.
Imhofftank: Itistypeoftreatmentinwhichsolidssettleintheuppersettlingcompartments andsludgesinkstothebottomofthelowersettlingcompartmentwhereitisdecomposed.
Inconduithydropower: Productionofhydroelectricpowerinexistingmanmadewater conveyanceslikecanals,tunnels,pipelines,aqueducts,ditchesandflumes.
Indicatororganism: Organismsthatserveasameasureoftheenvironmentalconditions.
Industrialecology: Industrialecologyisconcernedwiththeflowofddandmaterials throughsystems.
Infiltrationbasins: Basinsusedforcollectingwaterforsurfacegroundwaterbypercolation.
Influent: Liquidthatentersintoaplace/process.Wastewaterenteringtreatmentplant.
Ionexchange: Processinwhichionsofonesubstancearereplacedbyionsofanother substance.
Lacustrine: Anylivingorganismsgrowingalongtheedgesoflakes.
Lamellaclarifier: Primaryclarificationdevicecomposedofarackofinclinedmetalplates tofiltermaterialsfromwaterthatflowacrosstheplate.
Leachate: Wastewaterthattricklesinlandfillorwastedumps.
Littoral/sublittoral: Anylivingorganismslivingalongcoastalareas.
Lockout: Theplacementofdevicestoseparateenergytoensurethatequipmenttobe servicedisoperatedtillthelockoutdeviceisremoved.
Macrophyte: Aquaticplantthatgrowsnearorinwater.
Microaerophilic: Organismsthatrequiredecreasedoxygen.
Mixedliquor: Thecombinationofwastewaterandreturnactivatedsludgeintheaeration tank.
Mixedliquorsuspendedsolids: Concentrationofsuspendedsolidscomprisingbiomass inanaerationtankintheactivatedsludgeprocess.
Mutagenic: Capableofinducingmutationandincreasingtherateofgrowth.
Organicloading: AmountofadditionalorganicmaterialsorBODappliedtothefilterper daypervolumeoffiltermedia.
Oxidationpond: Lagoondesignedtotreatsewagewastewaterbiologicallyinsecondary treatmentwiththeaidofsunlight,microbesandalgae.
Ozonation: Aprocessthatintroducesozoneintowatermolecules.
Pathogenicorganisms: Bacteriathatcancauseinfectiousdiseasesandharmfuleffectsto humanswheninfected.
Percolationbasins: Seepageofwaterthroughsoilundergravity.
Permaculture: Branchofecologicaldesign,ecologicalengineeringandenvironmental designthatdevelopssustainablearchitecture,humansettlementsandself-maintained agriculturalsystems.
Permeablereactivebarrier: Insitu treatmentzonethatpassivelycapturesaplumeof contaminantsandbreaksdownorremovesthecontaminants,releasinguncontaminated water.
Photochemicaloxidants: Chemicalsthatcanundergooxidationreactionsinthepresence oflight.
Photolysis: Aprocessofdecompositionofmoleculesbylight.
Phytoplankton: Theplantformsofplankton.
Plankton: Microscopicaquaticorganismsthatswimordriftweakly.
Pour-flushlatrine: Latrinesarefittedwithatrapforprovidingwaterseal.
Primarywastewatertreatment: Thefirstprocessusuallyassociatedwithmunicipalwastewatertreatmenttoremovethelargeinorganicsolidsandsettleoutsand andgrit.
Prokariotes: Agroupoforganismswhosecellslackamembrane-boundnucleus.
Quenching: Rapidcoolingofasubstancetoimpartcertainmaterialproperties.
ReggioEmilia: Approachtoteachingyoungchildrentoimprovecloserelationshipsthey sharewiththeirenvironment.
Salt-waterintrusion: Displacementoffreshsurface/groundwaterbythemovementofsalt water.
Sequentialbatchreactor: Aerobicwastewatertreatmentprocessthatcombinesreaction andsettlinginoneunit,therebydecreasingfootspace.
Sludge: Solidmattergeneratedfromwastewatertreatment.
Substrate: Organicmatterconvertedduringbiologicaltreatment.
Suspended-growthprocesses: Thebiologicaltreatmentprocessinwhichthemicrobes responsibleforthechangingoftheorganicmattertobiomass.
Swale: Grassedareaofdepression.
Tagout: Placementofatagoutdeviceonanenergy-isolatingdevicetoindicatethatthe energy-isolatingdeviceandequipmentarebeingcontrolledandshouldnotbeoperated untilthetagoutdeviceisremoved.
Thermotolerantcoliforms: Groupofbacteriathatcanwithstandandgrowatelevated temperatures.
TotalKjeldahlnitrogen: Ananalysistofindoutboththeammonianitrogenandtheorganic nitrogencontentoforganicsubstances.
Toxoplasmosis: Aninfectiousdiseasecausedby T.gondii harmfultohumanbeings. Symptomsincludelesionsofthecentralnervoussystemthatcancausebraindamage andblindness.
Turbidity: Thecapacityofsuspendedsolidsinwatertoscatter/absorblight.
Ultrafiltration: Akindofmembranefiltration.
Ultrasonic: Ultrasonicisadjectivereferringtoultrasound(soundwithafrequencymore thanthehigherlimitofhumanhearing(20kHz).
Ultravioletdisinfection: DisinfectionusingUVrays.
Ultravioletradiation: Radiationwithwavelengthsfromabout10nmto400nm.
Unconfinedaquifers: Saturatedpermeablesoilnotcappedbyimpermeablelayer.
Urbanheatisland: Phenomenonwherecentralurbanlocationswillbehotterthannearby ruralareas.
UV-ARadiation: UVradiationwithwavelengthintherangeof315and400nm.
UV-BRadiation: UVradiationwithwavelengthintherangeof280and315nm.
UV-CRadiation: UVradiationwithwavelengthbetween100and280nm.
Valency: Thevalencyofanatomorgroupisnumberofhydrogenatomsofthatcandisplace itorcombinewithitinformingcompounds.
Vatpasteurization: Heatingamaterialforalongperiodinavatfollowedbycooling.
Vector(inthecontextofepidemiology): Anyagent(micro-organism,personoranimal) thatcarriesandtransmitsapathogenintoanotherlivingorganism.
Waterseal: Thetrapthatretainsasmallquantityofwaterafterthefixture’suse.
Watershed: Areaoflandthatcontributesrainwatertoawaterbodyorstream.
Watertable: Toplevelofthegroundwater.
Wellcasing: Tubularmaterialthatgivessupporttothewallsoftheborehole.
Welldevelopment: Developmentproceduresdesignedtorestoreorimprovetheperformanceoftheborehole.
Wellrehabilitation: Cleaninganddisinfectionofthewellandwelldevelopmentprocedures toobtainqualitywater.
Wellremediation: Cleaningofoilwellstoimproveperformance.
Wellscreen: Filteringdevicethatpermitgroundwatertoenterthewell.
Wetwell: Undergroundpitusedtostorewastewater.
Windrowcomposting: Compostingprocessinwhichthematerialispiledupinelongated heapscalledwindrows.
Yellowwater: Urinemixedwithflushingwater.
Zoonosis: Diseasesthatoccurnormallyinanimalsandthataretransmittedtopeople.
Zooplankton: Theanimalformsofplankton.
1 WaterCrisis Waterisessentialforlife;ourfoodcannotgrowwithoutwaterandmillionsofplantsand animalsliveinit.Despitethis,itistakenforgrantedinmanypartsoftheworld.Attimes itmayfeelasthoughthereisaninfinitestockoffreshwaterbutavailablefreshwaterin theworldislessthan1%ofallthewateronearth.Thehumanpopulationhasincreased enormouslyanddatashowthatfreshwaterspeciesarethreatenedbyhumanactivities. Theaveragepopulationoffreshwaterspeciesfellbyaround47%between1970and2000 (UNESCO,2006).Theproblemswefacetodayarenumerousbutweexperienceonlysome ofthemdirectly.Forexample,whilemanypeopleandanimalshavediedduetowater scarcityinvariouspartsoftheworld,excessnitraterunoffisresponsiblefordeadzones (low-oxygenareasintheoceans)inotherpartsoftheworld.
Drinkingwaterthatiscleanandsafeisoneofthebasicneedsforthesurvivalofhuman beingsandotherspecies.Ithasalargeeffectonourdailylivesandthereforecivilizations areconcentratedaroundwaterbodies(Figure1.1).Wemayhavetopayacertainamount ofmoneytowatersupplierstoaccessdrinkingwater,orwemayreceivethewatersupply asanamenityfromgovernments.
Althoughourplanethasalargeamountofwater,estimatedat1.4billionkm3 ,only2.8% consistsoffreshwater.Moreover,mostofthisfreshwateriscontainedinpolarglaciers, whichdramaticallyreducestheamountofwateravailabletohumanbeings.Renewable waterresourcesdecreasedfrom17000m3 perinhabitantperyearin1950,to7500m3 in 1995(UNESCO,1996),andtheyarecontinuingtodecrease.Waterresourcedistributionis notuniformontheplanetandsomecountriessufferfromnaturaldisasters,suchasfloods orearthquakes.Insuchcases,theshortageofdrinkingwaterbecomesamajorproblem. Waterqualitycanbedramaticallyreduced,aswasthecaseafterthetsunamiinIndonesia in2004(Barbot etal.,2009).
Statisticallytherearemanyproblemsassociatedwithalackofacleanfreshwatersupply. Diseasesandcontaminationarespreadthroughunsafewaterandmanypeoplebecome sickasaresult.Problemswithwaterareexpectedtogrowworseinthecomingdecades, withwaterscarcityoccurringglobally.Inregionscurrentlyconsideredwaterrich,primary
SustainableWaterEngineering:TheoryandPractice,FirstEdition.RameshaChandrappaandDigantaB.Das. ©2014JohnWiley&Sons,Ltd.Published2014byJohnWiley&Sons,Ltd.
Civilizationhasbeenmainlyconcentratedadjacenttowaterbodies.
watertreatmentmaynotbeaccessiblewhennaturaldisastersoccur(Shannon etal.,2008). Problemswithdrinkingwaterintheeventofnaturaldisastersoftenconcernmicrobial pollutants,althoughorganicandinorganicchemicalpollutantscanalsoplayarole(Ashbolt, 2004).Access,topotablecleanandsafedrinkingwaterhasbeenreportedasamajorproblem facedbythepeopleaffectedbynaturaldisasters.
Virtuallyallbusinessdecisionswillaffectnaturalresources.Ofthesenaturalresources, wateristhemostaffectedbybusinessdecisionsallovertheworld.Asotherresourceshave beenextracted,thewaterfitfordirecthumanconsumptiondiminished;oftenitisnoteven directlysuitableforotherpurposes,forexampleindustrialandagriculturaluses.
Waterstresscanbedefinedasasituationwherethereisinsufficientwaterforalluses. Itresultsfromanincreaseinpopulation,inventionofnewusesforwaterandtheuseof waterbodiesasdisposalpointsforwastes.Technologyhasalsomadeiteasytoextract waterfromthegroundwatertable,divertsurfacewaterflowsandtransportthewaterto water-scarcelocations.Intenseurbanizationandindustrializationhaveresultedinclimate change,therebyenhancingwaterscarcityandreducingthesustainablesupply.Changing climatehasincreasedwatershortagesduetovariationinprecipitationpatternsandintensity. Thesubtropicsandmid-latitudes,wheremostoftheworld’spoorestpeoplelive,arelikely tobecomesubstantiallydrier(Chandrappa etal.,2011).Anincreaseinthetemperaturehas beenlinkedtoglacier/snow-capmelting.Thiswaterwillultimatelyreachthesea,sothatit willnolongerbeusefulunlessitistreatedincostlydesalinationplants.Extremeweather patternsmayresultindisasters,affectingthequalityofwater.
Groundwater-dependentareas(whereopenwellswereoncesunk)havenowadopted drillingtechnologytoextractgroundwaterthroughborewells.Thistechnologywasattractiveasitreducedthetimeforsinkingawellfrom3monthstoaday.Failureatonespot doesnotdiscouragepeoplefromsinkinganotherborewellafewmetresawayatagreater
Figure1.1
depththantheearlierone.Competitionamongstneighboursresultedinemptyingground water,withinadecade,whichhadaccumulatedoverthousandsofyears.
Astheperceptionofwaterasaninfiniteresourceisdiminishing,manyattemptshave beenmadearoundtheworldtoadapttothesituationusingwisdomwithinthecommunity. Someideasweresuccessfulovertime;othersfailed.WhilethepeopleinGreenlandused meltedsnowtomeettheirwaterneeds,thepeopleintheSaharasettledaroundoases. WhilepeopleindryareasofIndiatookabathonceaweekoronceamonth,othersinthe samecountrytriedtobuildhugedamsacrossriversanddivertedthewatercoursethrough asystemofcanals.Whiletheurbanagglomerationgrew,theseapproachescouldnotbe sustained.Thewisdomofengineersfourdecadesbackisnolongermeetingtheneedsof presentpopulation.Systemsdesignedhalfacenturyagohaveplacedenvironmentaland economicburdensoncountriesandcommunitiesalike.
Manyofthesolutionshavenowbecomeproblems.Examplesincludehugewastewatertreatmentplantsthatarenotadequatetocaterfortoday’ssewagegeneration.The entrepreneurswhobuiltindustriesinthepastdidnotbothertoconstructsoundwastetreatmentplants.Asaresult,mankinddependsontechnologythatrequireslargeamounts ofenergyandchemicals,resultinginhighcarbonemissionsandlargeecologicalfootprints.
Negligenceandlackofconsiderationbygovernment(legislative,executiveandjudiciary) aswellasinadequateinvestmentinpublicdrinkingwatersuppliesledtoadaptivemeasures likesellingwaterinsachetsinsomepartsoftheworld.Whilepollutionhasencouraged thebottledwaterindustry,waterscarcityhasadverselyaffectedfoodsecurity.Irrigation hashelpedtoimproveagriculturalyieldsinsemi-aridandaridenvironments(Hanjra etal., 2009a,2009b)but40%oftheworld’sfoodisproducedby19%oftheirrigatedagricultural land(Molden etal.,2010).Continueddemandforwaterforurbanandindustrialusehas putirrigationwaterundergreaterstress.
Figure1.2showstheavailabilityofwaterperpersonindifferentregionaloftheworld basedontheinformationavailableinRamirez etal. (2011).Thesefiguresleadtothe conclusionthatfreshrainwaterismoreavailableforapersoninAmericathanforone inAsia.ThisistruebecauseAsiahashistoricallymorepopulouscountries.Asiaalso experiencesaloweramountofrainduetoitsgeographicallocation.Someofthelargest desertsareinthiscontinent.
Notallofthe112100km3 ofwateronthesurfaceoftheearthisavailabletohumans.It flowsandreachesthesea,makinglessthan3%oftheworld’swaterfresh,ofwhich2.5% isfrozen,lockedupintheArctic,onAntarcticaaswellasinglaciers.Thus,humanityand terrestrialecosystemshavetorelyonthe0.5%ofglobalwater.Butglobalfreshwaterdistributionisnotequal.Thefollowingcountriespossessnearly60%oftheworld’sfreshwater resources:Brazil,Russia,China,Canada,Indonesia,theUnitedStates,India,Columbia andtheDemocraticRepublicofCongo.But,itdoesnotmeanthatallthepeopleinthese countrieshavesufficientwatertofulfiltheirneeds.Localvariationswithinthesecountries arehighlysignificant.
Giventhat120l/person/dayisjustsufficienttofulfilthewaterneedsofoneperson,precipitationacrosstheglobeissufficienttomeetrequirements.Unfortunately,notallthewateris sharedequallyamongstthepeopleacrosstheglobe.AsshowninFigure1.3,only8%ofthe waterusedintheworld(notwaterreceivedbytheworldthroughprecipitation)issuppliedto thepublicbygovernmentsacrosstheglobe(www.climate.org/topics/water.html,accessed 13December2013)andnotallpeoplearefortunateenoughtohavewatersuppliedtotheir
Figure1.2 Availabilityofwaterperpersonindifferentregionaloftheworld(basedonthe informationavailableinRamirez etal.,2011).
home.Apartfromhumandomesticconsumption(drinking,cooking,bathing/sanitation andwashing)therehasbeenshiftinwaterconsumptionbyindustrysincetheIndustrial Revolution.Industrialactivitycurrentlyconsumes25%ofwaterandagricultureconsumes around67%,leavingbehindtherestofthewaterforotherpurposes.
Apartfromthediscrepanciesinwateravailability,discrepanciesinpurchasingpowerdue todifferentialfinancialdistributionhavecreatedartificialwaterscarcity.Someofthepetsin richpeople’shouseswillhaveeasieraccesstowaterthanpoorandmarginalpeople(Figure 1.4).Whiletherichandelitesenjoythewater(swimming,carwashing,longshowersin bathtubs,etc.),poorandmarginalpeoplemayhavetosatisfytheirneedswithlessthan 10l/person/day.
TheIndustrialRevolutionandassociatedpoorpracticesandwastemanagementhave resultedinpollutionandresourcedegradation.Thecost-cuttingprinciplesofindustrialistsleadtopoortreatmentofwastewatergenerated.Manyentrepreneursdiscoveredthat
Figure1.3 Globalwaterusepattern.
Average hu m an con s u m ption (120 l/per s on/day)
Poor and marginal Water availability for people without water s upply con s i s ting of world population living in s lu ms, tribal s ettle m ent s, ho m ele ss people , rural area without water s upply/re s ource (< 10 l/per s on/day)
Water wa s ted per capita during treat m ent , di s tribution and u s e (20 l/per s on/day)
Rich and elite (> 10000 l/per s on/day)
Average water con s u m ed by cow 1000 l/ani m al/day
Figure1.4 Discrepanciesinwaterconsumptionbetweenrich,poorandanimals.
‘corruptionischeaperthancorrection’anddischargedwastewaterwithouttreatmentall overtheworld.Buttheenactmentandenforcementofstringentlawsindevelopedcountriesmakeitpossibletoregainthequalitytogreaterextent.Asaresult,someofthe developedcountrieslostmanufacturingbusinesstoothercountrieslikeChinaandIndia. ThetextilemillsthatwerelandmarksofManchesterintheUnitedKingdomandNorrkoping inSwedenarenolongermanufacturingtextilesbutIndiaandChina,whichexportgarments toEuropeandtheUnitedStates,haveaddedpollutiontowaterbodies.
Agriculturerequiresmorethan60%ofglobalwateruseand90%oftheuseinthe developingcountries.GlobalfreshwaterconsumptionhasmorethandoubledafterWorld WarIIandislikelytoriseanother25%by2030.
Asiahas32%ofglobaltotalfreshwaterresourcesbutAsiaishometoabout60%ofthe globalpopulation.Itisprojectedthat2.4billionpeopleinAsiawillsufferfromwaterstress by2025(IGES,2005).Developingcountrieshaveinvestedinwaterinfrastructurebutnot insustainableinfrastructure.
Economicdevelopmenthasmadecountriesthirsty.ThesituationsinEuropeduringthe IndustrialRevolutionmadethecountriesthirstyduringthelateeighteenthcentury.China, withaneconomicgrowthrateof10%perannumsincethelate1970s,currentlyhas20% oftheglobalpopulationandhasonly7%oftheglobalfreshwatertoquenchitsthirst.
Onaverage,thepeopleofsouthernChinahavefourtimesmorewaterthanthepeoplein thenorthwhereaspeopleinnorthernIndiahavemorewaterthantheircounterpartsinthe south,thereasonbeingthattheHimalayanmountainrange,withglaciersthatfeedperennial rivers,islocatedtowardsthenorthinthecaseofIndiaandthesouthinthecaseofChina.
PopulationprojectionsbytheUNin1996revealedthatworldpopulationgrowthis slowingmorethanpreviouslythought.TheUNprojectionsprovethatevenslightvariations inpopulationgrowthratescanhaveaffectthequantityandqualityofwateravailableto eachperson.Slowerpopulationgrowthhasresultedfromthedesireofmillionsofpeople tohavefewerchildren,whichisawelcomedevelopmentforthefuture.
1.1WaterResourceIssues Waterisusedmuchfasterthannaturecanreplaceit.Waterisafiniteresourcecirculating betweentheatmosphereandtheearth.Long-termwatersecuritycannotbeguaranteedif rainwateraccumulatedinaquifersisminedandoverused.
Waterstressiscausedby(i)excessivewithdrawalfromsurfacewaterandgroundwater; (ii)waterpollutionand(iii)inefficientuseofwater.
Despitewaterstress,peoplestayandfacewatercrisesformanyreasons,someofwhich are:
1.Inheritanceofproperty/businessinthelocality.
2.Absenceorlackofskillstomovetonewplace.
3.Lackofconfidencetoliveinnewplace.
4.Resistancefromotherregionorcountriestoacceptingpeoplefromsomeothercountries/religion/region.
5.Cultural,linguisticandfinancialissues.
6.Attachmenttolandandpeople.
7.Dependentslikechildrenandoldpeoplewhocannotmovetonewplaceindependently.
Migrationofpeopletowater-abundantareasisnotpossibleinthecurrentcontextofthe politicalfragmentationoftheglobe,therebyrulingoutthissolution.Countriesjustcannot acceptenvironmentalrefugeesasitwillputburdenontheircitizensandintimemaycause povertyamongtheiroriginalcitizens.
Sharingwaterwithothercountrieslocatedfarawayisnotconsideredforfinancialreasons. Sharingofwaterbyneighbouringstatesmightbeasolutionbuttherearenumerousexamples wheretherehasbeenconflictbetweensuchstates.States/countries/regionsreleasewater whenthereisabundanceandholdwaterwhenthereiswaterscarcity,therebycausingfloods anddroughtsrespectivelydownstream.
Asaresult,peopleareleftonlywithcombinationsofthefollowingchoices:
1.Reducethepopulation.
2.Reduceconsumptionofwater.
3.Reducewastageofwater.
4.Reduce/avoidwaterpollution.
5.Reuse/recyclewater.
Discussinghowtoreducethehumanpopulationisbeyondscopeofthisbookandthere havebeenmanyattemptsacrosstheglobeusinglegislation,increasingawarenessand providingincentivesinthisregard.Areductioninconsumptioncouldbedonebyavoiding water-intensivecropsbut,peoplejustrefusetoswitchoverfromfoodswithahigherwater footprinttothosewithalowerwaterfootprint.Peopledonotswitchovertovegetarian foodinsteadofmeatanddairyproductstosavewater,eventhoughthewaterfootprint ofvegetarianfoodisfarsmallerthanthatoffoodderivedfromanimals.Hence,theonly choicespeopleprefertomakeis(i)reducingwastage,(ii)reducing/avoidingpollutionand (iii)reusing/recyclingwater.Thisbookelaboratesonvariousmethodologies,strategies, issuesandchallengesinachievingthesethreeobjectives.
Manmadeandnaturaldisastersareoftenfollowedbyconsiderablelossoflifeand temporarydisruptionofnormallife,whichmayresultinsufferingandsubstantialdamage toinfrastructure,societyandtheeconomy.Ithasbeenreportedthatmorethan90%of alldisastersoccurnaturallyand95%ofdisaster-relatedcasualtiesoccurindeveloping countries(Thuy,2010).IthasalsobeenreportedthatAsiaandthePacificaretheregions thatareparticularlyaffectedbydisasters(Thuy,2010).
TheearthquakeintheRepublicofChinain1976wasrankedasoneofthemostdevastatingeventsintermsofthenumberofpeoplekilledandeconomicdamage.Asia,with itsgeographicpositionandtopographicconditions,hasspecialclimaticcharacteristics, resultinginseriousdisasterssuchasfloods,typhoons,tornados,tsunamis,earthquakesand droughts.
Meanwhilemanmadedisasterssuchaswarandpoliticalviolence,apartfromdeathand destruction,alsocausedisruptiontoeconomicnetworksandcontributetoenvironmental degradation,whichinturnjeopardizesfoodproduction,waterqualityandlivingconditions (Thuy,2010).Itwasreportedthat,in2008,about5600peoplelosttheirlivesbecause ofhuman-madedisasterssuchasshippingdisasters,miningaccidents,stampedesand terrorism(Thuy,2010).
Aswellasfood,shelterandmedicalaid,providingcleanwaterisusuallyoneofthe highestprioritiesintheeventofanemergency(Reed,1995).Duringemergencysituations, theshortageofdrinkingwaterisnotonlyaninconveniencebutitsavailabilityanduse
undersuchconditionsisalsoassociatedwithrisksthatthreatenhumanlives(Thuy,2010). Effectiveprimarywatertreatmentmaynotbeavailabletoahugepercentageofundeveloped countries.Itisthereforeessentialtohaveafullyfunctionalportablewaterpurificationdevice inordertolivewhennaturaldisasterhappens.Failuretoprovidesafewatercanoftenbe fatalinthewakeofnaturaldisasters.
Themostpopularwatertreatmentmethodsnowadaysincludefiltrationsuchassand filtration(Thuy,2010),bio-sandfiltration(Elliott etal.,2008)ormembranefiltration (Butler,2009;McBean,2009;Park etal.,2009),andcoagulation(Garsadi etal.,2008). Normally,theseprocessesdonotensurethedisinfectionoftreatedwatersoachlorination processisnecessary.However,duetotheadverseeffectsfromdisasters,thereislimited accesstochemicalssuchaschlorineoriodinefordisinfectionandaluminiumsulfatefor coagulationandalsoelectricitytosupplypowerinordertooperatesystems.Thisisthe mainreasonwhychemicalandelectricityrequirementsarethemostimportantfactorsthat restricttheuseofthesemethodsinemergencies(Thuy,2010).
Membranetechnologyhasemergedandhasproventobeanadvancedtechnologyfor watertreatmenttoproducesafedrinkingwater.Itsapplicationisincreasingdaybyday.As comparedwithconventionaltreatmentmethods,watertreatmentusingmembranetechnologyproducesabetterwaterquality,usesamuchmorecompactsystem,iseasiertocontrol intermsofoperationandmaintenance,requiresfewerchemicalsandproduceslesssludge (NakatsukaandNakate,1996).Themethodstocreatethedrivingforceforthisfiltration aremoreflexibleandlessdependentonelectricalenergy;theyincludeuseofgravitationalforce(Butler,2009),bicycle-poweredfiltration(McBean,2009)orwind-powered renewableenergy(Park etal.,2009).Researchwillfocusondevelopingamembrane-based portablewaterpurificationsystemthatcouldbedeployedtocountriesinthewakeofnatural disastersorforemergencies.
1.1.1WaterFootprint Thewaterfootprintisanindicatorofwaterusewithrespecttoconsumergoods(Hoekstra etal.,2011).Thewaterfootprintofaproduct/serviceisthequantityoffreshwater used/evaporated/pollutedtoproducetheproduct/service.Awaterfootprinthasthreecomponents:blue,green,andgrey(Figure1.5).Thequantityoffreshwaterevaporatedfrom thesurface/groundwaterisconsideredtobethebluefootprint.Thegreenwaterfootprintis thequantityofwaterevaporatedfromrainwaterstoredinthesoil.Thegreywaterfootprint isthequantityofwaterrequiredsothatthequalityoftheambientwaterwillbeabove
Figure1.5 Definitionofblue,greenandgreywaterfootprint.(Foracolourversionofthis figure,seethecolourplatesection.)
Blue, green and grey water footprint
Figure1.6 Averagefootprintforproductionofvegetables,bovinemeatandfruits.(Source: basedondatainMekonnenandHoekstra,2010.)
waterqualitystandards(HoekstraandChapagain,2008).Figure1.6showstheaverage footprintfortheproductionofvegetables,bovinemeatandfruits.Twenty-sevenpercent oftheglobalwaterfootprintisduetotheproductionofanimalproducts(Mekonnenand Hoekstra,2010).
Apartfromwaterconsumptionforfoodanddrinking,theworldhaswitnessedanincrease intheuseofgoodsandservices,whichhasleftagreaterfootprintthanfoodproduction. Hydropower,whichaccountsfornearly16%oftheglobalelectricitysupply,hasabluewater footprintofaround90Gm3 /yearwhichisequivalentto10%ofthebluewaterfootprintof worldwidecropproductionintheyear2000(MekonnenandHoekstra,2012).Theincrease inthenumberofcarsintheworldhasalsoplacedahighdemandonpetroleum-basedfuel, whichisanonrenewableresource.Hence,theblendingofethanolhasbeenconsideredas asustainablesolutioninmanypartsoftheworldandmanygovernmentsareencouraging productionofsugarbeetandsugarcanetoenhanceproductionofethanol.Thedemand forandsubsequentdiversionofwatertogrowrawmaterialforethanolhasalsoresultedin competitionforwaterwithconventionaluses.
1.2ClimateChangeandItsInfluenceonGlobalWaterResources DuringthePalaeolithicperiod(before10000BCE)peoplelivedasnomadsandthere werenopermanentsettlementsandhencenostressonwaterresources.Humansdeveloped thefirststonetoolsbutdidnotputanystressonwaterbodies.Thiswasfollowedbythe Neolithicperiod(orNewStoneAge),whichstartedinabout9500BCEintheMiddleEast. TheNeolithicperiodwasfollowedbytheterminalHoloceneEpipalaeolithicperiod,when farmingwasstarted.TheMesolithicperiod,whichoccurred10000–5000yearsago,sawa growthinpopulation,whichstartedusingwaterresourcesaswellasothernaturalresources.
Vegetables (322 l/kg)
Bovine meat (14414 l/kg)
Fruits (962 l/kg)
Another random document with no related content on Scribd:
PAIR OF COTTAGES. V F P —This plate shows the development and variation of the inside houses of the block of four shown on Plate ., with a superior arrangement of larder, and with projecting coals. The long sloping roof has been hipped back to give a pleasing line, especially in perspective.
T L
S R .—The long sloping roof, a feature frequently introduced at Bournville, has several advantages. If it were not employed, and the front walls were carried up level with the ceiling line of the bedroom, the proportions of the elevation would not be so happy, while an additional expense would be incurred by the extra brickwork. Such a height, moreover, would be wholly unnecessary In the case of cottages with the long sloping roof the height of bedrooms to the point of intersection of roof and wall need only be 5 ft. 6 ins. Ample ventilation is obtained by the simple insertion of a 9 in. by 7 in. air-brick on the outside wall, and a Sheringham ventilator or Tobin tube within, about 5 ft. 6 ins. from the floor, the cost of the latter being about 3s., and of the former a little more. The long sloping roof can rarely be treated tastefully without boldly projecting the eaves. The projection gives a verandah in front of the house which affords a pleasant shelter. Wooden posts may be used as supports, and by training climbing plants up them, and allowing them to festoon, a really delightful summer bower may be formed. As the roof is broad, pantiles may be used with safety so far as good taste is concerned: bold roof, bold covering. By omitting the gutters at the dormer eaves a pleasing effect is gained, and gutters are quite unnecessary with an eaves projection. The cheeks of the dormers should be dressed with lead. The cottages in question are whitewashed, and have a tarred plinth of about 2 ft. to prevent the unsightliness of mud splashes.
FRONT ELEVATION GROUND PLAN
BEDROOM PLAN
PLATE XX.
PAIR OF COTTAGES. SEE PAGE 30
T L L R .—In view of the gain to health of one spacious living room over the parlour plan, a number of these cottages has been built in varying design at Bournville, and no difficulty has been found in letting them. There has been, however, considerable discussion with regard to their convenience to the artisan in other districts where they have been introduced. Although cottages in the past had no third room, there having been, as here, one large comfortable room (often with the ingle nook) and a small kitchen at the back—all the accommodation really required—yet at the present time many artisans are not content without the useless
parlour, which they appear to think adds dignity to the house, but which is used by them chiefly as a store-room for gim-cracks. There is, perhaps, a reasonable objection to a single large living room on the part of a particular class who let the front room to a lodger. Nevertheless, for a model village or a garden city it is strongly recommended that the plan should be adopted freely, and the preference for the useless front room in small cottages discouraged.
Total cost of the example given, including all extras, £268 per cottage.
Laying out of gardens, £10 each.
Cubical contents, 28,587 ft., at 4½d. per foot cube, £536, or £268 per cottage.
Instances of the last two types of cottages dealt with appear in the view given on Plate
PLATE XXI. PAIR OF COTTAGES.
PAIR OF COTTAGES. SEE PAGE 32
The smaller cottage shown here is planned on similar lines to the foregoing, but with the additional accommodation of an attic, and bay windows to the two storeys. This is an instance of how a smaller cottage may be joined to a larger one in treating a corner site, the larger one on the corner giving importance to each road.
PLATE XXI.
PLATES XXII., XXIII., I. (FRONTISPIECE), XXIV., XXV., AND XXVI.
BLOCKS OF FOUR. PLATE XXII.
BLOCK OF FOUR COTTAGES. SEE PAGE 32.
PLATE XXIII. BLOCK OF FOUR COTTAGES. SEE PAGE 32
PLATE XXIV BLOCK OF FOUR COTTAGES. SEE PAGE 32
These plates show examples of cottages in blocks of four rather larger in size than the last type, and treated in different materials. Plate . shows the details of the cottages on Plate .
PLATE XXV BLOCK OF FOUR COTTAGES. SEE PAGE 32.
PLATE XXVI. DETAIL VIEW SEE PAGE 32
PLATE XXVII. PAIR OF COTTAGES.
FRONT ELEVATION GROUND PLAN
BEDROOM PLAN
PLATE XXVII. PAIR OF COTTAGES. SEE PAGE 33
Plate . gives the plan and elevation of a pair of cottages also having similar accommodation to those with the long sloping roofs shown on Plate . The cost, however, is here considerably reduced by each house having a side entrance, and by the omission of the ingle nook, verandah and bay, while the living room, though smaller,
is not a passage room. By approaching the stairs from the lobby, not only is more privacy secured, but the space beneath is made available in the kitchen for a “Cabinet” bath, which is so placed as to occupy it when in use instead of projecting into the kitchen. The planning is simple and square, which, with the omission of bays and the introduction of plain casements, all helps to reduce the cost.
The accommodation is:—
G F .
Living Room, 12 ft 4 ins × 16 ft Kitchen, 10 ft 3 ins × 11 ft 6 ins Lobby Larder, and Coals
B F
First Bedroom, 12 ft. 4 ins. × 16 ft. Second Bedroom, 7 ft. 8 ins. × 11 ft. 6 ins.
Third Bedroom, 8 ft. × 8 ft. 3 ins. Linen Closet.
Total cost, including all extras, £250 per cottage.
Laying out of gardens, £10 each.
Cubical contents, 24,000 ft., at 5d. per foot cube, £500, or £250 per cottage.
PLATE XXVIII. PAIR OF COTTAGES.
FRONT ELEVATION
GROUND PLAN
BEDROOM PLAN
PLATE XXVIII. PAIR OF COTTAGES. SEE PAGE 34.
This plate shows the plan and elevation of a pair of cottages having the parlour in addition to the living room and scullery. The living room, which should always be the larger, is here the full width of the house. The measurements are:—
G F
Living Room, 11 ft. 5 ins. × 16 ft. 6 ins. Parlour, 11 ft. 4 ins. × 13 ft. 3 ins.
Scullery, Outside Larder, . . and Coals.
B F .
First Bedroom, 11 ft 4 ins × 13 ft 3 ins
Second Bedroom, 8 ft 6 ins × 11 ft
5 ins Third Bedroom, 7 ft 8 ins × 8 ft 6 ins Linen Closet
Total cost, including all extras, £230 per cottage. Cubical contents, 33,918 ft. at 3¼d. per ft. cube. £460, or £230 each. (Built in 1899.)
The stairs in this instance descend to the entrance lobby, but they may be planned the other way about in order to avoid the necessity of traversing the parlour to get to the bedrooms, and to insure children crying upstairs being heard in the living room or the scullery. This, however, would necessitate the cutting of 3 ft. off the large front bedroom, while the respective spaces for the larder and the lobby below would be reversed, the position of the former being undesirable.
Ordinary roofing tiles and common bricks have been used. The living room is boarded, and the scullery quarried.
It might be pointed out that there is but little scope for variety of plan in these smaller cottages. The variations must be obtained in the treatment of elevations. As already stated, to build cheaply the main point is to get the walls as long and straight as possible.
FRONT ELEVATION BLOCK OF THREE COTTAGES.
PLATES XXIX. AND XXX.
BLOCK OF THREE COTTAGES.
GROUND PLAN BEDROOM PLAN
PLATE XXIX. BLOCK OF THREE COTTAGES. SEE PAGE 35
Plate . and the accompanying scale-drawing give the plan and elevation of a block of three cottages, a sketch of which appears in Plate . The inner one occupies an exact third of the land, and is double fronted. By putting the inner one with its axis to the front, an equal garden-space is given to all the houses without incurring a redivision of the land.
PLATE XXX. BLOCK OF THREE COTTAGES. SEE PAGE 35.
The inner and left-hand houses have practically the same accommodation, but the right-hand has several advantages: there is a wider hall, the living room is not a passage room, while the kitchen is reached from the hall, and the wash-house is entered from the yard.
Accommodation of left-hand and inner houses.
G F .
Parlour, 11 ft. 4 ins. × 15 ft. 3 ins. Living Room, 10 ft. × 14 ft. 6 ins. and bay. Scullery, 10 ft × 6 ft and recess for Bath Coals, Tools, and
B F .
First Bedroom, 11 ft. 4 ins. × 15 ft. 3 ins. Second Bedroom, 7 ft. 6 ins. × 14 ft. 6 ins , and bay Third Bedroom, 7 ft 5 ins × 11 ft 6 ins Fourth Bedroom, 9 ft 6 ins. × 6 ft. (middle house only). Linen Closet.
Cost of left-hand and inner houses, including all extras, £293 per cottage. (Built in 1904.)
The right-hand house, owing to the extra conveniences, works out at rather more.
In the middle house the recess between the range and small window makes a very convenient space for a writing table, especially if curtains are dropped from a rod to screen it off, its proximity to the range making it a warm and cosy retreat in winter. There is a bay window to the living room of the outside houses.
Two of the houses in this block are fitted with Cornes’ Patent Combined Scullery-Bath-Range and Boiler, described on page 52, and the third with the “Cabinet” bath.
The elevation, with the forecourt formed by the projection of the two outside houses, may be made very pleasing. From the perspective it will be seen that the inner house is covered with rough-cast, making an agreeable contrast with the outer ones of plain brickwork. Roughcast, while fairly economical, is very effective, and helps to brighten the forecourt. The projection of the outer houses affords a break, the abruptness of which does not attract attention, but which gives an opportunity of stopping the rough-cast, which would otherwise have to be carried round to the back of the whole block.
It is not advisable to introduce a variety of colour upon exteriors. Colour is best disposed in masses—that is, it should be treated broadly, not distributed in isolated portions, or in sharply contrasting tints. (See page 59.)
The roof of this block is of green slates of varying sizes, diminishing towards the ridge.
Aspect in the placing of the house is here studied as well as the site. The axis runs south-west and north-east, and the front commands a pleasing perspective of one of the principal Bournville roads, and an admirable view of the Lickey Hills in the distance.
DESCRIPTIONS OF PLATES XXXI.-XXXIII. PLATE XXXI.
PAIR OF COTTAGES (SHALLOW SITE).
PLATE XXXI. PAIR OF COTTAGES. SEE PAGE 38
The view shown in this plate illustrates the treatment of a shallow corner site, the block being a pair of semi-detached, double-fronted cottages. The plan is similar to the middle house of the foregoing block.
PLATE XXXII.
PAIR OF COTTAGES.
PLATE XXXII. PAIR OF COTTAGES. SEE PAGE 38
A pair of cottages also planned on the same lines as the middle house shown in Plate . and the foregoing shallow-site pair, but placed at right angles instead of lengthwise, and occupying a corner position.
PLATE XXXIII. PAIR OF COTTAGES.