IntelligentSystems,ControlandAutomation: ScienceandEngineering
Volume84
Serieseditor
ProfessorS.G.Tzafestas,NationalTechnicalUniversityofAthens,Greece
EditorialAdvisoryBoard
ProfessorP.Antsaklis,UniversityofNotreDame,IN,USA ProfessorP.Borne,EcoleCentraledeLille,France ProfessorR.Carelli,UniversidadNacionaldeSanJuan,Argentina ProfessorT.Fukuda,NagoyaUniversity,Japan
ProfessorN.R.Gans,TheUniversityofTexasatDallas,Richardson,TX,USA
ProfessorF.Harashima,UniversityofTokyo,Japan ProfessorP.Martinet,EcoleCentraledeNantes,France
ProfessorS.Monaco,UniversityLaSapienza,Rome,Italy
ProfessorR.R.Negenborn,DelftUniversityofTechnology,TheNetherlands ProfessorA.M.Pascoal,InstituteforSystemsandRobotics,Lisbon,Portugal ProfessorG.Schmidt,TechnicalUniversityofMunich,Germany ProfessorT.M.Sobh,UniversityofBridgeport,CT,USA
ProfessorC.Tzafestas,NationalTechnicalUniversityofAthens,Greece ProfessorK.Valavanis,UniversityofDenver,Colorado,USA
Moreinformationaboutthisseriesathttp://www.springer.com/series/6259
MariaIsabelAldinhasFerreira
JoaoSilvaSequeira • MohammadOsmanTokhi
EndreE.Kadar • GurvinderSinghVirk
Editors
AWorldwithRobots
InternationalConferenceonRobotEthics: ICRE2015
Editors
MariaIsabelAldinhasFerreira
UniversityofLisbonCenterofPhilosophy
Lisbon Portugal
JoaoSilvaSequeira
InstitutoSuperiorTécnico
TechnicalUniversityofLisbon Lisbon Portugal
MohammadOsmanTokhi
LondonSouthBankUniversity London UK
EndreE.Kadar DepartmentofPsychology UniversityofPortsmouth Portsmouth UK
GurvinderSinghVirk InnotecUKLtd Cambridge UK
ISSN2213-8986ISSN2213-8994(electronic) IntelligentSystems,ControlandAutomation:ScienceandEngineering ISBN978-3-319-46665-1ISBN978-3-319-46667-5(eBook) DOI10.1007/978-3-319-46667-5
LibraryofCongressControlNumber:2016953858
© SpringerInternationalPublishingAG2017
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.
Coverphoto: © Shutterstock
Printedonacid-freepaper
ThisSpringerimprintispublishedbySpringerNature
TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Preface
Theincreasingdeploymentofrobotictechnologyinmanydomainsofhumanlife willhaveasubstantialimpactontheeconomic,socialandculturaltissuesofour societies.Thoughonecanalreadyanticipatesomeofitshugebenefits,italsourges ustotrytoreflectonitsimpactonfundamentalinstancesofeverydaylifeandalso envisagetowhatextentessentialsocietalvaluesonwhichwehavebasedour culturesandlegalsystemsmaybeeventuallyaffected.
Onthevergeofthistechnologicalrevolution,expertsfromacademia,industry, militaryandciviliansectorsgatheredintheInternationalConferenceonRobot Ethics(ICRE2015)1 inordertoreflectanddiscussthemainethicalproblems resultingfromthewidespreadadoptionofrobotics.Thepresentbookcomprehends notonlytheshareddoubtsandconcernsbutaboveallthecommonefforttoopenup newpathwaystoafuturewithrobotsthatcontributestoabetterworld.
Thebookisdividedintotwoparts:PartIpresentsselectedcontributionsofthe mainspeakersandalsothoseofinvitedguests.Theseareorganizedaccordingto relevantdomainstheyareaddressingcomprisinggeneralnormativeandethical issues,theethicsofsomeroboticapplications,socialandservicerobotics,robotsin defenceandwarscenarioand, finally,legalissues.
PartIIcontainsthereflectionsandaccountsofthetwoothereventsorganized duringICRE2015:acinemacycle TheRobotStepsin;andtheexhibitionNóse osRobots/OsRobotseNós 2
PartIstartswithChap. 1.Here,Malle,ScheutzandAusterweilpointoutthatthe mostethicallychallengingroletobeplayedbyrobotsisthatofcollaboratorand socialpartner.Proposingthatsuchrobotsmusthavethecapacitytolearn,represent, activate,andapplysocialandmoralnorms,theauthorsofferatheoreticalanalysis oftwoparallelquestionsthatare:(i)Whatconstitutesthiscapacityfornormsin humans?(ii)Howmightweimplementtheminrobots?
1Lisbon,23and24October2015.
2WeandtheRobots/TheRobotsandUs,intheEnglishtranslation.
InChap. 2,MaaikeHarbers,MariekePeeters,andMarkNeerincxanalysehowa robotsystem’scharacteristicsaffectpeople’sperceptionofitsautonomy.Basedon asurveyaimedatidentifyingtherateofautonomyassignedby firefi ghterstoa numberofsearchandrescuerobotswithdifferentshapesandindistinctsituations, theauthorswereabletoidentifysevendistinctaspectsofperceivedautonomy.
InChap. 3,SeanWelsharguesthatthecriticalworkindeonticreasoningis betterdoneintheknowledgerepresentationratherthanreasoningofanormative system.Inthischapter,theauthordescribesawaytoformalizecomplexnormative decisionsusingpredicatelogicandgraphdatabases.
InChap. 4 bySelmerBringsjordproposesanethicalhierarchy(EH)thatcanbe appliedtobothrobotsandhumans.Thishierarchyiscatalysedbythequestion:Can robotsbemoremoralthanhumans?AccordingtoBringsjord,thelightshedbyEH revealswhyanemphasisonlegalobligationforrobotsisinadequate,andwhy atleastthevastmajorityoftoday’sstate-of-the-artdeonticlogicsaremorally inexpressive,whethertheyareintendedtoformalizetheethicalbehaviourofrobots orhumans.
Chapter 5 byWilhelmE.J.KleinonRobotsandFreeSoftwareexamines whethertheargumentsputforwardbyfreesoftwareadvocatedinthecontextof computersalsoapplyforrobots.SummarizingtheirkeyargumentsKleinexplores whetherornottheyappeartransferabletorobotusecasescenarios.Issuesrelatedto robotethicsforchildren–robotstudiesreportedincontemporarypeer-reviewed papersarealsopresented.
InChap. 6,JaeeunShimandRonaldC.Arkinaddresstheparticularbenefits broughtbyrobotictechnologytothedomainofhealthcare,namelytopatientswith Parkinson’sdisease.Theauthorspointoutthatsincethesepatientscannotreadily communicatetheirinternalandexternalstatesduetotheirlimitedmotorcontrol abilities,theymayexperiencethelossofdignityduringtherapywiththeircaregivers.ShimandArkinpostulatethatacompanionrobotcanremedythischallenge andreducethecommunicationgapbetweenthepatientandthecaregiversmoothing andincreasingtheeffectivenessoftheinteractions.Toachievethisgoal,theyhave developedarobotarchitecturethatcanhelppreventthelossofdignityinpatient–caregiverrelationships.Theprimarygoalofthisrobotmediatoristoensure patients’ andcaregivers’ dignityduringtheirinteractions.
Chapter 7 byHarbers,deGreeff,Kruijff-Korbayova,Neerincx,andHindriks addressesaparticular fi eldthat,accordingtotheauthors,isunder-examinedwhen comparedtootherroboticapplicationareas.Thechapterdescribestheoutcomesof severalvalueassessmentworkshopsthatwereconductedwithrescueworkers,in thecontextofaEuropeanresearchprojectonrobot-assistedsearchandrescue (SAR).Theseoutcomesareanalysed,keyethicalconcernsanddilemmasare identi fiedandrecommendationsforfutureethical-relatedresearchwasidenti fied leadingtoresponsibledevelopmentanddeploymentofSARrobots.
M.Kyriakidou,K.PaddaandL.Parry’sstudyonChap. 8 explorehowrobot ethicsinchildren–robotinteractionstudiesaredescribedincontemporary peer-reviewedpapers.Theoutcomesofasurveyconductedon27articlesindicate problematicapplicationsofreportingrobotethicsinpeer-reviewedjournalsand
highlightthenecessityforjournalstoconsiderstricteractiononthisaspectof publication.
InChap. 9,SjurDyrkolbotnconsidersnon-contractualliabilityforharmcaused byartificiallyintelligentsystemsandprovidesatypologyofdifferentpossibleways toapproachtheliabilityissue.Thepaperarguesthatthetraditionalrobot-as-tool perspectiveshouldbemaintainedbutwarnsthatnewtechniquesneedtobe developed,attheintersectionbetweencomputerscienceandlaw,tosupportreasoningabouttheliabilityimplicationswhenautonomoustechnologiesinteractwith theirenvironmentandcauseharm.
Chapter 10 providesfundamentalinsightsintothedifficultiesofautonomousand mixedvehiclecontrolEndreE.Kadar,AnnaKöszeghyandGurvinderSinghVirk addressthisproblembasedontheevidenceprovidedbythreecasestudies.
Chapter 11 byL.Beton,P.Hughes,S.Barker,M.Pilling,L.FuenteandN.T. Crookrefersthatduelargelytotheintroductionofnewtechnologiessuchasforce sensing,itisnowpossibletohavehumanspresentwithintheworkspaceofarobot inanindustrialsetting.However,theauthorsemphasizethatphysicalsafetyisnot theonlyconsiderationwhenattemptingtodeveloprobotsthataretrulyableto collaboratewithhumans.Theestablishmentoftrustliesattheheartofanysuch collaboration.Theauthorsarguethattrustinarobotdepends,atleastinpart,on perceivedsafetyandperceivedintelligence,andthatthese,inturn,dependonthe collaborativestrategiesthattherobotadopts.Asignificantnumberofstudieshave beenperformedonhuman–robotcollaborationstrategies.Oneofthekeyareasof interestisintheadoptionofleader/followerrolesinthecollaboration.
Alsoaddressingindustrialrobotics,S.R.FletcherandP.Webb,inChap. 12, claimthattechnologicaladvanceswillcauseachangeinthewayindustrialrobots areviewedandtraditionallyoperated.Thismeanstheywillleavetheirusually highlysecludedenvironmentsbeingdeployedtoworkmorecloselyandcollaborativelywithpeopleinmonitoredmanufacturingsystemswiththewidespread introductionofsmall-scalerobotsandassistiveroboticdevices.Accordingtothe authors,thiswillnotonlytransformthewaypeopleareexpectedtoworkand interactwithautomation,butwillalsoinvolvemuchmoredataprovisionand captureforperformancemonitoring.Thechapterdiscussesthebackgroundofthese developmentsandtheanticipatedethicalissuesthatarelikelytobefaced.
InChap. 13,SeanWelshclaimsthatlethaldecision-makingiscomplexand requiresdetailedanalysistodefinewhatistobebannedorregulated.Thechapter proposesanextensionofthecurrent “single-loop” analysistotwoloops:apolicy loopanda fi ringloop.Theaimistoclarifywhatexactlyismeantbymeaningful humancontrolofalawandtofacilitatewordingsuchasmightoccurina ProtocolVItobeaddedtotheConventiononCertainConventionalWeapons (CCW).
Chapter 14 byDoresDel fim,AnaBaltazar,TeresaCabral,IsabelMachadoand PaulaGonçalvesprovidesanoverviewofthesafetyissuesofthePortuguese MilitaryRemotelyPilotedAircraftSystems(RPAS),namelythehumanerror,
integrationintoregulatedcommonnationalairspace(consideringtherulesofair) andtheairworthinesscertificationaspects.Thechapteralsobringsoutthesafety assessmentmethodologybyaddressingitsapplicationtoAntex-X02RPAS,a platformunderdevelopmentbythePortugueseAirForceAcademy.
Chapter 15,byinvitedguest,Major-GeneralJoãoVieiraBorgesregardsthe themeofroboticsinthemilitarydomainfromastrategicperspective.Considering thetrilogythatstrategycomprehends goals,meansandthreats threefundamentaltopicsareapproached:(i)theneedtoworkatpolitical,strategical,operationalandtacticallevels(ii)theroleofrobotsinthenewsecurityanddefence environmentand(iii)theimportanceofincorporatingrobotsinmilitaryeducation.
Chapter 16,akeynotebyR.Gélin,highlightstheimportanceforthe social/serviceroboticsdesignerofbeingawareofthepotentialethicalandsafety issuesthatmayarisefromthedevelopmentofhumanoidrobotsfunctioningas companions.Afterashortdescriptionofapossibleusecase,dedicatedtothe assistanceofanelderlyperson,theauthoridentifiesthemainconcernsfromsafety andethicalpointsofviewandproposeswaysonhowtopreventrisks.
InChap. 17,IsabelFerreiraandJoãoSequeirahighlightthatdemographictrends revealasignificantworld-changingagedistributionresultingfromincreased averagelongevityandthedeepdeclineinfertilityrates.Inthisframework,theuse ofrobotictechnologytoguaranteeprolongedautonomyofseniorcitizensandtheir activeageingisanimperative.Theauthorspointout,however,thattheuseof robotictechnologycanneverreplacefundamentalbonds,asthosethatlinkparents totheirchildren.
Twopapersconstitutethesecondpartofthisbook:Chap. 18,andChap. 19.
InChap. 18,RodrigoVenturaandIsabelFerreirareporttheirefforttobring robotictechnologyclosertothelaypersonsinthegeneralpublic aneducational effortthat,intheiropinion,shouldprecedethemassivedeploymentofallinformationandcommunicationtechnologiesandthatbecomesparticularlyneededat thevergeofawidespreaduseofrobotictechnology.Thischaptergivesabrief accountofthecontentandorganizationoftheexhibitionandofhowthepublic reactedtoit.
InhispaperChap. 19,José ManuelMartinsaddressestheroleof fiction,namely theroleofthecinemaintheconstructionofprototypicalmentalrepresentationsand changingmentalities.
LisbonMariaIsabelAldinhasFerreira July2016JoaoSilvaSequeira MohammadOsmanTokhi EndreE.Kadar
GurvinderSinghVirk
Acknowledgments
TheEditorswouldliketothanktothefollowingpeopleandinstitutions.Without themthisprojectwouldnothavebeenpossible.
• LisbonUniversity,Portugal,namelytheCenterofPhilosophyandInstituto SuperiorTécnico,wastheacademicsponsorinstitution.
• TheCLAWARAssociation,UK,encouragedtherealizationoftheeventand providedsupportatmultiplelevels.
• CiênciaViva,Portugal,atPavilhãodoConhecimentoinLisbon,providedthe fantasticvenueandgavefulllogisticssupport.
• Theindustrypartners,Aldebaran,France,namelythroughRodopheGelinand PetraKoudelkova-Delimoges,andhiBotRobotics,Japan,throughNahoKitano. Bothcomplementednicelytheacademicviewpointsdiscussedattheevent.
• TheIADECreativeUniversity,Portugal,throughBrunoNobreandEmília Duarte,handledtheeventimagecommunication.
• LisbonCityHall,andLisbonTourism,Portugal,sponsoredthesocialprogrammeoftheevent.
PartISelectedContributions
1NetworksofSocialandMoralNormsinHumanandRobot Agents 3 B.F.Malle,M.ScheutzandJ.L.Austerweil
2PerceivedAutonomyofRobots:EffectsofAppearanceand Context ................................................. 19 MaaikeHarbers,MariekeM.M.PeetersandMarkA.Neerincx
3FormalizingComplexNormativeDecisionswithPredicate LogicandGraphDatabases ................................ 35 SeanWelsh
4A21st-CenturyEthicalHierarchyforRobotsandPersons: EH 47 SelmerBringsjord
5RobotsandFreeSoftware 63 WilhelmE.J.Klein
6AnInterveningEthicalGovernorforaRobotMediator inPatient-CaregiverRelationships 77 JaeeunShimandRonaldC.Arkin
7ExploringtheEthicalLandscapeofRobot-AssistedSearch andRescue .............................................. 93 MaaikeHarbers,JoachimdeGreeff,IvanaKruijff-Korbayová, MarkA.NeerincxandKoenV.Hindriks
8ReportingRobotEthicsforChildren-RobotStudies inContemporaryPeerReviewedPapers ...................... 109 M.Kyriakidou,K.PaddaandL.Parry
9ATypologyofLiabilityRulesforRobotHarms 119 SjurDyrkolbotn
10SafetyandEthicalConcernsinMixedHuman-RobotControl ofVehicles ............................................. 135 EndreE.Kadar,AnnaKöszeghyandGurvinderSinghVirk
11Leader-FollowerStrategiesforRobot-HumanCollaboration 145 L.Beton,P.Hughes,S.Barker,M.Pilling,L.FuenteandN.T.Crook
12IndustrialRobotEthics:TheChallengesofCloserHuman CollaborationinFutureManufacturingSystems 159 S.R.FletcherandP.Webb
13ClarifyingtheLanguageofLethalAutonomyinMilitaryRobots 171 SeanWelsh
14SafetyIssuesofthePortugueseMilitaryRemotelyPiloted AircraftSystems ......................................... 185 DelfimDores,AnaBaltazar,TeresaCabral,IsabelMachado andPaulaGonçalves
15RobotsandtheMilitary:AStrategicView .................... 199 JoãoVieiraBorges
16TheDomesticRobot:EthicalandTechnicalConcerns ........... 207 RodolpheGelin
17RobotsinAgeingSocieties 217 MariaIsabelAldinhasFerreiraandJoãoSilvaSequeira
PartIIAssociatedEvents
18NóseOsRobots/OsRobotseNós:InsightsfromanExhibition 227 RodrigoVenturaandMariaIsabelAldinhasFerreira
19TheRobotStepsIn:FromNormativetoProspectiveEthics
Jos
Contributors
RonaldC.Arkin SchoolofInteractiveComputing,GeorgiaInstituteof Technology,Atlanta,Georgia
J.L.Austerweil DepartmentofPsychology,UniversityofWisconsin,Madison, WI,USA
AnaBaltazar InstitutoUniversitárioMilitar,CISDIResearcher,Lisbon,Portugal
S.Barker OxfordBrookesUniversity,Oxford,UK
L.Beton OxfordBrookesUniversity,Oxford,UK
JoãoVieiraBorges PortugueseMilitaryAcademy,Lisboa,Portugal
SelmerBringsjord RensselaerAIandReasoning(RAIR)Lab,Departmentof ComputerScience,DepartmentofCognitiveScience,RensselaerPolytechnic Institute(RPI),Troy,NY,USA
TeresaCabral AcademiadaForçaAéreaPortuguesa,CIAFAResearcher,Lisbon, Portugal
N.T.Crook OxfordBrookesUniversity,Oxford,UK
DelfimDores InstitutoUniversitárioMilitar,CISDIResearcher,Lisbon,Portugal
SjurDyrkolbotn DepartmentofPhilosophyandReligiousStudies,Utrecht University,Utrecht,TheNetherlands
MariaIsabelAldinhasFerreira CentreofPhilosophyoftheUniversityof Lisbon,FaculdadedeLetras,UniversityofLisbon,Lisbon,Portugal
S.R.Fletcher CentreforStructures,AssemblyandIntelligentAutomation, Cranfi eldUniversity,Cranfield,UK
L.Fuente OxfordBrookesUniversity,Oxford,UK
RodolpheGelin SoftBankRobotics,Paris,France
JoachimdeGreeff DelftUniversityofTechnology,Delft,TheNetherlands
PaulaGonçalves InstitutoUniversitárioMilitar,CISDIResearcher,Lisbon, Portugal
MaaikeHarbers DelftUniversityofTechnology,Delft,TheNetherlands
KoenV.Hindriks DelftUniversityofTechnology,Delft,TheNetherlands
P.Hughes OxfordBrookesUniversity,Oxford,UK
EndreE.Kadar DepartmentofPsychology,KeimyungUniversity,Daegu, Korea;DepartmentofPsychology,UniversityofPortsmouth,Portsmouth,UK
WilhelmE.J.Klein SchoolofCreativeMedia,CityUniversityofHongKong, HongKong,China
AnnaKöszeghy DepartmentofPsychology,UniversityofPortsmouth, Portsmouth,UK
IvanaKruijff-Korbayová LanguageTechnologyLab,DFKI,Saarbruecken, Germany
M.Kyriakidou DepartmentofPsychologyandBehaviouralScience,Coventry University,Coventry,UK
IsabelMachado InstitutoUniversitárioMilitar,CISDIResearcher,Lisbon, Portugal
B.F.Malle DepartmentofCognitive,Linguistic,andPsychologicalSciences, BrownUniversity,Providence,USA
José ManuelMartins DepartmentofPhilosophy,Universityof ÉvoraCenterof PhilosophyoftheUniversityofLisbon,Lisbon,Portugal
MarkA.Neerincx TNOHumanFactors,DelftUniversityofTechnology,Delft, TheNetherlands
K.Padda DepartmentofPsychologyandBehaviouralScience,Coventry University,Coventry,UK
L.Parry DepartmentofPsychologyandBehaviouralScience,Coventry University,Coventry,UK
MariekeM.M.Peeters DelftUniversityofTechnology,Delft,TheNetherlands
M.Pilling OxfordBrookesUniversity,Oxford,UK
M.Scheutz DepartmentofComputerScience,TuftsUniversity,Medford,USA
JoãoSilvaSequeira InstitutoSuperiorTécnico/InstituteforSystemsand Robotics,UniversidadedeLisboa,Lisbon,Portugal
Contributors
JaeeunShim SchoolofElectricalandComputerEngineering,GeorgiaInstituteof Technology,Atlanta,Georgia
RodrigoVentura InstituteforSystemsandRobotics,InstitutoSuperiorTécnico, UniversidadedeLisboa,Lisbon,Portugal
GurvinderSinghVirk InnotecUKLtd,Cambridge,UK
P.Webb CentreforStructures,AssemblyandIntelligentAutomation,Cranfield University,Cranfi eld,UK
SeanWelsh DepartmentofPhilosophy,UniversityofCanterbury,Christchurch, NewZealand
Rightnowthemajorchallengeforeventhinkingabouthowrobotsmightbeableto understandmoralnormsisthatwedon’tunderstandonthehumansidehowhumans representandreasonifpossiblewithmoralnorms.
MathiasScheutz,“HowtoBuildaMoralRobot”,Spectrum,May31,2016
Chapter1 NetworksofSocialandMoralNorms inHumanandRobotAgents
B.F.Malle,M.ScheutzandJ.L.Austerweil
Abstract Themostintriguingandethicallychallengingrolesofrobotsinsocietyare thoseofcollaboratorandsocialpartner.Weproposethatsuchrobotsmusthavethe capacitytolearn,represent,activate,andapplysocialandmoralnorms—theymust havea normcapacity.Weofferatheoreticalanalysisoftwoparallelquestions:what constitutesthisnormcapacityinhumansandhowmightweimplementitinrobots? Weproposethatthehumannormsystemhasfourproperties:flexiblelearningdespite agenerallogicalformat,structuredrepresentations,context-sensitiveactivation,and continuousupdating.Weexploretwopossiblemodelsthatdescribehownormsare cognitivelyrepresentedandactivatedincontext-specificwaysanddrawimplications forroboticarchitecturesthatwouldimplementeithermodel.
Keywords Moralnorms · Socialnorms · Normprocessing · Cognitivearchitecture · Human-robotinteraction · Robotethics
1.1Introduction
Thedesignandconstructionofintelligentrobotshasseensteadygrowthinthepast20 years,andtheintegrationofrobotsintosocietyis,tomany,imminent(Nourbakhsh 2013;Sabanovi´c 2010).Ethicalquestionsaboutsuchintegrationhaverecentlygained
B.F.Malle(B)
DepartmentofCognitive,Linguistic,andPsychologicalSciences, BrownUniversity,Providence,USA e-mail:bfmalle@brown.edu
M.Scheutz
DepartmentofComputerScience,TuftsUniversity,Medford,USA
J.L.Austerweil
DepartmentofPsychology,UniversityofWisconsin,Madison,WI,USA
©SpringerInternationalPublishingAG2017
M.I.AldinhasFerreiraetal.(eds.), AWorldwithRobots, IntelligentSystems,ControlandAutomation:ScienceandEngineering84, DOI10.1007/978-3-319-46667-5_1
prominence.Forexample,academicpublicationsonthetopicofrobotethicsdoubled between2005and2009anddoubledagainsincethen,countingalmost200asofthe timeofthisconference(Malle 2015).
Onesetofethicalquestionspertinenttoroboticsexamineshowhumansshould design,deploy,andtreatrobots(Veruggioetal. 2011);anothersetofquestions examineswhatmoralcapacitiesrobotsthemselvescouldhave(andshouldhave)so astobecomeviableparticipantsinhumansociety.Thelattersetofquestionsisoften labeled“machinemorality”(Sullins 2011)or“machineethics”(Moor 2006),and ourcontributionistothistheme.
Considerationsofmachinemoralityareespeciallyimportantwhenweassess robotsincollaborativerelationshipswithhumans.Acollaborationcanbedefinedas asetofactionscoordinatedamongtwoormoreagentsinpursuitofjointgoals.An agent’spursuitof joint goals(ratherthanmerelyindividualones)requiresseveral uniquecapacities,suchassocialcognitionandcommunication.Evenmorefundamental,however,collaborationsrelyona normsystem thatthepartnersshare—a systemthatenables,facilitates,andrefinesthecollaborativeinteraction(UllmannMargalit 1977).
Asasocialspecies,humanshavebecomehighlyadeptatpoolingmentaland physicalresourcestoachievegoalstogetherthattheywouldneverbeabletoachieve ontheirown.Frombig-gamehuntingtomassmigration,fromfellingatalltree toplayingasymphony—humansworkcooperativelytocreatecommongoods.But cooperativeworkcomeswithrisks,becauseonepartnermightinvestallthework andtheotherpartnermightreapallthebenefits.Economicscholarshavepuzzled foralongtimewhysuchfree-ridingisnotmorecommon—whypeoplecooperate muchmoreoftenthanthey“defect,”asgametheoristscallit,whendefectingwould providetheagentwithlargerutility.
Theanswercannotbethathumansare“innately”cooperative,becausetheyare perfectlycapableofdefecting.Theanswerinvolvestoasignificantextentthepower of norms.Aworkingdefinitionofanormisthefollowing:
Aninstructionto(not)performaspecificorgeneralclassofaction,wherebyasufficient numberofindividualsinacommunity(a)indeedfollowthisinstructionand(b)demandof othersinthecommunitytofollowtheinstruction.
Whyarenormssopowerful?First,theyincreasethepredictabilityofotherpeople’sbehavior.Inanorm-guidedsociety,anymembercanassumethatotherpeoplewillabidebynorms,whichgreatlyreducestheuncertaintyoverwhatactions theymightperform.Second,normsguideaperson’sownactionselection(especiallywhentheoptimalactionisnoteasilydetermined)becausenormsdirectlytag possibleactionsasdesirableorundesirableinthegivencommunity.Third,norms improvecoordinationamongcollaborators.Thatisbecauseacollaborationinvolves manyrequests,agreements,andcommitmentsthatbindtheindividualtoacourse ofaction.Publicpromises,forexample,areprototypicalcommitmentstoanorm: Thedeclaration“Ipromise X”imposesanormononeselftostrivetoward X,which involvesothers’expectationsforthepersontostrivetoward X,theperson’sdesireto
meetthoseexpectations,andthepossiblesanctionsotherpeoplemayimposeifthe personfailstoachieve X.
Normsappeartobeindispensableforhumansociallife(HechterandOpp 2001; Ullmann-Margalit 1977).Asaresult,normsarelikelytobeindispensableforrobots inhumansocietiesaswell,ifweexpectpeopletoperceiverobotsassuitablepartners ineffective,safe,andtrustingcollaborations.Butwhatwoulditmeanforarobot tohave“norms”—whethermoralnorms(e.g.,“donoharm”)orsocialnorms(e.g., “shakehandswhenmeetingsomeone”)?
Anyrobotinvolvedinphysicaltaskswillhavetoknowanumberofinstrumental rules: ifanobjectoftypeFappearsinarea1 , movearmandgrabF.Forhumans,too, physicaltasksrequirerules—actionsthathavehighutilitywhencertainpreconditions hold.Bycontrast,socialandmoralnormsarerulesthatarenotdirectlydictatedby apersonalutilitycalculation(Andrighettoetal. 2010),andoftentheyarenotas action-specificasinstrumentalrules(e.g.,“Benice!”).Moreover,socialandmoral normshaveotherpropertiesthatmakethemauniquechallengeforcognitiveand computationalexamination:thereseemstobeanenormousnumberofthembutthey areactivatedextremelyquickly;theyareactivatedinhighlycontext-specificways butalsocomeinbundles;theycanbeinconflictwithoneanotherbutalsocanbe adjusted;andtheyarelearnedfastthroughavarietyofmodalities(e.g.,observation, inference,instruction).
Ifourgoalistobuildtrustworthyandmorallycompetentrobotcollaborators(MalleandScheutz 2014),robotsmusthaveacomputationallyimplemented normsystem.Thisisbecausehumanswilldemandthatarobotcollaboratorgrasps thenormsofitscommunity,andhumanswillwithdrawtheirtrustandcooperation iftheyrealizethattherobotdoesnotabidebythesamenormsastheydo.
However,wecurrentlydonotknowhowtoincorporatesophisticatednorm processingintoroboticarchitectures.Wethereforetakeinitialstepstowarda cognitive-computationalmodelofnormsbydelineatingcorepropertiesofthehuman normsystem,contrastingtwomodelsofacomputationalnormsystem,andderiving implicationsforhowroboticarchitectureswouldimplementsuchanormsystem. Ultimately,wewillneedtoexamine(1)howacognitivesystemcanrepresentand storenorms,(2)howandwhenitactivatesandretrievesthem,(3)howitresolves conflictsamongthem;(4)howitcanusethemindecision-makingandactionexecution,and(5)howitcanacquirethem.Herewewillbegintoaddressthefirsttwo points.
1.2DefiningNorms
Tobegin,weintroduceageneralformulationofnormsasconsistingofthreeelements:a contextprecondition,a deonticoperator (“obligatory”,“forbidden”,or “permitted”),andanargumentthatcanbeeitheran action ora state Specifically,let C beacontextexpressioninagivenformallanguage L,andlet O, F,and P denotethemodaloperators,respectively,for“obligatory”,“forbidden”,
and“permissable”(e.g., Oφ means“itisobligatorythat φ ”).Thenwecanprovidea generalschemaforcapturingsimplenormsasfollows:
Thedeonticoperatorscanbeanalyzedcognitivelyasfollows.Torepresentanaction orstateas obligatory [forbidden],atleastthreeconditionsmustbemet(Bicchieri 2006;Brennanetal. 2013)1 :
(i)Theagentrepresentsaninstructionto[not]performaspecificactionorgeneral classofaction.
(ii)Theagentbelievesthatasufficient2 numberofindividualsinthereference communityinfactfollowtheinstruction.
(iii)Theagentbelievesthatasufficientnumberofindividualsinthereferencecommunitydemandsofothersinthecommunitytofollowtheinstruction.
Conditions(ii)and(iii)areimportant.Duringthelearningofanewnormand duringcontinuedapplicationofafamiliarnorm,theagentmustbeabletoupdate beliefsaboutwhatcommunitymembersdoandwhattheydemandofoneanother. Iftheagentnoticesthatfewcommunitymembersfollowtheinstructioninquestion (e.g.,stayingwithinhighwayspeedlimits),thentheinstructionisweakenedandthe agentmaynolongertreatitasbinding.Andiftheagentnoticesthatfewcommunity membersdemandofotherstofollowtheinstruction(eventhoughmanyofthemstill do),theinstructionbecomesoptionalandalsolosesitsforceasanorm.
Thesefeaturesdistinguish norms from goals and habits,becausethelattercan holdevenwhenindividualscompletelydisregardothercommunitymembers’actions ordemands.Considertheactionofparkingone’scarnose-in(inparkinglotswith spotsmarkedlikethis:////).Ifamajorityofpeopleperformthisactionbutnobody actually expects otherstodoit,theactionisawidelyprevalenthabit,notgoverned byanorm.Andifaparticularagentperformstheactionbutisunawarethatothers expecthimto(andtheyinfactdo),thenthisagentactstoachieveagoalbutdoes notabidebyasocialnorm.
1.3PropertiesoftheHumanNormSystem
Weproposethathumannormsystemshavefourmajorproperties(Fig. 1.1).Wefirst introduceeachofthesepropertiesandthensignificantlyexpandonthepropertiesof representationandactivation.
1 Thisisacognitivedefinitionofanorm,anditallowsforanagenttoendorseanillusorynorm— whenallthreeconditionsaremetbutcommunitymembersdonotinfactfollowtheinstruction anddonotinfactexpectotherstofollowtheinstruction.Ifwewanttomodelandpredictthe agent’sbehavior,however,wecanstillconsiderthepersontofollowaperceivednorm(Aartsand Dijksterhuis 2003).
2 Thethresholdofsufficiencywilltypicallybeamajoritybutmayvarybynormtypeandcommunity.
Fig.1.1 Fourcognitive propertiesofthehuman normsystem
Property1:FlexibleLearning
Thefirstpropertyisthatnormsystemsarelearnedthroughavarietyofmeans(e.g., conditioning,imitation,observation,inference,andverbalinstruction)butarestored inageneralizedformatsketchedabove(Eq. 1.1):asarepresentationofactionsor states(post-conditions),givencontextualpreconditions.Amoredetailedtreatmentof howlearningcouldbeimplementedcomputationallyrequiresabetterunderstanding ofhownormsarerepresentedinthefirstplace,andthisiswhatwewillattemptto provideshortly.
Property2:StructuredRepresentations
Thesecondpropertyisthatnormsystemsareencodedusingstructuredrepresentations,systematicallyorganizedinatleastthreeways: vertically (ashierarchical layersofabstraction,rangingfromactionrulestogeneralvalues), horizontally (as bundlesofcovaryingnormstiedtogetherbythecontextsinwhichtheyapply),and temporally (as“scripts”(SchankandAbelson 1977)thatprescribenormativeaction sequencesinaparticularcontext,suchasvisitingarestaurant,greetingafriend,or boardinganairplane).
Theseorganizingprinciplesreflectactualfeaturesoftheworld.Becausepreconditionscovaryinreal-worldcontexts(otherwisedistinctcontextscouldnoteven berecognized),activatednormswillalsocovaryasbundleswithincontexts(horizontalorganization).Likewise,becausethehumanactionplanningandexecution systemisorganizedhierarchicallyandtemporally,normsthatguidesuchactionwill incorporatethisorganizationaswell.
Thestructuredorganizationofnormsislikelytohavefarsuperiorprocessing characteristicsthanthesimplestalternative—(long)listsofsingletnorms.Thatis becausenormscanbethoughtofasnodesinamemorynetwork,andweknow thatstructuredorganizationofmemoryrepresentationshassignificantadvantagesin memoryaccuracy,efficiency,andspeedofretrieval(Bower 1970).
Property3:Context-Sensitive,BundledActivation
Athirdproperty,wesuggest,isthatspecificcontextsrapidlyactivatenormsasconnectedbundles.Thereisevidencethatnormsareindeedactivatedinhighlycontextspecificways(HarveyandEnzle 1981;AartsandDijksterhuis 2003;Cialdinietal. 1991)andthatnormviolationsaredetectedveryquickly(VanBerkumetal. 2009).
Thesecharacteristicsareresponsestoaworldinwhichalargenumberofnorms existbutonlyasmallsubsetisrelevantinanygivencontext.Thenormsystemthereforemustbebothcomprehensiveinitsrepresentationalcapacityandselectiveinits activationpatterns.Thesedemandsposenumerouschallengesforthecomputational implementationofanormnetwork,sowewilldedicatemuchofoursubsequent analysistothesechallenges.
Property4:ContinuousUpdating
Thefourthpropertyofthehumannormssystemisthatthecontext-sensitivenorm networksarecontinuouslyupdated—forexample,whenanewnormislearnedor anewcontextisaddedasapreconditiontoapreviouslylearnednorm.Thismakes thenormsystemhighlyflexiblewhenpeopleencounter“mixed”contexts,mixed roles,orenterunfamiliarcommunities.Italsoallowsforrapidsocietalchange— whetherduetonaturalevents(e.g.,climatechange),technologicalinnovation(e.g., theinternet),orcollectivepreferences(e.g.,gaymarriage).
Cognitivelyspeaking,whenacontextisaddedasanadditionalpreconditionfor agivennorm,thelikelihoodsofco-activation(bundling)amongnormswillchange becausetheselikelihoodsareadirectfunctionofthenumberofpreconditionsshared betweennorms.Howquicklythelikelihoodschangewilldependongeneralprinciplesofthenormnetwork.Forexample,updatingwillbefrequentifco-activation oftwonormsinstantlyformsadirectconnectionbetweenthem.Likewise,updating willbefrequentifequivalencebetweencontextsisloose(i.e.,featuresthatdefine contextsarecorrelatedbothwithinandbetweencontexts,ratherthanfiguringas necessaryandsufficientconditions).
Wenowturntothecentralportionofourchapter:ananalysisofhownorms, definedascontext-specificinstructions,canbeactivatedinbundlestailoredtotheir particularcontexts.
1.4ChallengesofContext-Sensitive,Bundled NormActivation
Wehavearguedthatnormsareactivatedin specificcontexts andas connectedbundles. Howcanweaccountforthesecharacteristics?Wefirstoutlinethelogicalformatof thesebundlesandthenconsiderpotentialcomputationalmodelsofhowtheyare representedandactivated.
1.4.1LogicalFormat
ExpressedinthelogicalformatofEq. 1.1,eachnormhasasetofpreconditions C thatcorrespondtocontextsinwhichthenormapplies(e.g., C → Fφ )orinwhich thenormisspecificallysuspended(C →¬ Fφ ).Whenagivensituation meetsthe
contextualpreconditions C ofagivennorm,thenormwillbequicklyactivated.The criticalopenquestionhereiswhat“meetingthecontextualpreconditions”means.
Let f bethesetoffeaturespresentinagivensituation andlet f C bethe featuresthatconstitutethepreconditions C foragivennorm.Wehypothesizethat thedegreeofactivationofthenorminagivensituation willbeafunctionofthe numberoffeaturessharedbetweenthesituationandthepreconditionsofthenorm (e.g., | f ∩ f C |,where |·| isthecardinalityofaset,possiblyweightedandscaled byfactorsdependingonthecontextualfeaturesandthenorm).Ifthishypothesisis correct,then all normsthathaveany f ∈ intheirsetofpreconditions( f ∈ C ) willbeactivatedto somedegree.Wewillcalltheseco-activatednormsinagiven situation “normbundles.”
Notethatfortwonorms N1 and N2 inanormbundleitcouldbetheverysame contextualproperty f i ∈ thatisinbothoftheirnormpreconditions( f i ∈ C 1 and f i ∈ C 2 ).Alternatively,differentfeaturesinthesituation( f 1 , f 2 ∈ )could activatedifferentnorms( f 1 ∈ C 1 and f 2 ∈ C 2 ,but f 2 / ∈ C 1 and f 1 / ∈ C 2 ).Hence, Context Ci
(Context Ci )
feature1 feature1
Fig.1.2 Twomodelsofhowcontextscanactivate“bundles”ofnorms.Underthefirst,butnotthe second,model, Norm k wouldbeactivated
normbundlesdonotnecessarilyhavetoshareanyparticularsituationalfeatures, evenwhentheirconstituentnormsareco-activated,aslongastherearereliable co-variationsofsituationalfeatures.Fromacomputationalperspectivethequestion thenarisesexactlyhowtheseco-variationsarerepresented;thatis,whethernorms innormbundlesarerepresentedinthehumancognitivearchitectureasconnected directly withoneanotherorconnectedonly indirectly,viathesharedpreconditions betweenthenormsandthesituationalfeaturesthattriggerthem.Hence,thereareat leasttwodifferentmodelsofhowsuchcovariationamongnormsinanormbundle cancomeabout—modelsthatspecifyinwhatwaynormsarepartofa“bundle”(see Fig. 1.2).
1.4.2TwoModelsofNormCovariation
Ina directly-connected network(Model DC inFig. 1.2),normsandtheirco-activation arerepresentedasnodesandedgesinamathematicalnetwork,whereeachedgeis givenaweightindicatingthestrengthofassociationbetweenthenodes(Harveyand Enzle 1981),possiblybuiltupthroughlearningandrepeatedco-activation.Agiven context(constitutedbyafuzzysetoffeatures)activatesaparticularnormnetwork inpartbecausethecontextactivatessomenormsandthesenormsactivateother, connectednorms.
Alternatively,inan indirectly-connected network(Model IC inFig. 1.2),specific features(e.g.,objectsinascene)independentlyactivatespecificnorms,andsetsof normscovaryasbundlessolelybecausethefeaturesthatactivatethemtypicallycovarywithincontexts,notbecauseofdirectconnectionsamongthenormsthemselves. Inthismoreminimalistnetwork,noadditionalconceptofa“context”(aboveand beyondanextensionalclassoffeatures)needstobepostulated.The“affordances” ofobjectsandpropertiesinscenessufficetoactivatetherightkindsofnorms.
Forexample,holdingtheforkacertainwayandholdingtheknifeacertainway whileeatingatthetablemaybeaconnectedpairofnormsthatisactivatedasabundle bythesightofasettable;alternatively,theforkmayactivate its normofuseand theknifemayactivate its normofuse,andthetwonormsareco-activatedmerely because,intherealworld,knivesandforksaretypicallyco-present.
1.4.3DifferentEmpiricalPredictions
Althoughbothmodelsaccountfor“normbundling,”thetwomodelsmakedifferent predictionsaboutnormactivationpatternsinunusualsituations.Considerasituation (e.g.,eatingatafine-diningrestaurant)thatisnormallyconstitutedbya sufficientsubsetfromthesetoffeatures f 1 – f 6 and,ifrecognizedasaparticular context C ,reliablyactivatesthebundleofnorms N1 –N4 ,whichallhave C astheir precondition.Nowsupposethattheperceptualinputisimpoverished(e.g.,badlight-
ingorintensenoise),makingonlyfeatures f 1 – f 3 availableinthisparticularcase. Accordingtothe directly-connected model,suchanimpoverishedscenewouldstill belikelytoactivatethewholebundleofnorms,becauseevenafewdirectlyactivated normswouldthemselvesactivateothernormswithwhichtheynormallycovary.By contrast,accordingtothe indirectly-connected model,normsareactivatedonlyby specificfeatures(e.g.,objects)inascene,andthereforetheimpoverishedsituation wouldelicit“incomplete”normbundles—onlythosethatareindividuallyactivated byfeatures f 1 – f 3
Likewise,themodelsmakedifferentpredictionswhenaforeignobjectisembeddedintoascene(e.g.,abaseballinafine-diningrestaurant).Accordingtothe DC model,aforeignobjectwouldhavelittleeffectontheactivatednorms,becauseonce anoverallcontexttriggersitsbundleofnorms,anyeffectofspecific(additional) featureswouldbedrownedout(oratleastmitigated).Notsoforthe IC model,accordingtowhichnormsareactivatedindividuallybyspecificfeatures(e.g.,objects)in thescene.Thebaseballintherestaurantwouldhaveamarkedeffectonthesetof activatednorms,becausepeoplecannothelpbutbringtomindwhateveronemay (ormaynot)dowithabaseball,eveninafine-diningrestaurant.
1.4.4ImplicationsforCognitiveRoboticArchitectures
Implementationsofthe DC modelincognitiveroboticarchitecturescouldbeanalogoustonetworksofspreadingactivation(e.g.,inthespiritofthedeclarativememory inACT-R)whereagivencontext(constitutedbyasufficientsubsetoffeatures)will spreadactivationtothenormsthathavethiscontextasaprecondition.Asmentioned,thenormsinagivenbundleneednothaveasinglepreconditionthatisshared amongallofthem—aslongassomeofthenormssharesomepreconditionswith othernormsandsomesubsetofthesepartiallysharedpreconditionsarepresent, thebundlewillbeactivatedthroughspreadingactivation.Themainadvantageof directly-connectednormbundlesisthatpartialmatchesorinaccurateperceptions maystillbesufficienttoactivateallnormsinabundle.Thisisbecausethedirect connectionsamongnormswithinabundlewillspreadactivationtoeachother,so aslongassomeofthenormsareimmediatelyactivated(e.g.,throughperceptions, inferences,etc.),theotheroneswilleventuallybecomeactivatedaswell.Themain disadvantageofdirectly-connectednormbundlesisthatsomenormsmightbecome inappropriatelyactivated(i.e.,withouttherebeingacontextualfeaturetowhichthe normapplies),simplybecausedirectlinkagescandragonenormalongwithanother.
Implementationsofthe IC model,ontheotherhand,donotrequirerepresentationalmechanismssuchasspreadingactivation,asallnormsinabundlewillbe solelyactivatedbythesituationalfeaturesthatmatchtheircontextpreconditions. Hence,themainadvantageofindirectlyconnectednormbundlesisthatthenorms areactivatedinclosecorrespondencetosituationsandtheirrecognizableorinferable features.Suchanetworkneednotengageininferencesabout“contexts”asseparate constructs,becausecontextsaremerelyextensionalclassesoffeatures.Ofcourse,if
12B.F.Malleetal.
featuresarehighlycorrelated,suchextensionalclassescouldbelearnedashigherlevelcategories,buttheydonothavetobeseparatelyrepresentedeachtimeanorm isactivated.Themaindisadvantageofindirectly-connectednormbundlesisthat acuteandfastperceptualprocessesarerequiredthatrecognizeallrelevantobjects andpropertiesintheenvironmentsoastoactivatetheircorrespondingnorms(e.g., permissiblewaysofhandlingafork,aknife,aspoon,anapkin,...).
Critically,however,bothmodelsrequirewaystoarbitrateamongactivatednorms thathavemutuallycontradictoryimplications.Forexample,norm N1 mightimpose anobligationtodo A while N2 mightimposeanobligationtodo B ,yeteitherdoing A and B isnotpossibleatthesametime,ordoingoneofthemwillundoprerequisites oftheotherinawaythattheotheractioncannolongerbeperformed.
Decidingbetweenthetwomodelswillalsoinfluencethegenerallogicalformof norms.Iftherearedirectconnectionsbetween,say N1 and N2 (aboveandbeyond sharedpreconditions,i.e.,contextfeatures),howaretheseconnectionsrepresented? Aretheycontinuousand/orprobabilistic?Andwhatimplicationsdoessucharepresentationhaveforlogicalreasoningondeonticoperators?If,ontheotherhand,there arenoconnectionsamongnormsthemselves,canwecompletelycharacterizenorm networksasarraysofcontextfeaturesthatdoordonotactivatespecificnorms?We nextexplorethesepossibilitiesinmoredetail.
1.4.5WhatWouldConstituteNormConnections?
Figures 1.3 and 1.4 illustratehowquantitativepredictionsfornormco-activation strengthcanbederivedfromeachmodel.Figure 1.3 showsahypotheticalnorm systemrepresentedinatablewhererowsindexfeatures f 1 – f 6 thatconstitutecontexts C 1 –C 4 andcolumnsindexnormsthatcanbeactivatedbythesefeatures.Acellis1if thecorrespondingnormisactivatedinthepresenceofthefeature(and0otherwise, butleftemptyinthetableforbetterreadability).
Accordingtothe indirectly-connectedmodel,thestrengthofco-activationofnorm Ni with N j ,theformula r f (Ni , N j ),canbewrittenas:
where I (·) istheidentityfunctionthatreturns1whenitsargumentistrueand 0otherwise.AccordingtoEq. 1.2,thestrengthofco-activationof Ni with N j is thenumberoffeatures(repeatingfeaturesovercontexts)theyhaveincommon, normalizedbythenumberoffeaturesthatarepreconditionsfor Ni (againrepeating featuresovercontexts).Forexample,focusingoncontext C 2 ,feature f 3 co-activates norms N1 , N3 ,and N4 ;feature f 4 co-activates N3 and N4 ;andfeature f 5 co-activates N1 and N4 .Featurescanreappearacrosscontexts,andthisisillustratedabovebythe factthat f 3 and f 5 alsohelpconstitutecontext C 4 .Alltheseco-activationpatterns
ofnorms,triggeredbyfeatures,leadtothefeature-levelco-activationmatrixonthe toptableofFig. 1.4.
Accordingtothe directly-connectedmodel,whatcountsarenotfeature-levelcoactivationsbutcontext-levelco-activations.Contexts,latentfactorsinferredfrom slightlyvaryingsetsoffeatures,activatetheirnorms asaset,withsomenorms activatedbyalreadyactivatedothernorms,notbyfeatures.Thus,accordingtothe directly-connectedmodel,thestrengthofco-activationbetweennorm Ni and N j , theformula r c (Ni , N j ),is:
AccordingtoEq. 1.3,strengthofco-activationistheratioofthenumberofcontexts whereboth Ni and N j areapplicabletothenumberofcontextswhere Ni isapplicable. Forexample, f 3 and f 4 wouldbetakenassufficientevidenceforthepresenceof C 2 , and C 2 wouldactivate,asaset, N1 , N3 ,and N4 .Nomatterwhichfeaturesinascene allowagivencontexttobeinferred,allofitsnorms(thenormsthathavethatcontext asaprecondition)areactivated,andco-activationamongthesenormsleads,over time,tonorminterconnections.Thosearerepresentedascontext-levelconnection strengths(againnormedagainstnumberofnormoccurrences)inthebottomtableof Fig. 1.4
Weseethatthetwomatricesarequitedifferent,sotheyshouldinprinciplebe empiricallydistinguishable.Merefeature-causedco-activationpredictsfarsmaller co-occurrencefrequenciesthancontext-causedco-activationwithsubsequentconnectionformation.Ifwecanmeasuresuchnormco-activations(andwearecurrently developingaparadigmtodoso),wehaveyetanotherwayofarbitratingbetweenthe twomodels,whichwouldteachusabouttheunderlyingprinciplesofhumannorm
Fig.1.3 Contexts(C 1 –C 4 )andtheirfeatures( f 1 – f 6 )thatactivatespecificnorms N1 –N4 .Cells withuniquecolorsindicateco-activationoftwoormorenormsbyaparticularfeature
Fig.1.4 Computationofnormco-activationattheleveloffeatures(top table)andatthelevelof contexts(bottom table) networksandprovidebenchmarksforcorrespondingnormnetworksinroboticarchitectures.
Weshouldaddthatthetwomodels DC and IC alsomakedifferentpredictions abouttheprocessofnormupdating(Property4mentionedearlier).Whenacontext isaddedasanadditionalpreconditionforagivennorm,the DC wouldpredictthat thisnormsoonpicksupnewconnectionswithothernorms,becausetheco-activation (bundling)likelihoodsamongnormsareadirectfunctionofthenumberofshared preconditionsbetweennorms.Accordingtothe IC model,bycontrast,thenorm co-activationpatternchangesmoreslowly,andonlytotheextentthatthepatternof featureco-occurrenceschanges.
Clearly,anumberofhybridmodelscouldbeconstructedaswell.Forexample, onemodelcouldallownorm-to-norminterconnectionswithoutpostulatingcontexts aslatentfactorsinferredfromfeatures.Inthiscase,featuresdirectlycausenorm co-activation andthereby causeformationofrealnorminterconnections,sonorms couldalsobeactivatingeachother(e.g., f 4 → N4 → N3 ).Theproblemthatarises foranetworkwiththesecharacteristicsisthatnormscouldactivateothernormsthat are not appropriateforagivencontext.Consider C 1 intheexamplenormsystem ofFig. 1.3.If f 1 → N3 and,becauseofthestronginterconnection r f (N3 , N4 ),also f 1 → N4 ,thenthenorm N4 isactivatedin C 1 eventhough,byassumptionforthis examplenetwork,itshouldn’tbeactiveinthiscontext.Thus,themodelmayhave toincorporateinhibitoryconnectionsinadditiontoexcitatoryconnections—which wouldthenleadtointerestingnewpredictions.
Thishighlightsthegeneralquestionofhowthehumannormnetworkcognitively instantiatesanintuitiverequirement:thatcontextsreliablyactivatethe“right”bundleofnorms,notjustsomebundleofpreviouslyco-occurringnorms.Achievingthis reliabilityismadedifficultbythefactthatcontextsarelikelytoshowfluctuationin thespecificsetoffeaturesthatinstantiateacontextinanyparticularcase.A DC net-
workreliesoninferredcontextcategoriesbuiltrightintothecognitivesystem,which createsrobustinvarianceacrossfeaturefluctuations(becausethelearnednorm-tonorminterconnectionsmaintaintheidentityofcontextcategories).An IC network wouldbefarmoresensitivetofeaturefluctuations.Everytimeanewfeaturecombinationemerges,ittriggersaslightlydifferentsetofnorms.Soequivalenceclasses forwhatisthe“samecontext”wouldbedifficulttoform.Butbecausethe IC model doesnotrelyonabstractcontextrepresentationsandinsteadrespondstonatural, complexfeatureintercorrelations(thatmay,inreality,constitutetruecontexts),the reliabilityandinvarianceofthenormnetworkisadirectfunctionofthereliability andinvarianceoftheworlditself—themoretheworldfluctuates,themorean IC networkoffersfinelyadjustedsetsofactivatednorms.
1.4.6 InDictu NormActivation
Sofarwehaveanalyzednormactivationinsitu—thatis,inreal-worldsituationsthat offeraricharrayoffeatures,whichcanconstitutecontexts.Butnormactivation(and indeed,normlearning)oftenoccursindictu,whenonepersontellsanotherperson to(not)actinacertainway“inchurch”or“whenadultsarearound”or“when somebodyjustexperiencedaloss”.Whatwouldthe indirectly-connectedmodel say aboutsuchsituations?Wherearethespecificfeaturesthatwouldtriggerthespecific norms?Isthisnotacaseinwhichcontextsarelikelatentfactorsthatdirectlytrigger abundleofnormsthathavebecomeinterconnected?
Thissituationdoesnotactuallycauseaproblemforthe ICmodel.Aminimalist modelaboutnorminterconnectionsdoesnothavetobeminimalistaboutconceptfeatureandfeature-featureinterconnections.Itwouldbestrangetodeny,inlightof thesemanticnetworkandcategoryliterature,thatconceptssuchas“inchurch”could notactivatealargenumberoffeaturesthatthendirectlyactivatenorms.Theidea thatcontextcategoriesdirectlyactivatenormsisinfactlessplausiblebecausethe fuzzinessofcategoriessuchas“inchurch”(inthephysicalbuilding?inacathedral? duringmass?)doesn’teasilyselectforspecificbundlesofnorms.Theaddressee wouldhavetodisambiguatethevaguecategory(eitherintheirownmindorby askingquestions)andthereby“fix”therelevantfeatures,whichinturnwouldactivate relevantnorms.
1.4.7ContextandStructuredOrganization
Wehaveillustratedhowcontextinteractswiththehorizontalstructuralorganization ofnorms—theirdirectconnectionsorindirectco-activationpatterns.Contextcan alsoexertapowerfulinfluenceonnormactivationbymeansofvertical(hierarchical)structuresinthenormsystem.Whenplanningtogotoabusinessmeeting,for example,abstractnormssuchas“berespectful”mightbeactivatedmerelybythink-
Another random document with no related content on Scribd:
Gutenberg” is associated) is accessed, displayed, performed, viewed, copied or distributed:
This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.
1.E.2. If an individual Project Gutenberg™ electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase “Project Gutenberg” associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg™ trademark as set forth in paragraphs 1.E.8 or 1.E.9.
1.E.3. If an individual Project Gutenberg™ electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg™ License for all works posted with the permission of the copyright holder found at the beginning of this work.
1.E.4. Do not unlink or detach or remove the full Project Gutenberg™ License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg™.
1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg™ License.
1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg™ work in a format other than “Plain Vanilla ASCII” or other format used in the official version posted on the official Project Gutenberg™ website (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original “Plain Vanilla ASCII” or other form. Any alternate format must include the full Project Gutenberg™ License as specified in paragraph 1.E.1.
1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg™ works unless you comply with paragraph 1.E.8 or 1.E.9.
1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg™ electronic works provided that:
• You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg™ works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg™ trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, “Information
about donations to the Project Gutenberg Literary Archive Foundation.”
• You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg™ License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg™ works.
• You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.
• You comply with all other terms of this agreement for free distribution of Project Gutenberg™ works.
1.E.9. If you wish to charge a fee or distribute a Project Gutenberg™ electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg™ trademark. Contact the Foundation as set forth in Section 3 below.
1.F.
1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg™ collection. Despite these efforts, Project Gutenberg™ electronic works, and the medium on which they may be stored, may contain “Defects,” such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other
medium, a computer virus, or computer codes that damage or cannot be read by your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGESExcept for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH
1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.
1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.
Section 2. Information about the Mission of Project Gutenberg™
Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.
Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project
Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.
Section 3. Information about the Project Gutenberg Literary Archive Foundation
The Project Gutenberg Literary Archive Foundation is a nonprofit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.
The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact
Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation
Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form
accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.
The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.
While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.
International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.
Section 5. General Information About Project Gutenberg™ electronic works
Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and
distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.
Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.
Most people start at our website which has the main PG search facility: www.gutenberg.org.
This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.