MaterialsforChemical Sensing
Editors
ThiagoRegisLongoCesarPaixão DepartmentofFundamentalChemistry
InstituteofChemistry
UniversityofSãoPaulo
SãoPaulo,SP
Brazil
SubrayalMedapatiReddy ChemistryDivision,SchoolofPhysical SciencesandComputing UniversityofCentralLancashire Preston,Lancashire UK
ISBN978-3-319-47833-3ISBN978-3-319-47835-7(eBook) DOI10.1007/978-3-319-47835-7
LibraryofCongressControlNumber:2016954604
© SpringerInternationalPublishingAG2017
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade.
Printedonacid-freepaper
ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
ThiagoRegisLongoCesarPaixãodedicates thisbooktohiswife,JulianaNaozukaand son,ThiagoAkioNaozukadaPaixão who haveinspired,encouragedandhelpedhimin everythinghehasdone.
SubrayalMedapatiReddydedicatesthisbook tohiswifeandchildrenfortheirfriendship, supportandunderstanding.
Preface
Overtheyears,thenumberofacademicpublicationsonthedevelopmentof chemicalsensorshasincreaseddramaticallyfrom76articlesin1983to7461 articlesin2015(accordingtoaScopusWebsearchusingthephrase “chemical sensor”).Additionally,thecommercialmarketisincreasingitssearchfornew chemicalsensorsinordertomonitoraplethoraofanalytesinrealtimeandinan efficientandcost-effectiveway.Areasofapplicationincludeenvironmentalmonitoring,foodscienceandsafety,andwearabletechnologiesforpoint-of-care devicestrackingmedicalstatus.Thereisanongoingworkinthedevelopmentand applicationofcheap,biodegradablematerialstomonitordiseasesinareaswithpoor infrastructure.Thedevelopmentofnewchemicalsensorsandtheimprovementof existingoneshavebecomeacollaborativeendeavor,integratingmultipledisciplines,suchaschemistry,physics,engineering,biology,materialsscience,mathematics,andbioinformatics.Thisbookstartswithadefinitionofthechemical sensorinChap. 1,followedbyhowthischemicalsensorcouldextractchemical informationusingopticalandelectrochemicaltechniquesinChap. 2.
Thecombinationofchemicalsensorwithlow-costmaterials,morespecifi cally paper-baseddevices,hasprogressedinthelast10yearsandhasbeenstimulating recentresearchactivitiesinthedevelopmentofpoint-of-caredevicetobeusedin developingcountries.Chapter 3 isdedicatedtothistypeofdevicewiththe exploitationofbiomaterials,suchasenzymesandantibodies,torecognizethe chemicalinformation.Thekeypointforthedevelopmentofachemicalsensoris relatedtothematerialsusedtorecognizeandtranslatethechemicalinformation throughachemicalinteractionorreaction.However,thereisnotaquantitative theoryormodeltobeusedwhichdescribesphysicalandchemicalparametersto obtainimprovedmaterialsthatwillrecognizethespeciesbeinganalyzed,andthe stepstoobtainabettermaterialarelargelyempiricalandcouldbesometimesseen morelikeanartthanascience.However,theuseofenzymestotranslatethe informationiscommon,andresearchersareattemptingtomimictheenzymeand antibodyenvironmentsinordertocreateartifi cialreceptorsandotherbiomimetic compounds,suchasmolecularlyimprintedpolymers.Inthisapproach,theyare
tryingtocopynatureinordertoachievethesamelevelofrecognitionandaffi nity, andChap. 4 willdiscussthistopic.
Chapters 4–8 willshowhowdifferentnaturalandsyntheticmaterialsinfluence thedevelopmentofchemicalsensors.Chapter 5 willdiscusshowclassesofcarbon, suchasgrapheneanditsderivatives,offerdifferentnanofeatures,structures,and dimensions,whichprovidetransductionrecognitionwithpotentiallynovelsensing properties.Chapter 6 willshowhownanomaterialscouldbeturnedintoapersonalizedmonitoringplatformintheformofwearableandimplantablesensor networksystems,whichwouldallowpeople’sactivitiestobemonitored.Chapters 7 and 8 willdemonstratehowothersyntheticornaturalmaterials,suchas self-assembled filmsandphthalocyanines,canbeusefulforenhancingsensing performance.Chapter 9 willdemonstratehowarray-basedchemicalsensors, combinedwithchemometricdataprocessingtools,canbeusedtomimicthehuman tongue,oneofourmoresophisticatedsensors.
Wewouldliketothankallthecontributingauthorsfortheirenthusiasmand participationinthepreparationofthisbook.Wealsowouldliketoexpressour gratitudetothestaffofSpringer,inparticular,AniaLevinsonandBrianHalm,for theirassistanceinbringingthisbooktoprintandpublication.
SãoPaulo,BrazilThiagoRegisLongoCesarPaixão Lancashire,UKSubrayalMedapatiReddy
1IntroductionofMaterialsUsedinChemicalSensors 1 WilliamReisdeAraujo,SubrayalMedapatiReddy andThiagoRegisLongoCesarPaixão
2InformationExtractionTechniquesinChemicalSensing 7 ThiagoMatheusGuimar ãesSelva,TiagoLuizFerreira andThiagoRegisLongoCesarPaixão
3(Bio)ChemicalSensorsBasedonPaper ....................... 29 NipapanRuecha,KentaroYamada,KojiSuzukiandDanielCitterio
4MembraneTechnologiesforSensingandBiosensing ............
SubrayalMedapatiReddy
5InterfacingGrapheneforElectrochemicalBiosensing 105 OnurParlak
6NanomaterialsasImplantableSensors 123 RogerJagdishNarayanandNishantVerma
7Self-assemblyThinFilmsforSensing
CelinaMassumiMiyazaki,AnerisedeBarros, DanielaBrancoTavaresMascagni,JulianaSantosGraça, PaulaPereiraCamposandMarystelaFerreira
8PhthalocyaninesasSensitiveMaterialsforChemicalSensors ..... 165 DebdyutiMukherjee,RevanasiddappaManjunatha, SrinivasanSampathandAsimKumarRay
9MaterialsforElectronicTongues:SmartSensorCombining
ManeldelValle
IntroductionofMaterialsUsed inChemicalSensors
WilliamReisdeAraujo,SubrayalMedapatiReddy andThiagoRegisLongoCesarPaixão
1.1FromSensorstoChemicalSensing
Sincetheadventofsmartphonetechnologies,theword “sensor” hasbecomemore andmorecommonplaceoutsideoftheacademicenvironment.Nowadays,itiseasy to findsmartphoneswithavarietyofsensors,forexample,proximity,motion, ambientlight,gyroscopic,andmagnetic.Thesesensorsaredevicesthatdetect inputsfromthephysicalenvironment,inordertogenerateanoutputsignalthatcan bereadandunderstoodbyahumanand/orcanbetransmittedelectricallyby someoneoramachine.Asimpleexampleofasensoristhemercury-basedglass thermometerthathasaheatasinputandasconsequenceofthechangeintemperaturetheliquidmercuryexpands,orcontracts,indicatingavalueofthetemperaturemeasuredinacalibratedmarkedgaugethatcanbedetectedbyanatural sensor,thehumaneye.Basically,thephysicaldeviceshighlightedabovetranslate physicalpropertiesintoahuman-readableoutputjustassomehumananaloguescan dothrough,forexample,touch,vision,orhearing.However,naturehasgivenus sensorialsystemsresponsiblenotonlytotranslatephysicalquantitiesasaninterpretationoftheoutsideworld,butalsotheabilitytosensechemicalsthroughtaste andolfactionsystems.Combinatorially,chemicalinformationcanbetranslated togetherwithphysicalinformation,tobetterunderstandtheenvironment[1, 2].
W.R.deAraujo T.R.L.C.Paixão
DepartamentodeQuímicaFundamental,InstitutodeQuímica,UniversidadedeSãoPaulo, AvenidaProf.LineuPrestes,748,05508-000SãoPaulo,SP,Brazil e-mail:trlcp@iq.usp.br
S.M.Reddy(&)
ChemistryDivision,SchoolofPhysicalSciencesandComputing,UniversityofCentral Lancashire,Preston,LancashirePR22HE,UK e-mail:SMReddy@uclan.ac.uk
© SpringerInternationalPublishingAG2017
T.R.L.C.PaixãoandS.M.Reddy(eds.), MaterialsforChemicalSensing, DOI10.1007/978-3-319-47835-7_1
Naturalchemicalsensors,likethemammaliantastesystems,performanevaluationofthecontentoffoodandbeveragesduringallthemealsexperiencesthatwe have,anddependingonhowwelltrainedisthisnaturalsensor,thebetterarethe chancesto qualitatively detecttheingestionoftoxicsubstancespresentinfoodand beveragesoranyadulteration(deliberateorotherwise)ofthefoodtaste.This recognitionofthemammaliantastesystemisduetoreceptorsinourtongue mediatingsweet,bitter,umami,andsourtasteandgeneratingamoleculartools decodedbyourbraintocreatethebasisofthetaste[1]andFig. 1.1 showsasimple schematicrepresentationofhowthemammaliantastesystemworkstodecodethe chemicalinformation.
Thisschematicrepresentationagreeswiththecommondefinitionofchemical sensorsfoundintheliterature,andintroducedbyWolfbeisin1990[3],as “adevice comprisingarecognitionelement,atransductionelement,andasignalprocessor.” Thisdefinitionshowsthatarti ficialchemicalsensorsmimicthesignalprocessing flowreportedinFig. 1.1 andcanbesimpli fiedasFig. 1.2.
Thiscommonsensedefinitionisincompleteasthedecodingsystemorthe computerinformationprocessingstageneedstobebetterdefi nedinordertosimulatehowahumangoesaboutreadingtheinformation,thendecodingtheinformation,andthenlinkingsomeinterpretiveunderstandingtothereadableoutput. Wolfbeis[3]extendedthede finitionofchemicalsensorsas “small-sizeddevices comprisingarecognitionelement,atransductionelement,andasignalprocessor capableofcontinuouslyandreversiblyreportingachemicalconcentration.” New requirementsappearinthisnewdefinition.Oneistheattributeofreversibility, whichmainlybecomesimportantifthesamechemicalsensorisrequiredtomake
Fig.1.1 Simpleschematicrepresentationofhowthechemicalinformationisdecodedbythe mammaliantastesystem,forexample,mammaliantaste
Fig.1.2 Schematicviewofhowtheinformationisdecodedbythearti ficialchemicalsensor system
multipleuninterruptedmeasurementsinaclosed-loopsystem.Thisreversibility stopsnormallyduetoexternalinterferencesthateitherpassivate(orfoul)thesensor orthesensorisusedoutsideitstolerancesresultingindamageand/ordeactivation. Whenthereisnorequirementforthesensortobereversible,itbecomesasingle-use device.Disposablesensordevices,suchasthosebasedonpaper(willbediscussed inChap. 3),arebeingusedmoreandmoretotransducechemicalinformationdue totheraftofdifferenttransducermethodsandrecognitionmaterialsthatcanbe integratedwithpapertoproducedevicestotranslatechemicalinformation[4, 5] Basedonthisdefinition,thesedevicescouldnotbecalledchemicalsensors,aswell asdeviceswithoutarecognitionelement,likedevicestomonitorbloodoxygenationbyreflectometry1 [6].Referringtothelatterasachemicalsensorwascontroversialatthetimeastherewasnotanacceptabledefi nitionforthetechnique undertheumbrellaofanalyticalchemistrytechniques,suchasforexample, spectroscopy.
Additionally,theattribute “reportingachemicalconcentration” inthedefinition isequallyinterestingandthereadableoutputismoreapparent.Inthiscase,the functionoftheoutputdevice(e.g.,computer,smartphone,ortablet)istoreadthe electricalinformationandthentoprocesstheinformationtoreporttheactual concentrationoftheanalyzedchemicalspeciesbasedonacalibrationcurve,i.e., interpolatingtheunknownsignalofthesampleto findthechemicalconcentration basedonplotoftheelectricalresponseversusconcentrationofthestandards.With thisinmindandreturningtotheparalleldiscussionaboutnaturalandartifi cial chemicalsensors,noneofournaturalchemicalsensingsystemsreturnstheactual concentrationvalueofagivenchemicalspecies,forexample,caffeineandother ingredientswhenwedrinkcoffee,butweknowqualitativelythatitiscoffeeand couldevenalludetothetypeofcoffee.Additionally,wethinkintermsof thresholdsofstrengthandthereforereturnasemiquantitativemeasureofthatrather thananactualvalue.Basedonthis,thecomputer-basedartificialsensorcouldalso beusedtocomparechemical “fingerprints” extractedforthesamples,likea chemicalspectrum,andcomparethisanalyticallyusefulinformationwithadatabaseinordertogiveayesornoanswer,i.e.,qualitativeinformationthrough discriminationofdifferenttypesofcoffeebasedontheextractedinformationora qualitativecompositionanalysis.Suchdeviceswere firstreportedintheliteraturein 1982[7]andcalledelectronicnose,withtheideatouseanarrayofsensorsto extractchemicalinformationinordertodiscriminatequalitativelythesamples.The termelectronictongue(Chap. 9),todiscriminateliquidsamplesinsteadofgas samples(electronicnose),wasintroducedin1996intheliterature[8].
In1991,IUPAC[9]madeamoregeneraldefinitionforchemicalsensorsas “ a devicethattransformschemicalinformation,rangingfromconcentrationsofa speci ficsamplecomponenttototalcompositionanalysis,intoananalyticallyuseful signal.” Thisdefinitionenhancedthepossibilitiesofchemicalsensorsaswellas includingsomedevices,reportedabove,notcomprisedinthepreviousdefinitions reportedhere.Hence,achemicalsensorcouldbedefinedasadevicewhich respondstoananalytebasedonachemicalreaction(orrecognition)andcanbe usedforqualitativeorquantitativedeterminationsofthespeciesbeinganalyzed(to
giveananalyticallyusefulsignal),andthisdefinitioncouldbegeneralizedforan arrayofchemicalsensors(Chap. 9).
OnemaininformationbehindtheIUPACdefinitionisthesignaltransduction. Thechemicaltransductionoccursbymonitoringaphysicochemicalpropertyofthe analytethatisrelatedtoitsconcentration,liketheabsorbanceorpeakcurrentfora reversiblesystemmeasuredbyspectrophotometryorcyclicvoltammetry,respectively,thatisrelatedwiththeBeer–Lambert(Eq. 1.1)andRandles–Sevcik (Eq. 1.2)equations:
where A isabsorbance(dimensionless), e isthemolarabsorptivity(Lmol 1 cm 1), b isthepathlengthofthesample(cm) thatis,thepathlengthofthecuvettein whichthesampleiscontained,and c istheconcentrationoftheanalyteinsolution (molL 1).
where Ip ispeakcurrent(A), n isnumberofelectrons, A isareaoftheelectrode (cm2), D isdiffusioncoefficient(cm2 s 1), v isscanrate(Vs 1),and Co isbulk concentrationofanalyteinsolution(molcm 3).
Mainly,thisbookwillfocusonopticalandelectrochemicalmeasurementsto extractthechemicalinformationbyanalyticaltechniques;suchextractionmethods willbediscussedintheChap. 2
Thekeypointforthedevelopmentofachemicalsensorisrelatedwiththe materialsusedtorecognizeandtranslatethechemicalinformationthrougha chemicalinteractionorreaction.However,thereisnotaquantitativetheorywhich willdescribephysicalandchemicalparameterstoobtainthebettermaterialthatwill recognizethespeciesbeinganalyzed,andthestepstoobtainabettermaterialare largelyempiricalandcouldbesometimescomparedmorelikeanart. Notwithstandingthis,forbiosensors(chemicalsensorsinwhichtherecognition systemisbasedonthebiochemicalorbiologicalmechanism),researchersare attemptingtomimictheenzymeandantibodyenvironmentsinordertocreate artificialenzymesandotherbiomimeticcompounds,suchasmolecularlyimprinted polymers(Chap. 4)orbiomimeticsensors[10].Inthisapproach,wearetryingto copynatureinordertoachievethesamelevelofrecognitionandaffinity.
Chapters 4–8 willdemonstratetheuseofnewandsmartmaterialsastransducing elementsforchemicalsensors,summarizedinFig. 1.3.Analyticalapproachesand strategiestoobtainandextract/convertthechemicalinformationintoareadable signalwillbediscussedindetailinChap. 2.Chapter 3 isdedicatedtoportable devices(paper-basedsensors)withlowcostandeasyoperationmode.Finally, Chapter 9 demonstratestheuseof(electrochemical)sensorarrayscombinedwith chemometricdataprocessingtoolstoimproveoverallsensorperformance.
Partofthedifficultytodefineachemicalsensorandcreatechemicalsensorsis becauseresearchmusthavemultidisciplinarycollaborationsofresearcherswith
Fig.1.3 Schematicrepresentationofchemicalsensorcomponentsfocusedontransducers’ materials
differentcomplementaryexpertisesuchaschemists,electronicandmechanical engineers,materialsscientists,andspecialistsinchemometrics(todecodethelarge amountofinformation,likethebraindoesseeminglyeffortlessly).Hence,theidea ofthisbookistopulltogetheralloftheseprofessionalswithdifferentexpertisein ordertoshowcasethecomplementarityleadingtoadvancesinthedevelopmentof differentmaterialsforchemicalsensing.
References
1.ChandrashekarJ,HoonMA,RybaNJP,ZukerCS(2006)Thereceptorsandcellsfor mammaliantaste.Nature444(7117):288–294.doi:10.1038/nature05401
2.FiresteinS(2001)Howtheolfactorysystemmakessenseofscents.Nature413(6852):211–218.doi:10.1038/35093026
3.WolfbeisOS(1990)Chemicalsensors?Surveyandtrends.Fresenius’ JAnalChem337 (5):522–527.doi:10.1007/BF00322857
4.CateDM,AdkinsJA,MettakoonpitakJ,HenryCS(2015)Recentdevelopmentsin paper-basedmicrofluidicdevices.AnalChem87(1):19–41.doi:10.1021/ac503968p
5.NeryEW,KubotaLT(2013)Sensingapproachesonpaper-baseddevices:areview.Anal BioanalChem405(24):7573–7595.doi:10.1007/s00216-013-6911-4
6.VuceaV,BernardPJ,SauvageauP,DiaconuV(2011)Bloodoxygenationmeasurementsby multichannelreflectometryonthevenousandarterialstructuresoftheretina.ApplOpt50 (26):5185.doi:10.1364/AO.50.005185
7.PersaudK,DoddG(1982)Analysisofdiscriminationmechanismsinthemammalian olfactorysystemusingamodelnose.Nature299(5881):352–355.doi:10.1038/299352a0
8.HayashiK,YamanakaM,TokoK.YamafujiK(1990)Multichanneltastesensorusinglipid membranes.SensActuatB:Chem2(3):205–213.doi:10.1016/0925-4005(90)85006-K
9.HulanickiA,GlabS,IngmanF(1991)Chemicalsensors:definitionsandclassification.Pure ApplChem63(9).doi:10.1351/pac199163091247
10.LeeJH,JinH-E,DesaiMS,RenS,KimS,LeeS-W(2015)Biomimeticsensordesign. Nanoscale7(44):18379–18391.doi:10.1039/c5nr05226b
Chapter2 InformationExtractionTechniques inChemicalSensing
ThiagoMatheusGuimarãesSelva,TiagoLuizFerreira andThiagoRegisLongoCesarPaixão
Inordertoproduceananalyticallyusefulsignal,asmentionedintheprevious chapter,weneedtotransducechemicalinformationusinganinstrumentaltechnique.Numerousanalyticalchemistrytechniquesexistfortheextractionof chemicalinformation,e.g.spectrometry,separationtechniquescoupledwith spectroscopicdetection,orelectrochemicalandothermethods.However,mainly duetothecostandnecessityofportability,electrochemicalandcolorimetric techniquesarefrequentlyusedtotranslatechemicalinformationintoareadable outputfortheanalystsandusersinin-fi eldapplicationsofchemicalsensors.This chapterwillintroducetheconceptsinvolvedinthesetechniques,whicharemainly usedtoextractinformationforfabricatingchemicalsensors.
2.1ElectrochemicalSensors
Essentially,theelectrochemicalsensorsareclassi fiedas:conductimetric, potentiometric,andamperometricorvoltammetricsensors.
T.M.G.Selva InstitutoFederaldeEducação,CiênciaeTecnologiadePernambuco, AvenidaProf.LuizFreire,500,50740-540Recife,PE,Brazil
T.M.G.Selva T.R.L.C.Paixão(&) DepartamentodeQuímicaFundamental,InstitutodeQuímica, UniversidadedeSãoPaulo,AvenidaProf.LineuPrestes,748, 05508-000SãoPaulo,SP,Brazil e-mail:trlcp@iq.usp.br
T.L.Ferreira(&) InstitutodeCiênciasAmbientais,QuímicaseFarmacêuticas, UniversidadeFederaldeSãoPaulo,RuaProf.ArturRiedel,275, 09972-270Diadema,SP,Brazil
e-mail:tlferreira@unifesp.br
© SpringerInternationalPublishingAG2017
T.R.L.C.PaixãoandS.M.Reddy(eds.), MaterialsforChemicalSensing, DOI10.1007/978-3-319-47835-7_2
2.1.1ConductimetricSensors
Conductimetricsensorsarebasedonmeasuringtheionicconductanceofsolutions. Thisconductanceresultsfromtheindividualcontributionsofeachioninthe solution;itisthereforeapropertythatdoesnotdependonthespeci ficreaction levelsofanelectrode,asopposedto,forexample,voltammetricsensors.
Conductimetricsensorscanbeemployedindirectconductometry,whereelectrolyteconcentrationisdeterminedbyasingleconductancemeasurement,orrelativeconductometry,whereconductanceismonitoredduringtitration,andtheend pointisdeterminedfromthecollecteddata.
Sincethesesensorsmeasureelectricalconductancearisingfromallionicspecies presentinsolution,theydonotrespondtospeci ficions.Thisspeci ficitymaybe achievedbyaseparationtechnique,suchaschromatographyorcapillaryelectrophoresis,employingconductimetricsensorsforthedetectionofchargedspecies ofinterest.
TheconductanceofasolutionorasolidmaterialcanbeexpressedbyOhm´ s law,Eq. 2.1:
where I istheelectriccurrent flowingthroughasolutionorasolid, E isthepotential difference,and G istheconductance.Generally,Ohm´slawisexpressedintermsof resistance,Eq. 2.2:
¼ R I
whichleadstothedefinitionof G astheinverseofresistance,Eq. 2.3:
Theresistanceorconductanceofaspecimendependsonitstemperature, chemicalnature,homogeneity,size,andshape.Forsolutions,theconductancealso dependsonthenumberofionspresent.
Foraspecimenuniformoveritswholelength:
where A isthecross-sectionalareaofthespecimen,and l isitslength.Theproportionalityconstant j iscalledconductivity(Fig. 2.1).Thesamerelationisvalid forasolutionbetweentwoelectrodes(Fig. 2.1).
Experimentally,eithertheresistanceortheconductanceofasolutionismeasuredtodetermine j.Thebasicexperimentallymeasuredparameterinbothcasesis thesolutionresistance,butmodernconductancebridgesarecalibratedtodirectly
provideconductanceread-outs.Theexperimentalset-upisbasedonaWheatstone bridgeapparatus.
Whenstudyingtheconductivityofasolution,itisessentialthattheconcentrationremainsconstantthroughoutthemeasurement.Passageofanelectriccurrent throughasolutioninduceschemicalreactionsattheelectrodes,resultinginchanges inthesolutionconcentration.Thesereactionsortheireffectsmustbeavoidedin conductivitymeasurements.Thisisachievedbychangingthedirectionofthe current,sothatthereactionsarecontinuallyreversedandhavenonetchemical effect.Alternatingcurrentisgenerallyused,e.g.onehavingafrequencyof 1000Hz.
Thecurrentpassingthroughasolutioniscreatedbythemovementofions containedtherein.Theamountofionspresentislikelytobeinverselyproportional totheresistanceofthesolutionanddirectlyproportionaltoitsconductivity, j.Experimentsshowthat j variesconsiderablywithconcentration.
Fig.2.1 Schematicrepresentationofsolidandelectrolyticconductors
Furtherdiscussionandprocedurescanbefoundintextbooksonconductimetric titrations,determinationofdissociationconstantsofweakelectrolytes,etc.[1, 2].
Thisnotwithstanding,therearetwoimportantcasesofinterestingapplicationsof conductimetricsensors:(i)measurementofsolutionconductanceemployingelectrodesoutsidethesolution(oscillometry)and(ii)measurementofconductanceof anarrayofmodi fiedsensorsasanelectronicnose.
Oscillometryisoftenemployedforconductancemeasurementsincorrosive solutions,e.g.onesthatcoulddamagethecellelectrodes.Inordertomeasurethe conductanceofasolutionusingthisprocedure,theelectrodesarepositionedoutside thesolution,ontheexternalwalloftheconductancecell.Toperformthesemeasurements,equipmentcapableofoperatingathighfrequenciesisrequired(ca. 106 Hz).Aninterestingapplicationofoscillometryistheuseofcontactlessconductimetriccellsincapillaryelectrophoresistodetectdifferentchargedspeciesastheyare separatedbyelectroosmotic flow.Inthesecases,theconductimetriccellispositioned onanappropriateportionoftheexternalwallofthecapillary[3].
Thesecondcasedealswithsmellidenti ficationusinganarrayofinterdigitated electrodesmodifi edwithaconductingpolymer,whereeachelectrodeismodi fied withadifferentpolymer.Whengaseousmoleculesareabsorbedbythepolymer,its electricalconductivityisaffected.Differentgasesaffecttheconductivityindifferent ways.Thesesignalvariationscanprovidea “digitalimpression” or “chemical fingerprint” ofthestudiedvapour[4].Theelectronicnose(E-nose)mustbe “trained” torecognizedifferentsmellsthroughelectricalconductivityusing chemometricapproachesdescribedinChap. 9
2.1.2PotentiometricSensors
Potentiometricsensorsworkbymeasuringtheequilibriumpotential(potentialof zerocurrent)ofthesensorversusareferenceelectrode.Thesepotentialsarea functionoftheactivityofthespeciesinsolution.Theequalityofactivityand concentrationisreasonabletoassumeonlyfordilutesolutions[5].
Typicalinstrumentationforpotentiometricmeasurementsincludesareference electrodeandanindicatorelectrode(potentiometricsensor)connectedtoahigh outputimpedancevoltmeter(1012 X)[6].
Therearetwoclassesofpotentiometricsensors:(i)metallicelectrodes,i.e. electrodesthatdevelopapotentialdeterminedbyredoxequilibria(Nernstequation) attheelectrode–solutioninterface(e.g.platinumelectrode)and(ii)ion-selective electrodes,wherethedifferenceofpotentialsacrossamembraneismeasured, whichisinfluencedbytheactivityofthespeciesoneithersideofthemembrane.
Theuseofmetallicelectrodescommonlybringspoorselectivityifmorethanone redoxcoupleispresentinsolution,sinceallcouplescontributetotheoverall equilibriumpotential.Ontheotherhand,thepotentialgeneratedforion-selective electrodes(ISEs)isduetoaselectiveinteractionbetweentheelectrodemembrane andanion.
Fig.2.2 Schematic representationofamembrane electrode. Arrows symbolize theexchangeofionsacross themembranebetweenthe internalandexternalsolutions
ISEsmeasurethepotentialdifferencecreatedbythemovementofionsbetween aninternalandanexternalsolutionphase,delimitedbythemembrane(Fig. 2.2).
Themembranepotential, Emembrane,isgivenbyEq. 2.5:
where R istheuniversalgasconstant, T isthetemperatureinKelvin, F isthe Faradayconstant,and a istheactivityofanion i ofcharge zi.Astheactivityofthe ion i intheinternalsolutionisconstant:
where c isaconstant.
Themembranepotentialismeasuredbycalculatingthepotentialdifference betweenaninternalreferenceelectrodeandanexternalreferenceelectrode.Thus, themembraneservesasalinkbetweentwohalvesofaconcentrationcell.
AperfectISErespondstoonlyoneioninasolutioncontaining “any” ions.This idealsituationcannotbeachieved,particularlywhenionswithsimilarproperties arepresentinsolution.Theinterferenceeffectsofotherionsdependontheir potentiometricselectivitycoeffi cients, Kij,accordingtotheNicolsky–Eisenman Eq. 2.7:
where j istheinterferingspecieswithcharge zj.
Theseselectivitycoeffi cientscanbeevaluatedbya fixedinterferencemethod (varyingtheprimaryionactivityataconstantlevelofinterferent)oraseparated method(comparingtheresponseoftheelectrodeinprimaryionsolutionwiththat inasolutioncontainingonlytheinterferentionwiththesameactivity)[5].
Selectiveelectrodesaredividedintothreeclasses:
(i)primaryion-selectiveelectrodes;
(ii)compoundormultiple-membraneion-selectiveelectrodes;
(iii)all-solid-stateion-selectiveelectrodes.
2.1.2.1GlassElectrodes
Glasselectrodeswerethe firstISEstobedevelopedandareusedmainlytomeasure pH.GlassisanamorphoussolidconsistingpredominantlyofsilicatesandispermeabletoH+,Na+,andK+.Thecompositionofglassdeterminesthepermeability toeachtypeofion,butsomeinterferencealwaysoccurs.
Theglassmembranemustbeconductivetoserveasapotentiometricsensor. ConductionwithinthehydratedgellayerinvolvesthemovementofH+.Sodium ionsarethechargecarriersinthedryinteriorofthemembrane.Thissensor functionsbyexchangeofsolutionprotonswithsodiumionsinthesurfaceregion,to adepthofca.50nm.
So,forlowprotonandhighsodiumconcentrationsinsolution,thisexchangeis notcompleteandtheobservedpotentialishigher(pHislower)thanexpected, accordingtoEq. 2.9 (Eisenmanequation)fortheinterferenceofNa+
Instronglyacidicoralkalinesolutions,theactivitycoefficientsofH+ andNa+
cansignificantlydependontheenvironment,possiblyleadingtoadeviating potential.ThesedeviationsathighactivitiesoccurinallISEs.
InpHmeasurement,thepotentialdifferencebetweentworeferenceelectrodeson bothsidesoftheglassmembraneismonitored.Thetwoelectrodesareoften combinedwiththeglassmembrane(Fig. 2.3).
Itisveryimportanttocalibratetheglasselectrodepriortomeasurementsdueto thedifferencesbetweenitsinnerandoutersurfaces,whichleadtodifferencesinthe monitoredpotential.Thispotentialcontribution(oftencalledasymmetrypotential)
canalsochangewithtimewhentheelectrodeisused,makingperiodiccalibration necessary[1, 6, 7].
2.1.2.2CrystallineMembraneElectrodes
Thesepotentiometricsensorsarebasedonasolid-statecrystallinemembrane.The homogeneousmembraneisanionicsolidwithalowsolubilityproduct,andthe sensedioncorrespondstothecationicoranionicconstituentoftheabovemembrane.Thepotentialiscreatedbyionexchangebetweenthesolutionandthesurface oftheioniccrystal.Migrationofcrystalstructuredefectsaccountsforthecharge transportthroughthemembrane.
Asthesesensorsrespondtoboththecationandanionofthesolidmembrane,it isexpectedthattheywouldalsobethemaininterferingspecies.Theelectrodeis alsosensitivetoionsthatcanbindthemembranecomponents,especiallyifthe bindingproductshavelowersolubilitythanthemembranematerial.
Othercrystallinemembranes,calledheterogeneousmembranes,arebasedonan inertplasticmatrix(e.g.PVC,siliconerubber,orconductingepoxyresin)with incorporatedsmallcrystalsoftheionicsolid.
Generally,thiskindofpotentiometricsensordoesnotuseaninternalreference electrode,butanohmiccontact[1].
Fig.2.3 CombinedglasselectrodeforpHsensing
2.1.2.3Non-crystallineMembraneElectrodes
Non-crystallinemembraneelectrodesarebasedonapolymer-supportedmembrane containingsolventandanionexchangerorneutralcarrier(commonlyachelating agent)selectiveforthespeciestobedetermined.Transportacrossthemembraneis achievedbyexchangeofthespeciesofinterestbetweenadjacentchelatingagents [1].
2.1.2.4Gas-SensingElectrodes
ThesepotentiometricsensorsaresimpleISEswithasecondgas-permeablemembrane,whichallowscertainmoleculestopass.Usually,asmallamountofelectrolytesolutionisplacedbetweentheselectivemembraneandtheoutermembrane. TheselectivemembraneiscommonlyapHglassmembrane,andthevariationof pHisrelatedtothepartialpressureofthegas[1].
2.1.2.5PotentiometricEnzymeElectrodes
Thesesensorsalsohaveasecondmembrane,whichcontainsanimmobilized enzyme.Sinceenzymesarehighlyspecificcatalysts,oneoftheproductsofan enzymaticreactioncanbemonitoredandtheanalyteindirectlydetermined[1].
2.1.2.6Ion-SelectiveField-EffectTransistors
Inordertominiaturizepotentiometricsensorsachievingreproduciblesignalswitha highsignal/noiseratio,ion-selective fi eld-effecttransistors(ISFETs)[8]were developedusingsemiconductortransistortechnology(Fig. 2.4).Thefunctionofa conventional fi eld-effecttransistoristorespondtotinyvoltagedifferencesofa metallicgatebetweenthesourceanddrain,convertingthemintoalow-impedance outputsignal(currentsignal).
InISFETs,themetallicgateisreplacedbyanion-selectivemembrane,whichis incontactwithsolution.Thedrainsignal(output)isdirectlyrelatedtotheactivity ofionsinsolution[8].
2.1.3VoltammetricSensors
Voltammetricsensorsarebasedonmeasuringtherelationshipbetweenthecurrent andtheappliedpotential.Therearetwomainapproachestocarryoutvoltammetric experiments:(i)measurethecurrentresponseasafunctionofappliedpotentialand (ii)monitorthepotentialresponseasafunctionofappliedcurrent.Most
Fig.2.4 ISFETforpHsensing.ReprintedfromJimenez-Jorqueraetal.[8].Copyright(2010), withthepermissionfromMDPI®
voltammetricsensorsarebasedonpotentialcontrol.Amperometricsensorsarea specialkindofvoltammetricsensors,wheredeterminationofelectroactivespecies isperformedatconstantpotential[5, 6, 9, 10].
Theinstrumentationforvoltammetricsensorsismorecomplexthanthatfor conductimetricandpotentiometricsensors.Threeelectrodesarenecessarytoavoid currentpassagethroughthereferenceelectrode,whichwouldchangeitspotential. Thecurrentpassesthroughanelectricalcircuitbetweentheworkingelectrodeand anauxiliaryelectrode,withthereferenceelectrodeusedtocontrolthepotentialof theworkingelectrode.Apotentiostatisnecessarytocontroltheappliedpotential andregisterthecurrentattheworkingelectrode.Togaininformationon current-controlledexperimentsandmonitorchangesinthepotentialoftheworking electrode,agalvanostatisrequired.
Thecurrentofanalyticalinterestinvoltammetryisthefaradaiccurrent,whichis generatedbyoxidationorreductionoftheanalyteatthesurfaceoftheworking electrode.Anothercurrent,calledacapacitivecurrent,interfereswitheachmeasurement.Forexample,whenthepotentiostatforcestheelectrontransferfora reductionprocesstooccurontheworkingelectrode,bringingthepotentialtomore negative(orlesspositive)values,thecationsinthesolutionareattractedtothe electrodesurface,whereasanionsarerepelled.This fluxofionsandelectrons,i.e. thecapacitivecurrent,isnotacontributionfromtheredoxreactionandmustbe minimizedinordertoachievelowervoltammetricdetectionlimits.
Involtammetry,thepotentialexcitationsignalcanbeimposedonaworking electrodeindifferentwaveforms,witheachpotentialwaveformelicitingacharacteristiccurrentresponse(Fig. 2.5).
Aclassicalvoltammetryexcitationsignalisalinearpotentialscan,wheretheDC potentialappliedtotheelectrochemicalcellvarieslinearlyasafunctionoftime.
Fig.2.5 Potentialexcitationwaveformsfor a linearsweepvoltammetryand b pulsevoltammetry c showsthebehaviouroffaradaicandcapacitivecurrentsasafunctionoftimeduringapotential pulse
Thecurrentthat flowsinthecellisrecordedasafunctionoftimeandthusasa functionoftheappliedpotential,resultinginavoltammogram.Amongthe parametersthatneedtobespeci fiedtorecordavoltammogram,thepotentialsweep rateiscrucial.Thisparametercontrolstheslopeofthepotentialvariationasa functionoftime.
Atypicalresponsetoalinearpotentialsweepisapeak-shapedvoltammogram. Thecurrentstartstorisewhenthepotentialvaluesmatchthoseofanelectrode process.Thiscreatesaconcentrationgradientofelectroactivespeciesbetweenthe electrodesurfaceandbulksolution,withthelackofelectroactivespeciesonthe electrodesurfacemakingthecurrentfall.
2.1.3.1CyclicVoltammetry
Thepotentialcanalsobecycledmultipletimesbetweentwovalues,e.g. fi rstbeing increasedlinearlyandthenloweredatthesamerate(Fig. 2.6).
Fig.2.6 Cyclicvoltammetry potentialexcitationsignal
Fig.2.7 Atypical peak-shapedcyclic voltammogram.The parameters t0, t1,and t2 are showninFig. 2.6
Incyclicvoltammetryofreversiblesystems(i.e.oneswithfastelectrodekinetics relativetothepotentialsweeptimescale),theproductofinitialoxidationor reductioncanberegeneratedbyreversingthescandirection(Fig. 2.7).Thefollowingequationrelatesthepeakcurrentwithotherparametersoflinearsweep voltammetry:
where Ip isthecurrentpeakin A, n isthenumberofelectronstransferredinthe electrodeprocess, A istheelectrodeactiveareaincm2, D isthediffusioncoeffi cient ofelectroactivespeciesincm2 s 1 , C istheconcentrationofelectroactivespeciesin molcm 3,and v isthepotentialscanrateinVs 1
Forreversiblesystems,(i)theratioofoxidationandreductioncurrentpeak values(anodicandcathodiccurrentpeaks, IPA and IPC,respectively)isclosetoone and(ii)theseparationbetweenthecathodicandanodicpotentialpeaks(EPC and EPA,respectively)isequalto59.0/n mV,orequivalently:
Forcompletelyirreversiblesystems,onlytheoxidationorreductionprocessis detected,withnopeakinthereversedsweep.Mostoftheredoxcouplesare positionedbetweenthecompletelyreversibleandirreversiblesystems(called quasi-reversiblesystems).Inthesecases,thereversepeakappears,butissmaller thantheforwardpeak[5, 6, 10].
2.1.3.2HydrodynamicVoltammetry
Hydrodynamicelectrodescanbeemployedasvoltammetricsensors,subjectto controlledconvectionimposedbysolutionorelectrodemovement.Convection enhancesthemasstransportofelectroactivespeciestotheelectrodesurface,sothat thediffusionlayer,withaconcentrationgradientpresenttherein,isthinnerthanin theabsenceofconvection.Consequently,thecurrentresponseisenhanced. Hydrodynamicelectrodesareimportantvoltammetricsensorsthatoperateunder steady-stateconditions.Foranalyticalpurposes,thesensorswithhighestsensitivity arethosewhereapotentialcorrespondingtothelimitingcurrentregionisapplied.If therateofconvectivetransportisconstant,togetherwithalltheothercontrol parameters,thecurrentresponseoftheelectrodeisalsoconstant.Theseelectrodes areusuallyoperatedunderlaminar flowconditions(intheabsenceofturbulence). Thebest-knownhydrodynamicelectrodeistherotatingdiscelectrode.Thelimiting currentforthiselectrodeisgivenby:
where r istheradiusoftheelectrodeincm, F istheFaradayconstant, C isthe concentrationofelectroactivespeciesinmolcm 3 , D isthediffusioncoeffi cientin cm 2 s 1 , t isthekinematicviscosity,and x isthespeedofrotationoftheelectrode inHz[6, 10].
Insomesituations,electrodesareusedin flowsystems.Therearemanyelectrochemical flowcelldetectorsbasedonwall-jetorchannel-tubeelectrodes. Generally,thesecellsaredesignedforchromatography,capillaryelectrophoresis, flowinjectionanalysis,orbatchinjectionanalysis.
2.1.3.3MicroelectrodeVoltammetry
Microelectrodesareelectrodeswithatleastonedimensioninthemicrometrerange. Thisminutedimensionleadstolowcapacitivecurrentcontributionsandthe possibilityofregisteringsteady-statecurrentsinashorttime(Fig. 2.8). Microelectrodeshavemanyadvantagescomparedtoconventionalelectrodes:(i)insertionofmicroelectrodesinplaceswhereotherelectrodesaretoolarge;(ii)high 18T.M.G.Selvaetal.
Fig.2.8 Atypical microelectrodecyclic voltammogram
signal/noiseratio;(iii)possibilityofregisteringvoltammogramsinhighlyresistive mediawithouttheadditionofaninertelectrolyte;and(iv)relativeinsensitivityto forcedconvectionofthesolution.Foramicrodiscelectrode,thesteady-statecurrent inthelimitingcurrentregionisgivenbythefollowingequation[10]:
2.1.3.4PulsedVoltammetricTechniques
Pulsetechniquesarebasedonthecurrentresponsetoasequenceofpotentialsteps intheforwardand/orreversedirections.Thisresponseisapulseofcurrentthat decreaseswithtimeastheelectroactivespeciesisconsumedintheregionnearthe electrodesurface.
Theregisteredcurrenthasacontributionfrombothfaradaicandcapacitive processes.Thecapacitivecurrentdecreasesfasterthanthefaradaiccurrent.Thus, thecurrentisusuallysampledafterthecapacitivecontributionbecomesverylow. Pulsewidthsareadjustedtoachievethiscondition(Fig. 2.5).
Themostfrequentlyusedpulsetechniquesaredifferentialpulsevoltammetry andsquarewavevoltammetry.Conceptually,thetwotechniquesareverysimilar. Thedetectionlimitsareoftheorderof10 7 molL 1 fordifferentialpulse voltammetryand10 8 molL 1 forsquarewavevoltammetry[5, 10].
2.1.3.5MembraneandModifi edElectrodes
Therearemanysituationswhencontrollingthepotentialisnotsufficienttogain selectivityinvoltammetricexperiments.Responseoverlapcanoccurduetothe proximityofelectroactivespeciespotentialsorelectrodekineticprocesses.Insome cases,thecurrentresponsedecreaseswithtimeduetoblockingoftheelectrode surfacebystronglyadsorbedspecies.Theseproblemscanbecircumventedby usingmodi fiedelectrodesasvoltammetricsensors.Usually,themodi ficationof electrodesbringsselectivityby:(i)creationofphysicalbarriers/membranesthat blockinterferingspeciesor(ii)depositionofmaterialthatreactswiththeanalyte moreselectivelyoractsasamediatorforelectrontransfer.
Porousmembranescanbeusedinvoltammetricsensors,coveringtheelectrode surfacedirectlyorhavingathinlayerofseparatingelectrolyte.Thesemembranes canactassizeexclusionseparators(blockinglargerspecieslikeproteins)orasa gas-permeablemembrane(asintheClarkoxygenelectrode).
Theuseofenzymesimmobilizedontheelectrodesurfacedirectlyorwithina membranecoveringtheelectrodealsoallowstoachievehighspeci ficity.These biosensorscombineelectrochemicalsignaltransductionwithabiologicalsensing component.
Inmodi fiedelectrodes,changesarepromotedinthesurfacelayersoftheelectrode.Alternatively,anewlayerattheelectrodesurfaceisformedtogainselectivity.Thegeneralintentionistoenhanceorfacilitatesomeelectrodeprocesses whileinhibitingotherones.Therearemanystrategiesforvoltammetricsensor modifi cation,includingadsorption,chemicalmodi fication,electrodeposition,and surfacetreatment[11].
2.1.3.6OtherTechniques
Importantinformationabouttheelectroactivespecies,suchasthenumberof transferredelectronsandthediffusioncoefficient,canbegainedusingtechniques suchaschronoamperometry(recordingcurrentasafunctionoftime)and coulometryorchronocoulometry(recordingchargeasafunctionoftime).
InACvoltammetry,asmallamplitudesinewaveissuperimposedonaprogrammedpotentialvariation.Theperturbationofthesystemresultsincurrent responsesthatvaryinamplitudeandphaseangle.Theobtainedvoltammograms canprovideinformationonthekinetics,andtheresponsecanbeusefulforanalyticaldeterminations.Thein-phaseandout-of-phasecurrentcomponentsare relatedtofaradaiccurrentsandtheseparationofchargingcurrents,respectively. Generally,thistechniqueallowstoachievelowdetectionlimits,butprocesseswith slowelectrodekineticsresultinthelossofsensitivity[5, 6, 10].
2.2ColorimetricSensorsandStrategiesforExtracting ColorimetricInformation
Initsearlyyears,chemicalanalysis,eitherqualitativeorquantitative,wasperformedusingreagent-basedcolorimetrictests.Aftertheriseoftheinstrumental methodsofanalysis,quantitativetitrationwaspracticallyabandoned.Ontheother hand,qualitativeand/orsemi-quantitativespottestsarestillpopular[12],withthe useofpHcolour-fixedindicatorsbeingapopularexample.
Themosttypicalinstrumentalwaytoobtaininformationonsolutioncolouristo useaspectrophotometeroraphotometeroperatinginthevisiblespectralrange (400–800nm),basedontransmittance/absorbancemeasurement.Briefly,in absorptionspectroscopy,theradiationintensityfromasourceoflightataspeci fic wavelengthisattenuatedbypassingthroughacolouredsolutioninacuvettethatis situatedbetweenthelightsourceandadetector.Themathematicaldescriptionof thisprocessisknownastheBeer–Lambertlaw(Eqs. 2.14 and 2.15):
where T isthetransmittanceoftheradiationpassingthroughthesolution, I0 isthe totalintensityoftheradiationsource, I istheintensityoftheradiationafterpassing throughthesolution,and A isthesolutionabsorbance.Thechoiceofwavelength (k)tomonitorcolouredspeciesisdeterminedfromthevisibleabsorptionspectra plot(A vs. k),whichmaybeperformedsweepingthewavelengthsinthevisible spectralrange.Often,themaximumabsorptionwavelength(kmax)isused,mainly becauseitprovideshighersensitivity.Absorptionisproportionaltotheconcentrationandlengthofthecuvetteopticalpath,ascanbeinferredfromEq. 2.16. Longerbeampathsoftheincidentradiationincreasetheprobabilityofthecoloured speciesabsorbingapartofthisradiation:
where ɛ isthemolarabsorptionincm 1 mol 1 L, b istheopticalpathincm,and c is theconcentrationofthecolouredspeciesinmolL 1.Figure 2.9 showsasimple schemeoftheinstrumentationused.
Aclassicalapplicationofspectrophotometricmeasurementsistheindirectcolorimetricquantificationofglucoseinbiological fluids.Thismethodisbasedonthe reactionofglucosewithglucoseoxidasetoproducehydrogenperoxide.Thelatter reactswithachromogenicoxygenacceptorinthepresenceofperoxidase,producinga chromogenicspecies,whichisspectrophotometricallymonitoredat460nm[8].
Evenaftertheriseofportablespectrophotometersandthedecreaseoftheirprice, thesearchforalternativewaysofanalyticalcolorimetricmeasurementscontinued.
Fig.2.9a Schemeofthevisibleradiationabsorptionprocess. b Resultantabsorbance(A)versus wavelength(k)plot
Recently,variousresearchgroupshaveuseddesktoporportablescanners[14], digitalcameras,webcams[15],cellphones,andsmartphones[16]tocollectanalyticalinformationbasedoncolourmeasurement.Inthesemethods,thereflection ofthesystemwasused,insteadofthetraditionalwayofmeasuringtransmittance/ absorbance.Thisis,therefore,anadvantage,allowingtheanalysisofturbidsamples [17].
Amongthecoloursystemsused,themostcommonwaytoprocessanalyticaldata fromdigitalimagesisbasedontheRGBcolourmodel,whichisusedincomputer screensandutilizestheprimarycoloursoflight.Thisisanadditivemodel,andthe namecomesfromthethreeprimarycolours:red(R),green(G),andblue(B),also calledchannels.Incomputers,eachofthesethreechannelsisrepresentedbyaninteger numberfrom0to255,andeachcombinationrepresentsaparticularcolour,makingit possibletorepresentmorethan16millioncombinations(2563 =16,777,216).White colour,forexample,isobtainedwhenallthreechannelshavevaluesof255,while blackcorrespondstoallchannelsequaltozero.SomeresearchersusetheHparameter (hue)oftheHSVcolourspace[18, 19],whichcanbecorrelatedwiththeRGBsystem, tomonitoraspecifi ccolouredreaction.TheextractionoftheRGBcodeofadigital imagecanbeperformedbysoftware[20, 21]orbyasmartphoneapp.Theseappsmay behome-made[22]ordownloadedfrompopularvirtualstores[23]oftheoperating system,suchasiOSandAndroid.Inaddition,itispossibletoconverttheRGBcolour modeltoothermodels,suchasgrayscaleandCMYK(cyan,magenta,yellow,and black/key).TheCMYKcolourmodel,usedforcolourprinting,isasubtractivesystem andusessecondarycolourscreatedbymixingtwoprimaryones(RGBmodel).For example,mixingredandbluecoloursgivesmagenta[24].Analternativewayto recordanalyticalcolourinformationwithouttheuseofanysophisticatedinstrumentationwasproposedbyCateetal.[25].Theauthorsexploredthemicrofluidic propertiesof filterpapertoproposeapaper-basedanalyticaldevice(µPAD),shapedas astripandlimitedbyawaxbarrier,whichwasspottedwithreagentsgivingacoloured reaction.Asimplemeasurementofthereactionextentdistance,usingaruler,was correlatedwiththeconcentrationoftheanalyte[25].TheuseofGoogleGlassto performdiagnosticcolorimetrictestshasalsobeenproposed[26]. VariouswaysoftreatingtheRGBdatainadigitalimagearedescribedinthe literature.Awidespreadmethodisto findachannel(R,G,orB)thatcorrelates
Another random document with no related content on Scribd:
medium, a computer virus, or computer codes that damage or cannot be read by your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGESExcept for the “Right of Replacement or Refund” described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg™ trademark, and any other party distributing a Project Gutenberg™ electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH
1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.
1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.
Section 2. Information about the Mission of Project Gutenberg™
Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.
Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project
Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.
Section 3. Information about the Project Gutenberg Literary Archive Foundation
The Project Gutenberg Literary Archive Foundation is a nonprofit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.
The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact
Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation
Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form
accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.
The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.
While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.
International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.
Section 5. General Information About Project Gutenberg™ electronic works
Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and
distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.
Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.
Most people start at our website which has the main PG search facility: www.gutenberg.org.
This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.