Get Auxiliary polynomials in number theory 1st edition masser free all chapters

Page 1


Auxiliary polynomials in number theory

1st Edition Masser

Visit to download the full and correct content document: https://textbookfull.com/product/auxiliary-polynomials-in-number-theory-1st-edition-m asser/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Number Theory 1st Edition Róbert Freud

https://textbookfull.com/product/number-theory-1st-editionrobert-freud/

Invitation to Number Theory 1st Edition Ore

https://textbookfull.com/product/invitation-to-number-theory-1stedition-ore/

Statistical independence in probability analysis number theory Kac

https://textbookfull.com/product/statistical-independence-inprobability-analysis-number-theory-kac/

Quaternion Algebras in Number Theory Spring 2016

Kimball Martin

https://textbookfull.com/product/quaternion-algebras-in-numbertheory-spring-2016-kimball-martin/

Algebraic Number Theory - A Brief Introduction 1st Edition J.S. Chahal

https://textbookfull.com/product/algebraic-number-theory-a-briefintroduction-1st-edition-j-s-chahal/

Invitation to Number Theory 2nd Edition Oystein Ore

https://textbookfull.com/product/invitation-to-number-theory-2ndedition-oystein-ore/

Number Theory Revealed An Introduction Andrew Granville

https://textbookfull.com/product/number-theory-revealed-anintroduction-andrew-granville/

Research Directions in Number Theory Women in Numbers IV Jennifer S. Balakrishnan

https://textbookfull.com/product/research-directions-in-numbertheory-women-in-numbers-iv-jennifer-s-balakrishnan/

Anomalies in Net Present Value, Returns and Polynomials, and Regret Theory in Decision-Making 1st Edition Michael C. I. Nwogugu (Auth.)

https://textbookfull.com/product/anomalies-in-net-present-valuereturns-and-polynomials-and-regret-theory-in-decision-making-1stedition-michael-c-i-nwogugu-auth/

CAMBRIDGETRACTSINMATHEMATICS

GeneralEditors

B.BOLLOB ´ AS,W.FULTON,A.KATOK,F.KIRWAN,

207AuxiliaryPolynomialsinNumberTheory

GENERALEDITORS

B.BOLLOB ´ AS,W.FULTON,A.KATOK,F.KIRWAN, P.SARNAK,B.SIMON,B.TOTARO

Acompletelistofbooksintheseriescanbefoundat www.cambridge.org/mathematics. Recenttitlesincludethefollowing:

171.OrbifoldsandStringyTopology.ByA. Adem,J. Leida,andY. Ruan 172.RigidCohomology.ByB.LE Stum

173.EnumerationofFiniteGroups.ByS.R. Blackburn,P.M. Neumann,and G. Venkataraman

174.ForcingIdealized.ByJ. Zapletal 175.TheLargeSieveanditsApplications.ByE. Kowalski

176.TheMonsterGroupandMajoranaInvolutions.ByA.A. Ivanov

177.AHigher-DimensionalSieveMethod.ByH.G. Diamond,H. Halberstam,andW.F. Galway

178.AnalysisinPositiveCharacteristic.ByA.N. Kochubei

179.DynamicsofLinearOperators.ByF.BAYARTand ´ E. Matheron

180.SyntheticGeometryofManifolds.ByA. Kock

181.TotallyPositiveMatrices.ByA. Pinkus

182.NonlinearMarkovProcessesandKineticEquations.ByV.N. Kolokoltsov

183.PeriodDomainsoverFiniteandp-adicFields.ByJ.-F. Dat,S. Orlik,andM. Rapoport

184.AlgebraicTheories.ByJ. Ad ´ amek,J. Rosick ´ y,andE.M. Vitale

185.RigidityinHigherRankAbelianGroupActionsI:IntroductionandCocycleProblem.By A. Katok andV.NIT¸I ˘ C ˘ A

186.Dimensions,Embeddings,andAttractors.ByJ.C. Robinson

187.Convexity:AnAnalyticViewpoint.ByB. Simon 188.ModernApproachestotheInvariantSubspaceProblem.ByI.CHALENDARand J.R. Partington

189.NonlinearPerron-FrobeniusTheory.ByB.LEMMENSandR. Nussbaum 190.JordanStructuresinGeometryandAnalysis.ByC.-H. Chu 191.MalliavinCalculusforL ´ evyProcessesandInfinite-DimensionalBrownianMotion. ByH. Osswald

192.NormalApproximationswithMalliavinCalculus.ByI.NOURDINandG. Peccati 193.DistributionModuloOneandDiophantineApproximation.ByY. Bugeaud 194.MathematicsofTwo-DimensionalTurbulence.ByS.KUKSINandA. Shirikyan 195.AUniversalConstructionforGroupsActingFreelyonRealTrees.ByI.CHISWELLand T.MULLER

196.TheTheoryofHardy’sZ-Function.ByA. Ivi ´ c 197.InducedRepresentationsofLocallyCompactGroups.ByE.KANIUTHandK.F. Taylor 198.TopicsinCriticalPointTheory.ByK.PERERAandM. Schechter 199.CombinatoricsofMinusculeRepresentations.ByR.M. Green 200.SingularitiesoftheMinimalModelProgram.ByJ. Koll ´ ar 201.CoherenceinThree-DimensionalCategoryTheory.ByN. Gurski 202.CanonicalRamseyTheoryonPolishSpaces.ByV. Kanovei,M. Sabok,andJ. Zapletal 203.APrimerontheDirichletSpace.ByO.EL-Fallah,K. Kellay,J. Mashreghi,and T. Ransford

204.GroupCohomologyandAlgebraicCycles.ByB. Totaro 205.RidgeFunctions.ByA. Pinkus

206.ProbabilityonRealLieAlgebras.ByU.FRANZandN. Privault 207.AuxiliaryPolynomialsinNumberTheory.ByD. Masser

AuxiliaryPolynomialsinNumberTheory

DAVIDMASSER

UniversityofBasle,Switzerland

UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence.

www.cambridge.org

Informationonthistitle: www.cambridge.org/9781107061576

©DavidMasser2016

Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress.

Firstpublished2016

AcataloguerecordforthispublicationisavailablefromtheBritishLibrary.

LibraryofCongressCataloguinginPublicationData

Names:Masser,DavidWilliam,1948–Title:Auxiliarypolynomialsinnumbertheory/DavidMasser,UniversitatBasel,Switzerland. Description:Cambridge:CambridgeUniversityPress,2016. | Series:Cambridgetracts inmathematics;207 | Includesbibliographicalreferencesandindex. Identifiers:LCCN2015050947 | ISBN9781107061576(Hardback:alk.paper)

Subjects:LCSH:Numbertheory. | Polynomials. Classification:LCCQA241.M3952016 | DDC512.7/4–dc23LCrecord availableat http://lccn.loc.gov/2015050947

ISBN978-1-107-06157-6Hardback

CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyInternetWebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate.

Introduction

Eversinceitwasinvented,arguablybyRunge,themethodofauxiliarypolynomialshasbeenvitalto(andofunreasonableeffectivenessin)themodern developmentofkeyaspectsofnumbertheory.Theaimofthisbookistogive anaccountofthemethodinmanyofitsforms,focusingalmostexclusivelyon thosepolynomialswhichcannotbewrittendownexplicitly.

Iwellremember(standinginHeffersbookshopCambridgearound1970) readingaboutthismethodintheforewordtoLang’sbookontranscendental numbers,andexperiencingdisbeliefthatanythingsofar-fetchedcouldworkat all.SoIwillnotattemptanyexplanationatthispoint.

Instead,I(orfromnowon,theauthorialwe)treatthemethodastheunion ofitsexamples,andthereisnoshortageofthese.

Hereistheplanofthisbook(MikeTysonsaidthateveryonehasaplanuntil youpunchthemintheface–thentheydon’thaveaplan).Thegeneralstrategy istopresentineachchapteranapplicationofthemethodtoadifferentsortof problem,oftenthesimplestinitsarea.Thenattheendofeachchapterwegive abriefaccountofsubsequentdevelopmentsinthearea.

WestartwithashortPrologue(Chapter1)whereweshowthatthebasicidea canbeusedinrathersimplesituationswhichhavenothingtodowithnumber theory.

TheninChapter2wecommenceourdiophantineconsiderationswitha discussionofirrationality.Wequicklydisposeofthenumber e bythestandard truncationargumentandweshowalsothat e isnotaquadraticirrational. Herewemeetasmallproblem,whichcanberatherquicklysolved;however,itistypicaloftheproblemsthatariseinlaterapplicationsandinsome examplesitssolutioncanbedistinctlynon-trivial.ThusRoth,inshowingthat irrationalalgebraicnumberscannotbeapproximatedtowithinanorderof q 2 byrationals p/q,hadtosolvesuchaproblem.Thesolutioniscalled

Roth’sLemma,anditwascertainlyoneoftheachievementsthatgainedhim aFieldsMedal.WedonotproveRoth’sTheoremherebutwedotreatThue’s MethodinChapter12.

WepostponetoChapter13aproofthat

isirrationalandeventranscendentalforallrationalandevenalgebraic α = 0, asthisrequireselementsofalgebraicnumbertheory.Truncationgivesonly irrationalityandthatessentiallyonlyfor α = 1,2,4(andslightlysurprisingly α = √2).

InthesameChapter2weconstructourfirstauxiliarypolynomialwitha diophantinepurpose:namely,toshowthatforanyrational α = 0theclassical series

isirrational.Thisissomewhatrelatedtothetafunctions.Althoughitconverges quiterapidly,thespeedisalsoinsufficientformeretruncation.Theresult itselfisnotsofundamental,butitprovidesagoodintroductiontotheuse ofauxiliarypolynomials;thatusedhereisprobablythesimplestofitskind, andwecalculateafewexamples.Oneneedsalsosomeelementarycomplex analysis,whichwillbemuchdevelopedlateron.

InChapter3wethenprogresstothesimilarbutmoreelaborateMahler’s Method,stillstickingjusttoirrationality;theresultsherearehistorically importantandtheyledtothesolutionoftheMahler–ManinConjectureand thentoNesterenko’sTheoremonthealgebraicindependenceof π and e π .The irrationalityherewillbegeneralizedtofull-bloodedtranscendenceinalater chapter.Herewetreatjust

foreveryrational α with0 < |α | < 1.Theproofisquitesimilartothat inChapter2butalittlemoreanalysisisneeded,andfurthertheauxiliary polynomialismorecomplicated,infactalreadyofafairlytypicalsort;stillwe calculatesomemoreexamples.Mahler’sMethodhasbeengreatlydeveloped andsomerecentapplicationsrefertothefamousMandelbrotset.Italsoplayed atransientroleinprovingthatthedecimaldigitsofnumberslike √2cannot begeneratedbyafiniteautomaton.

InChapter4weprovethatcertaindiophantineequationsintwovariables haveatmostfinitelymanysolutions,usingtheauxiliarypolynomialpioneered byRunge.Themethodenablesallsolutionstobefoundinprinciple.Atypical exampleisthatthereareatmostfinitelymanyintegers x, y with x(x 3 2y 3 ) = y.

Or,comingfromCassels’swell-knownresultontheCatalanEquationrecently solvedcompletelybyMih ˘ ailescu,thereareatmostfinitelymanyintegers x, y with x5 y7 = 1provided y isnotdivisibleby5(wedonotproveMih ˘ ailescu’s Theoremhere).Ofcourseequationslike

x 3 2y 3 = m

forfixed m aremorenatural,andthesewillbeconsideredinChapter12.For theproofshere,weneedtoknowthatthelargecomplexsolutionsaregiven byPuiseux(orbetterLaurent)series.Itseemsthatthisisnotsoeasytofind intheliterature,especiallyregardingthecrucialconvergenceproperties,sowe providequiteafewdetails.

TheninChapter5weprovesomeresultssimilartotheclassicalHilbert IrreducibilityTheorem,usuallyabbreviatedtoHIT,byusingthemachineryof theprecedingchapter.TheyarenotsogeneralasHIT,butwhentheydowork, theydelivermoreinformation.TheresultswerefirstfoundbySprindzhukalso usingauxiliarypolynomials,butinamoreelaborateway.Nowadaysthissort ofthingcanbedonewithheightsmachinery,butthatisnotsoelementary.A typicalexample,relatedtothatofthepreviouschapter,isthatthereareatmost finitelymanyintegers y suchthatthepolynomial

X (X 3 2y 3 ) y

in Q[X ] isreducibleovertherationals,andinprinciplethesecanallbefound. AliteralapplicationofHITwouldshowonlythatthereareinfinitelymany rational y suchthatthepolynomialisnotreducible.Sosometimeswegeta StrongHilbertIrreducibilityTheorem;butwerefrainfromabbreviatingthis. Hereweneedresultants;thesecanbefoundalmostanywhere,butbecausewe usethemfrequentlyinthisbookweprovideaself-containedaccount.

InChapter6wejumptoadifferenttopic.Weprovethatthenumber N of pointsmoduloaprime p onanaffineellipticcurvesatisfies

|N p|≤ 8√p; thisisslightlyweakerthantheclassicalresultofHasseinvolving2√p.The proofusesthesimplestnon-trivialexampleoftheauxiliarypolynomialintroducedinasurprisingwaybyStepanovin1969;hereweattempttomotivatethe

proofwiththehelpofsomeeasierintermediateresults.Noteventhedefinition ofellipticcurveisneededhere,letaloneanyproperties.Thusallwedoiscount theintegersolutions (x, y) modulo p ofanequation y2 = x3 + ax2 + bx + c modulo p.Therearemanygeneralizations(andSchmidtwroteanentirebook aboutthem)butnonehasquitethesameappeal.Withratherlittleextraeffort onecantreat y2 = x5 +··· andworse;inthegeometriccontextthisisfarfrom simplebecauseitwouldinvolvecurvesofgenus2andworse.

InChapter7wemakeanotherjumpwhichseemsevenbigger,tothetopic ofexponentialsums.ThebestknownisGauss’s

alsoforprime p,whoseabsolutevalue p1/2 ismuchsmallerthanthenumberof itsterms.Oneofthesesums,duetoHeilbronn,resistedforsometimeallefforts toproveitssmallnessuntilHeath-Brownin1996achievedthis.Hisbeautiful proofimitatedStepanov’sauxiliarypolynomialinakindofanalyticcontext involvingalogarithm-likefunction.Someargumentshadbeenanticipatedby Mitkinin1992.Wegivethedetails.Specifically

AsfarasIknow,theseargumentshavenotbeendevelopedveryfarsincethen, despitesomeinterestingfeaturesinvolvingdifferentialequations.

InChapter3weprovedtheirrationalityofthevalues μ ofMahler’sseries atnon-zerorationals.Thusthequantity |μ p/q| ispositiveforallintegers p and q ≥ 1.Anaturalquestionis:“Howsmallcanthisquantityget?”Indeed withanalgebraicirrationalinplaceof μ thisquestionisfundamentalinthe theoryofdiophantineequations,aswewillseeinChapter12.Ouranswer inChapter8requiresrefiningtheargumentsofChapter3.Therearetwokey steps.Oneisa“zeroestimate”assertingthatnottoomanythingscanvanish; suchestimatesplayamajorroleinmorerecentdevelopments.Theother,more classical,isanestimateforthecoefficientsoftheauxiliarypolynomial;this involvesthefamousSiegelLemma,whichwillbeusedoverandoveragain inthesequel.Wealsomakeasimpleapplicationofthemaximummodulus principleforanalyticfunctions.Thistoowillbeusedfrequentlylater,under thepopularnameoftheSchwarzLemma.Inthiswaywewillprovethatthere exist c = c(μ)> 0and κ = κ(μ) suchthat

Forexamplewith μ = ∞ k =0 (2/3)2k wecantake κ = 77.

ThereisafamousresultofP ´ olyaonentirefunctionsmappingthenatural numberstotherationalintegers;thismayhaveinfluencedGelfondinhispioneeringworkonthetranscendenceof α β (seeChapter19).P ´ olya’soriginal proofusedinterpolationformulaeandgavethebestpossibleconstant.Much laterWaldschmidtgaveaversionbyauxiliarypolynomials,whichsadlygives aworseconstant.Theproofisneverthelessilluminating;itneedsbinomial coefficientstoavoidfactorials,oneofthekeyideasinThue’sfamousproof (seeChapter12).Moreprecisely,weshowinChapter9thatanentirefunction f with

allin Z mustbeapolynomialif |f (z)| growsoforderatmost C |z| foracertain C > 1.P ´ olyacouldtakeany C < 2;andthestandardexample2z showsthat nothingbetterispossible.Orreformulated:ifanon-polynomialentirefunction f hasthisgrowth,thenatleastoneof f (0), f (1), f (2), ... mustbenon-integral. Gelfond’sstepfromnon-integralitytotranscendenceneededmanymoreideas, allofwhichwillbedevelopedinthisbook.

TherathernaturalgeneralizationtotheGaussianintegers G = Z + Zi with f mapping G intoitselfalsoplayedasimilarhistoricalrole;forexampleit probablydirectlyinspiredGelfond’sproofofthetranscendenceof eπ .Butthe bestpossibleconstantdidnotappearuntilarelativelyrecentpaperofGramain; paradoxicallyenough,hisproofinvolvesanauxiliarypolynomial(orbetteran auxiliaryfunction).Moreprecisely, f itselfmustbeapolynomialif |f (z)| now growsoforderatmost C|z|2 foracertain C > 1.Gelfondconsideredthis problemtoo,andobtainedthenotoriousvalue

C = exp π

(modestlynotmentionedinhisbook).Inthelate1970s,Iobtainedaconstant, extremelydifficulttocompute,whichlaterturnedouttobeabout1.181;and Iconjecturedthatthebestpossibleconstantwasexp( π 2e ) about1.782.This Gramainproved,andsodoweinChapter10.

InChapter11wepresentourfirsttranscendenceresult.WeextendMahler’s MethodinChapter3toprovethetranscendenceofhis ∞ k =0 α 2k forallalgebraic α with0 < |α | < 1.Thatisapparentlyhowhetestedhisrecoverywhile convalescingathomefromanillness.Nomoreideasareneeded,buttogo beyondirrationalityrequiressomerudimentarynotionof“size”ofanalgebraic number,withsomesortof“Liouvilleestimate”.Thissortoftechnicalityis fundamentaltoalltranscendenceproofs.Theconceptwillbedevelopedlater

intothemoresophisticated“height”,whichwillthenbestudiedforitsown sake,forexamplewithreferencetoLehmer’sQuestionof1933inconnexion withfactorizationproblems.

AtlastinChapter12weprovethefamousThueimprovementofLiouville’s classicalresult.Theproofsherestartgettingmoreelaborate,andanotherkey elementisdealingwiththedangerouslyheavyfactorialsthatthreatentosink themethod;howeverthisproblemhasbeensolvedinChapter9.Yetanother featureisasimpleformofzeroestimate.Thesehaveprovedcrucialinlater developmentsinvolvingRoth,Schmidt,Schlickewei,andothers.Moreprecisely,givenanyalgebraicnumber α ofdegree d ≥ 3andany κ> d 2 + 1,we showthatthereisapositiveconstant c = c(α , κ) suchthat

forallintegers p and q ≥ 1.TheLiouvilleresultwasfor κ = d ,andthe laterRothestimatewasforany κ> 2.Herewetrytobreaktheproofinto molecules,andwealsospeculateonhowThuemayhavearrivedathisproof; thereareinterestingconnexionswithNewton’sMethodinnumericalanalysis andlaterimprovementsbyHalleyandothers.Wealsogivetheapplicationsto diophantineequations.Hereweencountertheuncomfortablephenomenonof ineffectivityforthefirsttime.

TheninChapter13,usingthemachineryofthepreviouschapter,we provetheHermite–Lindemannresultonthetranscendenceofthevaluesof theexponentialfunctionatalgebraicnumbers;thus eα istranscendentalfor everyalgebraic α = 0.Ourproofisakindof adhoc developmentofthe auxiliarypolynomialtechniquesintroducedsofar;wehavebynowillustrated somanyofthesetechniquesthatseveralproofsareavailable.Wechoosethe onemostsuitedforgeneralizationtotheSchneider–LangTheoremlateronin Chapter19.

Chapter14iswherewedevelopthesizeinChapter11totheabsoluteheight H (α) ≥ 1orthelogarithmicversion h(α) = log H (α) ≥ 0.Thisisrathereasy todefine,buttoestablishpropertieslike H (α 2 ) = H (α)2 ,weneedquitea bitofalgebraicnumbertheory,andwewillsketchthedetails.Themotivation istwo-fold:first,theresultsofthenexttwochaptersareaboutheights per se,andsecond,theproofofthelaterSchneider–Langresultthenbecomes fairlystreamlined.WealsogiveaversionoftheSiegelLemmaintheheights language.Thisrequiresessentiallydefiningtheheightofavector (α1 , ... , αn ) ofalgebraicnumbers.Tobreakthemonotony,weproveonthewaysomeeasy resultsonlowerandupperboundsforheightsthathaveledtosomelively moderndevelopments.

TheninChapter15weproveBilu’sTheoremonthedistributionoftheconjugatesofanalgebraicnumber,usinganauxiliarypolynomialduetoMignotte aswellastheSiegelLemmafromthepreviouschapter.Asamatteroffact, ourversioniscompletelyexplicitnumerically.Butthereisaproblem:this explicitnessisbasedontheErd ˝ os–Tur ´ anTheorem,andthereseemstobeno easyproofofthat.Soatthispointthebookisdefinitelynotself-contained; howeverwefindthisdidacticallypermissible,asthepresentchapterserves asanaturalspringboardforthenextone,andBilu’sTheoremisnotfurther usedinthebook.Moreprecisely,if α isanalgebraicnumberofdegree d and absolutelogarithmicheight h,weshowthatthenumber n ofitsconjugatesin anysectorofangle θ basedattheoriginsatisfies

That n isasymptotically θ 2π d as h → 0isthemaincontentofBilu’sresult (whichisexpressedmorefelicitouslyintermsofweakapproximation).

TheninChapter16usingthemachinerydevelopedinthepreviouschapter, weproveuptologarithmsthefamousDobrowolskiTheorem,whichistothis daythebestapproachtotheclassicalLehmerQuestion,usingessentiallythe originalauxiliarypolynomial.Theresultisexceptionallyusefuland,asfaras Iknow,noneoftheapplicationsactuallyneedthelogarithms.Providingthe bestknownlogarithmsisanexerciseonthePrimeNumberTheorem,whichis carriedoutinseveralbooks.Thusweproveherethatforany κ> 1thereisa positiveconstant c = c(κ) suchthateverynon-zeroalgebraic α = 0ofdegree d whichisnotarootofunitysatisfies h(α) ≥ c d κ

Admittedlytherearequickerproofswithoutauxiliarypolynomials,butthese don’tgeneralizetothehigherdimensionalresultssuchastheAmoroso–David Theoremthatareveryimportanttodayindiophantinegeometry.

InChapter17werestoresomesymmetrybygivinganon-trivialheight upperbound.Thisconcernsthealgebraicnumbers α with α n + (1 α)n = 1 forsomeinteger n ≥ 2.Inarelativelyrecentinvestigationconnectedwithirreducibility,Beukersshowedthat H (α) ≤ 216.Hisproofusedhypergeometric functions.Usinginsteadthepowerfulmethodofauxiliarypolynomials,weget H (α) ≤ 10120 (inthestyleofStephenLeacock“tenyearsagothedeficitonmy farmwasaboutahundreddollars;butbywell-designedcapitalexpenditure, bydrainageandgreaterattentiontodetail,Ihavegotitintothethousands”). Howeverthismethodgeneralizesconsiderably,ascurrentworkofAmoroso, Zannierandtheauthorshows.

InChapter18weusesomeoftheideasdevelopedsofartogiveageneralizationtoalgebraicpointsofthe1989Bombieri–PilaTheoremoncounting rationalpointsonanalyticcurves.Theoriginalproof,althoughnotfundamentallydifferentfromours,isbasedonidentitiesrelatedtotheconfluent LagrangeInterpolationFormulaeandnotonanauxiliarypolynomial.Such countingresults(usuallyinhigherdimensions)arenowadaysbeingappliedto proveavarietyofspecialcasesofthegeneralZilber–PinkConjecturesabout unlikelyintersections.Wewillprovesomethingimplyingthefollowing.Let f beatranscendentalfunctionanalyticonanopensetcontainingtherealinterval [0,1].Thenforany > 0thereexists c = c(f , ) suchthat,foreverypositive integer n,atmost cn ofthevalues

arein Z/n.ThisvaguelyresemblesthereformulationofP ´ olya’sTheorem.

TheninChapter19weprovethefamousSchneider–LangTheorem,which includesHermite–LindemanninChapter13aswellasseveralotherthings involvingellipticandabelianfunctions.Thankstotheprecedingchaptersthe proofisnowreasonablysmooth.Itisanaturalclimaxtothebook;however thenextchapterfollowsonquitenaturally,andsodoestheoneafterthat. ThusweprovetheGelfond–SchneiderTheoremonthetranscendenceof α β = exp(β log α) whenever α = 0andirrational β arealgebraic,whichincludes thetranscendenceof2√2 asspecifiedbyHilbertinhisSeventhProblem.Akey technicaltrickistheuseof“largeradius”intheSchwarzLemma.

InChapter20wesystematicallyconsidertheellipticanalogues,motivated partlybytheneedtoprovethetranscendenceofintegralslike

TheresultsinvolveaWeierstrassfunction ℘(z) withinvariants g2 , g3 thatare themselvesalgebraic;theanalogueofHermite–Lindemannthenassertsthe transcendenceof ℘(α) foranyalgebraic α = 0.AlreadytheellipticanalogueofGelfond–Schneiderhasconsequencesforthemodularfunction j(τ) definedontheupperhalf-plane:namelythat j(α) istranscendentalwhenever α isalgebraicbutnotquadratic;thiswepostponetothenextchapter.Butas Schneiderdiscovered,thereareseveralotherinterestingconsequences;and evenheoverlookedoneofthem.Thischapteristhelongestinthebook,dueto oursupplyingthemaindetailsfortheproofsofmostoftheseconsequences.It mightgetshorterifwecouldusefactsaboutcommutativegroupvarieties,but

thatwouldintroducetoomuchalgebraicgeometrynotintheelementaryspirit ofthebook.

In1969Mahlerconjecturedthatthealternativemodularfunction

J (q) = q 1 + 744 + 196884q + 21493760q 2 + 864299970q 3 +20245856256q 4 +···

(thepatternofcoefficientsisquiteself-evident),definedforall q intheunit disc,takestranscendentalvaluesatnon-zeroalgebraic q.In1996Barr ´ e,Diaz, GramainandPhilipponprovedthisusinganauxiliarypolynomialdirectly on J itself.Thiswasnotonlythefirstauxiliarypolynomialofitskind(as SchneiderhadwantedmanyyearsagoinhisSecondProblem),butitledsoon afterwardstoNesterenko’sunexpectedbreakthroughimplyingthealgebraic independenceof π and eπ .Thisisamostattractiveareawhereaspectsof elliptic,modularandexponentialfunctionsblendintoeachother.Wegive aproofofMahler’sConjectureinChapter21,afterdeducingtheanalogous resultfor j(τ) = J (e2π iτ ) fromtheresultsofthepreviouschapter.

Uptonowweneverdiscussedproblemsofalgebraicindependence.Maybe thereader’scuriosityforthistopichasbeenawakenedattheendofthepreviouschapter,andnowshegetsaclassicalexample.AfterthefamousLindemann–Weierstrassresult(notcoveredinthisbook),whichwasgeneralizedto E -functionsbySiegelandShidlovsky(likewisenothere),themostspectacular wasthealgebraicindependenceof α β and α β 2 ,foralgebraic α = 0andcubic β ,duetoGelfondin1949.Butasalotofthemachineryisalreadyavailable, ourproofinChapter22willnotbetoolong.Heretoooneneeds“largeradius”. FinallyinanAppendixweproveexoticheightresultslike

whereacrudeestimatewouldgiveatleast2h(ξ) ontheright-handside.Indeed ifwereplace8inthenumeratorby7thisisunavoidable.Thesquareroothere, traditionallyassociatedwiththequadraticnatureofN ´ eron–Tateheightson abelianvarieties,isactuallyneeded.

Letusmentionhereyetanotheruseforauxiliarypolynomials:toshow thatcertainalgebraicnumbersarisingfromcommutativegroupvarietieshave “largedegree”.Itiswell-knownthattherootofunity e2π i/n hasdegree φ(n) theEuler φ -function,andalsothatforany θ< 1thereisapositiveconstant c,ofcourseeffectivelycomputable,with φ(n) ≥ cnθ .Byafamous resultofSerretheellipticanaloguehasany θ< 2,butonlyrecentlyhas thisbeenmadeeffective,inanelaborateproofinvolving,amongotherthings,

isogenyestimates.Usinganauxiliarypolynomialdirectly,inthefunctions ℘(z), ℘(Nz) whichare“almostalgebraicallyindependent”,onecanquickly obtainaneffectivelowerboundforany θ< 1.Furthermorethismethodworks alsoforabelianvarieties,wheretheanalogueofSerre’sTheoremisstillnot yetfullyknown.Theresultingestimateshaverecentlybeenveryusefulin problemsofunlikelyintersections.Weomittedanydetailedaccount,firstfor lackofspaceandsecondbecauseoneneedsmoretheory,suchasN ´ eron–Tate heights.SeeMasser(1977)andalsoAppendixDofZannier(2012).However in Exercise14.92 wesketchhowthelowerbound cn/ log n canbeobtainedin thecyclotomiccase.

Thereaderwillobservethattheauxiliarypolynomialusuallyoperatesina proofbycontradiction.Sothisbookismostlyaboutthingsthatdon’texist! WithWoodyAllenwemayhaterealitybutit’sstillthebestplacetogeta decentsteak.OrwemaythinkoftheCapeTowntelephonecompanyerror message“thenumberthatyouhavecalleddoesnotexist”.

Thepleasanttaskofcollectingtogetheralltheseapplicationsofauxiliary polynomialshasresultedinsomefeaturesthatmaynotbefamiliartoall experts.

ThusIamnotsureif Theorem5.1 inChapter5appearsexplicitlyinthe literature.InChapter6thewarm-upbeforetheproofof Theorem6.1 maynot haveappearedbeforeinthisform.InChapter7theproofof Lemma7.3 is new,althoughitproceedsonwell-knowngeneralprinciples.The(rathereasy) estimate(8.7)ofChapter8isprobablynew.InChapter10the Proposition10.4 mightpossiblybeusefulinothercontexts.InChapter12itisindeedIwhomust acceptfullresponsibilityfortheattempttoexplaintheproofof Theorem12.1 intermsofnumericalanalysis;alsothe Proposition12.2,althoughknownto someexperts,maynothaveappearedexplicitlybefore.Ourexplicitestimate in Theorem15.2 ofChapter15couldbenew,althoughitsshapeisfairlywellknown.SomeofthepreliminarydiscussioninChapter16maynotbefamiliar. ThemethodintroducedinChapter17isnew,duetoAmoroso,Zannierand myself.InChapter18themainresult Theorem18.2 for Q(i) isnotinthe publishedworkthatIhaveseen,althoughheretooitsshapefor Q isfairlywellknown. Lemma20.7 fromChapter20mightlookfamiliar,butitisnot;also someofthedetailstowardstheendofthischapterhaveneverappearedinprint, althoughthismaywellbeduetothealternativeapproach,moreconceptualto some,throughgroupvarieties.Inparticulartheproofof Theorem20.11 might wellbea“desperately-neededgapintheliterature”.Herealsothe(againrather easy)remarkaboutthegammafunctionisnew.AndinChapter21the Lemma 21.8 enablesustoavoidanappealtocertainestimatesforcoefficientsofmodulartransformationpolynomials,whose(non-classical)proofsaresomewhat

elaborate.InChapter22theproofof Proposition22.5 isasmallvariationof aproofthatIhaveseen.FinallyintheAppendixthe TheoremA.1,although presentedonlyforaparticularexample,isalsonew,arisingfromtheabove workofAmoroso,Zannierandmyself.

Whataretheprerequisitesforahappyreadingofthisbook?Thefirstthirteen chapterscouldbeunderstoodbythird-yearuniversitystudentsorgoodsecondyearstudents(andindeedin2013/2014theywere–andIthankthisclass, especiallyGabrielDill,whoexaminedwithafine-toothedcombthefirstten, althoughImaywellhaveinventednewmistakesduringrevision).Theproofs areelementary(butthatdoesnotalwaysimplythattheyareeasy).Herethere areelementsofalgebrasuchastheconceptoftranscendence,thefactthat Z[X ] isauniquefactorizationdomain,ortheintegralclosureofaring R in alargerring S (whichIliketodenoteby RS );elementsofanalysissuchas orderofvanishing,Cauchy’sTheoremortheMaximumModulusPrinciple; andelementsofalgebraicnumbertheorysuchasfieldembeddings,conjugates orringsofintegers.ThereisajumpatChapter14,whereweneedslightly moreadvancedalgebraicnumbertheory,whichweexplainwithoutfullproofs, freelyusingconceptslikeprimeidealsandvaluations.Thisenablesusto getallthewaytoChapter20,wherewethenneedsometheoryofelliptic functions,whichagainweexplainwithoutfullproofs.SimilarlyinChapter21 weneedsometheoryofmodularfunctions.FinallyinChapter22weneeda bitabouttranscendencedegree.BycontrastintheAppendix,althoughithas aconsiderablewhiffofdiophantinegeometry,wedevelopfromscratchthe rudimentsofalgebraiccurvetheorythatweneed.Andohyes,itwillbegood tobearinmindthatour

N ={1,2,3, }

doesnotcontain0asitmightinsomeothercultures.But Z, Q, R, C andthe fields Fp ={0,1, ... , p 1} areunambiguous. Andwhatabouttheexercises?Theseareattheendofeachchapter,where theyaredividedintotwopartsbyastarredline.Thoseabovethelineneedonly theprerequisitesaboveandwhat’sinthebooksofar,andtheyareessentially whatwerefedtostudentsashomeworkreinforcingthelectures.Thosebelow thelinegofurther,andsometimesneedextraknowledge;theyareofvarying levelsofdifficulty,sometimeshintedat.Concerningthelecturesthemselves, therearemanypossibilities;forexampleIcoveredChapters1,2,3,4,5 togetherwithsomealgebraicnumbertheoryinasinglesemester,thenfollowed upwithChapters6,8,9,11,12,13andmorealgebraicnumbertheory,andso wasabletostartathirdsemesterwithChapter14indetail,thenChapters15, 16,18,19andbitsofChapter20.

Thereisalsoabibliography,butthishasnopretenceofbeingcomprehensive.InsteadIhavetriedtorestrictittobooks,especiallythosethatgiveagood overviewofthesubsequentdevelopmentofsomeofthetopicstreatedhere;but Ihavealsoincludedsomekeyoriginalpapers.

Iconjecture,buthavenotimetoprove,thateverymathematicsbookwithat least100pagescontainsatleastonemisprint(possiblyapartfromthosethat havegonethroughseveraleditions–howeverina2008seminarwedidfind amistakeinLandau’s“ElementaryNumberTheory”(Chelsea1958),despite theauthor,accordingtoLittlewood,readingproofsheetsseventimes,once foreachsortoferror–curiouslywecouldnotfinditagainlater,this“Lost Mistake”).Boashasaconjecturethatisshockinglystronger,and(continued p.94).

Thebookyouarenowreadingiscertainlynocountexerample,andIapologizeinadvanceformymisprints,howlersandblunders(andmyKingCharles’s Headofcontinuedfractions).InfactIwasoncethankedinprintbyanonEnglishauthorfor“teachinghimmistakes”.Ihopetobeabletopassonthese skillstomyreaders.

Andalsotoconveytothemthejoysof“doingtranscendence”ratherthan merely“doingmathematics”.

IgladlyexpressmygreatgratitudetoDavidTranahofCambridgeUniversity Press,forhiswarminitialencouragementtowritethebook,forhisgentle remindersaboutactuallywritingit,and,onceIgaveinandstartedinearnest, forhisregularenquiriesaboutitsprogressandhisrapidanddetailedanswers tomymanyquestions.

1

Prologue

Inthischapterwegiveacoupleofexampleswherethemethodofauxiliary polynomialsisusedforproblemsthathavenodiophantinecharacter.Thuswe arenotfollowingSamGoldwyn’sadvicetostartwithanearthquakeandwork uptoaclimax.

Hereismaybeoneofthesimplestexamples. Thereisanoldchestnutwhichoftenturnsupinproblem-solvingsessions: givenapolynomial F inavariable X ,canonealwaysmultiplyitbyanon-zero polynomialtogetaproductinvolvingonlypowers X p for p prime?

Forexamplewith F = X 100 + 1wehave X 3 F = X 103 + X 3 .Butwhatabout F = X 100 + X 3 ?Heremultiplyingbysome P = aX d willnotdo.However (X 111 X 14 )F = X 11 (X 100 X 3 )F = X 11 (X 200 X 6 ) = X 211 X 17 .

Atfirstsightitappearstobeadifficultproblemaboutprimes,possiblyin arithmeticprogressions.Sowhatabout F = X 1000 + X 100 + X 3 ?

Letusconsidermultiplying F bysome

forunknown L andundeterminedcoefficients pi (notnecessarilyprimes,but theymightbe).Then PF hasdegreeatmost L + 1000,anditscoefficientsare linearformsinthe pi .Wewouldliketoeliminatetheterms X n for n notprime with0 ≤ n ≤ L + 1000.Thereare

L + 1001 π(L + 1000)

ofthese,where π(x) = p≤x 1isthestandardprime-countingfunction.If weequatethecorrespondingcoefficientstozero,thenwegetasystemof

L + 1001 π(L + 1000) homogeneouslinearequationsinthe L + 1unknowns pi .Bylinearalgebrathissystemissolvablenon-trivially,provided L + 1 > L + 1001 π(L + 1000); thatis, π(L + 1000)> 1000.Everyschoolgirlknowsthatthereareinfinitely manyprimenumbers,so π(x) tendstoinfinitywith x andthereexistssuchan L;forexample L = 6927(withMaple).Sotheanswerisyesforthis F ;the troubleofcourseisthatwehavetosolve6927equationsin6928unknownsto get P explicitly.

Thereadermaynowseefirstthatthisworksforany F ,andsecondthatthe primesareirrelevant,inthesensethatwemaydemandonlypowers X m in PF with m inanyprescribedinfiniteset;forexampletheelementsofthesequence 4,27,3125,823543, ... ofall m = pp .

Thisisperhapsthesimplestapplicationofthemethodofauxiliarypolynomials.

Hereisasecondexample.

Considertheexpressions

Howcanweeliminate t ?Commonsense,orageneralconsiderationoftranscendencedegree,showsthattheremustbeanalgebraicrelationbetween x, y notinvolving t .Andindeedamoment’sthoughtgives

0.(1.3)

Butwhatabout

= t 3 + t , y = t 4 + t ?

Wecouldsolvethefirstequationbyradicalsfor t ,andthensubstituteintothe secondequation,andfinallysomehowcleartheradicals.Weget

butIconfessthathereIjustusedMapletocalculatetheresultant(seeChapter5)of

3 + t x, t 4 + t y

withrespectto t .

Whatabout

x = t 1948 + t 666 + 1, y = t 1291 + t 163 + t ?(1.5)

Herethedegreesaremyyearofbirthandthe(traditional)yearofbirthof theearliestpartoftheSwissFederation,whereIfirstgavetheselectures

(inBasle,afterearlierattemptsinAnnArbor,Constance,HongKong, HeraklionandVienna).

Mapledoesn’trespondfor47seconds;andthengivesanincomprehensible errormessage(theresultantthatyouareseekingdoesnotexist).Howcanwe findthisrelation P(x, y) = 0?

Letuswrite

forunknown L andundeterminedcoefficients pij whicharepresumablyintegersasin(1.3)and(1.4).Ifwesubstitute(1.5)into P(x, y),thenweobtaina polynomialin t ofdegreeatmost3239L.Itscoefficientsarelinearformsinthe pij .Ifweequatethesecoefficientstozero,thenwegetasystemof3239L + 1 homogeneouslinearequationsinthe (L + 1)2 unknowns pij .Bylinearalgebra thissystemissolvablenon-trivially,provided (L + 1)2 > 3239L + 1 forexampleif L = 3238.

Thisprovessomething:namelythatthereisanon-trivialrelationofdegree atmost3238ineachvariable.Theremaywellbe (L + 1)2 = 10491121terms intherelation,whichaccountsforMaple’schickeningout.Andthetrouble foranyone,ofcourse,isthatwenowhavetosolve10487883equationsin 10491121unknowns.

Thereadermayseefirstthatthisworksforanytwopolynomials F , G in t insteadof(1.5),andsecondthatitgeneralizestomorevariables;forexample betweenanythreepolynomialsintwovariablesthereisanon-trivialalgebraicrelation(aswouldfollowmoresimplybyconsiderationoftranscendence degree).

Thisexampleisperhapsmoretypicalofthosetofollowinthesepages.After thesubstitution(1.5)wemayregardthefunction P(x, y) ashavingalargeorder ofvanishingat t = 0;solarge,indeed,thatitmustvanishidentically.

Inbothexamplesthegoalispracticallytheauxiliarypolynomialitself;soit ishardly“auxiliary”.

Wewillseemanymoreandsubtlerapplicationsinthisbook(sadlynot Siegel’sTheorem(Siegel, 1955)aboutfunctionsoncompactmanifolds,which isaverysophisticatedgeneralizationofthesecondexample–seehowever Lemma20.4 and Exercise20.67).Butbeforewestart,letusask:sincethere appeartobesomanytermsintherelationconnecting(1.5),whatarethecoefficientslike?Ifwenormalizethemtobeintegers,howbigarethey?Wenote thattheCram ´ erformulaeforsolvinglinearequationsinvolvedeterminants

whosesizeisthenumber n ofunknowns.Suchdeterminantsalreadyhave n! terms,sotheirvaluesarelikelytobesomewhatlarger.Thusitwouldbe surprisingiftheintegersinourrelationweresubstantiallylessthanthefactorial 10491121!.Anditcanbeseenthatsomeoftheentriesofthedeterminantsare almostaslargeas36476 (asin Exercise1.17).Thismeansthatwecouldexpect somecoefficientsin P tohavethirtythousandmillion(Americanthirtybillion, SwissdreissigMilliarden)decimaldigits(seehowever Exercise8.13).Soitis doubtfulif P couldeverbeexpressedexplicitly.

Exercises

1.1 Showthatthereis P = 0in C[X ] suchthat P(X )(X 1000 + X 100 + X 3 ) has theform N n=0 an X n2 .

1.2 Let F bein C[X ] withdegreeatmost D.Showthatthereis P = 0in C[X ] withdegreeatmost D2 D suchthat PF hastheform N n=0 an X n2

1.3 Let F bein C[X ].Find P = 0in C[X ] suchthat PF hastheform N n=0 an X 2n .

1.4 Let F bein C[t ] withdegreeatmost D ≥ 1andlet G bein C[t ] with degreeatmost E ≥ 1.Showthatthereis P = 0in C[X , Y ] withdegreeatmost D + E 1ineachvariablesuchthat P(F , G) = 0.

1.5 Let F bein C[t ] withdegreeatmost D ≥ 1andlet G bein C[t ] with degreeatmost E ≥ 1.Showthatthereis P = 0in C[X , Y ] withdegreeatmost E in X anddegreeatmost DE E + 1in Y suchthat P(F , G) = 0.

1.6 Let t , u beindependentvariables,andlet F , G, H bein C[t , u].Showthat thereis P = 0in C[X , Y , Z ] suchthat P(F , G, H ) = 0.

1.7 Showthatthereisanabsoluteconstant c (thatis,notdependingonany parameters)withthefollowingproperty.Let F bein C[X ] withdegreeatmost D ≥ 2.Thenthereis P = 0in C[X ] withdegreeatmost cD log D suchthat PF hastheform p ap X p ,where p runsoverthesetofprimes.

1.8 Let F bein C[X ].Find P = 0in C[X ] suchthat PF hastheform N n=0 an X 3n .

1.9 Let F bein Fp [X ].Showthatthereis P = 0in Fp [X ] suchthat G = PF satisfies G(X1 + X2 ) = G(X1 ) + G(X2 ) in Fp [X1 , X2 ]

1.10 Let F bein C[t ] withdegreeatmost D ≥ 1andlet G bein C[t ] with degreeatmost E ≥ 1.Showthatthereis P = 0in C[X , Y ] withdegreeatmost E in X anddegreeatmost D in Y suchthat P(F , G) = 0[Hint:resultants].

1.11 Let P = 0in C[X , Y ] besuchthat P(t1948 + t 666 + 1, t 1291 + t 163 + t ) = 0.Showthat P hasdegreeatleast1291in X anddegreeatleast1948in Y (compare Exercise5.7).

1.12 Canoneessentiallyimprovethe D 2 D in Exercise1.2?Idon’tknow.

1.13 Let F , G bein C(t ) (rationalfunctions).Showthatthereis P = 0in C[X , Y ] suchthat P(F , G) = 0.

1.14 Let F = 256 (t 2 t + 1)3 t 2 (t 1)2 , G = 256 (t 2 + t + 1)3 t 2 (t + 1)2 .

Showthat P(F , G) = 0for P = X 3 Y 2X 2 Y 2 + XY 3 1728(X 3 + Y 3 ) + 1216(X 2 Y + XY 2 ) +3538944(X 2 + Y 2 ) 2752512XY 2415919104(X + Y ) + 549755813888.

(Thisisrelatedtothesimultaneouscomplexmultiplicationoftwodifferent ellipticcurvesandalsototheAndr ´ e–OortConjecture–see Exercise21.19.Of coursethepresentexerciseandthefollowingareillustrationsofLittlewood’s Principlethat“Allidentitiesaretrivial(oncetheyhavebeenwrittendownby someoneelse)”asquotedbyCassels.)

1.15 Let F = tu(t 10 + 11t 5 u 5 u 10 ), G =−t 20 u 20 + 228(t 15 u 5 t 5 u 15 ) 494t 10 u 10 , H = t 30 + u 30 + 522(t 25 u 5 t 5 u 25 ) 10005(t 20 u 10 + t 10 u 20 )

Showthat G3 + H 2 = 1728F 5 .(Thisisrelatedtotheicosahedron–seeKlein, 1956.)

1.16 Let F = 1728 u3 u3 v2 , G =−1728 u2 v u3 v2 , H =−288 u(tuv 3u3 4v2 ) u3 v2 , K =−24 3t 2 u2 v 18tu4 24tuv2 + 95u3 v + 16v3 u3 v2 .

Showthat 2F 2 (F 1728)2 GK 3F 2 (F 1728)2 H 2 + (F 2 1968F + 2654208)G4 = 0.

(Thisisrelatedtothedifferentialequationforthemodularfunction–see Exercise21.15.)

1.17 With L = 3238showthat (t 1948 + t 666 + 1)L (t1291 + t 163 + t )L hasa coefficientatleast 32L L2 + L + 1 > 103082 .

1.18 Showthatthereis P = 0in Q[X ] for Exercise1.1.

1.19 Showthatthereis P = 0in Z[X ] for Exercise1.1.

1.20 Showthatthereis P = 0in Z[X , Y ] for Exercise1.10

1.21 Find P = 0in Z[X , Y ] with P(t + i, t i) = 0.

1.22 If x, y arein C with(1.3),mustthereexist t in C with(1.2)?

1.23 Whatabout Exercise1.22 with C replacedby R, Q, Z, Fp ?

IrrationalityI

Themainapplicationofthemethodofauxiliarypolynomialsisindiophantine approximationandtranscendence.Butbeforethesetopicscomesirrationality: oneseekstoprovethatagivennumberisnotin Q.Oneoftheearliestexamples isofcourse

Itisprovedinanyelementarytextonnumbertheorythat e isirrational; theproofisbasedontherapidconvergenceoftheseriestogetherwiththe reasonablebehaviourofthedenominators.Wegiveaproofnevertheless.

Considerthetruncation

for n = 0,1,2, .Thefirsttermontheextremeright-handsidedominates andindeed

Thus0 < fn < 2/(n + 1)! and

Nowif s isadenominatorfortherational e,thenmultiplyingby s and making n tendtoinfinitygivesacontradictiontotheso-calledFundamental TheoremofTranscendencethateverynon-zerointegerhasabsolutevalueat least1.

Theproofisslightlyeasierforthealternatingseries

becausewenolongerneedthedominance.

Theproofsextendtogivethelinearindependenceover Q of1, e, e 1 ,which amountstothefactthat e cannotbequadraticover Q.Inparticular e2 is irrational.Butthereisaminorsnag.Weassumethat r + se + te 1 = 0for integers r , s, t notallzero,andthenfor

weget

Hencethe n!fn areintegerstendingtozeroas n tendstoinfinity.Butweno longerknowthattheseintegersarenon-zeroasin(2.1).

Infactitisnottoohardtoshowthat

isimpossibleforany n.Namely,

andso

Thus(2.2)wouldimply s = t = 0so r = 0too,acontradiction.

Heretheproblemmakesitsfirstappearancebutisrelativelyharmless;howeverinlaterchapterswewillseeitgettingmoreandmoredangerous.

Butassoonasweconsider e2 = ∞ k =0 2k /k ! directly,someotherdifficulties arise.Theconvergenceispracticallyjustasfast,butaftertruncatingat k = n andmultiplyingbyadenominator n!,wegetaterm2n+1 /(n + 1) whichno longertendstozero.

Theproofcanbefixedbycalculatingthepowerof2dividing n! toyielda smallerdenominator;thisinvolvesrestricting n toaspecialformlike2m .Such atrickcanbeextendedtogivethelinearindependenceover Q of1, e2 , e 2 (see Exercise2.13);inparticular e4 isirrational.Butitisamusing(Ilearntit

fromthewonderfulbookofConwayandGuy(1996),p.253)thattheseideas alsogivetheirrationalityof λ = e√2 via

= 2

(see Exercise2.4).

ActuallyIknowofnosuchsimpleproofthat e3 isirrational,althoughthisis notdifficulttoestablishbyconsidering 1 0

(1 t )n dt (see Exercise2.14).It canalsobedonewithauxiliarypolynomialsofthetypementionedinChapter 1,mostefficientlybyintroducingderivativesasinthedifferentialequation (ez ) = ez .Howeversomeextraarithmeticandanalyticmachineryisneeded. Thiswillbeintroducedstepbystepinthefollowingchapters.Bythesemeans wewillshowinChapter13that

isirrationalandeventranscendentalforanyrationalandevenalgebraic α = 0. Inthepresentchapterwewillconsidertheseries

whichsimilarlyconvergesforallrealandevencomplex z toafunction f (z) Itconvergesfasterthantheseriesof ez ,soletusseewhattruncationof f (α) gives.

Letusstartwith α = a/b,forsimplicitytaking a ≥ 1, b ≥ 1in Z.The truncationsare

Againthereisdominationontheextremeright,andif n islargeenoughweget

Takingintoaccountacommondenominator2n(n 1)/2 bn ,wededuce

Theproofworksiftheestimatetendstozeroas n tendstoinfinity(assuming wecanruleoutthesnag fn = 0asin(2.2)above).Unfortunatelythisisthe caseonlyfor a = 1.

Another random document with no related content on Scribd:

OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project

Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a nonprofit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form

accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and

distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.