Immediate download A first course in functional analysis 1st edition orr moshe shalit ebooks 2024

Page 1


A First Course in Functional Analysis 1st Edition Orr Moshe Shalit

Visit to download the full and correct content document: https://textbookfull.com/product/a-first-course-in-functional-analysis-1st-edition-orr-mo she-shalit/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

A Course in Functional Analysis and Measure Theory

Vladimir Kadets

https://textbookfull.com/product/a-course-in-functional-analysisand-measure-theory-vladimir-kadets/

A course in categorical data analysis First Edition

Leonard

https://textbookfull.com/product/a-course-in-categorical-dataanalysis-first-edition-leonard/

A First Course in Statistics for Signal Analysis Wojbor

A. Woyczy■ski

https://textbookfull.com/product/a-first-course-in-statisticsfor-signal-analysis-wojbor-a-woyczynski/

Functional analysis and summability First Edition Natarajan

https://textbookfull.com/product/functional-analysis-andsummability-first-edition-natarajan/

Functional Analysis in Applied Mathematics and Engineering First Edition Pedersen

https://textbookfull.com/product/functional-analysis-in-appliedmathematics-and-engineering-first-edition-pedersen/

Functional Analysis of the Human Genome First Edition

Cooper

https://textbookfull.com/product/functional-analysis-of-thehuman-genome-first-edition-cooper/

A First Course in Predictive Control, Second Edition Rossiter

https://textbookfull.com/product/a-first-course-in-predictivecontrol-second-edition-rossiter/

A First Course in Sobolev Spaces Giovanni Leoni

https://textbookfull.com/product/a-first-course-in-sobolevspaces-giovanni-leoni/

A First Course in Enumerative Combinatorics 1st Edition

Carl G. Wagner

https://textbookfull.com/product/a-first-course-in-enumerativecombinatorics-1st-edition-carl-g-wagner/

A FIRST COURSE IN FUNCTIONAL ANALYSIS

A FIRST COURSE IN FUNCTIONAL ANALYSIS

ORR MOSHE SHALIT

Technion - Israel Institute of Technology

Haifa, Israel

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

Version Date: 20170215

International Standard Book Number-13: 978-1-4987-7161-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Shalit, Orr Moshe.

Title: A first course in functional analysis / Orr Moshe Shalit.

Description: Boca Raton : CRC Press, [2016] | Includes bibliographical references and index.

Identifiers: LCCN 2016045930| ISBN 9781498771610 (hardback : alk. paper) | ISBN 9781315367132 (ebook) | ISBN 9781498771627 (ebook) | ISBN  9781498771641 (ebook) | ISBN 9781315319933 (ebook)

Subjects: LCSH: Functional analysis--Textbooks.

C lassification: LCC QA320 .S45927 2016 | DDC 515/.7--dc23

LC record available at https://lccn.loc.gov/2016045930

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Tomymotherandmyfather,MalkaandMeirShalit

Preface

Inanutshell

Thepurposeofthisbookistoserveastheaccompanyingtextfora first courseinfunctionalanalysis,takentypicallybysecond-andthird-yearundergraduatestudentsmajoringinmathematics.

AsIpreparedformyfirsttimeteachingsuchacourse,Ifoundnothing amongthecountlessexcellenttextbooksinfunctionalanalysisavailablethat perfectlysuitedmyneeds.Iendedupwritingmyownlecturenotes, which evolvedintothisbook(anearlierversionappearedonmyblog[31]).

Themaingoalsofthecoursethisbookisdesignedtoservearetointroducethestudenttokeynotionsinfunctionalanalysis(completenormed spaces,boundedoperators,compactoperators),alongsidesignificantapplications,withaspecialemphasisontheHilbertspacesetting.Theemphasison Hilbertspacesallowsforarapiddevelopmentofseveraltopics:Fourierseries andtheFouriertransform,aswellasthespectraltheoremforcompactnormal operatorsonaHilbertspace.Ididnottrytogiveacomprehensivetreatment ofthesubject,theoppositeistrue.Ididmybesttoarrangethematerialin acoherentandeffectiveway,leavinglargeportionsofthetheoryforalater course.Thestudentswhofinishthiscoursewillbeready(andhopefully,eager)forfurtherstudyinfunctionalanalysisandoperatortheory,andwillhave attheirdisposalasetoftoolsandastateofmindthatmaycomeinhandy inanymathematicalendeavortheyembarkon.

Thetextiswrittenforareaderwhoiseitheranundergraduatestudent, ortheinstructorinaparticularkindofundergraduatecourseonfunctional analysis.Thebackgroundrequiredfromtheundergraduatestudenttakingthis courseisminimal:basiclinearalgebra,calculusuptoRiemannintegration, andsomeacquaintancewithtopologicalandmetricspaces(infact, thebasics ofmetricspaceswillsuffice;andalltherequiredmaterialintopology/metric spacesiscollectedinthe appendix).

Some“mathematicalmaturity”isalsoassumed.Thismeansthatthe readersareexpectedtobeabletofillinsomedetailshereandthere,not freakout whenbumpingintoaslightabuseofnotation,andsoforth.

Moredetailsonthecontentsandonsomechoicesmade

Thisbookistailor-madetoaccompanythecourse IntroductiontoFunctionalAnalysis givenattheTechnion—IsraelInstituteofTechnology.The

officialsyllabusofthecourseisroughly:basicnotionsofHilbertspacesand Banachspaces,boundedoperators,FourierseriesandtheFouriertransform, theStone-Weierstrasstheorem,thespectraltheoremforcompactnormaloperatorsonaHilbertspace,andsomeapplications.Akeyobjective, notless importantthantheparticulartheoremstaught,istoconveysome underlying principlesofmodernanalysis.

Thedesignwasinfluencedmainlybytheofficialsyllabus,butIalsotook intoaccounttherelativeplaceofthecoursewithinthecurriculum.ThebackgroundthatIcouldassume(mentionedabove)didnotincludecourseson Lebesgueintegrationorcomplexanalysis.Anotherthingtokeepinmindwas thatbesidesthiscourse,therewasnoothercourseinthemathematicsundergraduatecurriculumgivingarigoroustreatmentofFourierseriesorthe Fouriertransform.Ithereforehadtogivethesetopicsarespectableplacein class.Finally,Ialsowantedtokeepinmindthatstudentswhowillcontinue ontograduatestudiesinanalysiswilltakethedepartment’sgraduatecourse onfunctionalanalysis,inwhichtheHahn-Banachtheoremsandthe consequencesofBaire’stheoremaretreatedthoroughly.Thisallowedme toomit theseclassicaltopicswithacleanconscience,andusemylimitedtimefor adeeperstudyinthecontextofHilbertspaces(weakconvergence,inverse mappingtheorem,spectraltheoremforcompactnormaloperators),including somesignificantapplications(PDEs,Hilbertfunctionsspaces,Pickinterpolation,themeanergodictheorem,integralequations,functional equations, FourierseriesandtheFouriertransform).

Anexperiencedandalertreadermighthaverecognizedtheinherentpitfall intheplan:howcanonegiveaserioustreatmentof L2 spaces,andinparticular thetheoryofFourierseriesandtheFouriertransform,withoutusingthe Lebesgueintegral?Thisisaproblemwhichmanyinstructorsofintroductory functionalanalysisface,andthereareseveralsolutionswhichcanbeadopted.

Insomedepartments,theproblemiseliminatedaltogether,eitherbymakingacourseonLebesgueintegrationaprerequisitetoacourseonfunctional analysis,orbykeepingtheintroductorycourseonfunctionalanalysisfreeof Lp spaces,withthemainexamplesofBanachspacesbeingsequencespaces orspacesofcontinuousfunctions.Ipersonallydonotlikeeitherof theseeasy solutions.AmorepragmaticsolutionistousetheLebesgueintegral asmuch asisneeded,andtocompensateforthestudents’backgroundbyeithergiving acrashcourseonLebesgueintegrationorbywavingone’shandswherethe goinggetstough.

Ichoseadifferentapproach:hittheproblemheadonusingthetools availableinbasicfunctionalanalysis.Idefinethespace L2[a,b]tobethecompletion ofthespaceofpiecewisecontinuousfunctionson[a,b]equippedwiththenorm f 2 =( b a |f (t)|2dt)1/2,whichisdefinedintermsofthefamiliarRiemannintegral.WecanthenusetheHilbertspaceframeworktoderiveanalyticresults, suchasconvergenceofFourierseriesofelementsin L2[a,b],andinparticular wecangetresultsonFourierseriesforhonestfunctions,suchas L2 conver-

Preface

xiii genceforpiecewisecontinuousfunctions,oruniformconvergenceforperiodic and C 1 functions.

Workinginthisfashionmayseemclumsywhenoneisalreadyusedto workingwiththeLebesgueintegral,but,formanyapplicationstoanalysis itsuffices.Moreover,itshowssomeoftheadvantagesoftakingafunctional analyticpointofview.Ididnotinventtheapproachofdefining Lp spacesas completionsofcertainspaceofnicefunctions,butIthinkthatthis bookis uniqueintheextenttowhichtheauthorreallyadherestothisapproach:once thespacesaredefinedthisway,weneverlookback,and everything isdone withnomeasuretheory.

Toillustrate,in Section8.2.2 weprovethemeanergodictheorem.Ameasurepreservingcompositionoperatoron L2[0, 1]isdefinedfirstonthedense subspaceofcontinuousfunctions,andthenextendedbycontinuitytothecompletion.ThemeanergodictheoremisprovedbyHilbertspacemethods,asa niceapplicationofsomebasicoperatortheory.Thestatement(seeTheorem 8.2.5)initselfissignificantandinterestingevenforpiecewisecontinuousfunctions—onedoesnotneedtoknowthetraditionaldefinitionof L2 inorder toappreciateit.

Needlesstosay,thisapproachwastakenbecauseofpedagogical constraints,andIencourageallmystudentstotakeacourseonmeasuretheoryiftheyareseriousaboutmathematics, especially iftheyareinterestedin functionalanalysis.Thedisadvantagesoftheapproachwetaketo L2 spaces arehighlightedwheneverwestarethemintheface;forexample,in Section 5.3,whereweobtaintheexistenceofweaksolutionstoPDEsintheplane, butfallshortofshowingthatweaksolutionsare(insomecases)solutionsin theclassicalsense.

Thechoiceoftopicsandtheirorderwasalsoinfluencedbymypersonal teachingphilosophy.Forexample,Hilbertspacesandoperatorson themare studiedbeforeBanachspacesandoperatorsonthem.Thereasonsforthisare (a) Iwantedtogettosignificantapplicationstoanalysisquickly,and (b) Idonotthinkthatthereisapointinintroducinggreatergeneralitybefore onecanprovesignificantresultsinthatgenerality.Thisissurelynot themost efficientwaytopresentthematerial,butthereareplentyofother booksgiving elegantandefficientpresentations,andIhadnointention—norany hope— ofoutdoingthem.

Howtousethisbook

ArealisticplanforteachingthiscourseintheformatgivenattheTechnion (13weeks,threehoursoflecturesandonehourofexerciseseveryweek)is tousethematerialinthisbook,intheorderitappears,from Chapter1 upto Chapter12,skipping Chapters6 and 11.Insuchacourse,thereis oftentimetoincludeasectionortwofrom Chapters6 or 11,asadditional illustrativeapplicationsofthetheory.Goingthroughthechapters intheorder

Preface

theyappear,skippingchaptersorsectionsthataremarkedbyan asterisk, givesmoreorlesstheversionofthecoursethatItaught.

Inanundergraduateprogramwherethereisaseriouscourseonharmonic analysis,onemayprefertoskipmostofthepartsonFourieranalysis(except L2 convergenceofFourierseries),andusetherestofthebookasa basisfor thecourse,eithergivingmoretimefortheapplications,orbyteachingthe materialin Chapter13 ontheHahn-Banachtheorems.Iviewthechapteron theHahn-Banachtheoremsasthe firstchapter infurtherstudiesinfunctional analysis.InthecoursethatItaught,thistopicwasgivenassupplementary readingtohighlymotivatedandcapablestudents.

Thereareexercisesspreadthroughoutthetext,whichthestudentsare expectedtoworkout.Theseexercisesplayanintegralpartinthe development ofthematerial.Additionalexercisesappearattheendofeverychapter.I recommendforthestudent,aswellastheteacher,toreadtheadditional exercises,becausesomeofthemcontaininterestingmaterialthatisgoodto know(e.g.,Gibbsphenomenon,vonNeumann’sinequality,Hilbert-Schmidt operators).Theteachingassistantwillalsofindamongtheexercisessome materialbettersuitedfortutorials(e.g.,thesolutionoftheheatequation,or thediagonalizationoftheFouriertransform).Thereisnosolutions manual, butIinviteanyinstructorwhousesthisbooktoteachacourse,to contact meifthereisanexercisethattheycannotsolve.WithtimeImaygradually compileacollectionofsolutionstothemostdifficultproblems.

Someofthequestionsareoriginal,mostofthemarenot.Havingbeena studentandateacherinfunctionalandharmonicanalysisforseveralyears, Ihavealreadyseenmanysimilarproblemsappearinginmanyplaces,and someproblemsaresonaturaltoaskthatitdoesnotseemappropriateto trytotracewhodeservescreditfor“inventing”them.Ionlygivereferenceto questionsthatIdeliberately“borrowed”intheprocessofpreparingthisbook. Thesamegoesforthebodyofthematerial:mostofitisstandard,andIsee noneedtociteeverymathematicianinvolved;however,ifacertainreference influencedmyexposition,creditisgiven.

The appendix containsallthematerialfrommetricandtopologicalspaces thatisusedinthisbook.Everyonceinwhileaseriousstudent—typically majoringinphysicsorelectricalengineering—comesandasksifheor shecan takethiscoursewithouthavingtakenacourseonmetricspaces.Theanswer is:yes,ifyouworkthroughthe appendix,thereshouldbenoproblem.

Additionalreadingandalternativetexts

Therearecountlessgoodintroductorytextsonfunctionalanalysisand operatortheory,andthebibliographycontainsahealthysample.Asastudent andlaterasateacheroffunctionalanalysis,Iespeciallyenjoyedandwas influencedbythebooksbyGohbergandGoldberg[12],Devito[6],Kadison andRingrose[16],Douglas[8],RieszandSz.-Nagy[26],Rudin[27],Arveson [3],ReedandSimon[24],andLax[18].Theseareallrecommended,but only

Preface

xv thefirsttwoareappropriateforabeginner.Asaservicetothereader,letme mentionthreemorerecentelementaryintroductionstofunctionalanalysis, byMacCluer[19],Hasse[13]andEidelman,MilmanandTsolomitis[9].Each oneoftheselookslikeanexcellentchoiceforatextbooktoaccompanyafirst course.

IwanttoacknowledgethatwhileworkingonthebookIalso madeextensiveuseoftheWeb(mostlyWikipedia,butalsoMathOverflow/StackExchange)asahandyreference,tomakesureIgotthingsright,e.g., verifythatIamusingcommonlyacceptedterminology,findoptimalphrasing ofaproblem,etc.

Acknowledgments

Thisbookcouldnothavebeenwrittenwithoutthesupport,encouragementandgoodadviceofmybelovedwife,Nohar.TogetherwithNohar,Ifeel exceptionallyluckyandthankfulforourdearchildren:Anna,Tama,Gev,Em, Shem,AsherandSarah.

Iowethankstomanypeopleforreadingfirstdraftsofthesenotesand givingmefeedback.AmongthemareAlonGonen,ShlomiGover,AmeerKassis,AmichaiLampert,EliahuLevy,DanielMarkiewicz,SimeonReich,Eli Shamovich,YotamShapira,andBaruchSolel.IamsorrythatIdonotrememberthenamesofallthestudentswhopointedamistakehereor there,but Idowishtothankthemall.ShlomiGoverandGuySalomonalsocontributed anumberofexercises.AspecialthankyougoestoMichaelCwikel,Benjamin Passer,DanielReemandGuySalomon,whohavereadlargeportions ofthe notes,foundmistakes,andgavemenumerousanddetailedsuggestionsonhow toimprovethepresentation.

Ibetthatafterallthecorrectionsbyfriendsandstudents,therearestill someerrorshereandthere.Dearreader:ifyoufindamistake,pleaselet meknowaboutit!Iwillmaintainapageonmypersonalwebsite(currently http://oshalit.net.technion.ac.il)inwhichIwillcollectcorrections.

IamgratefultoSarfrazKhanfromCRCPressforcontactingmeand invitingmetowriteabook.IwishtothankSarfraz,togetherwithMichele Dimonttheprojecteditor,forbeingsohelpfulandkindthroughout.Ialso owemanythankstoSamarHaddadtheproofreader,whosemeticulouswork greatlyimprovedthetext.

Myloveforthesubjectandmypointofviewonitwerestronglyshapedby myteachers,andinparticularbyBorisPaneah(myMaster’sthesisadvisor) andBaruchSolel(myPh.D.thesisadvisor).Ifthisbookisanygood, then thesemendeservemuchcredit.

Myparents,MalkaandMeirShalit,haveraisedmetobeamanofbooks Thisone,myfirst,isdedicatedtothem.

Haifa,2017

Chapter1 Introductionandthe Stone-Weierstrasstheorem

1.1Backgroundandmotivation

Welcometo AFirstCourseinFunctionalAnalysis.Whatisfunctional analysis?Ashortansweristhatfunctionalanalysisisalanguageand frameworkinwhichtoformulateandstudyproblemsinanalysisfromanabstract pointofview.Inthisintroductorychapter,wewilltrytogiveamore detailed explanationofwhatisfunctionalanalysis.Alongtheway,wewillprovethe firstsignificanttheoreminthisbook:theStone-Weierstrasstheorem.

Functionalanalysiswasbornaround1900,whenthemathematical climate wasbecomingsuitableforanabstractandunifiedtreatmentofanalytical objects.Consider,forexample,thefollowing integralequation:

ThisequationwasconsideredbyI.Fredholmin1903,and,likemanyimportant mathematicalproblemsofthetime,itarosefrommathematicalphysics.In theequationabove,thefunctions g ∈ CR ([a,b])and k ∈ CR([a,b] × [a,b])are givencontinuousfunctions,and f isanunknownfunction(hereandbelow CR(X)denotesthespaceofcontinuous,real-valuedfunctionsonatopological space X).Fixingthefunction k,therearethreebasicquestionsonecanask aboutsuchequations:

1. Solvability. Doesthereexistacontinuoussolution f tothisequation given g?Forwhat g doesasolutionexist?

2. Uniqueness. Isthesolutionunique(whenitexists)?Givenaparticular solutiontotheequation,canwedescribethespaceofallsolutions, or atleastcanwetellhow“big”itis?

3. Methodofsolution. Whatisthesolution?Inotherwords,given g canwewritedownaformulaforthesolution f ,oratleastdescribea methodofobtaining f approximately?

Questionsofasimilartypearedealtwithinacourseinlinearalgebra,

AFirstCourseinFunctionalAnalysis

whenconsideringasystemoflinearequations Ax = b,where x and b are vectorsin Rn,and A isan n × n matrix.Therearemanynontrivialthings tosayregardingthesolvabilityoftheequation Ax = b whichdonotrequire knowingthespecificmatrix A,forexample:iftheequation Ax =0hasa uniquesolution(namely, x =0),then Ax = b hasauniquesolutionfor any b ∈ Rn.Inthesamevein,oneisinterestednotonlyinansweringtheabove threequestionsfortheintegralequation(1.1)givenaparticular k;itisalsoof interesttounderstandtheunifyingcharacteristicsofequations ofthistype.

Onemaydevelopanadhoctheoryofintegralequations,butitismost enlighteningforustoputtheaboveratherconcreteequationinan abstract andgeneralframework.Historicallyaswellasmethodologically,this isthe startingpointoffunctionalanalysis.

Letustrytoforcetheaboveanalyticproblemintotheframeworkoflinear algebra.First,wenotethat CR([a,b])isarealvectorspace.Nextwenotice, followingFredholm,thattheaboveequationcanbewrittenas(I + K)f = g, where I : CR([a,b]) → CR ([a,b])istheidentityoperatorand K : CR ([a,b]) → CR([a,b])istheso-called integraloperator

Finally,weobservethattheoperator K,andhence I +K,isa linear operator. Thusourproblemis“just”thatofsolvingalinearequationinthevectorspace CR([a,b]).However,theseobservationsdonotbringusmuchclosertobeing abletoanswertheabovequestions;theyonlysuggestthatitmight befruitful tostudylinearoperatorsoninfinitedimensionalvectorspaces.

Linearoperatorsoninfinitedimensionalspacesturnouttobetoolargea classtobetreatedinameaningfulmanner.Wewillconcentrateonthestudy ofcontinuousorcompactoperatorsactingoncompletenormedvectorspaces. Inthissettingsignificantresultscanbeobtained;forexample,in Chapter9 wewillseethattheequation(I + K)f = g hasauniquesolutionforany g, ifandonlyiftheequation(I + K)f =0hasauniquesolution.Methodsof findingthesolutionwillalsobedeveloped.

Notethat,unlikeinthecaseofalinearsystemofequations Ax = b,the equation(1.1)makessensewithinmanydifferentvectorspaces.Woulditbe easiertosolvetheproblemifweassumedthatallfunctionsaredifferentiable? Theequationmakessenseforintegrable f —maybeweshouldconsider I + K asalinearoperatoronthelargerspaceofallintegrablefunctions, ormaybe onthespaceofsquareintegrablefunctions?Dothebasicpropertiesofthe operator I + K changeifwethinkofitasanoperatoronthebiggerspace? Wewillseethatconsideringtheintegralequationasanoperatorequation inthespaceof squareintegrablefunctions on[a,b]doesnotchangesome characteristicfeaturesoftheproblem,whileontheotherhanditfacilitates actuallysolvingtheproblem.

Thespaceofsquareintegrablefunctionsonanintervalisanexampleofa Hilbertspace.Hilbertspacesaretheinfinitedimensionalspacesthatareclosest

IntroductionandtheStone-Weierstrasstheorem 3 tofinitedimensionalspaces,andtheyarethemosttractable.Whatmakes themsotractablearethefactthattheyhaveaninnerproduct,andthefact thattheyarecompletemetricspaces.Inthisbook,aspecialemphasisisput onHilbertspaces,andinthissettingintegralequationsarebestunderstood. WewillbeginourstudyofHilbertspacesinthenextchapter.

Thegoalofthisbookistopresentasetoftools,ideasandresultsthat canbeusedtounderstandlinearoperatorsoninfinitedimensionalspaces. Butbeforewecandevelopatheoryoflinearoperatorsoninfinitedimensional spaces,wemuststudythespacesthemselves.Wewillhavetowaituntilmuch laterinthebook,beforewecanprovesignificantresultsonthesolvability ofintegralequations;in Chapter11 wewillcompleteourtreatment ofthis subject.Fornow,wepartfromequation(1.1),andwetakeacloserlookat thespace CR([a,b]).

1.2TheWeierstrassapproximationtheorem

Inlinearalgebraonelearnsthateveryfinitedimensionalvectorspacehasa basis.Thisfactisincrediblyuseful,bothconceptuallyandalsofroma practical pointofview;justconsiderhoweasyitisforustothinkabout Rn havingat handthestandardbasis e1 =(1, 0,..., 0),..., en =(0,..., 0, 1).Inparticular, theexistenceofbasesiscrucialtoourunderstandingoflinearmapsandof thesolvabilityoflinearequationsoftheform Ax = b.

Inanalysisweencountermanyvectorspacesthatareinfinitedimensional. Forexample,thespace CR ([a,b])isaninfinitedimensionalrealvectorspace. Ourexperienceinlinearalgebrasuggeststhatitwouldbeusefultohavesome kindofbasisforstudyingthisspace,andinparticularitshouldbehelpfulfor consideringlinearequationsasabove.

AstandardapplicationofZorn’slemmashowsthateveryvectorspace V hasabasis—aset {ui}i∈I ⊂ V suchthatforallnonzero v ∈ V ,thereis auniquechoiceoffinitelymanydistinctindices i1,...,ik ∈ I andnonzero scalars c1,...,ck satisfying

Inthecontextofanalysis,suchabasisiscalleda Hamelbasis,todistinguish itfromothernotionsofbasiswhichareused.Formostinfinitedimensional vectorspacesaHamelbasisisalmostuseless,becauseofthefollowingfact.

Exercise1.2.1. AHamelbasisfor CR ([a,b])mustbeuncountable(forahint seeExercise7.5.16).

ThefactthatHamelbasesfor CR([a,b])mustbeuncountablesuggeststhat wemaywanttorelaxournotionofbasis.Bytheexercise,wehaveno hopeto

AFirstCourseinFunctionalAnalysis

findacountablebasis.However,wecanhopeforthenextbestthing,which isalinearlyindependentsequenceoffunctions {fn}∞ n=0 ⊂ CR([a,b])whichin somesensespanthespace.Anaturalguesswouldbethatthesequenceof monomials fn(t)= tn areasclosetobeingabasisfor CR([a,b])asonecan reasonablyexpect.Thisistrue,asWeierstrassprovedin1885.

Theorem1.2.2 (Weierstrass’sapproximationtheorem). Let f :[a,b] → R beacontinuousfunction.Forevery ǫ> 0,thereexistsapolynomial p with realcoefficients,suchthatforall t ∈ [a,b], |p(t) f (t)| <ǫ.

Sincenoteverycontinuousfunctionisapolynomial,wecannothopeto obtaineverycontinuousfunctionasalinearcombinationofmonomials.Weierstrass’sapproximationtheoremassuresusthatwecanatleastuselinearcombinationsofmonomialstoapproximateeverycontinuousfunctionto anygiven precision.Thusthemonomialscanbesaidto“generate” CR([a,b]).

Arethereanyothersequencesofnicefunctionsthatgenerate CR ([a,b])?To giveanotherexample,weneedacoupleofdefinitions.A Z-periodicfunction isafunction f : R → R suchthat f (x + n)= f (x)forall x ∈ R andall n ∈ Z. A trigonometricpolynomial isafunction q oftheform

Laterinthisbook,whenwewillstudyFourierseries,wewillrequirethe followingtheorem(seealsoExercise1.6.7).Liketheprevioustheorem,this oneisalsoduetoWeierstrass.

Theorem1.2.3 (Trigonometricapproximationtheorem). Let f : R → R bea continuous Z-periodicfunction.Forevery ǫ> 0,thereexistsatrigonometric polynomial q,suchthatforall t ∈ R, |q(t) f (t)| <ǫ.

Itturnsoutthatthemostelegantwaytoobtaintheabovetwotheorems istoconsideramoregeneralproblem.WewillobtainbothTheorem1.2.2 andTheorem1.2.3assimpleconsequencesoftheStone-Weierstrasstheorem, whichisabroadgeneralizationofthesetheorems.Ourgoalintheremainder ofthischapteristopresentandprovetheStone-Weierstrasstheorem.Besides obtainingusefulresultsforlaterpurposesinthecourse,thisalso servesto highlightthespiritoffunctionalanalysis.(Wewillreturntotheproblemof findingagoodnotionofbasisforinfinitedimensionalspacesin Chapter3.)

1.3TheStone-Weierstrasstheorem

Let X beacompactHausdorfftopologicalspace(the appendix containsall thematerialintopologicalandmetricspacesthatisrequiredforthisbook).

Wewilllet CR (X)denotethespaceofcontinuous,real-valuedfunctionson X;likewise, C(X)denotesthespaceofcontinuous,complex-valuedfunctions on X.Onbothofthesespaceswedefinethe supremumnorm ofafunction f tobe

∞ =sup x∈X |f (x)|

Thequantity d(f,g)= f g ∞ definesametricon CR (X)(andalsoon C(X))andisconsideredtobethedistancebetweenthetwofunctions f and g.Thisdistancemakesboth CR (X)and C(X)intocompletemetricspaces. Boththesespacesarevectorspacesovertheappropriatefield, withtheusual operationsofpointwiseadditionoffunctionsandscalarmultiplication.Infact, if f,g ∈ CR(X),thenthepointwiseproduct fg isalsoin CR(X),andtogether withthevectorspaceoperations,thisgives CR(X)thestructureofan algebra

Definition1.3.1. If A isasubspaceof CR(X)orof C(X),thenitissaidto bea subalgebra ifforall f,g ∈ A, fg isalsoin A.

Definition1.3.2. Asubalgebra A ⊆ CR(X)issaidto separatepoints if foreverypairofdistinctpoints x,y ∈ X thereexistssome f ∈ A suchthat f (x) = f (y).

Theorem1.3.3 (Stone-Weierstrasstheorem(realversion)). Let A beaclosed subalgebraof CR (X) whichcontainstheconstantfunctionsandseparates points.Then A = CR(X)

OneobtainsTheorem1.2.2immediatelybyletting X =[a,b]andtaking A tobetheclosureofthealgebraofpolynomialswithrespecttothesupremum norm,notingthatthenormclosureofanalgebraisanalgebra.

Exercise1.3.4. Let A ⊆ CR(X)beasubalgebra,andlet A beitsclosure. Then A isalsoasubalgebra.

AnotherconvenientwayofstatingtheStone-Weierstrasstheoremisgiven inthefollowingexercise.

Exercise1.3.5. ProvethatTheorem1.3.3isequivalenttothefollowingstatement: If A isasubalgebraof CR(X) whichcontainstheconstantfunctionsand separatespoints,then A = CR (X).

Toobtainthetrigonometricapproximationtheorem(Theorem1.2.3),one firstnotesthat,duetostandardtrigonometricidentities,thetrigonometric polynomialsformanalgebra.Next,oneneedstorealizethatthecontinuous,

AFirstCourseinFunctionalAnalysis

real-valued, Z-periodicfunctionson R canbeidentifiedwiththecontinuous, real-valuedfunctionsonthetorus T = {z ∈ C ||z| =1}.Indeed,themapping

Φ: CR (T) → CR(R)givenby Φ(f )(t)= f e 2πit ,t ∈ R

maps CR (T)ontothealgebra CR,per (R)ofcontinuous Z-periodicfunctions. Moreover,Φmapstheconstantfunctiontotheconstantfunction,itislinear,anditrespectsmultiplication:Φ(fg)=Φ(f )Φ(g).Therefore,thesame holdsfortheinverseΦ 1 : CR,per(R) → CR (T).Finally,supt∈R |Φ(f )(t)| =

sup|z|=1 |f (z)| forall f ∈ CR (T).

Nowput X = T,andtake A ⊆ CR(T)tobetheinverseimageofall trigonometricpolynomialsunderΦ(ifweidentify CR(T)and CR,per (R),then underthisidentification A issimplythealgebraofalltrigonometricpolynomials,butwehavechosentomakethisidentificationexplicitwiththeuseof themapΦ).Bythepreviousparagraph,inordertoproveTheorem 1.2.3it sufficestoshowthat A isdensein CR (X).Itiselementarytocheckthat A containstheconstantsandseparatespointson X = T.Applyingtheversionof theStone-WeierstrasstheoremgiveninExercise1.3.5,wefindthat A isdense in CR (T),thereforeΦ(A)isdensein CR,per (R).Thatconcludestheproofof thetrigonometricapproximationtheorem.

Exercise1.3.6. FillinthedetailsintheproofofTheorem1.2.3.Inparticular, provethat A isanalgebrathatseparatespoints,andprovethatΦissurjective

ProofoftheStone-Weierstrasstheorem

Let A ⊆ CR (X)beasinthestatementofTheorem1.3.3.Weisolateafew lemmasbeforereachingthemainargumentoftheproof.

Lemma1.3.7. Oneveryinterval [ L,L],theabsolutevaluefunctionisuniformlyapproximablebypolynomials.Thatis,forevery ǫ> 0,thereexistsa polynomial p suchthat |p(t) −|t|| <ǫ (1.2)

forall t ∈ [ L,L].

Proof. Itsufficestoprovethelemmafortheinterval[ 1, 1](why?).Tothis end,considerthefunction h(x)=(1 x)1/2.Itisastandard(butnontrivial) exerciseinfirst-yearanalysistoshowthattheTaylorseriesof h aboutthepoint 0convergesuniformlyintheclosedinterval[ 1, 1].Truncatingtheseriesat somehighpower,wefind,given ǫ> 0,apolynomial q suchthat |q(x) h(x)| < ǫ forall x ∈ [ 1, 1].Nowsince |t| = h(1 t2),thepolynomial p(t)= q(1 t2) satisfies(1.2).

Exercise1.3.8. Fillinthedetailsoftheaboveproof;inparticularprovethe uniformconvergenceoftheMaclaurinseriesof h on[ 1, 1].(Hint: usethe integralformoftheremainderfortheTaylorpolynomialapproximation.)

Foreveryfunction f ,welet |f | denotethefunction |f | : x →|f (x)|.

Lemma1.3.9. If f ∈ A,thenthefunction |f | isalsoin A

Proof. Let ǫ> 0begiven.Wewillfindafunction g ∈ A suchthat g−|f | ∞ < ǫ.Since A isclosedandsince ǫ isarbitrary,thiswillshowthat |f |∈ A.

Let I =[− f ∞, f ∞].Bythepreviouslemmathereexistsapolynomial p suchthatsupt∈I |p(t) −|t|| <ǫ.Put g = p ◦ f .Since A isanalgebraand p isapolynomial, g ∈ A.Thus

asrequired.

Foranytwofunctions f,g,welet f ∧ g and f ∨ g denotethefunctions f ∧ g : x → min{f (x),g(x)} and f ∨ g : x → max{f (x),g(x)}.

Lemma1.3.10. If f,g ∈ A,thenthefunctions f ∧ g and f ∨ g arealsoin A.

Proof. ThisfollowsimmediatelyfromLemma1.3.9togetherwiththeformulas min{a,b} = a+b−|a b| 2 andmax{a,b} = a+b+|a b| 2 ,whichholdtrueforallreal a and b

Lemma1.3.11. Foreverypairofdistinctpoints x,y ∈ X,andevery a,b ∈ R, thereexistsafunction g ∈ A suchthat g(x)= a and g(y)= b.

Proof. Exercise.

CompletionoftheproofoftheStone-Weierstrasstheorem. Let f ∈ CR(X).Wemustshowthat f ∈ A.Itsuffices,forafixed ǫ> 0,tofind h ∈ A suchthat f h ∞ <ǫ Westartbychoosing,forevery x,y ∈ X,afunction fxy ∈ A suchthat fxy(x)= f (x)and fxy(y)= f (y).ThisispossiblethankstoLemma1.3.11. Nextweproduce,forevery x ∈ X,afunction gx ∈ A suchthat gx(x)= f (x)and gx(y) <f (y)+ ǫ forall y ∈ X.Thisisdoneasfollows.Forevery y ∈ X,let Uy beaneighborhoodof y inwhich fxy <f + ǫ.Thecompactnessof X ensuresthattherearefinitelymanyoftheseneighborhoods,say Uy1 ,...,Uym , thatcover X.Then gx = fxy1 ∧ ... ∧ fxym doesthejob(gx isin A,thanksto Lemma1.3.10).

Finally,wefind h ∈ A suchthat |h(x) f (x)| <ǫ forall x ∈ X.Forevery x ∈ X let Vx beaneighborhoodof x where gx >f ǫ.Againwefinda finitecover Vx1 ,...,Vxn andthendefine h = gx1 ∨ ... ∨ gxn .Thisfunctionlies between f + ǫ and f ǫ,soitsatisfies |h(x) f (x)| <ǫ forall x ∈ X,andthe proofiscomplete.

Exercise1.3.12. Didweusetheassumptionthat X isHausdorff?Explain.

1.4TheStone-Weierstrasstheoremoverthecomplex numbers

Often,onefindsitmoreconvenienttostudyortousethealgebra C(X) ofcontinuouscomplex-valuedfunctionson X.Maybethereaderhasnotencounteredthisalgebraoffunctionsbefore,butitsstructureas avectorspace isveryclosetothatof CR(X).

Exercise1.4.1. Provethat C(X)= {u + iv | u,v ∈ CR (X)}

If f = u + iv where u,v ∈ CR (X),thenwedenoteRef = u andImf = v. Thus,forevery f ∈ C(X), f =Ref + iImf .

Itturnsoutthatitisharderforasubalgebraof C(X)tobedensein C(X)thanitisforasubalgebraof CR(X)tobedensein CR(X).Consider thefollowingexample.

Example1.4.2. Let D denotetheopenunitdiscin C,andlet D denoteits closure.Let A(D)denotethe discalgebra,whichisdefinedtobetheclosure ofcomplexpolynomialsin C(D),thatis

Certainly, A(D)isacomplexalgebrawhichcontainstheconstantsandseparatespoints.Byatheoremincomplexanalysis,theuniformlimitofanalytic functionsisanalytic.Thus,everyelementof A(D)isanalyticin D,sothis algebraisquitefarfrombeingtheentirealgebra C(D).

Itisworthstressingthatintheaboveexamplewemeanpolynomialsin onecomplexvariable z.We donotmean polynomialsinthetwovariables x and y,where z = x + iy =Rez + iImz.

Exercise1.4.3. Isthespace C[x,y]oftwovariablecomplexpolynomials densein C(D)?

TomaketheStone-Weierstrasstheoremworkinthecomplex-valuedcase, oneneedstoaddoneadditionalassumption.

Definition1.4.4. Asubspace S ⊆ C(X)issaidtobe self-adjoint iffor every f ∈ S,thecomplexconjugateof f (i.e.,thefunction f : x → f (x))is alsoin S

Theorem1.4.5 (Stone-Weierstrasstheorem(complexversion)). Let A bea closedandself-adjointsubalgebraof C(X) whichcontainstheconstantfunctionsandseparatespoints.Then A = C(X).

Proof. ConsidertherealvectorspaceReA = {Ref : f ∈ A}.SinceRef = f +f 2 and A isself-adjoint,itfollowsthatReA ⊆ A.Because A isasubalgebraof C(X),ReA isasubalgebraof CR(X).Fromclosednessof A itfollowsthat ReA isclosed,too.

Fromtheassumptionthat A isasubspacethatseparatespoints,itfollows thatReA alsoseparatespoints.Indeed,given x,y ∈ X,let f ∈ A suchthat f (x) = f (y).Then,eitherRef (x) =Ref (y),orImf (x) =Imf (y).ButImf = Re( if ) ∈ ReA,soReA separatespoints.

Thus,ReA isaclosed,realsubalgebraof CR(X)thatcontainstheconstants andseparatespoints.Bythe(real)Stone-Weierstrasstheorem,ReA = CR (X). Itfollowsthateveryreal-valuedcontinuousfunctionon X isin A.Symmetrically,everyimaginaryvaluedcontinuousfunctionon X isin A.ByExercise 1.4.1weconcludethat C(X)= A.

1.5Concludingremarks

Functionalanalysisoriginatedfromaninterestinsolvinganalyticalproblemssuchastheintegralequation(1.1).Equationsofthiskindcanbe rephrasedasproblemsaboutoperatorsactingoninfinitedimensionalvector spaces.Ifonewishestounderstandoperatorsoninfinitedimensionalvector spaces,thefirstthingtodoistostudythespacesthemselves.In thischapter wetookalookatthespace CR ([a,b]),andprovedWeierstrass’sapproximation theorem,whichwasabyproductoftheStone-Weierstrasstheorem.Besides obtainingimportanttheoremstobeusedsubsequently,theseresultsshould giveaflavorofhowlifeininfinitedimensionalvectorspacesisdifferent from whatoneisusedtoinfinitedimensionalspaces.

TheStone-Weierstrasstheoremandthewaythatwehaveappliedit serve asanexampleoffunctionalanalysisatwork.Wehadaconcreteapproximationproblem—approximatingcontinuousfunctionsbypolynomialsorby trigonometricpolynomials—whichwassolvedbyconsideringavastlymore generalapproximationproblem.Consideringamoregeneralproblemserves twopurposes.First,afterwehaveprovedtheresult,wehaveaready-to-use toolthatwillbeapplicableinmanysituations.Second,bygeneralizing the problemwestripawaytheirrelevantdetails(forexample,theparticularnatureofthefunctionswearetryingtoapproximatewithorthenatureofthe spaceonwhichtheylive)andweareleftwiththeessenceoftheproblem.

Toprovethetheoremitwasconvenienttoemploythelanguageofabstract analysis,namely,tointroduceanormandtoconsidertheprobleminsidean algebrawhichisalsoametricspace.Itwasconvenienttoconsideraclosed subalgebra A,eventhoughtherewasnoclosedsubalgebraintheoriginal problems,andeventhoughthisclosedsubalgebraturnedouttobe thewhole spaceofcontinuousfunctions.

AFirstCourseinFunctionalAnalysis

Inmathematicalculture,peoplesometimesmakeadistinctionbetween “hardanalysis”and“softanalysis”.“Hardanalysis”usuallyrefers toargumentsthatrequireexplicitestimatesorcalculations(suchasarerequiredto showthatapowerseriesconvergesinaninterval,orthatsomegeneralized integralconvergesconditionally),and“softanalysis”referstoargumentsthat usealgebraicconstructsordeeptopologicalconsiderations.Becausefunctional analysisprovidesanalgebraicframeworkforaunifiedandeleganttreatment ofproblemsinanalysis,manystudentsnaivelyconsiderfunctionalanalysisto beamagicaldevicewhichturnseveryhardanalyticalproblemintoasoftone. Thingsarenotthatsimple.

TheelegantandabstractproofoftheWeierstrasstheorempresentedabove isquitesofterthanWeierstrass’soriginalproof,whichinvolvedintegrationon thereallineandtheuseofpowerseries.However,wecouldnotdowithout somepieceof“hardanalysis”:werequiredthefactthattheTaylor series of h(x)= √1 x convergesuniformlyin[ 1, 1].Thisisaninstanceofthe followingmaxim(tobetakenwithagrainofsalt): thereisnoanalysiswithout “hardanalysis”.

Whatismeantbythisisthatonewillhardlyevergetaninterestingtheoremofsubstance,whichappliestoconcretecasesinanalysis,thatdoesnot involvesomekindofdifficultcalculation,delicateestimation,oratleast a clevertrick.Inourexample,thehardanalysispartisshowingthatthepower seriesof √1 x convergesuniformlyin[ 1, 1].TheStone-Weierstrasstheorem,whichhasaverysoftproof,thensparesustheuseofhardtechniques whenitgivesusthepolynomialandthetrigonometricapproximationtheoremsforfree.Butthehardanalysiscannotbeeliminatedentirely.Itisgood tokeepthisinmind.

1.6Additionalexercises

Exercise1.6.1. Let f ∈ CR([ 1, 1])suchthat f (0)=0.Provethat f canbe approximatedinuniformnormbypolynomialswithzeroconstantcoefficient.

Exercise1.6.2. Let C0(R)bethealgebraofallcontinuousfunctionsthat vanishatinfinity,thatis C0(R)= {f ∈ C(R):lim x→∞ f (x)=lim x→−∞ f (x)=0}.

Let A beaself-adjointsubalgebraof C0(R)thatseparatespoints,andassume thatforall x ∈ R,thereexists f ∈ A suchthat f (x) =0.Provethat A = C0(R).

Exercise1.6.3. Determinewhichofthefollowingstatementsaretrue.

IntroductionandtheStone-Weierstrasstheorem 11

1.Forevery f ∈ CR([a,b]),all x1,x2,...,xn ∈ [a,b],andevery ǫ> 0,there existsatrigonometricpolynomial p suchthatsupx∈[a,b] |p(x) f (x)| <ǫ and p(xi)= f (xi)for i =1, 2,...,n

2.Forevery f ∈ CR([a,b])whichhas n continuousderivativeson[a,b], andevery ǫ> 0,thereexistsatrigonometricpolynomial p suchthat supx∈[a,b] |p(k)(x) f (k)(x)| <ǫ forall k =0, 1,...,n.(Here f (k) denotes the kthderivativeof f .)

Exercise1.6.4. 1.Let f beacontinuousreal-valuedfunctionon[a,b] suchthat b a f (x)xndx =0forall n =0, 1, 2,....Provethat f ≡ 0.

2.Let f beacontinuousreal-valuedfunctionon[ 1, 1]suchthat 1 1 f (x)xndx =0forallodd n.Whatcanyousayabout f ?

Exercise1.6.5. Let X beacompactmetricspace.Provethat CR(X)isa separablemetricspace.

Exercise1.6.6. Let X and Y becompactmetricspaces.Let X × Y bethe productspace(seeDefinitionA.3.10)andfixafunction h ∈ C(X × Y ).Prove thatforevery ǫ> 0,thereexist f1,...,fn ∈ C(X)and g1,...,gn ∈ C(Y ) suchthatforall(x,y) ∈ X × Y , |h(x,y) n i=1 fi(x)gi(y)| <ǫ.

Exercise1.6.7. A Zk-periodicfunction isafunction f : Rk → R suchthat f (x + n)= f (x)forall x ∈ Rk and n ∈ Zk.A trigonometricpolynomial on Rk isafunction q oftheform q(x)= n a

cos(2πn · x)+ bn sin(2πn · x), wherethesumaboveisfinite,andfor x =(x1,...,xk)and n =(n1,...,nk) wewrite n · x = nixi.Provethefollowingtheorem.

Theorem (Trigonometricapproximationtheorem). Let f : Rk → R bea continuous Zk-periodicfunction.Forevery ǫ> 0 thereexistsatrigonometric polynomial q suchthatforall x ∈ Rk , |q(x) f (x)| <ǫ.

Exercise1.6.8 (Holladay1). Let X beacompactHausdorffspaceandlet CH (X)denotethealgebraofcontinuousfunctionstakingquaternionicvalues.

1 ThisexercisewassuggestedtomebyShlomiGover,whofoundthenote[14]whenhe wasateachingassistantinthecourseItaught.

AFirstCourseinFunctionalAnalysis

Here, H denotesthequaternions,thatis,thefour-dimensionalrealvector space

H = {a + bi + cj + dk : a,b,c,d ∈ R}, withabasisconsistingof1 ∈ R andthreeadditionalelements i,j,k,and withmultiplicationdeterminedbythemultiplicationoftherealsandbythe identities

i2 = j2 = k2 = ijk = 1

(Thetopologyon H —requiredforthenotionofcontinuousfunctionsfrom X into H —istheonegivenbyidentifying H with R4.)Provethatif A isa closedsubalgebraof CH (X)thatseparatespointsandcontainsalltheconstant H-valuedfunctions,then A = CH (X).

Another random document with no related content on Scribd:

expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg™ electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg™ electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg™ work, (b) alteration, modification, or additions or deletions to any Project Gutenberg™ work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg™’s goals and ensuring that the Project Gutenberg™ collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a non-profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no

prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Immediate download A first course in functional analysis 1st edition orr moshe shalit ebooks 2024 by Ebook Home - Issuu