Full download Theory of stabilization for linear boundary control systems 1st edition nambu pdf docx

Page 1


Visit to download the full and correct content document: https://textbookfull.com/product/theory-of-stabilization-for-linear-boundary-control-syst ems-1st-edition-nambu/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Stabilization and H∞ Control of Switched Dynamic Systems Jun Fu

https://textbookfull.com/product/stabilizationand-h%e2%88%9e-control-of-switched-dynamic-systems-jun-fu/

Adaptive Critic Control with Robust Stabilization for Uncertain Nonlinear Systems Ding Wang

https://textbookfull.com/product/adaptive-critic-control-withrobust-stabilization-for-uncertain-nonlinear-systems-ding-wang/

Linear Systems Theory, Second Edition Ferenc Szidarovszky

https://textbookfull.com/product/linear-systems-theory-secondedition-ferenc-szidarovszky/

Linear Systems Theory 2nd Edition João P. Hespanha

https://textbookfull.com/product/linear-systems-theory-2ndedition-joao-p-hespanha/

Krylov Methods for Nonsymmetric Linear Systems From Theory to Computations Gérard Meurant

https://textbookfull.com/product/krylov-methods-for-nonsymmetriclinear-systems-from-theory-to-computations-gerard-meurant/

The Interdisciplinary Handbook of Perceptual Control Theory: Living Control Systems IV 1st Edition Warren Mansell (Editor)

https://textbookfull.com/product/the-interdisciplinary-handbookof-perceptual-control-theory-living-control-systems-iv-1stedition-warren-mansell-editor/

Fundamentals of Linear Control 1st Edition Mauricio C. De Oliveira

https://textbookfull.com/product/fundamentals-of-linearcontrol-1st-edition-mauricio-c-de-oliveira/

Stochastic

Linear Quadratic Optimal Control Theory Differential Games and Mean Field Problems Jingrui Sun

https://textbookfull.com/product/stochastic-linear-quadraticoptimal-control-theory-differential-games-and-mean-fieldproblems-jingrui-sun/

Non-cooperative Stochastic Differential Game Theory of Generalized Markov Jump Linear Systems 1st Edition Cheng-Ke Zhang

https://textbookfull.com/product/non-cooperative-stochasticdifferential-game-theory-of-generalized-markov-jump-linearsystems-1st-edition-cheng-ke-zhang/

Theory

of Stabilization for Linear Boundary Control Systems

Fermented Meat Products Health Aspects

Theory of Stabilization for Linear Boundary Control Systems

University of Zagreb, Faculty of Veterinary Medicine Department of Hygiene Technology and Food Safety Heinzelova 55 10000 Zagreb, Croatia

Takao Nambu Professor Emeritus Department of Applied Mathematics Kobe University Kobe, Japan

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

Version Date: 20160708

International Standard Book Number-13: 978-1-4987-5847-5 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Tomyfamily, Mariko,Ryutaro,andHiromu.

Preface

Thismonographstudiesthestabilizationtheoryforlinearsystemsgovernedby partialdifferentialequationsofparabolictypeinaunifiedmanner.Aslongas controlledplantsarerelativelysmall,suchaselectriccircuitsandmechanical oscillations/rotationsofrigidbodies,ordinarydifferentialequations, abbreviatedas ode(s),aresuitablemathematicalmodelstodescribethem.When thecontrolledplantsare,e.g.,chemicalreactors,wingsofaircrafts,orother flexiblesystemssuchasroboticsarms,plates,bridges,andcranes,however, effectsofspacevariablesareessentialandnon-neglegebleterms.Forthesetup ofmathematicalmodelsdescribingtheseplants,partialdifferentialequations, abbreviatedas pde(s),areamoresuitablelanguage.Itisgenerallyexpectedthat controllawsbasedonmoreaccuratepdemodelswouldworkeffectivelyin actualapplications.

Theoriginofcontroltheoryissaidtobethepaper,“Ongovernors”by J.C.Maxwell(1868).Formanyyears,controltheoryhasbeenstudiedmainly forsystemsgovernedbyodesinwhichcontrolledplantsarerelativelysmall. Controltheoryforpdesbeganin60’softhe20thcentury,andthestudyof stabilizationinmid70’stocopewithmuchlargersystems.Fundamental conceptsofcontrolsuchascontrollability,observability,optimality,and stabilizabilityarethesameasinthoseofodes,andtranslatedbythelanguageof pdes.Theessenceofpdesconsistsintheirinfinite-dimensionalproperties,so thatcontrolproblemsofpdesfaceseriousdifficultiesinrespectiveaspects, whichhaveneverbeenexperiencedintheworldofodes:However,these difficultiesprovideusrichandchallengingfieldsofstudybothfrom mathematicalandengineeringviewpoints.

Amongothercontrolproblemsofpdessuchasoptimalcontrolproblems, etc.,weconcentrateourselvesonthetopicofstabilizationproblems. Stabilizationproblemsofpdeshaveanewaspectofpdesintheframeworkof synthesis (ordesign)ofadesirablespectrumbyinvolvingtheconceptof

observation/control,andareconnectednotonlywithfunctionalanalysisbut alsonon-harmonicanalysisandclassicalFourieranalysis,etc.Themonograph consistsofeightchapterswhichstronglyreflectstheauthor’sworksoverthirty yearsexceptfor Chapter2:SomeweretaughtingraduatecoursesatKobe University.Theorganizationofthemonographisstatedasfollows:Itbegins withthelineartabilizationproblemoffinitedimensionin Chapter1. Finite-dimensionalmodelsconstitute pseudo-internalstructuresofpdes. AlthoughtheproblemisentirelysolvedbyW.M.Wonhamin1967[70],we developamucheasiernewapproach,whichhasneverappearedevenamongthe communityoffinite-dimensionalcontroltheory:ItisbasedonSylvester’s equation.Infinite-dimensionalversionsoftheequationappearinlaterchapters asanessentialtoolforstabilizationproblemsthroughoutthemonograph. Chapter2 isabriefintroductionofbasicresultsonstandardellipticdifferential operators L andrelatedSobolevspacesnecessaryforourcontrolproblems: Theseresultsarewellknownamongthepdescommunity,butproofsofsome resultsarestatedforthereaders’convenience.Asforresultsrequiringmuch preparationweonlyprovidesomereferencesinsteadofproofs.In Chapters3 through 7,themaintopicsdiscussedare,wherestabilizationproblemsoflinear parabolicsystemsaresuccessfullysolvedintheboundaryobservation/boundary feedbackscheme.Theellipticoperator L isderivedfromapairofstandard(but generalenough)differentialoperators (L , τ),andformsthecoefficientofour controlsystems,where L denotesauniformlyellipticdifferentialoperatorand τ aboundaryoperator.Theoperator L issectorial,andthus L turnsouttobe aninfinitesimalgeneratorofananalyticsemigroup.Oneofimportantissuesis certainlytheexistenceornon-existenceofRieszbasesassociatedwith L:When anassociatedRieszbasisexists,asequenceoffinite-dimensionalapproximation modelsoftheoriginalpdeisquantitativelyjustified,sothatthecontrollaws basedontheapproximatedfinite-dimensionalmodelseffectivelyworks.There isanattempttodrawoutaclassofellipticoperatorswithRieszbases(seethe footnoteinthebeginningof Chapter4).However,istheclassofpdesadmitting associatedRieszbasesgeneralenoughormuchnarrowerthanexpected?Wedo nothaveasatisfactorysolutiontothequestionyet.Basedontheseobservations, ourfeedbacklawsareconstructedsothattheyareappliedtoageneralclassof pdes,withoutassumingRieszbases.

Therearetwokindsoffeedbackschemes:Oneisa staticfeedback scheme, andtheothera dynamicfeedback scheme.In Chapter3,thestabilization problemandrelatedproblemsarediscussedinthestaticfeedbackscheme,in whichtheoutputsofthesystemaredirectlyfedbackintothesystemthrough theactuators.Whiletheschemehasdifficultiesinengineeringimplementations, itworksasanauxiliarymeansinthedynamicfeedbackschemes.In Chapter4, weestablishstabilizationintheschemeofboundaryobservation/boundary feedback.Thefeedbackschemeisthedynamicfeedbackscheme,inwhichthe outputsontheboundaryarefedbackintothesystemthroughanother

differentialequationdescribedinanotherabstractspace.Thisdifferential equationiscalleda dynamiccompensator,theconceptofwhichoriginatesfrom D.G.Luenberger’spaper[33]in1966forlinearodes.Inhispaper,twokindsof compensatorsareproposed:Oneisan identity compensator,andtheothera compensatorof generaltype.Weformulatethelattercompensatorinthe feedbacklooptocopewiththestabilizationproblem,andfinallyreducethe compensatortoafinite-dimensionalone.Allargumentsarealgebraic,anddo notdependonthekindofboundaryoperators τ.In Chapter5,theproblemis discussedfromanotherviewpointwhenthesystemadmitsaRieszbasis.Sincea finite-dimensionalapproximationtothepdeisavailableasastronglyeffective means,anidentitycompensatorisinstalledinthefeedbackloop.Most stabilizationresultsintheliteraturearebasedonidentitycompensators,but havedifficultyintermsofmathematicalgenerality.In Chapters4 and 5, observabilityandcontrollabilityconditionsonsensorsandactuators, respectively,areassumedonthe pseudo-internalsubstructureoffinite dimension.Wethenaskin Chapter6 thefollowing:Whatcanweclaimwhen theobservabilityandcontrollabilityconditionsarelost? Outputstabilization is oneoftheanswers:AssuminganassociatedRieszbasis,weproposesufficient conditionsonoutputstabilization.Arelatedproblemisalsodiscussed,which leadstoanewproblem,thatis,theproblemof poleallocationwithconstraints. Toshowmathematicalgeneralityofourstabilizationscheme,wegeneralizein Chapter7 theclassofoperators L,inwhich L isageneratorof eventually differentiable semigroups:Aclassofdelay-differentialequationsgeneratessuch operators L.

Inourgeneralstabilizationscheme,wesolveaninverseproblemassociated withtheinfinite-dimensionalSylvester’sequation.Theproblemformsaso called ill-posed problemlackingofcontinuityproperty.Finallyin Chapter8,we proposeanumericalapproximationalgorhismtotheinverseproblem,the solutionofwhichismathematicallyensured.Thealgorhismconsistsofasimple idea,butneedstediouscalculations.Althoughthealgorhismhassome restrictionsatpresent,itisexpectedthatitwouldworkinmoregeneralsettings oftheparameters.Numericalapproximationitselfisaproblemindependentof ourstabilizationproblem.However,thelattercertainlyleadstoadevelopment ofnewproblemsinnumericalanalysis.Theauthorhopesthatwillingreaders couldopenanewareaineffectivenumericalalgorhisms.

Theauthorinhisgraduateschooldayshadanopportunitytoreadpapersby Y.Sakawa,byH.O.Fattorini,andbyS.AgmonandL.Nirenberg([2,17,18, 57])amongothers,andlearnedaboutthecloserelationshipslyingindifferential equations,functionalanalysis,andthetheoryoffunctions.Inspiredbythese results,hehadahopetocontributetodeepresultsofsuchnature,sincethen.He

x TheoryofStabilizationforLinearBoundaryControlSystems

isnotcertainnow,butwouldbehappy,ifthemonographcoouldreflecthishope evenalittle.

December,2015

Kobe

TakaoNambu

4.6

5 Stabilization

5.1

5.2

5.3

6 Output

Chapter1

PreliminaryresultsStabilizationof linear systemsoffinite dimension

1.1Introduction

Wedevelopinthischapterthebasicproblemarisingfromstabilization problemsoffinite-dimension.Sincethecelebratedpoleassignmenttheory[70] (seealso[56,68])forlinearcontrolsystemsoffinitedimensionappeared,the theoryhasbeenappliedtovariousstabilizationproblemsbothoffinite dimensionandinfinitedimensionsuchastheonewithboundary output/boundaryinputscheme(see,e.g.,[12,13,28,37–40,42–45,47–50, 53,58,59]andthereferencestherein).Thesymbol Hn, n = 1, 2,... ,hereafter willdenoteafinite-dimensionalHilbertspacewithdim Hn = n,equippedwith innerproduct ⟨ , ⟩n andnorm ∥ ∥.Thesymbol ∥ ∥ isalsousedforthe L (Hn)-norm.Let L, G,and W beoperatorsin L (Hn), L (CN ; Hn),and L (Hn; CN ),respectively.Hereandhereafter,thesymbol L (R; S), R and S beinglinearspacesoffiniteorinfinitedimension,meansthesetofalllinear boundedoperatorsmapping R into S.Theset L (R; S) formsalinearspace. When R = S, L (R; R) isabbreviatedsimplyas L (R).Given L, W ,andanyset of n complexnumbers, Z = {ζi}1 i n,theproblemistoseekasuitable G such that σ(L GW )= Z,where σ(L GW ) meansthespectrumoftheoperator

L GW .Oralternatively,given L and G,itsalgebraiccounterpartistoseeka W suchthat σ(L GW )= Z.Stimulatedbytheresultof[70],variousapproaches andalgorhismsforcomputationof G or W havebeenproposedsincethen(see, e.g.,[7,10,14]).However,eachapproachneedsmuchpreparationandadeep backgroundinlinearalgebratoachievestabilizationanddeterminethe necessaryparameters.Explicitrealizationsof G or W sometimesseem complicated.Oneforthisisnodoubtthecomplexityoftheprocessin determining G or Wexactly satisfyingtherelation, σ(L GW )= Z

Letusdescribeourcontrolsystem:Oursystem,consistingofastate u(·) ∈ Hn,output y = Wu ∈ CN ,andinput f ∈ CN ,isdescribedbyalinear differentialequationin Hn,

( )T denotingthetransposeofvectorsormatricesthroughoutthemonogtaph.

Thevectors wk ∈ Hn denotegivenweightsoftheobservation(output);and gk ∈ Hn areactuatorstobeconstructed.Bysetting f = y in(1.1),thecontrolsystem yieldsafeedbacksystem,

+(L GW )u = 0, u(0)= u0 ∈ Hn.

Accordingtothechoiceofabasisfor Hn,theoperators L, G,and W are identifiedwithmatricesofrespectivesize.Wehereafteremploytheabove symbolssomewhatdifferentfromthosefamiliarinthecontroltheory communityoffinitedimension,inwhichstateofthesystem,forexample, wouldbeoftenrepresentedas x(·);output Cx;input u;andequation dx dt = Ax + Bu =(A + BC)x, u = Cx.

Thereasonforemployingpresentsymbolsisthattheyareconsistentwiththose insystemsofinfinitedimensiondiscussedinlaterchapters.

Letusassumethat σ(L) ∩ C = ∅,sothatthesystem(1.1)with f = 0is unstable.Givena µ > 0,the stabilizationproblem forthefinitedimensional controlsystem(1.3)istoseeka G or W suchthat e t(L GW ) const e µt , t 0 (1 4)

Thepoleassignmenttheory[70]playsafundamentalroleintheaboveproblem, andhasbeenappliedsofartovariouslinearsystems.Thetheoryisconcretely

statedasfollows: LetZ = {ζi}1 i n beanysetofncomplexnumbers,wheresome ζi maycoincide.Then,thereexistsanoperatorGsuchthat σ(L GW )= Z, ifandonlyifthepair (W, L) isobservable.Thus,iftheset Z ischosensuch thatminζ∈Z Re ζ,say µ (= Re ζ1) ispositive,andifthereis no generalized eigenspaceof L GW correspondingto ζ1,weobtainthedecayestimate(1.4).

Nowweask:Doweneed all informationon σ(L GW ) forstabilization? Infact,toobtainthedecayestimate(1.4),itisnotnecessarytodesignate all elementsoftheset Z:Whatisreallynecessaryisthenumber, µ = minζi∈Z Re ζi,say = Re ζ1,andthespectralpropertythat ζ1 doesnotallow anygeneralizedeigenspace;thelatteristherequirementthat no factorof algebraicgrowthintimeisaddedtotheright-handsideof(1.4).Infact,when analgebraicgrowthisadded,thedecaypropertybecomesalittleworse,and thegainconstant ( 1) in(1.4)increases.Theaboveoperator L GW also appears,asa pseudo-substructure,inthestabilizationproblemsofinfinite dimensionallinearsystemssuchasparabolicsystemsand/orretardedsystems (see,e.g.,[16]):Thesesystemsaredecomposedintotwo,andunderstoodas compositesystemsconsistingoftwostates;onebelongingtoafinite dimensionalsubspace,andtheothertoaninfinitedimensionalone.Itis impossible,however,tomanagetheinfinitedimensionalsubstructures.Thus,no matterhow precisely thefinitedimensionalspectrum σ(L GW ) couldbe assigned,itdoesnotexactlydominatethewholestructureofinfinite dimension.Inotherwords,theassignedspectrumoffinitedimensionisnot necessarilyasubsetofthespectrumoftheinfinite-dimensionalfeedback controlsystem.

Inviewoftheaboveobservations,ouraiminthischapteristodevelopa newapproachmuchsimplerthanthoseinexistingliterature,whichallowsusto constructadesiredoperator G orasetofactuators gk ensuringthedecay(1.4) inasimplerandmoreexplicitmanner(see(2.10)justbelowLemma2.2).The resultis,however,notassharpasin[70]inthesensethatitdoesnotgenerally providethepreciselocationoftheassignedeigenvalues.Fromtheabove viewpointofinfinite-dimensionalcontroltheory,however,theresultwouldbe meaningfulenough,andsatisfactoryforstabilization.Wenotethatourresult exactlycoincideswiththestandardpoleassignmenttheoryinthecasewherewe canchoose N = 1(seeProposition2.3inSection2).Theresultsofthischapter arebasedonthosediscussedin[48,51,52].

OurapproachisbasedonSylvester’sequationoffinitedimension. Sylvester’sequationininfinite-dimensionalspaceshasalsobeenstudied extensively(see,e.g.,[6]forequationsinvolvingonlyboundedoperators),and eventheunboundednessofthegivenoperatorsareallowed[37,39,40,42–45, 47,49,50,53].Sylvester’sequationinthischapterisoffinitedimension,sothat therearisesnodifficultycausedbythecomplexityofinfinitedimension.Its infinite-dimensionalversionandthepropertiesarediscussedlaterin Chapters4,

6,and 7.Givenapositiveinteger s andvectors ξk ∈ Hs,1 k N,letus considerthefollowingSylvester’sequationin Hn:

XL MX = ΞW, Ξ ∈ L (CN ; Hs), where Ξz = N ∑

1 zN )T

CN (1.5)

Here, M denotesagivenoperatorin L (Hs),and ξk vectorstobedesignedin Hs Apossiblesolution X wouldbelongto L (Hn; Hs).AnapproachviaSylvester’s equationsisfound,e.g.,in[7,10],inwhich,bysetting n = s,aconditionforthe existenceoftheboundedinverse X 1 ∈ L (Hn) issought.Choosingan M such that σ(M) ⊂ C+,itisthenprovedthat

L +(X 1Ξ)W = X 1MX, σ(X 1MX)= σ(M) ⊂ C+, theleft-handsideofwhichmeansadesiredperturbedoperator.Theprocedureof itsderivationis,however,rathercomplicated,andthechoiceofthe ξk isunclear. Infact, X 1 mightnotexistsometimesforsome ξk

Theapproachinthischapterisnewandratherdifferent.Letuscharacterize theoperator L in(1.5).Thereisasetofgeneralizedeigenpairs {λi, φij} withthe followingproperties:

(i) σ(L)= {λi;1 i ν ( n)}, λi = λj for i = j;and (ii) Lφ

Let Pλi betheprojectorin Hn correspondingtotheeigenvalue λi.Then,wesee that Pλi u = ∑mi j=1 uijφij for u ∈ Hn.Therestrictionof L ontotheinvariant subspace Pλi Hn is,inthebasis {φi1,..., φimi },isrepresentedbythe mi × mi uppertriangularmatrix Λi,where

i|( j, k) =

αi kj, j < k, λi, j = k, 0, j > k. (1.6)

Ifweset Λi = λi + Ni,thematrix Ni isnilpotent,thatis, Nmi i = 0.Theminimum integer n suchthatker Nn i = ker Nn+1 i ,denotedas li,iscalledthe ascent of λi L. Itiswellknownthattheascent li coincideswiththeorderofthepole λi ofthe resolvent (λ L) 1.Laurent’sexpansionof (λ L) 1 inaneighborhoodofthe pole λi ∈ σ(L) isexpressedas (λ L) 1 = li ∑ j=1 K j (λ λi) j + ∞ ∑ j=0 (λ λi) jKj, where li mi, Kj = 1 2πi ∫|ζ λi|=δ (ζ L) 1 (ζ λi) j+1 dζ, j = 0, ±1, ±2,.... (1.7)

Notethat K 1 = Pλi .Theset {φij;1 i ν, 1 j mi} formsabasisfor Hn. Each x ∈ Hn isuniquelyexpressedas x = ∑i, j xijφij.Let T beabijection,defined as Tx = (x11 x12 xνmν )T.Then, L isidentifiedwiththeuppertriangularmatrix Λ;

TLT 1 = Λ = diag (Λ1 Λ2 ... Λν) . (1.8)

Letusturntotheoperator M in(1.5).Let {ηij;1 i n, 1 j ℓi}

beanorthonormalbasisfor Hs.Thennecessarily s = ∑n i=1 ℓi n.Everyvector v ∈ Hs isexpressedas

Let {µi}n 1=1 beasetofpositivenumberssuchthat0 < µ1 < < µn,andset

(1.9) for v = ∑i, j vijηij.Itisapparentthat(i) σ(M)= {µi}n i=1;and(ii) (µi M)ηij = 0, 1 i n,1 j ℓi.Theoperator M isself-adjoint,andpotive-definite,

Let Qµi betheprojectorin Hs correspondingtotheeigenvalue µi ∈ σ(M),say Qµi v = ∑ℓi j=1 vijηij for v = ∑i, j vijηij.Weputanadditionalconditionon M: σ(L) ∩ σ(M)= ∅ (1 10)

Assuming(1.10),wederiveourfirstresultasProposition1.1.Sincetheproofis carriedoutinexactlythesamemannerasin[37,44,45,50],itisomitted.

Proposition1.1. Supposethatthecondition (1.10) issatisfied.Then, Sylvester’sequation (1 5) admitsauniqueoperatorsolutionX ∈ L (Hn; Hs). ThesolutionXisexpressedas

=

TheoryofStabilizationforLinearBoundaryControlSystems

whereCdenotesaJordancontourencircling σ(M) initsinside,with σ(L) outsideC.TheabovefirstexpressionisthesocalledRosenblumformula [6].

The mainresultsarestatedasTheorem2.1andProposition2.2inthenext section,whereamoreexplicitandconcreteexpressionthaneverbeforeofaset ofstabilizingactuators gk in(1.3)isobtained.Asweseeinthenextsection,an advantageofconsideringtheoperator X ∈ L (Hn; Hs) with s n isthatthe boundedinverse (X ∗X) 1 isensuredunderareasonableassumptiononthe operator Ξ.Anumericalexampleisalsogiven.Finally,Proposition2.3is stated,whereourfeedbackschemeexactlycoincideswiththestandardpole assignmenttheory[70]inthecasewherewecanchoose N = 1.

1.2MainResults

Weassumethat σ(L) ∩ C = ∅,sothatthesemigroup e tL , t 0,is unstable.Weconstructsuitableactuators gk ∈ Hn in(1.3)suchthat e t(L GW ) hasapreassigneddecayrate,say µ1 (see(1.9)).Theoperator (WWL WLn 1)T belongsto L (Hn; CnN ).Theobservabilitycondition onthepair (W, L) meansthattheaboveoperatorisinjective,inotherwords, ker (WWL WLn 1)T = {0}.Throughoutthesection,theseparation condition(1.10)isassumedinSylvester’sequation(1.5).Then,weobtainone ofthemainresults:

Theorem2.1. Assumethattheconditions

ker (WWL ... WLn 1)T = {0}, and ker Qµi Ξ = {0}, 1 i n (2.1)

aresatisfied.Then, kerX = {0}.

Proof. Let Xu = 0.InviewofProposition1.1,weseethat Qµi ΞW (µi L) 1 u = 0, 1 i n.

Since ker Qµi Ξ = {0},1 i n,by(2.1),weobtain W (µi L) 1 u = 0, 1 i n, or ⟨(µi L) 1 u, wk⟩n = 0, 1 k N, 1 i n. (2.2)

Set fk(λ; u)= ⟨(λ L) 1u, wk⟩n.Byrecallingthat T (λ L) 1T 1 = (λ Λ) 1 (see(1.8)), fk(λ; u) isrewrittenas ⟨(λ Λ) 1Tu, (T 1)∗ wk⟩Cn . Eachelementofthe n × n matrix (λ Λ) 1 isarationalfunctionof λ;its denominatorconsistsofapolynomialoforder n;andthenumeratoratmostof order n 1.Thismeansthateach fk(λ; u) isarationalfunctionof λ,the

denominatorofwhichisapolynomialoforder n,andthenumeratoroforder n 1.Sincethenumeratorof fk has atleastn distinctzeros µi,1 i n,by (2.2),weconcludethat fk(λ; u)= ⟨(λ L) 1 u,

Let c beanumbersuchthat c ∈ ρ(L),andset Lc = L + c.Inviewoftheidentity (λ L) 1 = Lc(λ L) 1Lc 1 = Lc 1 +(λ + c)(λ L) 1Lc 1 , letusintroduceaseriesofrationalfunctions f l k(λ; u), l = 0, 1,..., as f 0 k (λ; u)= fk(λ; u), f l+1 k (λ; u)= f l

Itiseasilyseenthat f l k(λ; u)= ⟨(λ L) 1L l c u, wk⟩n l ∑ i=1 1 (λ + c)i ⟨L (l+1 i) c u, wk⟩n (2.5) and f l k(λ; u)= 0, λ ∈ ρ(L) \{−c}, 1 k N, l 0.

InviewofLaurent’sexpansion(1.7)of (λ L) 1 inaneighborhoodof λi,we obtaintherelation

0 = fk(λ; u) = li ∑ j=1 ⟨K ju, wk⟩n (λ λi) j + ∞ ∑ j=0 (λ λi) j ⟨Kju, wk⟩n , 1 k N, inaneighborhoodof λi.Calculationoftheresidueof fk(λ; u) at λi impliesthat

⟨K 1u, wk⟩n = ⟨Pλi u, wk⟩n = 0, 1 i ν, 1 k N, or WPλi u = 0, 1 i ν (2.6)

Asfor f l k(λ; u), ℓ 1,wehaveasimilarexpressioninaneighborhoodof λi, f l k(λ; u)= li ∑ j=1 ⟨A jL l c u, wk⟩n (λ λi) j + ∞ ∑ j=0 (λ λi) j ⟨A jLc l u, wk⟩n l ∑ i=1 1 (λ + c)i ⟨L (l+1 i) c u, wk⟩n = 0

TheoryofStabilizationforLinearBoundaryControlSystems

by(2.5).Notethat K 1L l c u = Pλi L l c u = L l c Pλi u.Calculationoftheresidueof f l k(λ; u) at λi similarlyimpliesthat

K 1L l c u, wk⟩n = ⟨L l c Pλi u, wk⟩n = 0, 1 i ν, 1 k N, or WL l c Pλi u = 0, 1 i ν, l 1.

Combiningthesewiththeaboverelation(2.6),weseethat (WWL 1 c ... WL (n 1) c )T Pλi u = 0, 1 i ν (2 7)

Itisclearthat

ker (WWL ... WLn 1)T = ker (WWLc ... WLn 1 c )T ,

where Lc = L + c.Thus,bythefirstconditionof(2.1),itiseasilyseenthat

ker(WWL 1 c ... WL (n 1) c )T = ker(WWL ... WLn 1)T = {0}.

Thus,(2.7)immediatelyimpliesthat Pλi u = 0for1 i ν,andfinallythat u = 0.

ByTheorem2.1,thereisapositiveconstantsuchthat ∥Xu∥s const ∥u∥ , ∀u ∈ Hn

Thederivationoftheabovepositivelowerboundof ∥Xu∥s isduetoaspecific natureoffinite-dimensionalspaces.Theoperator X ∗X ∈ L (Hn) isself-adjoint, andpositive-definite.Infact,bytherelation const ∥u∥2 ∥Xu∥2 s = ⟨Xu, Xu⟩s = ⟨X ∗Xu, u⟩n ∥X ∗Xu∥∥u∥ , weseethat ∥X ∗Xu∥ const ∥u∥.Thustheboundedinverse (X ∗X) 1 ∈ L (Hn) exists.WegobacktoSylvester’sequation(1.5).Setting X ∗X = X ∈ L (Hn) and X ∗MX = M ∈ L (Hn),weobtaintherelation, L (X ∗X) 1X

Bothoperators X and M areself-adjoint,but X 1M isnot.Thefollowing assertionisthesecondofourmainresults,andleadstoastabilizationresult:

Proposition2.2. Assumethat (2.1) issatisfied.Then, σ(X 1M ) is containedin R1 +.Actually,

Inaddition,thereisnogeneralizedeigenspaceforany λ ∈ σ(X 1M ).

Remark: ByProposition2.2,weobtainadecayestimate exp ( t (L +(X ∗X) 1X ∗ΞW )) = e t(X 1M ) const e µ1t , t 0. (2.10)

Infact,thelastassertionofthepropositionensuresthatnoalgebraicgrowthin timearisesinthesemigroup,regardingthesmallesteigenvalue.Thus,asetof actuators gk = (X ∗X) 1X ∗ξk,1 k N,inotherwords, G = (X ∗X) 1X ∗Ξ explicitlygivesadesiredsetofactuatorsin(1.3).

ProofofProposition2.2. Since X ispositive-definite,wecanfindanonuniquebijection U ∈ L (Hn) suchthat X = X ∗X = U

) thesocalledCholeskyfactorization.Letusdefine

Then, M ′ ∈ L (Hn) isaself-adjointoperator,enjoyingsomepropertiessimilar tothoseof X 1M .Infact,let λ ∈ σ(X 1M ),or (λX M ) u = 0forsome u = 0.Then,since

0 =(λU ∗U M ) u = U ∗ (λ (U ∗) 1MU 1)U u = U ∗ (λ M ′)U u = 0,

weseethat λ belongsto σ(M ′).Theconverserelationisalsocorrect,which meansthat σ(X 1M )= σ(M ′) ⊂ R1 . (2.12)

Inequality(2.9)isachievedbyapplyingthewellknownmin-maxprinciple[11] to M ′,ormoredirectlybythefollowingobservation:Let λ ∈ σ(X 1M ),and (λX M ) u = 0forsome u = 0.Then λ∥Xu∥2 s = λ⟨X u, u⟩n = ⟨M u, u⟩n = ⟨MXu, Xu⟩s µ1∥Xu∥2 s ,

fromwhich(2.9)immediatelyfollows,since Xu = 0.

Nextletusshowthatthereis no generalizedeigenspacefor λ ∈ σ(X 1M ).Let (λ X 1M )2u = 0forsome u = 0.Setting v =(λ X 1M )u,wecalculate

0 = X (λ X 1M )2 u =(λX M )v =(λU ∗U M ) v = U ∗ (λ (U ∗) 1MU 1)U v = U ∗ (λ M ′)w = 0, w = U v,

TheoryofStabilizationforLinearBoundaryControlSystems

or (λ M ′) w = 0.Ontheotherhand,since w = U v = U (λ X 1M )u = U (λ U 1(U ∗) 1M )u =(λ (U ∗) 1MU 1)U u =(λ M ′)U u,

weseethat

0 = (λ M ′)w = (λ M ′)2 U u, U u = 0

But, M ′ isself-adjoint,sothatthereisnogeneralizedeigenspacefor λ ∈ σ(M ′).Thus, U u turnsouttobeaneigenvectorof M ′ for λ,and

0 = U ∗(λ M ′)U u = U ∗(λ (U ∗) 1MU 1)U u =(λU ∗U M )u =(λX M )u.

Thismeansthat u isaneigenvectorof X 1M for λ.

Thefollowingexampleshowsthat λ∗ = min σ(X 1M ) doesnotgenerally coincidewiththeprescribed µ1.

Example: Let n = 3,andset H3 = C3,sothat L isa3 × 3matrix.Let

L = diag (aab) , where a, b 0and a = b.Since n = 3, ν = 2, m1 = 2,and m2 = 1,wechoose N = 2, s = 6, H6 = C6,and ℓ1 = ℓ2 = ℓ3 = 2.Asfortheoperator W ∈ L (C3; C2), letusconsiderthecase,forexample,where w1 =(101)T and w2 =(010)T .

Theoperator W isa2 × 3matrixgivenby (101 010).Thepair (W, L) isthen observable,andthefirstconditionof(2.1)issatisfied.

ToconsiderSylvester’sequation(1.5),let {ηij;1 i 3, j = 1, 2} bea standardbasisfor C6 suchthat η11 =(100 ... 0)T , η12 =(010 ... 0)T , η21 = (001 0)T , ,and η32 =(0 01)T.Set M = diag (µ1 µ1 µ2 µ2 µ3 µ3)

for0 < µ1 < µ2 < µ3.Intheoperator Ξ givenby Ξu = u1ξ1 + u2ξ2 for u =(u1 u2)T ∈ C2 , set ξ1 =(101010)T and ξ2 =(010101)T.Then,weseethatker Qµi Ξ = {0}, 1 i 3,andthesecondconditionof(2.1)issatisfied.Theuniquesolution X ∈ L (C3; C6) toSylvester’sequation(1.5)isa6 × 3matrixdescribedas(u = (u11 u12 u21)T ∈ C3)

Xu = 

⟨(µ1 L) 1u, w1⟩3

⟨(µ1 L) 1u, w2⟩3

⟨(µ2 L) 1u, w1⟩3

⟨(µ2 L) 1u, w2⟩3

⟨(µ3 L) 1u, w1⟩3

⟨(µ3 L) 1u, w2⟩3

where ⟨·, ·⟩3 denotestheinnerproductin C3.Setting,forcomputational convenience,

weseethat

Itisapparentthatoneoftheeigenvaluesofthismatrixisthe (

)-element:

andiscertainlygreaterthan µ1.Notethat

Theothereigenvaluesarethoseofthematrix,

Toseethattheseeigenvaluesaregenerallygreaterthan µ1,letusconsidera numericalexample:Let (µ1 µ2 µ3)=(234), a = 0,and b = 1.Then,

oftheeigenvalues a+⟨

> 2 (= µ1).Thematrix(2.14) isthen 1 253 ( 1860 1860 3540 3287),theeigenvaluesofwhicharedenotedas ζ1 and ζ2.Then, µ1 = 2 < ζ1 < 156/61 < ζ2,andthus λ∗ = ζ1 > 2.

Weclosethissectionwiththefollowingremark:Thereisacasewhere λ∗ coincideswith µ1.Following[52],letusconsider(1.3)inthespace Hn = Cn (see(1.8)).Alloperators L, G,and W arethenmatricesofrespectivesize.Let σ(L) consistonlyofsimpleeigenvalues,sothat mi = 1,1 i n,and n = ν. Thuswecanchoose N = 1, ℓi = 1,1 i n,andthus s = n.Theoperatorin (2.10)iswrittenas L +(X ∗X) 1X ∗ΞW ,where Ξu = uξ for u ∈ C1,and W =

⟨ , w⟩n, w = (w1 w2 wn)T ∈ Cn.Theobservabilityconditionthenturnsoutto be wi = 0,1 i n.LetusconsiderSylvester’sequation(1.5)in Hs = Cn.By setting ξ = (11 ... 1)T ∈ Cn,thesolution X to(1.5)isan n × n matrix,andhas aboundedinverse: X = Φ ˜ W , (2 15) where

Φ = ( 1 µi λj ; i ↓ 1,..., n j → 1,..., n ) , and ˜ W = diag (w1 w2 wn)

Thus, L + (X ∗X) 1X ∗ΞW = L + X 1ξwT.Itisshown[52]that,givenaset {µi}1 i n,thereisaunique g ∈ Cn suchthat σ(L gwT) = {µi}1 i n,andthat g isconcretelyexpressedas

TheproofwillbegivenlaterinSection4.

Proposition2.3. SupposeinProposition2.2that σ(L) consistsonlyofsimple eigenvalues.Set ξ =(11 1)T asabove.ThenX 1ξ = g,andthus λ∗ = µ1. Infact,wehave

Proof. Therelation, X 1ξ = g isrewrittenas

Inotherwords,weshowthat

Theleft-handsideof(2.17),apolynomialof λi,1 i n,isinparticulara polynomialof λ1 oforder n 1,andthecoefficientof λn 1 1 is ∆1 = ∏2 i< j n(λi λj).For j < k,letuscomparethe jthandthe kthterms. Thefollowinglemmaiselementary:

Lemma2.4. Let 1 j < k n. Intheproduct ∆k,apolynomialof {λi}i=k, set λj = λk.Then ∆k =( 1)k 1+ j∆j

In theleft-handsideof(2.17),set λj = λk.Sincethetermsotherthanthe jth andthe kthtermscontainthefactor (λj λk),theybecometobe0.The kthterm isthen ( 1)k 1∆k ∏ 1 ℓ n, ℓ=i (λk µℓ)=( 1)k 1( 1)k 1 j∆j

)

the jthterm).

Thus theleft-handsideof(2.17)hasfactors λj λk, j < k,andiswrittenas c∆. But, c∆ isapolynomialof λ1 oforder n 1,andthecoefficientof λn 1 1 is c∆1. Thismeansthat c = 1,andtheproofofrelation(2.17)isnowcomplete.

1.3Observability:ReductiontoSubstructures

The firstconditionof(2.1)istheobservabilityconditiononthepair (W, L).The operator (WWL ... WLn 1)T isrewrittenforconvenienceas (WLk; k ↓ 0,..., n 1)

Similarexpressionsforotheroperatorsandmatriceswillbeemployedhereafter withoutanyconfusion.Following[48],weshowinthissectionthatthe observabilityconditionisreducedtoasetofobservabillityconditionson subsystems.Let Li = L|PλiHn betherestrictionof L ontotheinvariantsubspace Pλi Hn,andlet Wi = W |PλiHn .Toobtainthereduction,itisconvenienttoemploy matrixrepresentations.Theset {φij;1 i ν, 1 j mi} introducedin Section1formsabasisfor Hn.Recallthat T isabijection, Tu = ˆ u = (u11 u12 uνmν )T for u = ∑i, j uijφij ∈ Hn.Accordingtothebasis,theoperator W isrewrittenas Wu = ˆ W ˆ u

Then theoperator Wi ∈ L (Pλi Hn; CN ) isclearly Wiu = ˆ Wi ˆ u = (w k ij; j → 1,..., mi k ↓ 1,..., N )

u, u ∈ Pλi Hn.

Theobservabilityconditionon (W, L) is,intermsofthesesymbols,equivalent to

ker( ˆ WΛk; k ↓ 0,..., n 1) = {0}, or

rank( ˆ WΛk; k ↓ 0,..., n 1) = n, (3 2)

where Λ = TLT 1 (see(1.8)).Theresultinthissectionisstatedas

Proposition3.1. Inorderthatthepair (W, L) isobservable,itisnecessary andsufficientthatthepairs (Wi, Li), 1 i ν,areobservable,inotherwords ker(WiLk i ; k ↓ 0,..., mi 1) = {0}, 1 i ν. (3.3)

Proof.Theproofiselementary.Supposefirstthat (W, L) isobservable.Then itisclearthat(3.3)holds.Conversely,suppose(3.3),orequivalently

rank( ˆ WiΛk i ; k ↓ 0,..., mi 1) = m

Weapplyelementaryrowoperationstothematrix ( ˆ WΛ

,..., n 1).In ordertoshow(3.2),itisenoughtoprovethat

( ˆ W (

Thematrixjustaboveiswrittenas

Thesubmatrix (

ontherightsideof(3.4)has thefullrank (= m

) bytheassumption(3.3).Thus(3.2)willbeproven,if

TheoryofStabilizationforLinearBoundaryControlSystems

Bysetting Λ′ = diag(Λ1 ... Λν 1) and ˆ W ′ = ( ˆ Wi; i → 1,..., ν 1),theabove relationisequivalentto

rank( ˆ W ′(Λ′ λν)k; k ↓ 0,..., n ′ 1)(Λ′ λν)mν = rank( ˆ W ′(Λ′ λν)k; k ↓ 0,..., n ′ 1) = rank( ˆ W ′Λ′k ; k ↓ 0,..., n ′ 1) = n ′ .

Theproblemisthusreducedtotheproblemofprovingtheobservabilityofthe pair ( ˆ W ′ , Λ′).Bycontinueingthereductionprocedure-viatheassumption(3.3) ateachstage,itfinallyleadstotheproblemofproving

rank( ˆ W1Λk 1 ; k ↓ 0,..., m1 1) = m1, or ker(W1Lk 1; k ↓

However,thisisnothingbutourassumption(3.3)when i = 1.

Remark:Letusconsiderthecasewhere Ni = 0,1 i ν.Thisoccurs,for example,whenthe L isaself-adjointoperator.Inthiscase,therelation(3.3) meansthat rank( ˆ WiΛk i ; k ↓ 0,..., mi 1) = rank(λk i ˆ Wi; k ↓ 0,..., mi 1) = rank ˆ Wi = mi, 1 i ν. (3.5)

Thusweneedtochoosethe N greaterthanorequaltomax1 i ν mi inthiscase. Thiscase: Ni = 0,1 i ν isalreadydiscussedin[58],wheretheresultcan beviewedasaspecialcaseofourProposition3.1.Following[58],letusbriefly giveanalternativeproof.Thematrix ( ˆ WΛk; k ↓ 0,..., n 1) isdecomposed intotheproductoftwomatrices Φ and Ψ: ( ˆ WΛk; k ↓ 0,..., n 1) = (λk i ˆ Wi; i → 1,..., ν k ↓ 0,..., n 1 ) = (λk i IN ; i → 1,..., ν k ↓ 0,..., n 1 ) diag( ˆ W1 ˆ Wν) = ΦΨ, where Φ and Ψ denotethe nN × νN andthe νN × n matrices,respectively. Supposefirstthatrank ˆ Wi = mi,1 i ν.Thentherankof Ψ isclearlyequal to m1 + + mν = n.Itiseasilyseenthattherankof Φ isequalto νN ( n). Thus,weseethat n = rank Φ + rank Ψ νN rank ΦΨ min (rank Φ, rank Ψ)= n.

Conversely,supposethatrank ΦΨ = n.Then,weseethat n = rank Φ Ψ rank Ψ,sothat n columnvectorsofthe νN × n matrix Ψ arelinearly independent.But,thismeansthatrank ˆ Wi = mi,1 i ν.

Another random document with no related content on Scribd:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.