Where can buy Articulated motion and deformable objects 8th international conference amdo 2014 palma

Page 1


Articulated

Motion and

Deformable

Objects 8th International Conference AMDO 2014 Palma de Mallorca Spain

July 16 18 2014 Proceedings 1st Edition

Francisco José Perales

Visit to download the full and correct content document: https://textbookfull.com/product/articulated-motion-and-deformable-objects-8th-intern ational-conference-amdo-2014-palma-de-mallorca-spain-july-16-18-2014-proceeding s-1st-edition-francisco-jose-perales/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Privacy Enhancing Technologies 14th International Symposium PETS 2014 Amsterdam The Netherlands July 16 18 2014 Proceedings 1st Edition Emiliano De Cristofaro

https://textbookfull.com/product/privacy-enhancingtechnologies-14th-international-symposium-pets-2014-amsterdamthe-netherlands-july-16-18-2014-proceedings-1st-edition-emilianode-cristofaro/

System Analysis and Modeling Models and Reusability 8th

International Conference SAM 2014 Valencia Spain September 29 30 2014 Proceedings 1st Edition Daniel Amyot

https://textbookfull.com/product/system-analysis-and-modelingmodels-and-reusability-8th-international-conferencesam-2014-valencia-spain-september-29-30-2014-proceedings-1stedition-daniel-amyot/

Smart Health International Conference ICSH 2014 Beijing China July 10 11 2014 Proceedings 1st Edition Xiaolong Zheng

https://textbookfull.com/product/smart-health-internationalconference-icsh-2014-beijing-chinajuly-10-11-2014-proceedings-1st-edition-xiaolong-zheng/

Algorithms for Computational Biology First International Conference AlCoB 2014 Tarragona Spain July 1 3 2014 Proceedigns 1st Edition Adrian-Horia Dediu

https://textbookfull.com/product/algorithms-for-computationalbiology-first-international-conference-alcob-2014-tarragonaspain-july-1-3-2014-proceedigns-1st-edition-adrian-horia-dediu/

Computer Aided Verification 26th International Conference CAV 2014 Held as Part of the Vienna Summer of Logic VSL 2014 Vienna Austria July 18 22 2014

Proceedings 1st Edition Armin Biere

https://textbookfull.com/product/computer-aidedverification-26th-international-conference-cav-2014-held-as-partof-the-vienna-summer-of-logic-vsl-2014-vienna-austriajuly-18-22-2014-proceedings-1st-edition-armin-biere/

Reversible Computation 6th International Conference RC 2014 Kyoto Japan July 10 11 2014 Proceedings 1st Edition Shigeru Yamashita

https://textbookfull.com/product/reversible-computation-6thinternational-conference-rc-2014-kyoto-japanjuly-10-11-2014-proceedings-1st-edition-shigeru-yamashita/

Security

Standardisation Research First International Conference SSR 2014 London UK December 16 17 2014

Proceedings 1st Edition Liqun Chen

https://textbookfull.com/product/security-standardisationresearch-first-international-conference-ssr-2014-london-ukdecember-16-17-2014-proceedings-1st-edition-liqun-chen/

Advances in Computational Intelligence 13th

International Work Conference on Artificial Neural Networks IWANN 2015 Palma de Mallorca Spain June 10 12

2015 Proceedings Part II 1st Edition Ignacio Rojas

https://textbookfull.com/product/advances-in-computationalintelligence-13th-international-work-conference-on-artificialneural-networks-iwann-2015-palma-de-mallorca-spainjune-10-12-2015-proceedings-part-ii-1st-edition-ignacio-rojas/

Advances in Computational Intelligence 13th

International Work Conference on Artificial Neural Networks IWANN 2015 Palma de Mallorca Spain June 10 12

2015 Proceedings Part I 1st Edition Ignacio Rojas

https://textbookfull.com/product/advances-in-computationalintelligence-13th-international-work-conference-on-artificialneural-networks-iwann-2015-palma-de-mallorca-spainjune-10-12-2015-proceedings-part-i-1st-edition-ignacio-rojas/

Francisco José Perales

José Santos-Victor (Eds.)

Articulated Motion and Deformable Objects

8th International Conference, AMDO 2014 Palma de Mallorca, Spain, July 16–18, 2014

Proceedings

LectureNotesinComputerScience8563

CommencedPublicationin1973

FoundingandFormerSeriesEditors: GerhardGoos,JurisHartmanis,andJanvanLeeuwen

EditorialBoard

DavidHutchison LancasterUniversity,UK

TakeoKanade

CarnegieMellonUniversity,Pittsburgh,PA,USA

JosefKittler UniversityofSurrey,Guildford,UK

JonM.Kleinberg

CornellUniversity,Ithaca,NY,USA

AlfredKobsa UniversityofCalifornia,Irvine,CA,USA

FriedemannMattern ETHZurich,Switzerland

JohnC.Mitchell StanfordUniversity,CA,USA

MoniNaor

WeizmannInstituteofScience,Rehovot,Israel

OscarNierstrasz UniversityofBern,Switzerland

C.PanduRangan IndianInstituteofTechnology,Madras,India

BernhardSteffen TUDortmundUniversity,Germany

DemetriTerzopoulos UniversityofCalifornia,LosAngeles,CA,USA

DougTygar UniversityofCalifornia,Berkeley,CA,USA

GerhardWeikum MaxPlanckInstituteforInformatics,Saarbruecken,Germany

FranciscoJoséPerales

JoséSantos-Victor(Eds.)

ArticulatedMotion andDeformableObjects

8thInternationalConference,AMDO2014 PalmadeMallorca,Spain,July16-18,2014

Proceedings

VolumeEditors

FranciscoJoséPerales

UIB–UniversitatdelesIllesBalears Dept.MatemáticaseInformatica CrtaValldemossa,Km7.5,07122PalmadeMallorca,Spain E-mail:paco.perales@uib.es

JoséSantos-Victor

UniversidadedeLisboa

InstitutoSuperiorTécnico Av.RoviscoPais1,1049-001Lisboa,Portugal

E-mail:jasv@isr.tecnico.ulisboa.pt

ISSN0302-9743e-ISSN1611-3349

ISBN978-3-319-08848-8 e-ISBN978-3-319-08849-5

DOI10.1007/978-3-319-08849-5

SpringerChamHeidelbergNewYorkDordrechtLondon

LibraryofCongressControlNumber:2014942441

LNCSSublibrary:SL6–ImageProcessing,ComputerVision,PatternRecognition, andGraphics

©SpringerInternationalPublishingSwitzerland2014

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection withreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredand executedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’slocation, inistcurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissionsforuse maybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliabletoprosecution undertherespectiveCopyrightLaw.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrorsor omissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothe materialcontainedherein.

Typesetting: Camera-readybyauthor,dataconversionbyScientificPublishingServices,Chennai,India

Printedonacid-freepaper

SpringerispartofSpringerScience+BusinessMedia(www.springer.com)

Preface

TheAMDO2014conferencetookplaceatSaRieraBuilding(UIB),Palma deMallorca,duringJuly16–18,2014,institutionallysponsoredtheAERFAI (SpanishAssociationinPatternRecognitionandArtificialIntelligence)andthe MathematicsandComputerScienceDepartmentoftheUIB.Importantcommercialandresearchsponsorsalsocollaborated,withthemaincontributorsbeing: VICOMTech,ANDROMEIberica,EDM(ExpertiseCemtrumvoorDigitale Media),iMinds.

Thesubjectoftheconferenceistheongoingresearchinarticulatedmotionon asequenceofimagesandsophisticatedmodelsfordeformableobjects.Thegoals oftheseareasaretheunderstandingandinterpretationofthemotionofcomplex objectsthatcanbefoundinsequencesofimagesintherealworld.Themain topicsconsideredaspriorityare:geometricandphysicaldeformablemodels, motionanalysis,articulatedmodelsandanimation,modellingandvisualization ofdeformablemodels,deformablemodelapplications,motionanalysisapplications,singleormultiplehumanmotionanalysisandsynthesis,facemodelling, tracking,recoveringandrecognitionmodels,virtualandaugmentedreality,hapticsdevices,andbiometricstechniques.Theconferencetopicsweregrouped intothesetracks: Track1,AdvancedComputerGraphics(HumanModelling andAnimation); Track2,MedicalDeformableModelsandVisualization; Track3,HumanMotion(Analysis,Tracking,3DReconstructionandRecognition); Track4,MultimodalUserInteractionandApplications.

TheAMDO2014conferencewasthenaturalevolutionofthesevenpreviouseditionsandhasbeenconsolidatedasaEuropeanreferenceforsymposiumsinthetopicsmentionedabove.Themaingoalofthisconferencewasto promoteinteractionandcollaborationamongresearchersworkingdirectlyin theareascoveredbythemaintracks.Newperceptualuserinterfacesandthe emergingtechnologiescreatenewrelationshipsbetweentheareasinvolvedin human—computerinteractions.AnewaimoftheAMDO2014conferencewas thestrengtheningoftherelationshipbetweentheareasthatshareaskeypoint thestudyofthehumanbodyusingcomputertechnologiesasthemaintool. Also,theconferencebenefitedfromthecollaborationoftheinvitedspeakers whodealtwithvariousaspectsofthemain topics.Theseinvitedspeakerswere: Prof.Jo˜aoManuelR.S.Tavares(UniversityofPorto,Portugal).Prof.Maria DoloresLozano,(UniversityofCastilla-LaMancha,Spain),andProf.Daniel Wickeroth(UniversityofCologne,Germany). July2014F.J.Perales S.V.Santos

Organization

AMDO2014wasorganizedbytheComputerGraphics,VisionandArtificial IntelligenceteamoftheDepartmentofMathematicsandComputerScience, UniversitatdelesIllesBalears(UIB)incooperationwithAERFAI(Spanish AssociationforPatternRecognitionandImageAnalysis).

ExecutiveCommittee

GeneralConferenceCo-chairs

F.J.PeralesUIB,Spain

S.V.SantosInstitutoSuperiorT´ecnico;Universidade deLisboa,Portugal

OrganizingChairs

GonzalezM.UIB,Spain

MasR.UIB,Spain

Jaume-Cap´oA.UIB,Spain

Mascar´oOliverM.UIB,Spain

Manresa-YeeC.UIB,Spain

VaronaX.UIB,Spain

Buades,J.M.UIB,Spain

Mir´oM.UIB,Spain FiolG.UIB,Spain

Moya-AlcoverG.UIB,Spain RamisS.UIB,Spain

AmengualE.UIB,Spain

ProgramCommittee

Abasolo,M.UniversidadNacionaldeLaPlata,Argentina Aloimonos,Y.UniversityofMaryland,USA Bagdanov,A.D.UniversityofFlorence,Italy

Baldassarri,S.UniversityofZaragoza,Spain

BartoliA.CNRS LASMEA,France

Baumela,L.TechnicalUniversityofMadrid,Spain

Brunet,P.PolytechnicUniversityofCatalonia,Spain Bowden,R.UniversityofSurrey,UK CampilhoA.UniversityofOporto,Portugal

Coll,T.DMI-UIB,Spain

Courty,N.Universit´edeBretagneSud,France Davis,L.S.UniversityofMaryland,USA

DelBimbo,A.UniversityofFlorence,Italy

DiFiori,F.HasseltUniversity/EDM,Belgium

Dogan,S.I-Lab,UniversityofSurrey,UK

Dugelay,J.L.Eurecom,France Escalera,S.UB,Spain

Fernandez-Caballero,A.CLMUniversity,Spain Fisher,B.UniversityofEdinburgh,UK Flerackers,E.HasseltUniversity/EDM,Belgium Flores,J.Mar-USC,Spain

Gonzalez,J.CVC-UAB,Spain Gonzalez,M.DMI-UIB,Spain

Iesta,J.M.UniversityofAlicante,Spain

Kakadiaris,I.A,UniversityofHouston,USA

Komura,T.IPAB,UniversityofEdinburgh,UK MaiaS.UniversityofBarcelona,Spain

Marcialis,G.L.UniversityofCagliari,Italy

Matey,L.CEIT,Spain

Medioni,G.UniversityofSouthernCalifornia,USA Moeslund,TBUniversityofAalborg,Denmark

Pla,F.JaumeIUniversity,Spain

Radeva,P.CVC-UB,Spain

Roca,X.CVC-UAB,Spain

Qin,HStonyBrookUniversity,NewYork,USA

Salah,A.A.UniversityofBogazici,Turkey

Seron,F.UniversityofZaragoza,Spain Sigal,L.DisneyResearch,USA Susin,A.PolytechnicUniversityofCatalonia,Spain

Thalmann,D.EPFL,Switzerland

TavaresJ.M,UniversityofPorto,Portugal Terzopoulos,D.UniversityofNewYork,USA VanReeth,F.HasseltUniversity/EDM,Belgium XianghuaX.SwanseaUniversity,UK Wang,L.NLPR,China

SponsoringInstitutions

AERFAI(SpanishAssociationforPatternRecognitionandImageAnalysis) MathematicsandComputerScienceDepartment,UniversitatdelesIllesBalears (UIB)

AjuntamentdePalma SaNostra.CaixadeBalears

CommercialSponsoringEnterprises

VICOM-TechS.A.,www.vicomtech.es

ANDROMEIbericaS.A,www.androme.es

EDM(ExpertiseCemtrumvoorDigitaleMedia),http://www.uhasselt.be/edm iMinds,www.iminds.be

MarcBola˜nos,MaiteGarolera,andPetiaRadeva

JoeLallemand,MagdalenaSzczot,andSlobodanIlic

VasileiosBelagiannis,ChristianAmann,NassirNavab,and SlobodanIlic

DianaArellano,FranciscoJ.Perales,andJavierVarona

MultimodalInterfaceTowardsSmartphones:TheUseofPicoProjector, PassiveRGBImagingandActiveInfraredImaging

ThitiratSiriborvornratanakul

UsingWebcamtoEnhanceFingerprintRecognition

BibekBehera,AkhilLalwani,andAvinashAwate

SupportingAnnotationofAnatomicalLandmarksUsingAutomatic

SebastianBerndKrah,J¨urgenBrauer,WolfgangH¨ubner,and MichaelArens HumanHandMotionRecognitionUsinganExtendedParticleFilter

ChutisantKerdvibulvech

AGraphBasedSegmentationStrategyforBaggageScannerImages

YisleidyLinaresZaila,MartaL.BaguerD´ıaz-Roma˜nach,and ManuelGonz´alez-Hidalgo

FastUpperBodyJointTrackingUsingKinectPosePriors

MichaelBurkeandJoanLasenby

FromaSeriousTrainingSimulatorforShipManeuveringtoan

Mar´ıaJos´eAb´asolo,CristianGarc´ıaBauza,MarcosLazo, JuanP.D’Amato,MarceloV´enere,ArmandoDeGiusti, CristinaManresa-Yee,andRam´onMas-Sans´ o

3DHumanMotionAnalysisforReconstructionandRecognition 118 ChutisantKerdvibulvechandKoichiroYamauchi

InteractiveMultimodalPlatformforDigitalSignage ..................

HelenV.Diez,JavierBarbadillo,SaraGarc´ıa, MariadelPuyCarretero,Aitor ´ Alvarez, JairoR.S´anchez,andDavidOyarzun

LabelConsistentMulticlassDiscriminativeDictionaryLearningfor MRISegmentation ...............................................

OualidM.Benkarim,PetiaRadeva,andLauraIgual

Real-TimeHand-PaintedGraphicsforMobileGames

FabianDiFiore,TomSchaessens,RobinMarx, FrankVanReeth,andEddyFlerackers

Non-rigidObjectSegmentationUsingRobustActiveShapeModels .... 160 CarlosSantiago,JacintoC.Nascimento,andJorgeS.Marques RiggingandDataCapturefortheFacialAnimationofVirtual Actors ..........................................................

MiquelMascar´o,FranciscoJ.Ser´on,FranciscoJ.Perales,and JavierVarona

GeometricSurfaceDeformationBasedonTrajectories:ANew Approach

ManuelGonz´alez-Hidalgo,ArnauMir-Torres,and PerePalmer-Rodr´ıguez

VideoSegmentationofLife-LoggingVideos

MarcBola˜nos1 ,MaiteGarolera2 ,andPetiaRadeva1,3

1 UniversityofBarcelona,Barcelona,Spain

2 HospitaldeTerrassa-ConsorciSanitarideTerrassa,Terrassa,Spain

3 ComputerVisionCenterofBarcelona,Bellaterra(Barcelona),Spain mark.bs.1991@gmail.com,MGarolera@cst.cat,petia.ivanova@ub.edu

Abstract. Life-loggingdevicesarecharacterizedbyeasilycollecting hugeamountofimages.Oneofthechallengesoflifeloggingishowto organizethebigamountofimagedataacquiredinsemanticallymeaningfulsegments.Inthispaper,weproposeanenergy-basedapproachfor motion-basedeventsegmentationoflife-loggingsequencesoflowtemporalresolution.Thesegmentationisreachedintegratingdifferentkindof imagefeaturesandclassifiersintoagraph-cutframeworktoassureconsistentsequencetreatment.Theresultsshowthattheproposedmethod ispromisingtocreatesummariesofeverydayperson’slife.

Keywords: Life-logging,videosegmentation.

1Introduction

Recently,withtheappearanceofdifferentLifeLogging(LL)devices(SenseCam [1],Looxcie[2],Narrative(previouslycalledMemoto)[3],Autobiographer),peoplewearingthemaregettingeagerforcapturingdetailsabouttheirdailylife. Capturingimagesalongthewholedayleadstoahugeamountofdatathat shouldbeorganizedandsummarizedinordertobeabletostorethemandreviewlater,beingabletofocusjustonthemostimportantaspects.Ontheother hand,LLdataappearverypromisingtodesignnewtherapiesfortreatingdifferentdiseases.LLdatahavebeenusedtoretainandrecovermemoryabilities forpatientswithAlzheimer’sdisease[1]aswellastocaptureanddisplaythe healthyhabitslikenutrition,physicalactivities,emotionsorsocialinteraction. In[4]theyareusedasanaidforrecordingtheeverydaylifeinordertobeable todetectandrecognizeelementsthatcanmeasurepersons’qualityoflifeand, thus,toimproveit[5,6].

LLdevicesbeingwornbyapersonthewholeday,havethepropertytocapture imagesforlongperiodsoftime.Dependingonwherethedeviceispositioned (head-mounted,onglasses,camerawithapin,hungcamera,ear-mounted,etc.) determinesthefieldofviewandthecameramotion(usually,glasscamerawould bemorestableandwouldgiveinformation,wherethepersonislookingat, meanwhilecamerahungontheperson’sneckmovesmoreandlacksinformation onwherethepersonislookingat).Ontheotherhand,ahungupcamerahas theadvantagethatisconsideredmoreunobtrusiveandthus,causeslessrepeal

F.J.PeralesandJ.Santos-Victor(Eds.):AMDO2014,LNCS8563,pp.1–9,2014. c SpringerInternationalPublishingSwitzerland2014

Fig.1. Illustrationofthethreepersonmovement-relatedeventstobedetected

fromthepersonsaroundrecordedbythecamera[7].Anotherimportantcharacteristicisthetemporalresolutionofthedevice.MeanwhileLooxciehashigh temporalresolutionand,thus,providessmoothcontinuousvideos,manyother LLdeviceslikeSenseCamhaslowtemporalresolution(2-4framesperminute) makingdifficulttoconsiderconsecutiveframesasvideos.Moreover,objectsin consecutiveimagescanappearinverydifferentpositions.Ontheotherhand, lowtemporalresolutioncamerashavetheadvantagestoacquireareasonable amountofimagesinordertocapturethewholedayofthepersonandallow toprocessimagescoveringlongperio dsoftime(weeks,months).Duetothis reason,inthisarticle,wefocusonsequencesegmentationwithaSenseCamthat isabletoacquireandstoreimagesduringthewholedayactivitiesoftheperson wearingthecamera.Moreover,beinghungontheneck,SenseCamislessobtrusivethathead-mounteddevices,buthaslowtemporalresolutionandsignificant freecameramotion.Usually,adaycapturedbyaSenseCamusedtocontain around4000imageswithnosmoothtransitionbetweenconsecutiveframes;ina monthmorethan100.000imagesaregenerated.

Developingtoolstoreduceredundancy,organizedataineventsandeaseLL reviewisofhighinterest.In[8],theauthorsproposedamethodforsegmentingandsummarizingLLvideosbasedonthedetectionof”important”objects [9].Dohertyet.al.proposeddifferentmethodslikeselectingspecifickeyframes [10],combiningimagedescriptors[11]andusingadissimilarityscorebasedon CombMIN[12]tosegmentandsummarizealsolow-resolutionLLdata.The workin[13]reviewsdifferenttechniquesforextractinginformationfromegocentricvideos,likeobjectrecognition,activitydetection,sportsactivitiesorvideo summarization.

EventsegmentationinLLdataischaracterizedbytheaction(movement)of thepersonwearingthedevice.Therelationbetweensceneandeventdepends

ontheperson’sactionthatisnotalwaysvisibleintheimages;thus,standard eventdetectiontechniquesinvideoarenotuseful.Wegroupconsecutiveframes inthreegeneraleventclassesaccordingtothehumanmovement(seeFigure 1):”Static”(personandcameraaremaintainingstatic),”InTransit”(person ismovingorrunning)and”MovingCamera”(personisnotchanginghis/her surroundings,butthecameraismoving-e.g.personisinteractingwithanother person,manipulatinganobject,etc.).Similareventclassificationhasbeenproposedandaddressedbyvideotechniquesin[8],wherehigh-temporalresolution LLdataareprocessed.Takingintoaccountthatinthecaseoflow-temporal resolutiondata,videoanalysistechniquesarenotusable,westudyanovelsetof imagefeaturesandintegratetheminanenergy-minimizationapproachforvideo segmentation1 .Incontrastto[8],weshowthatanoptimalapproachisachieved bycombiningasetoffeatures(bluriness[14],colour,SIFTflow[15],HoG[16]) andclassifiersintegratedinaGraphCut(GC)formulationforspatiallycoherenttreatmentofLLconsecutiveframes.

Thepaperisorganizedasfollows:insection2,weexplainthedesignand implementationofoureventextractionmethod.InSection3,wediscussthe resultsobtainedandfinishthepaperwithConclusions.

2Methodology

Toaddresstheeventsegmentationproblem,ourapproachisbasedontwomain steps:first,weextractmotion,colorandblurrinessinformationfromtheimages andapplyaclassifiertoobtainaroughapproximationoftheclasslabelsinsingle frames(Figure2).Second,weapplyanenergy-minimizationtechniquebasedon GCtoachievespatialcoherenceoflabelsassignedbytheclassifierandseparate thesequencesofconsecutiveimagesinevents.

2.1FeatureExtractionofLife-LoggingData

Giventhatthethreeclassesarebasicallydistinguishedbythemotionofthe cameraortheperson,aswellasthebigdifferencebetweenframes,robustevent segmentationneedsmotionfeaturesthatdonotassumesmoothimagetransition. Hence,weproposetoextractthefolowingfeaturetypes:

SIFTflowdata[15,17]: calculatedas8components,whichdescribethe motiononeachcardinaldirectionscaledbyitsmagnitude.

Blurriness[14]: calculatedas9componentsrepresentingtheblurrinesin eachcelldividingtheimagein3x3equalrectangles.

Colordifference: colorhistogramdifferencebetweenthecurrentimageand thefivepreviousones.WiththeuseoftheSIFTflowfeaturesbetweeneach pairofconsecutiveimages,weexpecttofinddifferencesbetweensequencesof imageswithlabel”Static”,whichshouldhavealowmagnitudeandlittleresilient directionofthedescriptorsinasignificantpartoftheimages.Labels”Moving 1 Althoughthelowtemporalresolution,westillspeakaboutvideosofdata,refering totheconsecutiveimagecollectionacquiredduringaday.

Fig.2. Diagramofthemainstepsfollowedbyourmethod

Camera”and”InTransit”shouldhaveamoreclearmovement.Atthesame time,thelasttwoclassesshouldbedifferentiatedhavingvectorsofflowwith undefinedandconstantlychangingdirection(inthe”MovingCamera”class) vs.thosepointingfromthecentertotheexternalpartoftheimageduetothe movement,whenwalkingforthe”InTransit”class.TheadvantageofSIFTflow isthatitisabletofindthecorrespondenceofpointsalmostindependentlyof theirdifferenceintheimageposition.Abouttheseconddescriptor,blurriness, wealsoexpectdifferentbehaviourfordistinguishingthe”Static”fromtheother labels,whichshouldhaveamoremarkedblureffect.Colordifferencesisexpected tobeinformativespeciallyforthe”MovingCamera”and”InTransit”classes.

2.2GC-BasedEventSegmentationofLLData

Eventsaresupposedtobesequencesofframeswiththesameclasslabel.Inorder toobtainsuchsequences,weapplyaGC-based[18,19]energy-minimizationtechniquetogetareliableeventsegmentation.GCsarebasedontheminimization oftheenergyresultingfromthesumoftwodifferentterms:

where fi arethesetoffeaturesusedfortheenergyminimization, Ui istheunary term, Pi,n isthepairwiseterm,whichrelatesanyimage i inthesequencewith eachofitsneighbours n ∈ Ni ,and W istheweightingtermforbalancingthe trade-offbetweentheunaryandthepairwiseterm.The unaryterm, Ui in ourcase,issetto1 LH ,being LH theresultfromaclassifieroutputthat representsthelikelihoodforeachimagetobelongtooneofthethreedefined classes.The pairwiseterm Pi,n isasimilaritymeasureforeachsampleon eachcliqu´e(allneighboursofagivensample)withrespecttothechosenimage featuresthatdeterminesthelikelihoodforeachneighbouringpairofimages (withaneighbourhoodlengthof11inourcase)tohavethesamelabel.TheGC

Fig.3. FractionofthetotalsummaryofeventsresultingfromadatasetusingKNNbasedGCsegmentation.Eachrowrepresentsoneofthe3classes,withthetotalnumber ofimagesandlabelbelongingtoeachofthemattheright.

algorithm[18,19]usingagraphstructurefindstheoptimalcutthatminimizes thesumofenergies E (f )assigningaclasslabeltoeachsampleasaresultofthe energyminimization.

Takingintoaccountthatthepairwisetermshould”catch”thefeaturesrelationbetweenconsecutiveframes,itusesdifferentfeaturesfromtheclassifier ones,namely:

- Color: RGBcolorhistogramswith9bins(3percolor).

- HoG[16]: Histogramoforientedgradientswith81componentsperimage tocapturechangesintheimagestructures.TheGCalgorithmassignsallthe consecutiveimageswiththesamelabeltothesameclass,andthusdetermines thefinaleventdivision.Figure3illustratesdifferentsamplesoftheextracted eventsfromthethreeclasses.Thelengthofeacheventisgivenontheright.For visualizationpurpose,eacheventisuniformlysubsampled.Notethatthe”T” eventsrepresentimagesequenceswith significantchangeofthescene(rows4 and7).”S”eventsarerepresentingastaticpersonalthoughtheimagescandiffer duetohandmanipulation(rows2,6and9),and”M”eventssuggestmoving person’sbody(rows1,3,5,8,and10).

3Results

Inthissection,wereviewthedatasetsusedinourexperimentsandthemost relevantperformedvalidationtests.

3.1DatasetsDescription

GiventhatthereisnopublicSenseCamdatasetwitheventlabels,forthevalidationweusedthedatasetfrom[6]thatcontains31749labeledimagesfrom10 differentdaystakenwithaSenseCam.Forthepurposeofthearticle,553events weremanuallyannotatedwith57.41imagesperevent,onaverage.

3.2ParameterOptimization

RegardingtheGCunaryterm,weperformeddifferenttestsusingtheoutputof twoofthemostpopularclassifiersinthebibliography:SupportVectorMachines (SVM)[20]andK-NearestNeighbour(KNN).Nevertheless,themethodallows touseanyclassifierthatprovidesascoreorlikelihoodtobeusedinthegraphcutscheme.Inpursuanceofobtainingthe mostgeneralizedresultpossible,when applyingtheRadialBasisFunctionSVMandtheKNN,wedesignedanested foldcross-validationforobtainingthebestregularizing(λ)anddeviation(σ ) parametersforthefirst,andthebest K valueforthesecondclassifier.Weused a10-foldcrossvalidationselectingrandomlythebalancedtrainingsamples.The optimalparametersobtainedwere: λ =3and σ =3, K =11onKNNwith Euclideandistancemetricand K =21onKNNwithcosinedistancemetric.

Withthesetests,ourpurposewastotesttheweightingGCparameterandto provetheimportanceofusingtheGCschemecomparedtotheframeclassificationobtainedbytheSVM/KNNclassifiers.Regardingtheweightvalue W ,we usedarangefrom0to3.75inintervalsof0.15points.WecanseeinFigure4 thedifferenceinaccuracybetween theKNNandtheGCfordifferent W values. Notethatfor W =1.75,theclassificationofframesimprovedfrom0.72to0.86. Itresultedthatinthiscase,weobtained108eventscomparedtothe56eventsin thegroundtruthoftestset10.Notethatinthiscasetheaccuracyis0.86representing15%ofimprovementregardingthebaselineclassificationresult,although theautomaticapproachtendstooversegmenttheevents.

3.3GCPerformanceforEventSegmentation

Asummaryoftheaverageimprovementofusingframeclassifier(theSVM/KNN) versusintegratingitintheGCschemecanbeseeninFigure4.Here,KNNe standsforKNNusingEuclideanmetricsandKNNcstandsforKNNwithCosinemetrics.Analysingtheresults,wecanobservethattheKNNobtainshigher accuracythantheSVM,andthataddingtheGC”labelsmoothing”afterit, theresultsarewidelyimproved.Theonlyaspecttotakeintoaccount,specially, whenusingtheKNNwithEuclideandistanceisthattheperformanceonallthe classesisfarfromthebalancedone(theaccuracyofclass”S”ismuchhigher thanthatoftheotherclasses).Inthiscase,aKNNwithcosinemetricsisagood compromiseofoverallaccuracyaswellas accuracyofeachclass,separately.RegardingtheresultusingSVM,GChasnotbeenabletoimprovetheresultsofthe SVM(onaverage).However,itstillhastwoadvantages:1)obtaininganaverage numberofeventsmoresuitableandrealisticwithrespect toeachdatasetand

Fig.4. ImprovementinaccuracyusingdifferentweightsfortheGCwithrespectto theKNNwithcosinemetrics;testsonthe10thdataset(left).Accuracyforeachclass (T,S,M)andaverageaccuracyfortheclassifiers(SVM,KNN)andtheGC(right).

2)havingmoresimilaraverageofaccuracyforeachclass(withoutanynegative peackofperformancelikeclass”M”incaseofSVM).

Inordertoseekredundantimagefeatures,weappliedaFeatureSelection(FS) basedontheStudent’st-test.WetestedthegainobtainedbytheFSmethodand thebestp-valueforitnotusingthelessrelevantfeaturesneitherfortheclassifier (SVM/KNN)norfortheGC.Comparingtheaccuracyresults,weobtainedno statisticaldifferenceinperformanceofthemethodwithandwithoutfeature selection.VerysimilarresultswereobtainedbytheSequentialForwardFloating Searchmethod[21].

OncewehaveappliedtheGCvideosegmentation,wehavethefinalsequence dividedintoeventsandclassifiedwiththerespectivelabels.Eventswithavery lownumberofimages,wouldcorrespondtotooshorteventsi.e.withlessthan 8images(lessthan2minutesinrealtime).Sincesuchsequenceswillnotbe enoughtoextractinformationinthefuture,neitherforobtainingasummary norfordetectingactionsofinterestoftheuser,theyaredeleted.

Thelimitationsofthemethodarerelatedtotheambiguitybetweenthe”T” and”M”labels,duetotheirmotionsimilarity,thatmakedifficulttoclassify. Moreover,the”free”motionofthecameraisdifficulttodifferentiate(foranyof theclassifiersused),andthis,addedtothefactthatweusetheHOGswithout anypreviousimageorientation(thatmightbeaproblemwhenthecamerais rotated),aresomeaspectsthatmightbeimprovedinfuturework.

4Conclusions

Inthiswork,weproposedanewmethodformotion-basedsegmentationofsequencesproducedbyLLdeviceswithlowtemporalresolution.Themostremarkableresultsarerepresentedbyintegratingawidesetofimagefeaturesand

aKNNclassifierwithcosinemetricsintotheGCenergy-minimization.Theproposedalgorithmachievedthemostbalancedaccuracyforthe3differentclasses. Ourmethodproposestoolstodetectmo tion-relatedeventsthatcanbeused forhigher-levelsemanticanalysisofLLdata.Themethodcouldeasetherecognitionofperson’sactionandtheelementsinvolved(objectsaround,manipulated objects,persons).Theeventscanbeusedasabasetocreate information”capsules”formemoryenhancementofAlzheimerpatients.Moreover,themethod canrelatethe”InTransit”labeltoexercisingactionoftheperson,ortheabundanceandlengthof”Static”eventsevidencingsedentaryhabits[22,23].Followingworksonhigh-temporalresolutionLLdata[9],importantpeopleandobjects canbedetectedandrelatedtothemostusefulandsummarizedstoriesfoundin theLLevents[24].OurnextstepsaredirectedtowardsLLsummarizationand detectionofinterestingevents,peopleandobjectsinlow-resolutiontemporalLL foreitherimprovingthememoryoftheuserorvisualizingsummarizedlifestyle datatoeasethemanagementoftheuser’shealthyhabits(sedentarylifestyles [22],nutritionalactivityofobesepeople,etc.).

Acknowledgments. ThisworkwaspartiallyfoundedbytheprojectsTIN201238187-C03-01,Fundaci´o”JaumeCasademont”-GironaandSGR1219.

References

1.Hodges,S.,Williams,L.,Berry,E.,Izadi,S.,Srinivasan,J.,Butler,A.,Smyth,G., Kapur,N.,Wood,K.:Sensecam:Aretrospectivememoryaid.In:Dourish,P.,Friday, A.(eds.)UbiComp2006.LNCS,vol.4206,pp.177–193.Springer,Heidelberg(2006)

2.Eisenberg,A.:WhenaCamcorderbecomesalifepartner,vol.6.NewYorkTimes (2010)

3.Bowers,D.:Lifelogging:Bothadvancingandhinderingpersonalinformationmanagement(2013)

4.Sellen,A.J.,Whittaker,S.:Beyondtotalcapture:aconstructivecritiqueoflifelogging.CommunicationsoftheACM53(5),70–77(2010)

5.Hoashi,H.,Joutou,T.,Yanai,K.:Imagerecognitionof85foodcategoriesby featurefusion.In:2010IEEEInternationalSymposiumonMultimedia(ISM), pp.296–301.IEEE(2010)

6.Bola˜nos,M.,Garolera,M.,Radeva,P.:Activelabelingapplicationappliedtofoodrelatedobjectrecognition.In:Proceedingsofthe5thInternationalWorkshopon MultimediaforCooking&EatingActivities,pp.45–50.ACM(2013)

7.Vondrick,C.,Hayden,D.S.,Landa,Y.,Jia,S.X.,Torralba,A.,Miller,R.C.,Teller, S.:Theaccuracy-obtrusivenesstradeoffforwearablevisionplatforms.In:Second IEEEWorkshoponEgocentricVision,CVPR(2012)

8.Lu,Z.,Grauman,K.:Story-drivensummarizationforegocentricvideo.In: 2013IEEEConferenceonComputerVisionandPatternRecognition(CVPR), pp.2714–2721.IEEE(2013)

9.Lee,Y.J.,Ghosh,J.,Grauman,K.:Discoveringimportantpeopleandobjectsfor egocentricvideosummarization.In:IEEEConferenceonComputerVisionand PatternRecognition(CVPR2012),pp.1346–1353.IEEE(2012)

10.Doherty,A.R.,Byrne,D.,Smeaton,A.F.,Jones,G.J.F.,Hughes,M.:Investigating keyframeselectionmethodsinthenoveldomainofpassivelycapturedvisuallifelogs.In:Proceedingsofthe2008InternationalConferenceonContent-BasedImage andVideoRetrieval,pp.259–268.ACM(2008)

11.Doherty,A.R., ´ OConaire,C.,Blighe,M.,Smeaton,A.F.,O’Connor,N.E.:Combiningimagedescriptorstoeffectivelyretrieveeventsfromvisuallifelogs.In:Proceedingsofthe1stACMInternationalConferenceonMultimediaInformationRetrieval, pp.10–17.ACM(2008)

12.Doherty,A.R.,Smeaton,A.F.:Automaticallysegmentinglifelogdataintoevents. In:ImageAnalysisforMultimediaInteractiveServices,WIAMIS2008,pp.20–23. IEEE(2008)

13.Bambach,S.:Asurveyonrecentadvancesofcomputervisionalgorithmsforegocentricvideo(2013)

14.Crete,F.,Dolmiere,T.,Ladret,P.,Nicolas,M.:Theblureffect:Perceptionand estimationwithanewno-referenceperceptualblurmetric.HumanVisionand ElectronicImagingXII6492,64920(2007)

15.Liu,C.,Yuen,J.,Torralba,A.,Sivic,J.,Freeman,W.T.:SIFTflow:Densecorrespondenceacrossdifferentscenes.In:Forsyth,D.,Torr,P.,Zisserman,A.(eds.) ECCV2008,PartIII.LNCS,vol.5304,pp.28–42.Springer,Heidelberg(2008)

16.Dalal,N.,Triggs,B.:Histogramsoforientedgradientsforhumandetection.In: IEEEComputerSocietyConferenceonComputerVisionandPatternRecognition (CVPR2005),vol.1,pp.886–893(2005)

17.Liu,C.:Beyondpixels:exploringnewrepresentationsandapplicationsformotion analysis,Ph.D.thesis,MassachusettsInstituteofTechnology(2009)

18.Boykov,Y.,Veksler,O.,Zabih,R.:Fastapproximateenergyminimization viagraphcuts.IEEETransactionsonPatternAnalysisandMachineIntelligence23(11),1222–1239(2001)

19.Delong,A.,Osokin,A.,Isack,H.N.,Boykov,Y.:Fastapproximateenergyminimizationwithlabelcosts.InternationalJournalofComputerVision96(1),1–27 (2012)

20.Cortes,C.,Vapnik,V.:Support-vectornetworks.MachineLearning20(3),273–297 (1995)

21.Pudil,P.,Novoviˇcov´a,J.,Kittler,J.:Floatingsearchmethodsinfeatureselection. PatternRecognitionLetters15(11),1119–1125(1994)

22.Kelly,P.,Doherty,A.,Berry,E.,Hodges,S.,Batterham,A.M.,Foster,C.:Canwe usedigitallife-logimagestoinvestigateactiveandsedentarytravelbehaviour?resultsfromapilotstudy.InternationalJournalonBehavioralNutritionandPhysical Activities8(44),44(2011)

23.Kerr,J.,Marshall,S.J.,Godbole,S.,Chen,J.,Legge,A.,Doherty,A.R.,Kelly,P., Oliver,M.,Badland,H.M.,Foster,C.:Usingthesensecamtoimproveclassificationsofsedentarybehaviorinfree-livingsettings.AmericanJournalofPreventive Medicine44(3),290–296(2013)

24.Shahaf,D.,Guestrin,C.:Connectingthedotsbetweennewsarticles.In:Proceedingsofthe16thACMSIGKDDInternationalConferenceonKnowledgeDiscovery andDataMining,pp.623–632.ACM(2010)

HumanPoseEstimationinStereoImages

JoeLallemand1,2 ,MagdalenaSzczot1 ,andSlobodanIlic2

1 BMWGroup,Munich,Germany {joe.lallemand,magdalena.szczot}@bmw.de http://www.bmw.de

2 ComputerAidedMedicalProcedures,TechnischeUniversit¨atM¨unchen,Germany slobodan.ilic@in.tum.de http://campar.in.tum.de

Abstract. Inthispaper,weaddresstheproblemof3Dhumanbody poseestimationfromdepthimagesacquiredbyastereocamera.ComparedtotheKinectsensor,stereocamerasworkoutdoorshavingamuch higheroperationalrange,butproducenoisierdata.Inordertodealwith suchdata,weproposeaframeworkfor3Dhumanposeestimationthat reliesonrandomforests.Thefirstcontributionisanovelgrid-based shapedescriptorrobusttonoisystereodatathatcanbeusedbyany classifier.Thesecondcontributionisatwostepclassificationprocedure, firstclassifyingthebodyorientation,thenproceedingwithdetermining thefull3Dposewithinthisorientationcluster.Tovalidateourmethod, weintroduceadatasetrecordedwithastereocamerasynchronizedwith anopticalmotioncapturesystemthatprovidesgroundtruthhuman bodyposes.

Keywords: HumanPoseEstimation,MachineLearning,DepthData.

1Introduction

Humanbodyposeestimationindepthimageshasseentremendousprogress inthelastfewyears.TheintroductionofKinectandothersimilardeviceshas resultedinanumberofnewalgorithmsaddressingtheproblemof3Dhuman bodyposeestimation[1,2,3,4].

AlthoughtheseKinect-likesensorsworkinreal-timeandusuallyprovide depthimagesofagoodqualitywithasmallamountofnoiseanddeptherrors asdepictedinFig.1,theyalsohavethedisadvantagesofonlyworkingindoors andataverylimiteddepthrange.Forthesereasons,humanposeestimation usingKinecthasextensivelybeenusedforgenericindoorscenarios.Manyother applicationshowever,especiallyautomotivedriverassistance,implytheuseof outdoor-suitablesensorsase.g.stereocameras.Sincestereo camerasystemsare becomingstandardinmoderncars,thereisaneedfor3Dhumanposeestimation fromstereodata.Forthatreason,weproposeanewalgorithmusingastereo camerawhichprovidesrealtimedepthimagesatarangeofupto50meters, whichisabout5timeshigherthanindoorsensors.AscanbeseeninFig.1,realtimestereoalgorithmsintegratedinvehiclesgenerallyproducenoisyimages,

F.J.PeralesandJ.Santos-Victor(Eds.):AMDO2014,LNCS8563,pp.10–19,2014. c SpringerInternationalPublishingSwitzerland2014

wheresomeregionsareerroneouslyfusedtogether(redcircles)andtheboundariesoftheobjectscanbeeffectedbyahighnumberofartifacts(greenandblue circles).Thesereconstructionartifactsintroducedbystereoreconstructionaffect theresultsofstate-of-the-artmethods,liketheoneofGrishicketal.[2],which wereimplementedandappliedtothesedata.Thisisbecauseofthetwomain reasons.Firstly,itisverydifficulttoperform360degreeposeestimationusing asingleforestasthereisahighconfusionbetweenfrontandback.Secondly thefeaturevectorproposedin[1]seemstoperformpoorlyonthestereodata. Thereforewepresentanewmethodforhumanposeestimation,adaptingrandomforestclassificationandregressionmethodologyintoatwosteppipelineto reliablyestimate3Dhumanbodypose.Thefirststepconsistsinclassifyingthe shapeofapersonintoaclusterwhichrepresentsitsorientationwithrespectto thecamera.Inthesecondstep,theskeletonposeofthepersonisestimatedusing aregressionrandomforesttrainedonlyontheposesofthedetectedorientation. Inordertomakethispipelineoperationalweintroduceanovelgrid-basedfeature.Thisfeatureovercomesseveraldisadvantagesthatappearwhenusingthe depthcomparisonfeatureintroducedbyShottonetal.[1]onthestereodataas shownintheresultsection.

Toverifyandvalidateourmethod,weintroduceadatasetwhichisrecorded withastereocamerasynchronizedwiththeARTmarkerbasedsystemforhuman motioncapture 1 .Theorientationclassificationisalsoevaluatedonthepublicly availablepedestrianstereodatasetintroducedin[5].

2RelatedWork

Manyalgorithmsforhumanposeestimationfromdepthimageshaveemergedin thelastyears.Shottonetal.[1]proposetouseaclassificationrandomforestto classifyeachpixelofaforegroundmasktoagivenbodypart,theninferthejoint locationsfromthepredictedbodyparts.Girshicketal.[2]extendedthisworkby learningaregressionmodeltodirectlypredictthejointlocations.Thisapproach considerablyimprovedtheperformanceof thepreviousalgorithmespeciallyfor occludedjoints.Bothworksrelyonalargesynthetictrainingdatasetinorder toachievegoodresultsandtargetgoodqualitydepthimages.

In[3],Tayloretal.trainaregressionrandomforesttocreateamappingfrom eachpixelofasegmentedforegrounddepthimagetoahumanbodymodel. Takingintoaccounttheforestpredictions,physicalconstraintsandvisibility constraints,theyuseanenergyminimizationfunctiontopredicttheposeofthe modelandtheattachedskeleton.Thisapproachimprovespredictionaccuracy comparedtopreviousworksandisabletopredictposesinthe360degreerange, butstillreliesonthetreestructurestrainedusingtheclassificationapproachof [1].

Sunetal.[6]introduceaconditionalregressionforestlearningagloballatent variableduringtheforesttrainingstepthatincorporatesdependencyrelationshipsoftheoutputvariables,e.g.torsoorientationorheight.

1 www.ar-tracking.com

Asimpledepthcomparisonfeatureiscommontoallthesemethods.Each dimensionofitconsistsofthedifferenceindepthcomputedattworandomoffsets fromthereferencepixelatwhichthefeatureiscomputed.Astheforeground masksinstereodatacontainmanyerroneousboundaries,thefeaturecannot beconsistentlyextractedforthesamepose.Theproposedgrid-basedfeatureis robusttotheseerrorsbecauseitconsistsofcellswheredepthandoccupancy distributionareaveragedoverthewholecell.

Pl¨ankersandFua[7]useanarticulatedsoftobjectmodeltodescribethehumanbodyandtrackitinasystemofcalibratedvideocameras,makinguseof stereoandsilhouettedata.UrtasunandFua[8]additionallyintroduceatemporalmotionmodelsbasedonPrincipalComponentAnalysis.Bernieretal.[9] proposea3Dbodytrackingalgorithmonstereodata.Thehumanbodyisrepresentedusingagraphicalmodelandtrackingisperformedusingnon-parametric beliefpropagationtogetaframebyframepose.Unlikethethreepreviously mentionedworks,whichrequireinitializationandtrackthehumanpose,our proposedmethodworksonsingleframesandperformsdiscriminativeposeestimation.Uptothebestofourknowledge,thisproblemhasnotyetbeenaddressed forthekindofnoisyinputdataasproducedbystereocamerasorsimilardevices.

Keskinetal.[10]useatwo-layerrandomforestforhandposeestimation. First,thehandisclassifiedbasedontheshape,thentheskeletonisdetermined forthegivenshapeclusterusingaregressionforest.Thoughsimilarto[10],we introduceanovelgrid-basedfeatureandatwostageclassificationmethodfor humanposeestimationinnoisystereodata.

In[11],EnzweilerandGavrilaproposeanalgorithmforsingle-framepedestriandetectionandorientationestimationbasedonamonocularcamera,where orientationisdividedinto4directions.Incontrasttothis,theproposedmethod isbasedonthedepthinformationfromthestereocameraandtheorientation clustersareencodingdirectionaswellasdifferentposeswithinthisdirection.

3Method

Thissectionintroducesthegrid-basedfeaturevectorwhichisusedboth,forthe classificationofhumanbodyorientationsandthehumanposeestimationper determinedorientationanddescribesthetwostepclassificationpipeline.The firststepinvolvesdeterminingthehumanbodyorientation.Whilethesecond computesthe3Dposeofaskeletonchoosingfromposesoftheestimatedorientationcluster.Finally,wedescribehowtheclassificationandposeprediction steparecombined.

3.1Grid-BasedFeature

Theproposedgrid-basedfeaturedividestheshapeofapersonintoarbitrary cells,thenaveragesoverdepthvaluesandoccupancydistributions.

Let Ω ⊂ R2 beasegmentedforegroundmaskinagivenimage.Theconstructionofthefeaturevectorconsistof4consecutivesteps.Thefirststepdetermines

theboundingboxaroundtheforegroundmask.Inthesecondstep,thebounding boxisdividedintoan n × m gridofcells ci,j .Notethatthisdivisionisscaleinvariant,astheboundingbox,regardlessofitsactualsize,isdividedintothesame numberofcells.Inthethirdstep,weattributeeachpixeloftheforegroundtoits correspondingcellanddeterminethemedianposition, xci,j ∈ R and yci,j ∈ R andmediandepth zci,j ∈ R ineachcell.Thiscellstructurenowrepresentsa verysimpleencodingoftheshapeofaperson.Ifacellisleftunoccupied,itis assignedaveryhighvalue.Finally,thepixel-wisegrid-basedfeatureisgivenby:

forapixel pk = {xk ,y

,z

}.Figure1showsthedifferentstepsofgenerating thefeaturevector.Inthisway,thefeaturevectorisabletoignoresmallerrors ofthestereoalgorithmespeciallyaroundbordersandsystematicerrorsofthe algorithmaretakenintoconsiderationasshowninFig.1(b).Theresultsection providesanalysisoftheinfluenceofthefeaturedimensionontheperformance oftheclassifier.

Fig.1. (a,b):ComparisonbetweenthedataqualityacquiredwithKinect(a)andwith thestereocamera(b).(c)Differentstagesofcreatingthefeaturevectorherefor5 × 7 cellsfromlefttoright:theboundingboxtightlylaidaroundtheforegroundmask,the subdivisionoftheboundingboxintoagridofcells,thecomputedmedianineachcell inred,thefeaturevectorforarandomlychosenpixelingreenandtheconnectionto eachcellmedianinyellow.

3.2GeneralTheoryonTrainingRandomForests

Arandomforestisanensembleofdecorrelatedbinarydecisiontrees.Itistrained onadataset Δ,consistingofpairs ψi = {fi ,li } offeaturevectors f andthelabels l ,learningthemappingfromthefeaturestothelabels.Eachtreeistrainedona subsetofthetrainingdataensuringthatthetreesarerandomized.Ateachnode ofthetree,adecisionfunction gν,τ (f ) ≡ ν ∗ f<τ istrainedsendingsamplesto theleftchildnodeifthisconditionisverifiedelsetotherightchildnode,where ν choosesexactlyonefeaturedimensionthuscreatingaxisalignedsplits.Inorder

(a) (b)
(c)

totrainthisdecisionfunction,ateachnode,asubsetofallfeaturedimensions israndomlychosenandforeachfeature, n thresholdsaregenerated,separating theincomingsamples Δ intoleftandrightsubsets Δl and Δr .Foreachofthese splits,aninformationgainiscomputed:

where H isanentropyfunctiondependingonthekindofrandomforestand |·| denotesthenumberofelementsinaset.Thefinaldecisionfunction gν ∗ ,τ ∗ isgivenbyfinding argmaxν,τ (Iν,τ ).Thisprocessisrepeatediterativelyuntila leafnodeisreached,whichisdefinedbythefollowingcriteria:(i)themaximum depthisreached,(ii)aminimumnumberofsamplesisundercutor(iii)the informationgainfallsbelowacertainthreshold.Intheleafnodes,allincoming samplesareusedtocomputeaposteriordistributionwhichdependsdirectlyon thekindofforesttrained.

3.3OrientationClassification

Thegoaloftheorientationclassificationistoassignthecurrentforegroundmask toitscorrespondingclustercontainingalltheposesofaspecificorientationin relationtothecamera.Toachievethis,clustersarecreatedusingthemotion capturedataacquiredforeachposeandaclassificationrandomforestistrained toclassifyeachpixelintothecorrectcluster.

Fig.2. (a)30Orientationclustersobtainedwithk-meansclustering.Forsuchalarge numberofclusters,theposesaredividedbyorientationbutalsobroadlyintoarmand legmovements.(b)Orientationclassificationresultsfordifferentsizesofthegridlike featureanddifferentnumberoforientationcluster.

GenerationofOrientationClusters. Theclustersaregeneratedinanunsupervisedmanner,usingthemotioncapturedatafromthetrainingdataset.Foreach pose,theanglesbetweenallneighboringjointsarecomputed.Clusteringisdone usingthek-meansapproachonthesejointangles.Incasek-meansisrunonthe euclideandistancesofjointpositionsin3Dspace,thealgorithmnotonlyseparatesposesintermsofjointanglesbutalsopeopleofdifferentheights.Byusing onlythejointanglesanddeliberatelyomittinglimblengths,wegetconsistent

(a)
(b)

clustersfordifferentposeswithregardtotheoverallorientationoftheperson. K-meansreliesoninitialseedstocreateclustersandresultscanvarydepending onthoseseeds.Inordertoachieveacertainlevelofindependencefromthis,we run100instancesofk-meansandchooseaclustercombinationwhichismost oftenreachedduringthisprocess.TheinfluenceofthenumberofclustersisanalyzedintheSec4.Althoughotherclusteringalgorithms,e.g.meanshift[12] weretested,theydidn’tgivesatisfactoryresults.Sincefixingthebandwidthof meanshiftbyhandisnottrivial.K-meanswasthefinalchoiceforclustering.

ClassificationofOrientationClusters. Theclassificationrandomforestistrained usingthegrid-basedfeaturetoclassifyeachpixeltothecorrectcluster.Shannon’sentropyisusedfortheinformationgain.Additionally,weusetherandomfieldbasedreweightingfunctiondescribedin[13].Thisreweightingscheme takesintoaccounttheclassdistributionofthefulltrainingdataset,insteadof reweightingonlythesamplesinthecurrentnode,whichwasshowntoyieldmore accurateresults.Theinformationgain I isrewrittenas:

where Δ0 isthetotaltrainingset, n (c,Δi )isthenumberofoccurrencesof classcinthesubset Δi ,and wc =

C n(k,Δ0 ) n(c,Δ0 ) istheweightobtainedby dividingthetotalnumberofsamples k inthedataset Δ0 bythenumberof occurrencesofclassc.Itislowestforthemostrepresentedclassandviceversa. Z (Δi )= k∈C wk n (k,Δi )isanalogoustothepartitionfunctioninarandom fieldandrepresentstheweightofagivensubset Δi .Itreplacestheweight |Δl | |Δ| inEquation2.Thedetailedderivationofthisformulafromthestandard Shannon’sentropyispresentedintheworksofKontschiederetal.[13]wherethis newinformationgainwasfirstintroduced.Theleafnodesstorethedistribution ofclassesofallincomingpointsasahistogram.

3.4PoseEstimationPerOrientationCluster

Oneregressionforestistrainedfortheposeestimationofeachcluster.For eachtree,thetrainingsetconsistsofpixelsobtainedfromabootstrapofthe trainingimagesbelongingtoagivencluster.Thegroundtruthjointpositions areprovidedbyamotioncapturesystem,aswillbeexplainedinSec.4.1.The trainingdatasetconsistsofpairsofpixel-wisefeaturesasdescribedinSec.3.1and labelscontainingtheoffsetfromthegivenpixeltoalljointpositions.Foragiven pixel pi (xi ,yi ,zi )andthepose J = {j1 ,...,jN } consistingof N joints,thelabel isgivenby Ψ = {ψ1 ,...,ψN },witheach ψk =(jk,x xi ,jk,y yi ,jk,z zi ). Duringtrainingweiterativelysearchfortheoptimalsplitineachnode.Asshown in[2],thebodyjointscanbemodeledusingamultivariategaussiandistribution. Followingthisidea,wecanmodeltheinformationgainbasedonthedifferential entropyofgaussiansandassumeindependencebetweenthedifferentjoints.The

entropyfunctionHintheinformationgainfunctioncanthusbereducedto:

where Σ isthediagonalofthecovariancematrixofthejointpositionsand N isthenumberofjoints.Oncealeafnodecriterionisfulfilled,themeanshiftis computedonallincomingpointsforeachjointandthemainmodeisstoredwith itsweight,equaltothenumberofpointsvotingforthemainmode.

3.5PredictionPipeline

Foreachimagewithanunknownpose,thegrid-basedfeatureiscomputedfora randomsubsetofpixelsfromtheforegroundmask.Theyarethensentthrough alltreesoftheorientationclassificationforest.Thehistograms,containingthe distributionoverorientationclusters,extractedfromallleafsareaveragedover allpixelsandtrees.Weretainthethreebestorientationsfortheposeestimation. Intheposeestimationstep,allpixelsaresentthroughtheforestsbelonging tothosethreebestorientationclusters.Thefinalposeaggregationisdoneby applyingmeanshifttothepredictionsforeachjointseparatelyandchoosingthe mainmodeasthepredictionoutcome.

4ExperimentsandResults

4.1DataAcquisition

Inordertobeabletotestouralgorithm,wehavecreatedanewdataset,using astereocameraandamotioncapturesystem.Sincethemocapsystemdoesnot workoutdoors,thetrainingdatawasacquiredindoors.Thetrainingsetconsists ofsequencesdepicting10peopleperformingvariouswalkingandarmmovement motions.Duringtheacquisitiontheactorswerewearing14markerswhichreflect theinfraredlightemittedby8infraredcamerasandareusedtoprovideground truthskeletonpositionsforeachframe.Thedatasetconsistsof25000frames.

4.2OrientationClassification

ProposedDataset: Inthisparagraph,weanalyzetheorientationclassification part,describedinSection3.3.Theevaluationistwofold,firstweanalyzehow thenumberofclustersaffectstheclassificationoutcome,thenweevaluatethe influenceofthenumberofcellsofthefeaturevectorandcomparetothedepth comparisonfeature.Thenumberofclustersweresetto10and30duringthe experiments.Forthefeaturevector,weperformanevaluationprogressivelyincreasingthenumberofcellsfrom3 × 3to11 × 11instepsof2.Themaximum allowedtreedepthissetto20,andeachforestconsistsof5trees.Allresultsare averagedoveracrossvalidation.Foreachvalidation,theforestsweretrainedon 8peopleandtestedontheremaining2.ResultscanbeseeninFig.2(b).The

bestresultsareachievedfor30clusters.Therearetwoimportantobservations regardingthefeaturevector.Firstly,dividingthefeatureintotoomanycells, especiallyalongthey-axis,decreasesthe overallperformanceofthefeature.Especiallyforsideviewsandposeswherealllimbsareclosetothebody,afine gridalongthey-axisnegativelyeffectsthenoisereductionpropertiesforwhich thefeaturewasdesigned.Secondly,thefeaturevectorseemstoperformbestif theratiobetweenthenumberofrowsandcolumnsisclosertotheheightversus widthratioofthehumanbody.

Inordertocomparethegrid-basedfeaturetothefeatureusedin[1,2,3], wetrainedarandomforestsampling500featurecandidatesand20thresholds ateachnodewithamaximumprobeoffsetof1.29pixel-meters,identicalto thoseproposedin[1].Allotherparameterswerekeptidenticaltotheother experiments.Thegrid-basedfeatureachieved81.4%and89.9%for10and30 clustersrespectivelycomparedto64.6%and72.3%forthedepthcomparison featureusedin[1].

Fig.3. Evaluationofthegrid-basedfeaturevectorwithregardtothenumberofclusters andthenumberofcellsinthegrid.(a):Theaccuracyperjoint(b):errorincmper joint.

DaimlerPedestrianSegmentationBenchmark: Inordertoshowthattheapproachalsoworksoutdoors,weevaluatetheorientationclassificationonthe publiclyavailabledatasetofFlohrandGavrila[5],consistingof785singledisparityimagesofpedestriansatvariousdistancesfromthecamera.Thisdataset containsannotatedgroundtruthfortheforegroundmasksofthepedestriansbut doesnotcontainorientationinformation.Toevaluateourapproach,weseparatetheorientationclustersofourapproachinto8directionswithregardtothe camera {front,front-left,left,back-left,back,back-right,rightandfront-right}, choosingforeachofthegeneratedclustersthedominanttorsoorientation.Since thegroundtruthposeisnotavailableforthisdatasettodeterminethecorrect cluster,wechoosevisuallytheclosestorientationusedforthemanuallylabeled clusters.Testswererunforthe30-clustertrainingsetupusingthebestfeature fromthepreviousexperiments,achieving78%accuracy.

(a)
(b)

Itisnoteworthythatmostofthedisparityimagesprovidedbythedatasetare muchsmallerinsizethanthetrainingimages.Inonlyabouthalfoftheprovided images,theheightoftheforegroundmaskishigherthan120pixels,whichis roughlyhalfoftheaverageheightofthetrainingimages.Thisshowsthatour algorithmandespeciallythefeatureworkwellevenifthesizeoftestingimages isafractionofthesizeofthetrainingimagesInFig.4,weshowsomeexample imagesfromthedatasetwiththedeterminedorientation.

Fig.4. Exampleimagesfromthedatasetof[5].Thegroundtruthlabelisdenoted ingreenandthepredictioninred.Theyellownumberdisplaysthepercentageof foregroundpixelsvotingforthepredictedcluster.Weshowtheoriginalimageinstead ofthedepthimage,asitisvisuallymorehelpful.

4.3PoseEstimation

Theevaluationoftheposeestimationisdoneforclustersizesof10and30.For eachscenario,weusethebestfeaturefromthepreviousevaluationandapply thecompletepredictionpipelineasdescribedinSection3.5.Firsttheclassificationforestdeterminesthecorrectorientationcluster,thentheregressionforests fromthethreemostprobableclustersareusedtopredictthepose.Weconsider ajointtobecorrectlyestimatedifitiswithinaradiusof10centimetersofthe groundtruthjointposition.Thisfollowstheevaluationcriteriaestablishedby severalrelatedworks[1,2].ResultsareshowninFig.3(a).Fig.3(b)showsthe medianerrorperjoint.Weexplicitlyusethemedian,asanerrorintheorientationclassificationispropagatedtotheposeestimationproducingwrongposes withperjointerrorsofupto1m.Bydisplayingthemedianerror,wecanshow thatifthecorrectorientationhasbeendetermined,theposepredictionproduces goodresultsforalldifferentorientations.Examplesareshowninsupplementary materialsvideo.Tocompareourgrid-basedfeaturetothedepthcomparisonfeatureof[1],wetrainregressionforestsforeachclusterusingthesameparameters ashavebeendescribedfortheorientationclassification.Forafaircomparison betweenbothfeaturesintermsofposeregression,weusetheoutputoftheclassificationforesttrainedwiththegrid-basedfeature.Thisway,wedonotpenalize errorsofthedepthcomparisonfeatureintheorientationclassificationstep.The grid-basedfeatureachieved75 8%and84 9%for10and30clusters,compared to71 3%and80 0%forthedepthcomparisonfeature.

Thepredictionpipelineincludingfeaturecomputation,orientationclassificationandtheposepredictionruninreal-timeat35fpsonanIntel(R)Core(TM) i5-2540CPU.

5Conclusion

Weproposeanewalgorithmforhumanposeestimationinstereoimagesconsistingoftwostagesprocedure,wherewefirstclassifyglobalorientationandthen predictthepose.Weintroducedanewgrid-basedfeaturevectorandprovedits effectivenesscomparedtothecommonlyuseddepthcomparisonfeatureof[1]. Thisfeatureisalsousedinourtwo-stageprocedurewherefirstaclassification forestwasusedfororientationpredictionandthenaregressionforestisusedfor poseestimation.Inthefuture,wewanttoincludethecolorinformationprovided bythestereocameraandconsidertemporalinformationtocopewithisolated wrongpredictions.

References

1.Shotton,J.,Fitzgibbon,A.,Cook,M.,Finocchio,T.S.M.,Moore,R.,Kipman,A., Blake,A.:Real-timehumanposerecognitioninpartsfromsingledepthimages. In:CVPR(2011)

2.Girshick,R.,Shotton,J.,Kohli,P.,Criminisi,A.,Fitzgibbon,A.:Efficientregressionofgeneral-activityhumanposesfromdepthimages.In:ICCV(2011)

3.Taylor,J.,Shotton,J.,Sharp,T.,Fitzgibbon,A.:Thevitruvianmanifold:Inferringdensecorrespondencesforone-shothumanposeestimation.In:2012IEEE ConferenceonComputerVisionandPatternRecognition(CVPR),pp.103–110. IEEE(2012)

4.Pons-Moll,G.,Taylor,J.,Shotton,J.,Hertzmann,A.,Fitzgibbon,A.:Metricregressionforestsforhumanposeestimation.In:BMVC2013(2013)

5.Flohr,F.,Gavrila,D.M.:Pedcut:Aniterativeframeworkforpedestriansegmentationcombiningshapemodelsandmultipledatacues.In:BMVC2013(2013)

6.Sun,M.,Kohli,P.,Shotton,J.:Conditionalregressionforestsforhumanposeestimation.In:IEEEComputerVisionandPatternRecognition(CVPR),pp.3394–3401 (2012)

7.Pl¨ankers,R.,Fua,P.:Articulatedsoftobjectsformulti-viewshapeandmotion capture.IEEETrans.PatternAnal.Mach.Intell.25(10)(2003)

8.Urtasun,R.,Fua,P.:3dhumanbodytrackingusingdeterministictemporalmotion models.In:Pajdla,T.,Matas,J(G.)(eds.)ECCV2004.LNCS,vol.3023,pp.92–106. Springer,Heidelberg(2004)

9.Bernier,O.,Cheung-Mon-Chan,P.,Bouguet,A.:Fastnonparametricbeliefpropagationforreal-timestereoarticulatedbodytracking.ComputerVisionandImage Understanding113(1),29–47(2009)

10.Keskin,C.,Kıra¸c,F.,Kara,Y.E.,Akarun,L.:Handposeestimationandhandshape classificationusingmulti-layeredrandomizeddecisionforests.In:Fitzgibbon,A., Lazebnik,S.,Perona,P.,Sato,Y.,Schmid,C.(eds.)ECCV2012,PartVI.LNCS, vol.7577,pp.852–863.Springer,Heidelberg(2012)

11.Enzweiler,M.,Gavrila,D.M.:Integratedpedestrianclassificationandorientation estimation.In:IEEEComputerVisionandPatternRecognition,CVPR(2010)

12.Comaniciu,D.,Meer,P.:Meanshift:Arobustapproachtowardfeaturespace analysis.IEEETrans.PatternAnal.Mach.Intell.24(5)(2002)

13.Kontschieder,P.,Kohli,P.,Shotton,J.,Criminisi,A.:Geof:Geodesicforestsfor learningcoupledpredictors.In:CVPR2013(2013)

Another random document with no related content on Scribd:

—— (Dr. G.), 1020, 1032

Macfarren (Sir G. A.), 1030

Mackail (J. W.), 1018

Mackinnon (J.), 1006

Macleod (H. D.), 1016

Macpherson (Rev. H. A.), 1012

Madden (D. H.), 1013

Maher (Rev. M.), 1016

Malleson (Col. G. B.), 1005

Marbot (Baron de), 1007

Marquand (A.), 1030

Marshman (J. C.), 1007

Martineau (Dr. James), 1032

Maskelyne (J. N.), 1013

Maunder (S.), 1025

Max Müller (F.), 1007, 1008, 1015, 1016, 1022, 1030, 1032

—— (Mrs.), 1009

May (Sir T. Erskine), 1006

Meade (L. T.), 1026

Melville (G. J. Whyte), 1022

Merivale (Dean), 1006

Merriman (H. S.), 1022

Mill (James), 1015

—— (John Stuart), 1015, 1017

Milner (G.), 1031

Miss Molly (Author of), 1026

Moffat (D.), 1013

Molesworth (Mrs.), 1026

Monck (W. H. S.), 1015

Montague (F. C.), 1006

Montagu (Hon. John Scott), 1012

Moore (T.), 1025

—— (Rev. Edward), 1014

Morgan (C. Lloyd), 1017

Morris (W.), 1020, 1022, 1031

—— (Mowbray), 1011

Mulhall (M. G.), 1017

Nansen (F.), 1009

Nesbit (E.), 1020

Nettleship (R. L.), 1014

Newdigate - Newdegate (Lady), 1008

Newman (Cardinal), 1022

Ogle (W.), 1018

Oliphant (Mrs.), 1022

Oliver (W. D.), 1009

Onslow (Earl of), 1011

Orchard (T. N.), 1031

Osbourne (L.), 1023

Park (W.), 1013

Parr (Louisa), 1026

Payne-Gallwey (Sir R.), 1011, 1013

Peek (Hedley), 1011

Pembroke (Earl of), 1011

Phillipps-Wolley (C.), 1010, 1022

Pitman (C. M.), 1011

Pleydell-Bouverie (E. O.), 1011

Pole (W.), 1013

Pollock (W. H.), 1011

Poole (W. H. and Mrs.), 1029

Poore (G. V.), 1031

Potter (J.), 1016

Praeger (S. Rosamond), 1026

Prevost (C.), 1011

Pritchett (R. T.), 1011

Proctor (R. A.), 1013, 1024, 1028

Quill (A. W.), 1018

Raine (Rev. James), 1004

Ransome (Cyril), 1003, 1006

Rauschenbusch-Clough (Emma), 1008

Rawlinson (Rev. Canon), 1008

Rhoades (J.), 1018

Rhoscomyl (O.), 1023

Ribblesdale (Lord), 1013

Rich (A.), 1018

Richardson (C.), 1012

Richman (I. B.), 1006

Richmond (Ennis), 1031

Richter (J. Paul), 1031

Rickaby (Rev. John), 1016

—— (Rev. Joseph), 1016

Ridley (Sir E.), 1018

Riley (J. W.), 1020

Roget (Peter M.), 1016, 1025

Rolfsen (N.), 1008

Romanes (G. J.), 1008, 1015, 1017, 1020, 1032

—— (Mrs.), 1008

Ronalds (A.), 1013

Roosevelt (T.), 1004

Rossetti (Maria Francesca), 1031

—— (W. M.), 1020

Rowe (R. P. P.), 1011

Russell (Bertrand), 1017

—— (Alys), 1017

—— (Rev. M.), 1020

Saintsbury (G.), 1012

Samuels (E.), 1020

Sandars (T. C.), 1014

Sargent (A. J.), 1017

Schreiner (S. C. Cronwright), 1010

Seebohm (F.), 1006, 1008

Selous (F. C.), 1010

Sewell (Elizabeth M.), 1023

Shakespeare, 1020

Shand (A. I.), 1012

Sharpe (R. R.), 1006

Shearman (M.), 1010, 1011

Sinclair (A.), 1011

Smith (R. Bosworth), 1006

Smith (T. C.), 1004

Smith (W. P. Haskett), 1009

Solovyoff (V. S.), 1031

Sophocles, 1018

Soulsby (Lucy H.), 1026, 1031

Spedding (J.), 1007, 1014

Sprigge (S. Squire), 1008

Stanley (Bishop), 1024

Steel (A. G.), 1010

—— (J. H.), 1010

Stephen (Leslie), 1009

Stephens (H. Morse), 1006

Stevens (R. W.), 1031

Stevenson (R. L.), 1023, 1026

‘Stonehenge’, 1010

Storr (F.), 1014

Stuart-Wortley (A. J.), 1011, 1012

Stubbs (J. W.), 1006

Suffolk & Berkshire (Earl of), 1011

Sullivan (Sir E.), 1011

—— (J. F.), 1026

Sully (James), 1015

Sutherland (A. and G.), 1006

—— (Alex.), 1015, 1031

Suttner (B. von), 1023

Swinburne (A. J.), 1015

Symes (J. E.), 1017

Tacitus, 1018

Taylor (Col. Meadows), 1006

Tebbutt (C. G.), 1011

Thornhill (W. J.), 1018

Thornton (T. H.), 1008

Todd (A.), 1006

Toynbee (A.), 1017

Trevelyan (Sir G. O.), 1006, 1007

—— (C. P.), 1017

—— (G. M.), 1006

Trollope (Anthony), 1023

Tupper (L.), 1020

Turner (H. G.), 1031

Tyndall (J.), 1007, 1009

Tyrrell (R. Y.), 1018

Tyszkiewicz (M.), 1031

Upton (F. K. and Bertha), 1026

Van Dyke (J. C.), 1031

Verney (Frances P. and Margaret M.), 1008

Virgil, 1018

Vivekananda (Swami), 1032

Vivian (Herbert), 1009

Wakeman (H. O.), 1006

Walford (L. B.), 1023

Walker (Jane H.), 1029

Wallas (Graham), 1008

Walpole (Sir Spencer), 1006

Walrond (Col. H.), 1010

Walsingham (Lord), 1011

Walter (J.), 1008

Warwick (Countess of), 1031

Watson (A. E. T.), 1010, 1011, 1012, 1013, 1023

Webb (Mr. and Mrs. Sidney), 1017

—— (T. E.), 1015, 1019

Weber (A.), 1015

Weir (Capt. R.), 1011

Weyman (Stanley), 1023

Whately (Archbishop), 1014, 1015

—— (E. Jane), 1016

Whishaw (F.), 1023

White (W. Hale), 1020, 1031

Whitelaw (R.), 1018

Wilcocks (J. C.), 1013

Wilkins (G.), 1018

Willard (A. R.), 1031

Willich (C. M.), 1025

Witham (T. M.), 1011

Wood (Rev. J. G.), 1025

Wood-Martin (W. G.), 1006

Woods (Margaret L.), 1023

Wordsworth (Elizabeth), 1026

—— (William), 1020

Wyatt (A. J.), 1020

Wylie (J. H.), 1006

Youatt (W.), 1010

Zeller (E.), 1015

History, Politics, Polity, Political Memoirs, &c.

Abbott.—A H G.

By E A, M.A., LL.D.

Part I.—From the Earliest Times to the Ionian Revolt. Crown 8vo., 10s. 6d.

Part II.—500–445 B.C. Crown 8vo., 10s. 6d.

Acland and Ransome. A H O P H E 1896. Chronologically Arranged. By the Right Hon. A. H. D A, M.P., and C R, M.A. Crown 8vo., 6s.

Amos.—P E C G. For the Use of Colleges, Schools, and Private Students. By S A, M.A. Cr. 8vo., 6s.

ANNUAL REGISTER (THE). A Review of Public Events at Home and Abroad, for the year 1897. 8vo., 18s.

Volumes of the A R for the years 1863–1896 can still be had. 18s. each.

Arnold. I L M H. By T A, D.D., formerly Head Master of Rugby School. 8vo., 7s. 6d.

Ashbourne. P: S C H L T. By the Right Hon. E G, L A, Lord Chancellor of Ireland. With 11 Portraits. 8vo., 21s.

Baden-Powell.—T I V C. Examined with Reference to the Physical, Ethnographic, and Historical Conditions of the Provinces; chiefly on the Basis of the RevenueSettlement Records and District Manuals. By B. H. BP, M.A., C.I.E. With Map. 8vo., 16s.

Bagwell. I T. By R B, LL.D. (3 vols.) Vols. I. and II. From the first invasion of the Northmen to the year 1578. 8vo., 32s. Vol. III. 1578–1603. 8vo., 18s.

Ball.—H R L S I, from the Invasion of Henry the Second to the Union (1172–1800). By the Rt. Hon. J. T. B. 8vo., 6s.

Besant.—T H L. By Sir W B. With 74 Illustrations. Crown 8vo., 1s. 9d. Or bound as a School Prize Book, 2s. 6d.

Brassey (L).—P A.

N M. 1872–1893. 2 vols. Crown 8vo., 10s.

M M N, 1871–1894. Crown 8vo., 5s.

I F C 1880–1894. Cr. 8vo., 5s.

P M. 1861–1894. Crown 8vo., 5s.

Bright. A H E. By the Rev. J. F B, D.D.

Period I. M M: A.D. 449–1485. Crown 8vo., 4s. 6d.

Period II. P M. 1485–1688. Crown 8vo., 5s.

Period III. C M. 1689–1837. Crown 8vo., 7s. 6d.

Period IV. T G D. 1837–1880. Crown 8vo., 6s.

Buckle.—H C E. By H T B. 3 vols. Crown 8vo., 24s.

Burke. A H S from the Earliest Times to the Death of Ferdinand the Catholic. By U R B, M.A. 2 vols. 8vo., 32s.

Chesney. I P: a View of the System of Administration in India. By General Sir G C, K.C.B. With Map showing all the Administrative Divisions of British India. 8vo., 21s.

Corbett.—D T N, with a History of the Rise of England as a Maritime Power. By J S. C. With Portraits, Illustrations and Maps. 2 vols. 8vo., 36s.

Creighton.—A H P G S S R, 1378–1527. By M. C, D.D., Lord Bishop of London. 6 vols. Crown 8vo., 6s. each.

Cuningham.—A S I F: a Senate for the Empire. By G C. C, of Montreal, Canada. With an Introduction by Sir F Y, K.C.M.G. Crown 8vo., 3s. 6d.

Curzon. P P Q. By the Right Hon. L C of Kedleston. With 9 Maps, 96 Illustrations, Appendices, and an Index. 2 vols. 8vo., 42s.

De Tocqueville. D A. By A T. Translated by H R, C.B., D.C.L. 2 vols.

Crown 8vo., 16s.

Dickinson. T D P N C. By G. L D, M.A. 8vo., 7s. 6d.

Froude (J A.).

T H E, from the Fall of Wolsey to the Defeat of the Spanish Armada.

Popular Edition. 12 vols. Crown 8vo., 3s. 6d. each.

‘Silver Library’ Edition. 12 vols. Crown 8vo., 3s. 6d. each.

T D C A. Crown 8vo., 3s. 6d.

T S S A, and other Essays. Cr. 8vo., 3s. 6d.

T E I E C. 3 vols. Cr. 8vo., 10s. 6d.

E S S C. Cr. 8vo., 6s.

T C T. Crown 8vo., 3s. 6d.

S S G S. 4 vols. Cr. 8vo., 3s. 6d. each.

C: a Sketch. Cr. 8vo, 3s. 6d.

Gardiner (S R, D.C.L., LL.D.).

H E, from the Accession of James I. to the Outbreak of the Civil War, 1603–1642. 10 vols. Crown 8vo., 6s. each.

A H G C W, 1642–1649. 4 vols. Cr. 8vo., 6s. each.

A H C P. 1649–1660. Vol.I. 1649–1651. With 14 Maps. 8vo., 21s. Vol. II. 1651–1654. With 7 Maps. 8vo., 21s.

W G P W. With 8 Illustrations. Crown 8vo., 5s.

C’ P H. Founded on Six Lectures delivered in the University of Oxford. Cr. 8vo., 3s. 6d.

T S’ H E. With 378 Illustrations. Crown 8vo., 12s.

Also in Three Volumes, price 4s. each.

Vol. I. B.C. 55–A.D. 1509. 173 Illustrations. Vol. II. 1509–1689. 96 Illustrations. Vol. III. 1689–1885. 109 Illustrations.

Greville.—A J R K G IV., K W IV., Q V. By C C. F. G, formerly Clerk of the Council. 8 vols. Crown 8vo., 3s. 6d. each.

HARVARD HISTORICAL STUDIES.

T S A S T U S A, 1638–1870. By W. E. B. D B, Ph.D. 8vo., 7s. 6d.

T C R F

C M. By S. B. H, A.M. 8vo., 6s.

A C S N S C. By D. F. H, A.M. 8vo., 6s.

N E O U S. By F W. D, A.M. 8vo., 7s. 6d.

A B B M H, G P R. By C G, Ph.D. 8vo., 12s.

T L F S P N W. By T C. S, Ph.D. 8vo, 7s. 6d.

T P G E C N A. By E B G. 8vo., 7s. 6d.

⁂ Other Volumes are in preparation.

Hammond. A W’ P R. By Mrs. J H H. Crown 8vo., 2s. 6d.

Historic Towns.—Edited by E. A. F, D.C.L., and Rev. W H, M.A. With Maps and Plans. Crown 8vo., 3s. 6d. each.

Bristol. By Rev. W. Hunt. Carlisle. By Mandell Creighton, D.D. Cinque Ports. By Montagu Burrows. Colchester. By Rev. E. L. Cutts. Exeter. By E. A. Freeman. London. By Rev. W. J. Loftie. Oxford. By Rev. C. W. Boase. Winchester. By G. W. Kitchin, D.D. York. By Rev. James Raine. New York. By Theodore Roosevelt. Boston (U.S.) By Henry Cabot Lodge.

Hunter. A H B I. By Sir W W

H, K.C.S.I., M.A., LL. D.; a Vice-President of the Royal Asiatic Society. In 5 vols. Vol. I.—Introductory to the Overthrow of the English in the Spice Archipelago, 1623. 8vo., 18s.

Joyce (P. W., LL.D.).

A S H I, from the Earliest Times to 1603. Crown 8vo., 10s. 6d.

A C’ H I. From the Earliest Times to the Death of O’Connell. With specially constructed Map and 160 Illustrations, including Facsimile in full colours of an illuminated page of the Gospel Book of MacDurnan, A.D. 850. Fcp. 8vo., 3s. 6d.

Kaye and Malleson. H I M, 1857–1858. By Sir J W. K and Colonel G. B. M. With Analytical Index and Maps and Plans. 6 vols. Crown 8vo., 3s. 6d. each.

Lang (A).

P S: or, The Incognito of Prince Charles. With 6 Portraits. 8vo., 18s.

T C P: Being a Sequel to ‘Pickle the Spy’. With 4 Plates. 8vo., 16s.

S. A. With 8 Plates and 24 Illustrations in the Text by T. Hodge. 8vo., 15s. net.

Lecky (The Rt. Hon. W E. H.)

H E E C.

Library Edition. 8 vols. 8vo. Vols. I. and II., 1700–1760, 36s.; Vols. III. and IV., 1760–1784, 36s.; Vols. V. and VI., 1784–1793, 36s.; Vols. VII. and VIII., 1793–1800, 36s.

Cabinet Edition. E. 7 vols. Crown 8vo., 6s. each. I. 5 vols. Crown 8vo., 6s. each.

H E M A

C. 2 vols. Crown 8vo., 12s.

H R I S

R E. 2 vols. Crown 8vo., 12s.

D L.

Library Edition. 2 vols. 8vo., 36s.

Cabinet Edition. 2 vols. Cr. 8vo., 12s.

Lowell. G P C E. By

A. L L. 2 vols. 8vo., 21s.

Macaulay (L).

T L W L M. ‘Edinburgh’ Edition. 10 vols. 8vo., 6s. each.

C W.

Cabinet Edition. 16 vols. Post 8vo. £4 16s.

Library Edition. 8 vols. 8vo., £5 5s.

‘Edinburgh’ Edition. 8 vols. 8vo., 6s. each.

‘Albany’ Edition. With 12 Portraits. 12 vols. Large Crown 8vo., 3s. 6d. each.

H E A J S.

Popular Edition. 2 vols. Cr. 8vo., 5s.

Student’s Edition. 2 vols. Cr. 8vo., 12s.

People’s Edition. 4 vols. Cr. 8vo., 16s.

‘Albany’ Edition. With 6 Portraits. 6 vols. Large Crown 8vo., 3s. 6d. each.

Cabinet Edition. 8 vols. Post 8vo., 48s.

‘Edinburgh’ Edition. 4 vols. 8vo., 6s. each.

Library Edition. 5 vols. 8vo., £4.

C H E, L R, etc., in 1 volume.

Popular Edition. Crown 8vo., 2s. 6d.

Authorised Edition. Crown 8vo., 2s. 6d., or gilt edges, 3s. 6d.

‘Silver Library’ Edition. With Portrait and 4 Illustrations to the ‘Lays’. Cr. 8vo., 3s. 6d.

C H E.

Student’s Edition. 1 vol. Cr. 8vo., 6s.

People’s Edition. 2 vols. Cr. 8vo., 8s.

‘Trevelyan’ Edition. 2 vols. Cr. 8vo., 9s.

Cabinet Edition. 4 vols. Post 8vo., 24s.

‘Edinburgh’ Edition. 3 vols. 8vo., 6s. each.

Library Edition. 3 vols. 8vo., 36s.

E, which may be had separately, sewed, 6d. each; cloth, 1s. each.

Addison and Walpole.

Croker’s Boswell’s Johnson.

Hallam’s Constitutional History.

Warren Hastings.

The Earl of Chatham (Two Essays).

Frederick the Great.

Ranke and Gladstone.

Milton and Machiavelli.

Lord Byron.

Lord Clive.

Lord Byron, and The Comic Dramatists of the Restoration.

M W

People’s Edition. 1 vol. Cr. 8vo., 4s. 6d.

Library Edition. 2 vols. 8vo., 21s.

S P.

Popular Edition. Crown 8vo., 2s. 6d.

Cabinet Edition. 4 vols. Post 8vo., 24s.

S W L M. Edited, with Occasional Notes, by the Right Hon. Sir G. O. Trevelyan, Bart.

Crown 8vo., 6s.

MacColl. T S P. By the Rev. M

MC, M.A., Canon of Ripon. 8vo., 10s. 6d.

Mackinnon. T U E S: S I H. By J M. Ph.D. Examiner in History to the University of Edinburgh. 8vo., 16s.

May. T C H E since the Accession of George III. 1760–1870. By Sir T E M, K.C.B. (Lord Farnborough). 3 vols. Cr. 8vo., 18s.

Merivale (C, D.D.), sometime Dean of Ely.

H R E. 8 vols. Crown 8vo., 3s. 6d. each.

T F R R: a Short History of the Last Century of the Commonwealth. 12mo., 7s. 6d.

G H R, from the Foundation of the City to the Fall of Augustulus, B.C. 753–A.D. 476. With 5 Maps. Crown 8vo, 7s. 6d.

Montague. T E E C H. By F. C. M, M.A. Crown 8vo., 3s. 6d.

Ransome. T R C G

E: being a Series of Twenty Lectures on the History of the English Constitution delivered to a Popular Audience. By C

R, M.A. Crown 8vo., 6s.

Richman.—A: P D P L

I-R. A Swiss Study. By I B. R, ConsulGeneral of the United States to Switzerland. With Maps. Crown 8vo., 5s.

Seebohm (F).

T E V C. Examined in its Relations to the Manorial and Tribal Systems, etc. With 13 Maps and Plates. 8vo., 16s.

T T S W: Being Part of an Inquiry into the Structure and Methods of Tribal Society. With 3 Maps. 8vo.,

12s.

Sharpe. L K: a History derived mainly from the Archives at Guildhall in the custody of the Corporation of the City of London. By R R. S, D.C.L., Records Clerk in the Office of the Town Clerk of the City of London. 3 vols. 8vo. 10s. 6d. each.

Smith. C C. By R. B S, M.A., With Maps, Plans, etc. Cr. 8vo., 3s. 6d.

Stephens. A H F R. By H. M S. 8vo. Vols. I. and II. 18s. each.

Stubbs. H U D, from its Foundation to the End of the Eighteenth Century. By J. W. S. 8vo., 12s. 6d.

Sutherland. T H A N Z, from 1606–1890. By A S, M.A., and G S, M.A. Crown 8vo., 2s. 6d.

Taylor. A S’ M H I. By Colonel M T, C.S.I., etc. Cr. 8vo., 7s. 6d.

Todd. P G B C. By A T, LL.D. 8vo., 30s. net.

Trevelyan. T A R. Part I. 1766–1776. By the Rt. Hon. Sir G. O. T, Bart. 8vo., 16s.

Trevelyan. E T W. By G M T, M.A. 8vo.

[In the Press.

Wakeman and Hassall. E I S E C H. By Resident Members of the University of Oxford. Edited by H O W, M.A., and A H, M.A. Crown 8vo., 6s.

Walpole.—H E C G W 1815 1858. By Sir S W, K.C.B. 6 vols. Crown 8vo., 6s. each.

Wood-Martin. P I: A S. A Handbook of Irish Pre-Christian Antiquities. By W. G. WM, M.R.I.A. With 512 Illustrations. Crown 8vo., 15s. Wylie. H E H IV. By J H W, M.A., one of H.M. Inspectors of Schools. 4 vols. Crown 8vo. Vol. I., 1399–1404, 10s. 6d. Vol. II., 1405–1406, 15s. Vol. III., 1407–1411, 15s. Vol. IV., 1411–1413, 21s.

Biography, Personal Memoirs, &c.

Armstrong. T L L E J. A.

Edited by G. F. S A. Fcp. 8vo., 7s. 6d.

Bacon. T L L F B, O W. Edited by J S. 7 Vols. 8vo., £4 4s.

Bagehot. B S. By W B. Crown 8vo., 3s. 6d.

Boevey.—‘T P W’: being passages from the Life of Catharina, wife of William Boevey, Esq., of Flaxley Abbey, in the County of Gloucester. Compiled by A W. CB, M.A. With Portraits. 4to., 42s. net.

Carlyle. T C: A History of his Life. By J A F.

1795–1835. 2 vols. Crown 8vo., 7s. 1834–1881. 2 vols. Crown 8vo., 7s.

Crozier. M I L: being a Chapter in Personal Evolution and Autobiography. By J B C, Author of ‘Civilisation and Progress,’ etc. 8vo., 14s.

Digby. T L S K D, by one of his Descendants, the Author of ‘Falklands,’ etc. With 7 Illustrations. 8vo., 16s.

Duncan. A D. By T E C. With 3 Portraits. 8vo., 16s.

Erasmus. L L E. By J A F. Crown 8vo., 6s.

FALKLANDS. By the Author of ‘The Life of Sir Kenelm Digby,’ etc. With 6 Portraits and 2 other Illustrations. 8vo., 10s. 6d.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.